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Online Quizzes

All current and previous quizzes in Math 1431 are now opened
until November 4th.
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Review for Test 2

Review for Test 2 by Prof. Morgan.

Thursday 8:00 - 10:00pm in 100 SEC
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Good Sources of Practice Problems

Examples from class.

The basic homework problems.

The basic online quiz problems.
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Section 3.9 Differentials

increment: ∆f = f (x + h)− f (x)

differential: df = f ′(x)h

∆f ≈ df

in the sense that
∆f − df

h
tends to 0 as h → 0.
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Quiz 1

Quiz 1

Use differentials to estimate
√

26, by using your knowledge of
√

25.

a. 5.15

b. 5.05

c. 5.1

d. 5.2

e. None of these
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Section 3.9 Newton-Raphson Approximation

Newton Method

Let the number c be a solution (root) of an equation f (x) = 0.
The Newton-Raphson method

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, · · · ,

generates a sequence of approximations x1, x2, · · · , xn, · · · that
will “converge” to the root c
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Quiz 2

Quiz 2

Use 1 iteration of Newton’s method to estimate
√

26, starting
from a guess of 5, by noting that

√
26 is a root of x2 − 26 = 0.

a. 5.15

b. 5.05

c. 5.1

d. 5.2

e. None of these
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Section 4.1 The Mean-Value Theorem

Theorem

If f is differentiable on the open interval (a, b) and continuous on
the closed interval [a, b], then there is at least one number c in
(a, b) for which

f ′(c) =
f (b)− f (a)

b − a

or equivalently
f (b)− f (a) = f ′(c)(b − a).
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Quiz 3

Give the number of values in (0, 2π) where the MVThm is satisfied.

a. 0

b. 1

c. 2

d. 3

e. None of these
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Section 4.2 Increasing and Decreasing Functions

Theorem

A function f is increasing on an
interval I if

f is continuous and
f ′(x) > 0 at all but finitely many
values in I .

A function f is decreasing on an
interval I if

f is continuous and
f ′(x) < 0 at all but finitely many
values in I .
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Example

f (x) =
4

5
x5 − 3x4 − 4x3 + 22x2 − 24x + 6,

f ′(x) = 4(x + 2)(x − 1)2(x − 3)

f is continuous everywhere.

f is increasing on (−∞,−2],
decreasing on [−2, 3], and increasing
on [3,∞).
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Quiz 4

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of intervals of increase of f .

a. 1

b. 2

c. 3

d. 4

e. None of these

Jiwen He, University of Houston Math 1431 – Section 24076, Test 2 Review October 28, 2008 13 / 69



Quiz 5

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of intervals of decrease of f .

a. 1

b. 2

c. 3

d. 4

e. None of these
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Section 4.3 Local Extreme Values
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Section 4.3 Critical Number
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Quiz 6

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of critical values of f .

a. 2

b. 3

c. 4

d. 5

e. None of these
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Section 4.3 First Derivative Test
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Section 4.3 Second Derivative Test
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Quiz 7

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of local minima of f .

a. 1

b. 2

c. 3

d. 4

e. None of these
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Quiz 8

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of local maxima of f .

a. 1

b. 2

c. 3

d. 4

e. None of these
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Section 4.4 Absolute Max/Min of f on [a, b]
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Example: Abosolute Max/Min of f on [a, b]

f (x) = x − 2 sin x , 0 ≤ x ≤ 2π,

f ′(x) = 1− 2 cos x , 0 ≤ x ≤ 2π.

f ′(x) = 0 at x = π/3, 5π/3.

f is continuous on [0, 2π].

f is decreasing on [0, π/3], increasing
on [π/3, 5π/3], and decreasing on
[5π/3, 2π].
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Section 4.4 Absolute Max/Min of f on [a,∞) or (−∞, b]
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Quiz 9

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of absolute minima of f .

a. 1

b. 2

c. 3

d. 4

e. None of these
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Quiz 10

Assume the domain of f is all real numbers. The graph of f ′(x) is
shown below. Give the number of absolute maxima of f .

a. 1

b. 2

c. 3

d. 4

e. None of these
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Section 4.5 Some Max-Min Problems

Jiwen He, University of Houston Math 1431 – Section 24076, Test 2 Review October 28, 2008 27 / 69



Section 4.6 Concavity and Points of Inflection

Definition

The graph of f is concave up on I if f ′ increases on I .

The graph of f is concave down on I if f ′ decreases on I .

Ponts that join arcs of opposite concavity are points of
inflection.
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Example

Determine the intervals on which f increases and the intervals
on which f decreases.

Determine the intervals on which the graph of f is concave up
and the intervals on which the graph of f is concave down.

