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convergence everywhere
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|x| — [x| as k — o0
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Thus the series converges absolutely when |x| < 1/e and diverges

when [x| > 1/e. [Fl
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The interval of convergence is (—1,1].
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Let f(x) =3 axx* be a power series with a nonzero radius of
convergence r. Then

= Zak kx*=1 for |x| < r

/f(x) dx = Zkaijflxkﬂ +C  for|x|<r

o0

Zxk for [x] <1
k=0

(0.) (o, ¢]

Differentiation: Z k xk=1 Z (k+1)x* for x| < 1

Geometric series:

o

Integration: —In(1 — x) = Z 7xk+1 = Z —xk for [x] <1
2kt K By
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Z )exk for |x| < 1
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o0
Z )exk for |x| < 1

k=0

Note: di In(1 + x)

— (1)
Integration: In(1 + x) Z Xk HC =0)
— k+1
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d 1 G
Note: = In(1+x) = T = kg_o(—l)kxk for [x] <1
Integration: In(1+ x) = (1) Xk C =0)
' k+1
k=0
(0. 9]
1 1 1
kg_l xk _X_EX —i—3x3 4x4—i—--~
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Power Series Diff and Integ

Power Series Expansion of In(1 + x)

d 1 G
Note: = In(1+x) = T = ;}(—1)"%‘ for [x] <1
Integration: In(1+ x) = (1) Xk C =0)
k+1
k=0
(0. 9]
1 1 1
; xk _X_EX —i—3x3 4x4—i—--~

The interval of convergence is (—1,1]. At x =1,
— (=1 1 1 1

|n2:kz_:1k:1—2+3—4+
- |
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Power Series Expansion of tan™! x
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Power Series Expansion of tan™! x

d 1 -
Note: &tan_lx “1re kz;)(—l)kxy‘ for [x] <1
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Power Series Expansion of tan™! x

d 1 -
Note: &tan_lx “1re kz;)(—l)kxy‘ for [x] <1

— (1)
Integration: tan~!x = Z x*(+C =0)

Jiwen He, University of Houston
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Power Series Expansion of tan™! x

d 1 -
Note: &tan_lx “1re kz;)(—l)kxy‘ for [x] <1
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Power Series Expansion of tan™! x

d 1
Note: &tan_lx “1re Z(—l)kx2k for [x] <1

The interval of convergence is (—1,1]. At x =1,
= (—1)* 1 1 1

-1
far =R il = —1_:
an Z2/<+1 37577

k=1
Jiwen He, University of Houston
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