Lecture 27

11.7 Power Series 11.8 Differentiation and Integration of Power Series

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

pril 24, 2008 1

Power Series

As the Limit

f can be viewed as the limit of a sequence of polynomials: $f(x) = \lim_{n \to \infty} p_n(x),$ where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

April 24, 2008

2 / 14

i h

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ & \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

As the Limit

Jiwen He, University of Houston

山

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function
$$f$$
 on the interval $(-1, 1)$
$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x} \quad \text{for } |x| < 1$$

As the Limit

f can be viewed as the limit of a sequence of polynomials: $f(x) = \lim_{n \to \infty} p_n(x),$ where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

中

Geometric Series: $\sum_{k=0}^{\infty} x^k$

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function
$$f$$
 on the interval $(-1, 1)$
$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x} \quad \text{ for } |x| < 1$$

As the Limit

f can be viewed as the limit of a sequence of polynomials: $f(x) = \lim_{n \to \infty} p_n(x),$ where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$

Math 1432 - Section 26626, Lecture 27

中

Geometric Series:
$$\sum_{k=0}^{\infty} x$$

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function f on the interval (-1, 1)

$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$$
 for $|x| < 1$

As the Limit

f can be viewed as the limit of a sequence of polynomials:

 $f(x) = \lim_{n \to \infty} p_n(x),$

where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

y

Geometric Series:
$$\sum_{k=0}^{\infty} x$$

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function f on the interval (-1, 1)

$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = rac{1}{1-x}$$
 for $|x| < 1$

As the Limit

f can be viewed as the limit of a sequence of polynomials: $f(x) = \lim_{n \to \infty} p_n(x),$ where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

屮

Geometric Series:
$$\sum_{k=0}^{\infty} x$$

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function f on the interval (-1, 1)

$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$$
 for $|x| < 1$

As the Limit

f can be viewed as the limit of a sequence of polynomials:

$r(x) = \lim_{n \to \infty} p_n(x),$ $(x) = 1 + x + x^2 + x^3 + \dots + x^n.$

Jiwen He, University of Houston

Geometric Series:
$$\sum_{k=0}^{\infty} x$$

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots \begin{cases} \frac{1}{1-x}, & \text{if } |x| < 1, \\ \text{diverges,} & \text{if } |x| \ge 1. \end{cases}$$

Power Series

Define a function f on the interval (-1, 1)

$$f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$$
 for $|x| < 1$

As the Limit

f can be viewed as the limit of a sequence of polynomials:

$$f(x) = \lim_{n \to \infty} p_n(x),$$
$$= 1 + x + x^2 + x^3 + \dots + x^n$$

where $p_n(x) = 1 + x + x^2 + x^3 + \dots + x^n$

Jiwen He, University of Houston

Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (I)

Closed forms for many power series can be found by relating the series to the geometric series

Examples

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

坍

Closed forms for many power series can be found by relating the series to the geometric series

Power Series Diff and Integ Geometric Series R

Examples

Jiwen He, University of Houston

Closed forms for many power series can be found by relating the series to the geometric series

Power Series Diff and Integ Geometric Series

Examples

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} 2^k x^{k+2} = x^2 + 2x^3 + 4x^4 + 8x^5 + \cdots$$
$$= x^2 \sum_{k=0}^{\infty} (2x)^k = \frac{x^2}{1 - 2x} \quad \text{for } |2x| < 1.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

坍

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} 2^k x^{k+2} = x^2 + 2x^3 + 4x^4 + 8x^5 + \cdots$$
$$= x^2 \sum_{k=0}^{\infty} (2x)^k = \frac{x^2}{1 - 2x} \quad \text{for } |2x| < 1.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

讲

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} 2^k x^{k+2} = x^2 + 2x^3 + 4x^4 + 8x^5 + \cdots$$
$$= x^2 \sum_{k=0}^{\infty} (2x)^k = \frac{x^2}{1 - 2x} \quad \text{for } |2x| < 1.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