Give the x-coordinates of the points of inflection.
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Section 4.6 Second-Derivative Test

Theorem

If f ′′(x) > 0 for all x in I , then f ′ increases on I , and the
graph of f is concave up.

If f ′′(x) < 0 for all x in I , then f ′ decreases on I , and the
graph of f is concave down.

If the point (c , f (c)) is a point of inflection, then either
f ′′(c) = 0 or f ′(c) does not exist.
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Example

Determine concavity and find the
points of inflection of the graph of
f (x) = x + cos x , x ∈ [0, 2π].

f ′(x) = 1− sin x , f ′′(x) = − cos x .

Jiwen He, University of Houston Math 1431 – Section 24076, Test 2 Review October 28, 2008 31 / 69



Section 4.7 Vertical Aymptotes

Typically, to locate the vertical asymptotes for a function f ,

find the values x = c at which f is discontinuous

and determine the behavior of f as x approaches c .

The vertical line x = c is a vertical asymptote for f if any one of
the following conditions holds

f (x) →∞ or −∞ as x → c+;

f (x) →∞ or −∞ as x → c−;

f (x) →∞ or −∞ as x → c .
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Section 4.7 Vertical Aymptotes: Rational Function

The line x = 4 is a vertical asymptote for

f (x) =
3x + 6

x2 − 2x − 8
=

3(x + 2)

(x + 2)(x − 4)
.
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Section 4.7 Aymptotes: Rational Function f (x) = x
x−2

The line x = 2 is a vertical asymptote.

The line y = 1 is a horizontal asymptote.
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Section 4.7 Behavior of Rational Function as x → ±∞

Let

R(x) =
anx

n + · · ·+ a1x + a0

bkxk + · · ·+ b1x + b0

be a rational function. Then

if n < k,
R(x) → 0 as x → ±∞;

if n = k,

R(x) → an

bn
as x → ±∞;

if n > k,
R(x) → ±∞ as x → ±∞.
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Section 4.7 Aymptotes: Rational Function f (x) = 5−3x2

1−x2

The lines x = ±1 are vertical asymptotes.

The line y = 3 is a horizontal asymptote.
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Section 4.8 Some Curve Sketching

Sketch the graph of f

Step 1: Domain of f

Step 2: Intercepts

Step 3: Symmetry and Periodicity

Step 4: First Derivative f ′

Step 5: Second Derivative f ′′

Step 6: Preliminary sketch

Step 7: Sketch the graph
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Problem 1

Use differentials to estimate
√

102.
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Problem 2

Use differentials to estimate sin 46o .
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Problem 3

A metal sphere with a radius of 10 cm is to be covered with a 0.02
cm coating of silver. Use differentials to estimate how much silver
will be required.
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Problem 4

Use one iteration of Newton’s method to approximate
√

48 from a
guess of 7. Hint:

√
48 is a root of x2 − 48 = 0.
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Problem 5

Use one iteration of Newton’s method to approximate a root of
2x3 + 4x2 − 8x + 3 = 0.
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Problem 6

Verify the conclusion of the mean value theorem for
f (x) = x3 − 4x2 + x + 6 on the interval [−1, 2].
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Problem 7

A car is stationary at a toll booth. Twenty minutes later, at a
point 20 miles down the road, the car is clocked at 60 mph. Use
the mean value theorem to explain why the car must have
exceeded the 60 mph speed limit at some time after leaving the
toll booth, but before the car was clocked at 60 mph.
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Problem 8

The graph of f (x) is
shown below. Give the
intervals of increase,
decrease, concave up
and concave down.
Also find and classify
any critical numbers
and list any values
where the function has
inflection.
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Problem 9

The graph of f ′(x) is
shown below. Give the
intervals of increase,
decrease, concave up
and concave down.
Also find and classify
any critical numbers
and list any values
where the function has
inflection.
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Problem 10

Classify the critical numbers of f (x) = x2 + x + 3|x | − 3.
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Problem 11

The function f (x) = x2 cos(x) has a critical number at x = 0. Use
the second derivative test to classify this critical number.
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Problem 12

Give the maximun and minimum values for
f (x) = −x3 + 6x2 + 15x − 2 on the interval [−2, 1].
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Problem 13

What are the dimensions of the base of the rectangular box of
greatest volume that can be constructed from 100 square inches of
cardboard if the base is to be twice as long as it is wide? Assume
that the box has top.
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Problem 14

A rectangular playground is to be fenced off and divied into two
parts by a fence parallel to one side of the playground. Six hundred
feet of fencing is used. Find the dimensions of the playground that
will enclose the greatest total area.
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Problem 15

Give the horizontal and vertical asymptotes of f (x) =
2x2 − x − 1

x2 + x − 2
.
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Problem 16

Graph f (x) =
3

5
x5/3 − 3x2/3. Be sure to plot any critical points,

points of inflection and the y intercept, etc. Also, indicate the
intervals of increase, decrease, concave up and concave down.
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Problem 16 (cont.)

