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Power Series Diff and Integ Geometric Series Radius of Convergence

Geometric Series

Geometric Series:
∑∞

k=0 xk

∞∑
k=0

xk = 1 + x + x2 + x3 + · · ·


1

1− x
, if |x | < 1,

diverges, if |x | ≥ 1.

Power Series

Define a function f on the interval (−1, 1)

f (x) =
∞∑

k=0

xk = 1 + x + x2 + x3 + · · · = 1

1− x
for |x | < 1

As the Limit

f can be viewed as the limit of a sequence of polynomials:

f (x) = lim
n→∞

pn(x),

where pn(x) = 1 + x + x2 + x3 + · · ·+ xn.
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Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (I)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kxk = 1− x + x2 − x3 + · · ·

=
∞∑

k=0

(−x)k =
1

1− (−x)
=

1

1 + x
, for |x | < 1.

f (x) =
∞∑

k=0

2kxk+2 = x2 + 2x3 + 4x4 + 8x5 + · · ·

= x2
∞∑

k=0

(2x)k =
x2

1− 2x
for |2x | < 1.
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Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the
series to the geometric series

Examples

f (x) =
∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·

=
∞∑

k=0

(−x2)k =
1

1− (−x2)
=

1

1 + x2
, for |x | < 1.

f (x) =
∞∑

k=0

x2k+1

3k
= x +

1

3
x3 +

1

9
x5 +

1

27
x7 + · · ·

= x
∞∑

k=0

(
x2

3

)k

=
x

1− (x2/3)
=

3x

3− x2
for |x2/3| < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 27 April 24, 2008 4 / 14



Power Series Diff and Integ Geometric Series Radius of Convergence

Radius of Convergence

There are exactly three possibilities for a power series:
∑

akxk .
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Power Series Diff and Integ Geometric Series Radius of Convergence

Radius of Convergence: Ratio Test (I)

The radius of convergence of a power series can usually be found
by applying the ratio test. In some cases the root test is easier.

Example

f (x) =
∞∑

k=1

k2xk = x + 4x2 + 9x3 + · · ·

Ratio Test :

∣∣∣∣ak+1

ak

∣∣∣∣ = ∣∣∣∣(k + 1)2xk+1

k2xk

∣∣∣∣
=

(k + 1)2

k2
|x | → |x | as k →∞

Thus the series converges absolutely when |x | < 1 and diverges
when |x | > 1.
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∣∣∣∣ = ∣∣∣∣(k + 1)2xk+1

k2xk

∣∣∣∣
=

(k + 1)2

k2
|x | → |x | as k →∞

Thus the series converges absolutely when |x | < 1 and diverges
when |x | > 1.
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Power Series Diff and Integ Geometric Series Radius of Convergence

Radius of Convergence: Ratio Test (II)

The radius of convergence of a power series can usually be found
by applying the ratio test. In some cases the root test is easier.

Example

f (x) =
∞∑

k=1

(−1)k

k!
xk = 1− x +

1

2
x2 − 1

6
x3 + · · · = e−x

Ratio Test :

∣∣∣∣ak+1

ak

∣∣∣∣ = ∣∣∣∣xk+1/(k + 1)!

xk/k!

∣∣∣∣
=

k!

(k + 1)!

∣∣∣∣xk+1

xk

∣∣∣∣ = 1

k + 1
|x | → 0 < 1 for all x

Thus the series converges absolutely for all x .
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Power Series Diff and Integ Geometric Series Radius of Convergence

Radius of Convergence: Ratio Test (III)

The radius of convergence of a power series can usually be found
by applying the ratio test. In some cases the root test is easier.

Example

f (x) =
∞∑

k=1

(
k + 1

k

)k2

xk = 2x + (3/2)4x2 + (4/3)9x3 + · · ·

Ratio Test :(|ak |)
1
k =

((
k + 1

k

)k2

|x |k
) 1

k

=

(
k + 1

k

)k

|x |

=

(
1 +

1

k

)k

|x | → e|x | < 1 if |x | < 1/e

Thus the series converges absolutely when |x | < 1/e and diverges
when |x | > 1/e.
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Power Series Diff and Integ Geometric Series Radius of Convergence

Interval of Convergence

For a series with radius of convergence r , the interval of
convergence can be [−r , r ], (−r , r ], [−r , r), or (−r , r).

Example

In general, the behavior of a power series at −r and at r is not
predictable. For example, the series∑

xk ,
∑ (−1)k

k
xk ,

∑ 1

k
xk ,

∑ 1

k2
xk

all have radius of convergence 1, but the first series converges only
on (−1, 1), the second converges on (−1, 1], but the third
converges on [−1, 1), the fourth on [−1, 1].
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Power Series Diff and Integ Geometric Series Radius of Convergence

Interval of Convergence

Example

f (x) =
∞∑

k=1

(−1)k−1

k
xk

Ratio Test :

∣∣∣∣ak+1

ak

∣∣∣∣ = ∣∣∣∣xk+1/(k + 1)

xk/k

∣∣∣∣ =
k

k + 1
|x | → |x |

Thus the series converges absolutely when |x | < 1 and diverges
when |x | > 1. So the radius of convergence is 1

x = −1 :
∞∑

k=1

(−1)k−1

k
(−1)k =

∞∑
k=1

−1

k
diverges

x = 1 :
∞∑

k=1

(−1)k−1

k
(1)k =

∞∑
k=1

(−1)k−1

k
converges conditionally

The interval of convergence is (−1, 1].
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Power Series Diff and Integ Diff and Integ Examples

Differentiation and Integration

Theorem

Let f (x) =
∑

akxk be a power series with a nonzero radius of
convergence r . Then

f ′(x) =
∑

ak k xk−1 for |x | < r∫
f (x) dx =

∑ ak

k + 1
xk+1 + C for |x | < r

Geometric series:
1

1− x
=

∞∑
k=0

xk for |x | < 1

Differentiation:
1

(1− x)2
=

∞∑
k=0

k xk−1
∞∑

k=0

(k + 1) xk for |x | < 1

Integration: − ln(1− x) =
∞∑

k=0

1

k + 1
xk+1 =

∞∑
k=1

1

k
xk for |x | < 1
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Power Series Expansion of ln(1 + x)

Note:
d

dx
ln(1 + x) =

1

1 + x
=

∞∑
k=0

(−1)kxk for |x | < 1

Integration: ln(1 + x) =
∞∑

k=0

(−1)k

k + 1
xk+1(+C = 0)

=
∞∑

k=1

(−1)k

k
xk = x − 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

The interval of convergence is (−1, 1]. At x = 1,

ln 2 =
∞∑

k=1

(−1)k

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·
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Power Series Expansion of tan−1 x

Note:
d

dx
tan−1 x =

1

1 + x2
=

∞∑
k=0

(−1)kx2k for |x | < 1

Integration: tan−1 x =
∞∑

k=0

(−1)k

2k + 1
x2k+1(+C = 0)

= x − 1

3
x3 +

1

5
x5 − 1

7
x7 + · · ·

The interval of convergence is (−1, 1]. At x = 1,

tan−1 1 =
∞∑

k=1

(−1)k

2k + 1
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
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