屮

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Geometric Series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} 2^k x^{k+2} = x^2 + 2x^3 + 4x^4 + 8x^5 + \cdots$$

Jiwen He, University of Houston

k=0

Math 1432 – Section 26626, Lecture 27

屮

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$F(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$

$$f(x) = \sum_{k=0}^{\infty} 2^{k} x^{k+2} = x^{2} + 2x^{3} + 4x^{4} + 8x^{5} + \cdots$$
$$= x^{2} \sum_{k=0}^{\infty} (2x)^{k} = \frac{x^{2}}{1 - 2x} \quad \text{for } |2x| < 1.$$

Jiwen He, University of Houston

April 24, 2008

H

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$F(x) = \sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}, \quad \text{for } |x| < 1.$$

$$f(x) = \sum_{k=0}^{\infty} 2^k x^{k+2} = x^2 + 2x^3 + 4x^4 + 8x^5 + \cdots$$
$$= x^2 \sum_{k=0}^{\infty} (2x)^k = \frac{x^2}{1-2x} \quad \text{for } |2x| < 1.$$

Jiwen He, University of Houston

Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the series to the geometric series

Examples

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3}{3 - x^2}, \quad \text{for } |x^2/3| < 1.$$

Math 1432 - Section 26626, Lecture 27

屮

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k - \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 27

屮

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{3^k} = x + \frac{1}{3}x^3 + \frac{1}{9}x^5 + \frac{1}{27}x^7 + \cdots$$

Jiwen He, University of Houston

h

Power Series Diff and Integ

Closed forms for many power series can be found by relating the series to the geometric series

Examples

$$f(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$= \sum_{k=0}^{\infty} (-x^2)^k = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}, \quad \text{for } |x| < 1.$$
$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{x^2} = x + \frac{1}{2}x^3 + \frac{1}{2}x^5 + \frac{1}{2}x^7 + \cdots$$

$$(x) = \sum_{k=0}^{\infty} \frac{1}{3^k} = x + \frac{1}{3}x^2 + \frac{1}{9}x^2 + \frac{1}{27}x^2 + \cdots$$
$$= x \sum_{k=0}^{\infty} \left(\frac{x^2}{3}\right)^k = \frac{x}{1 - (x^2/3)} = \frac{3x}{3 - x^2} \quad \text{for } |x^2/3| < 1.$$

Jiwen He, University of Houston

Radius of Convergence

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

Math 1432 - Section 26626, Lecture 27

申

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

畃

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

April 24, 2008 6

5 / 14

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} k^2 x^k = x + 4x^2 + 9x^3 + \cdots$$

tio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)^2 x^{k+1}}{k^2 x^k}\right|$$
$$= \frac{(k+1)^2}{k^2} |x| \to |x| \text{ as } k \to \infty$$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} k^2 x^k = x + 4x^2 + 9x^3 + \cdots$$

tio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)^2 x^{k+1}}{k^2 x^k}\right|$$
$$= \frac{(k+1)^2}{k^2} |x| \to |x| \text{ as } k \to$$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} k^2 x^k = x + 4x^2 + 9x^3 + \cdots$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{(k+1)^2 x^{k+1}}{k^2 x^k} \right|$
$$= \frac{(k+1)^2}{k^2} |x| \to |x| \quad \text{as } k \to \infty$$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

坍

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} k^2 x^k = x + 4x^2 + 9x^3 + \cdots$$

atio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)^2 x^{k+1}}{k^2 x^k}\right|$$
$$= \frac{(k+1)^2}{k^2} |x| \to |x| \quad \text{as } k \to \infty$$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

R

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} k^2 x^k = x + 4x^2 + 9x^3 + \cdots$$

Ratio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)^2 x^{k+1}}{k^2 x^k}\right|$$
$$= \frac{(k+1)^2}{k^2} |x| \to |x| \text{ as } k \to \infty$$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1.