Graph of f (x) =
3

5
x5/3 − 3x2/3

Step 1: Domain of f

(i) Determine the domain of f ;

(ii) Identify endpoints;

(iii) Find the vertical asymptotes;

(iv) Determine the behavior of f as x → ±∞;

(v) Find the horizontal asymptotes.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 2: Intercepts

(i) Determine the y -intercept of the graph:

The y -intercept is the value of f (0);

(ii) Determine the x-intercepts of the graph:

The x-intercepts are the solutions of the equation f (x) = 0.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 3: Symmetry and Periodicity

(i) Symmetry:

(a) If f is an even function, i.e., f (−x) = f (x), then the graph is
symmetric w.r.t. the y -axis;

(b) If f is an odd function, i.e., f (−x) = −f (x), then the graph is
symmetric w.r.t. the origin.

(ii) Periodicity:

If f is periodic with period p, then the graph replicates itself
on intervals of length p.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 4: First Derivative f ′

(i) Calculate f ′;

(ii) Determine the critical numbers of f ;

(iii) Examine the sign of f ′ to determine the intervals on which f
increases and the intervals on which f decreases;

(iv) Determine vertical tangents and cusps.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 5: Second Derivative f ′′

(i) Calculate f ′′;

(ii) Examine the sign of f ′′ to determine the intervals on which
the graph is concave up and the intervals on which the graph
is concave down;

(iii) Determine the points of inflection.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 6: Preliminary sketch

Plot the points of interest:

(i) intercept points,

(ii) extreme points

local extreme points,
endpoint extreme
points,
absolute extreme
points,

(iii) and points of inflection.
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Problem 16 (cont.)

Sketch the graph of f (x) =
3

5
x5/3 − 3x2/3

Step 7: Sketch the graph

(i) Neither symmetry and
nor periodicity;

(ii) Connect the points of
the preliminary sketch;

(iii) Make sure the curve
“rises”, “falls”, and
“bends” in the proper
way.
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Problem 17

Graph f (x) = sin 2x − 2 sin x . Be sure to plot any critical points,
points of inflection and the y intercept, etc. Also, indicate the
intervals of increase, decrease, concave up and concave down.
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Problem 17

Sketch the graph of f (x) = sin 2x − 2 sin x .

Step 1: Domain of f

(i) Determine the domain of f ;

(ii) Identify endpoints;

(iii) Find the vertical asymptotes;

(iv) Determine the behavior of f as x → ±∞;

(v) Find the horizontal asymptotes.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 2: Intercepts

(i) Determine the y -intercept of the graph:

The y -intercept is the value of f (0);

(ii) Determine the x-intercepts of the graph:

The x-intercepts are the solutions of the equation f (x) = 0.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 3: Symmetry and Periodicity

(i) Symmetry:

(a) If f is an even function, i.e., f (−x) = f (x), then the graph is
symmetric w.r.t. the y -axis;

(b) If f is an odd function, i.e., f (−x) = −f (x), then the graph is
symmetric w.r.t. the origin.

(ii) Periodicity:

If f is periodic with period p, then the graph replicates itself
on intervals of length p.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 4: First Derivative f ′

(i) Calculate f ′;

(ii) Determine the critical numbers of f ;

(iii) Examine the sign of f ′ to determine the intervals on which f
increases and the intervals on which f decreases;

(iv) Determine vertical tangents and cusps.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 5: Second Derivative f ′′

(i) Calculate f ′′;

(ii) Examine the sign of f ′′ to determine the intervals on which
the graph is concave up and the intervals on which the graph
is concave down;

(iii) Determine the points of inflection.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 6: Preliminary sketch

Plot the points of interest:

(i) intercept points,

(ii) extreme points

local extreme points,
endpoint extreme
points,
absolute extreme
points,

(iii) and points of inflection.
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 7: Sketch the graph

(i) Symmetry: sketch the
graph on the interval
[−π, π];

(ii) Connect the points of
the preliminary sketch;

(iii) Make sure the curve
“rises”, “falls”, and
“bends” in the proper
way;
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Problem 17 (cont.)

Sketch the graph of f (x) = sin 2x − 2 sin x

Step 7: Sketch the graph

(iv) Obtain the complete graph by replicating itself on intervals of
length 2π.
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