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Jiwen He, University of Houston
The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2} x^2 - \frac{1}{6} x^3 + \dots = e^{-x}$$

Ratio Test :
$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)!}{x^k/k!} \right|$$
$$= \frac{k!}{(k+1)!} \left| \frac{x^{k+1}}{x^k} \right| = \frac{1}{k+1} |x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all m x

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

< 🗇 🕨

7 / 14

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \dots = e^{-1}$$

Ratio Test :
$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)!}{x^k/k!} \right|$$
$$= \frac{k!}{(k+1)!} \left| \frac{x^{k+1}}{x^k} \right| = \frac{1}{k+1} |x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all x

Jiwen He, University of Houston

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \dots = e^{-\frac{1}{6}x^2}$$

Ratio Test :
$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)!}{x^k/k!} \right|$$
$$= \frac{k!}{(k+1)!} \left| \frac{x^{k+1}}{x^k} \right| = \frac{1}{k+1} |x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all *x*.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \cdots = e^{-x}$$

Ratio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{x^{k+1}/(k+1)!}{x^k/k!}\right|$$
$$= \frac{k!}{(k+1)!} \left|\frac{x^{k+1}}{x^k}\right| = \frac{1}{k+1}|x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all x.

Jiwen He, University of Houston

▲ @ ▶ < ∃ ▶</p>

7 / 14

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \cdots = e^{-x}$$

Ratio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{x^{k+1}/(k+1)!}{x^k/k!}\right|$$
$$= \frac{k!}{(k+1)!} \left|\frac{x^{k+1}}{x^k}\right| = \frac{1}{k+1}|x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all x.

h

Jiwen He, University of Houston

▲ @ ▶ < ∃ ▶</p>

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} x^k = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \cdots = e^{-x}$$

Ratio Test :
$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{x^{k+1}/(k+1)!}{x^k/k!}\right|$$
$$= \frac{k!}{(k+1)!} \left|\frac{x^{k+1}}{x^k}\right| = \frac{1}{k+1}|x| \to 0 < 1 \quad \text{for all } x$$

Thus the series converges absolutely for all x.

Jiwen He, University of Houston

▲ 同 ▶ → ● ▶

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Jiwen He, University of Houston

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

Ratio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when $|x| < 1/e$ and diverges when $|x| > 1/e$.

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

Ratio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when |x| < 1/e and diverges when |x| > 1/e.

Jiwen He, University of Houston

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

tio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when |x| < 1/e and diverges when |x| > 1/e.

Jiwen He, University of Houston

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

Ratio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when |x| < 1/e and diverges when |x| > 1/e.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

3 / 14

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Ra

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

tio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when |x| < 1/e and diverges when |x| > 1/e.

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example

Ra

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2} x^k = 2x + (3/2)^4 x^2 + (4/3)^9 x^3 + \cdots$$

tio Test : $(|a_k|)^{\frac{1}{k}} = \left(\left(\frac{k+1}{k}\right)^{k^2} |x|^k\right)^{\frac{1}{k}} = \left(\frac{k+1}{k}\right)^k |x|$
$$= \left(1 + \frac{1}{k}\right)^k |x| \to e|x| < 1 \quad \text{if } |x| < 1/e$$

Thus the series converges absolutely when |x|<1/e and diverges when |x|>1/e.

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k, \quad \sum \frac{(-1)^k}{k} x^k, \quad \sum \frac{1}{k} x^k, \quad \sum \frac{1}{k^2} x^k$$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k, \quad \sum \frac{(-1)^k}{k} x^k, \quad \sum \frac{1}{k} x^k, \quad \sum \frac{1}{k^2} x^k$$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k, \quad \sum \frac{(-1)^k}{k} x^k, \quad \sum \frac{1}{k} x^k, \quad \sum \frac{1}{k^2} x^k$$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k$$
, $\sum \frac{(-1)^k}{k} x^k$, $\sum \frac{1}{k} x^k$, $\sum \frac{1}{k^2} x^k$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k$$
, $\sum \frac{(-1)^k}{k} x^k$, $\sum \frac{1}{k} x^k$, $\sum \frac{1}{k^2} x^k$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k$$
, $\sum \frac{(-1)^k}{k} x^k$, $\sum \frac{1}{k} x^k$, $\sum \frac{1}{k^2} x^k$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k$$
, $\sum \frac{(-1)^k}{k} x^k$, $\sum \frac{1}{k} x^k$, $\sum \frac{1}{k^2} x^k$

For a series with radius of convergence r, the interval of convergence can be [-r, r], (-r, r], [-r, r), or (-r, r).

Example

In general, the behavior of a power series at -r and at r is not predictable. For example, the series

$$\sum x^k$$
, $\sum \frac{(-1)^k}{k} x^k$, $\sum \frac{1}{k} x^k$, $\sum \frac{1}{k^2} x^k$

Example

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

LO / 14

H

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k}$$
Ratio Test : $\left|\frac{a_{k+1}}{a_{k}}\right| = \left|\frac{x^{k+1}/(k+1)}{x^{k}/k}\right| = \frac{k}{k+1} |x| \rightarrow |x|$
Thus the series converges absolutely when $|x| < 1$ and diverges when $|x| > 1$. So the radius of convergence is 1
$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^{k} = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$

$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^{k} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Jiwen He, University of Houston

0 / 14

畃

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1. So the radius of convergence is 1

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$

$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 27

0 / 14

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1. So the radius of convergence is 1

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Jiwen He, University of Houston

0 / 14

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$

$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$

$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of convergence is $(-1, 1]$.

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1. So the radius of convergence is 1

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$

The interval of convergence is (-1, 1)

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$
The interval of converges is (-1, 1]

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1. So the radius of convergence is 1

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$

The interval of convergence is (-1, 1]

Example

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$

Ratio Test : $\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x^{k+1}/(k+1)}{x^k/k} \right| = \frac{k}{k+1} |x| \to |x|$

Thus the series converges absolutely when |x| < 1 and diverges when |x| > 1. So the radius of convergence is 1

$$x = -1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (-1)^k = \sum_{k=1}^{\infty} \frac{-1}{k} \text{ diverges}$$
$$x = 1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (1)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ converges conditionally}$$

The interval of convergence is (-1, 1].

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

 $f'(x) = \sum a_k k x^{k-1} \quad \text{for } |x| < r$ $\int f(x) \, dx = \sum \frac{a_k}{k+1} x^{k+1} + C \quad \text{for } |x| < r$

Jiwen He, University of Houston

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

 $f'(x) = \sum a_k k x^{k-1} \quad \text{for } |x| < r$ $\int f(x) \, dx = \sum \frac{a_k}{k+1} x^{k+1} + C \quad \text{for } |x| < r$

Jiwen He, University of Houston

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1} \quad \text{for } |x| < r$$
$$\int f(x) \, dx = \sum \frac{a_k}{k+1} x^{k+1} + C \quad \text{for } |x| < r$$

Jiwen He, University of Houston

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Jiwen He, University of Houston
Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 27

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Geometric series:
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \text{for } |x| < 1$$

Differentiation:
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty} (k+1) x^k \text{ for } |x| < 1$$

Integration:
$$-\ln(1-x) = \sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} = \sum_{k=1}^{\infty} \frac{1}{k} x^k \text{ for } |x| < 1$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 27

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Geometric series:
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \text{for } |x| < 1$$

Differentiation:
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty} (k+1) x^k \quad \text{for } |x| < 1$$

Integration:
$$-\ln(1-x) = \sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} = \sum_{k=1}^{\infty} \frac{1}{k} x^k \quad \text{for } |x| < 1$$

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Geometric series:
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \text{for } |x| < 1$$

Differentiation:
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty} (k+1) x^k \quad \text{for } |x| < 1$$

Integration:
$$-\ln(1-x) = \sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} = \sum_{k=1}^{\infty} \frac{1}{k} x^k \quad \text{for } |x| < 1$$

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Geometric series:
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \text{for } |x| < 1$$

Differentiation:
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty} (k+1) x^k \text{ for } |x| < 1$$

Integration:
$$-\ln(1-x) = \sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} = \sum_{k=1}^{\infty} \frac{1}{k} x^k \text{ for } |x| < 1$$

Theorem

Let $f(x) = \sum a_k x^k$ be a power series with a nonzero radius of convergence r. Then

$$f'(x) = \sum a_k k x^{k-1}$$
 for $|x| < r$
 $\int f(x) dx = \sum rac{a_k}{k+1} x^{k+1} + C$ for $|x| < r$

Geometric series:
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \text{for } |x| < 1$$

Differentiation:
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty} (k+1) x^k \quad \text{for } |x| < 1$$

Integration:
$$-\ln(1-x) = \sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} = \sum_{k=1}^{\infty} \frac{1}{k} x^k \quad \text{for } |x| < 1$$

ind Integ Examples

Power Series Expansion of ln(1 + x)

Note:
$$\frac{d}{dx} \ln(1+x) = \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$
 for $|x| < 1$
Integration: $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} (+C = 0)$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \cdots$$

ind Integ Examples

Power Series Expansion of ln(1 + x)

Note:
$$\frac{d}{dx} \ln(1+x) = \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$
 for $|x| < 1$
Integration: $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} (+C=0)$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \cdots$$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,

$$\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Jiwen He, University of Houston

pril 24, 2008 12

and Integ Examples

Power Series Expansion of ln(1 + x)

Note:
$$\frac{d}{dx} \ln(1+x) = \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$
 for $|x| < 1$
Integration: $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} (+C=0)$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,

$$\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Jiwen He, University of Houston

pril 24, 2008 12 ,

A (1) > A (2) > A

and Integ Examples

Power Series Expansion of ln(1 + x)

Note:
$$\frac{d}{dx} \ln(1+x) = \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$
 for $|x| < 1$
Integration: $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} (+C=0)$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,
 $\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

pril 24, 2008 12 ,

▲ 同 ▶ → 三 ▶

and Integ Examples

Power Series Expansion of ln(1 + x)

Note:
$$\frac{d}{dx} \ln(1+x) = \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$
 for $|x| < 1$
Integration: $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} (+C=0)$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots$$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,
 $\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

pril 24, 2008 12

< 🗇 🕨

Note:
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 for $|x| < 1$
Integration: $\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} (+C = 0)$
 $= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$

The interval of convergence is (-1, 1]. At x = 1, $\tan^{-1} 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Jiwen He, University of Houston

oril 24, 2008 13 ,

Note:
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 for $|x| < 1$
Integration: $\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} (+C = 0)$
 $= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,
 $\tan^{-1} 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Note:
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 for $|x| < 1$
Integration: $\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} (+C = 0)$
 $= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,
 $\tan^{-1} 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Jiwen He, University of Houston

< /₽ > < E > <

Note:
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 for $|x| < 1$
Integration: $\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} (+C = 0)$
$$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

The interval of convergence is
$$(-1, 1]$$
. At $x = 1$,
 $\tan^{-1} 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Jiwen He, University of Houston

- ∢ ∃ ▶

Note:
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 for $|x| < 1$
Integration: $\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} (+C = 0)$
$$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

The interval of convergence is (-1, 1]. At x = 1, $\tan^{-1} 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Jiwen He, University of Houston

oril 24, 2008 13 /

Outline

Power Series

- Geometric Series and Variations
- Radius of Convergence

• Differentiation and Integration

- Differentiation and Integration
- Examples

