Lecture 2711.7 Power Series 11.8 Differentiation and Integration of Power Series

Jiwen He

1 Power Series

1.1 Geometric Series and Variations

Geometric Series

Geometric Series: $\sum_{k=0}^{\infty} x^{k}$

$$
\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots\left\{\begin{aligned}
\frac{1}{1-x}, & \text { if }|x|<1 \\
\text { diverges, } & \text { if }|x| \geq 1
\end{aligned}\right.
$$

Power Series

Define a function f on the interval $(-1,1)$

$$
f(x)=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \quad \text { for }|x|<1
$$

As the Limit
f can be viewed as the limit of a sequence of polynomials:

$$
f(x)=\lim _{n \rightarrow \infty} p_{n}(x),
$$

where $p_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n}$.
Variations on the Geometric Series (I)
Closed forms for many power series can be found by relating the series to the権ometric series Examples 1.

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty}(-1)^{k} x^{k}=1-x+x^{2}-x^{3}+\cdots \\
& =\sum_{k=0}^{\infty}(-x)^{k}=\frac{1}{1-(-x)}=\frac{1}{1+x}, \quad \text { for }|x|<1 . \\
f(x) & =\sum_{k=0}^{\infty} 2^{k} x^{k+2}=x^{2}+2 x^{3}+4 x^{4}+8 x^{5}+\cdots \\
& =x^{2} \sum_{k=0}^{\infty}(2 x)^{k}=\frac{x^{2}}{1-2 x} \quad \text { for }|2 x|<1 .
\end{aligned}
$$

Variations on the Geometric Series (II)

Closed forms for many power series can be found by relating the series to the geometric series
Examples 2.

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}=1-x^{2}+x^{4}-x^{6}+\cdots \\
& =\sum_{k=0}^{\infty}\left(-x^{2}\right)^{k}=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}, \quad \text { for }|x|<1 . \\
f(x) & =\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{3^{k}}=x+\frac{1}{3} x^{3}+\frac{1}{9} x^{5}+\frac{1}{27} x^{7}+\cdots \\
& =x \sum_{k=0}^{\infty}\left(\frac{x^{2}}{3}\right)^{k}=\frac{x}{1-\left(x^{2} / 3\right)}=\frac{3 x}{3-x^{2}} \quad \text { for }\left|x^{2} / 3\right|<1
\end{aligned}
$$

1.2 Radius of Convergence

Radius of Convergence

There are exactly three possibilities for a power series: $\sum a_{k} x^{k}$.

case II: radius of convergence $=\infty$

case III: radius of convergence $=r$

Radius of Convergence: Ratio Test (I)

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.

Example 3.

$$
\begin{aligned}
& \qquad \begin{aligned}
f(x) & =\sum_{k=1}^{\infty} k^{2} x^{k}=x+4 x^{2}+9 x^{3}+\cdots \\
\text { Ratio Test }: & \left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{(k+1)^{2} x^{k+1}}{k^{2} x^{k}}\right| \\
& =\frac{(k+1)^{2}}{k^{2}}|x| \rightarrow|x| \quad \text { as } k \rightarrow \infty
\end{aligned}
\end{aligned}
$$

Thus the series converges absolutely when $|x|<1$ and diverges when $|x|>1$.

Radius of Convergence: Ratio Test (II)

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.
Example 4.

$$
\begin{aligned}
& \qquad \begin{aligned}
f(x) & =\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} x^{k}=1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots=e^{-x} \\
\text { Ratio Test }: & \left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{x^{k+1} /(k+1)!}{x^{k} / k!}\right| \\
& =\frac{k!}{(k+1)!}\left|\frac{x^{k+1}}{x^{k}}\right|=\frac{1}{k+1}|x| \rightarrow 0<1 \quad \text { for all } x
\end{aligned}
\end{aligned}
$$

Thus the series converges absolutely for all x.

Radius of Convergence: Ratio Test (III)

The radius of convergence of a power series can usually be found by applying the ratio test. In some cases the root test is easier.
Example 5.

$$
\begin{aligned}
& \qquad \begin{aligned}
f(x) & =\sum_{k=1}^{\infty}\left(\frac{k+1}{k}\right)^{k^{2}} x^{k}=2 x+(3 / 2)^{4} x^{2}+(4 / 3)^{9} x^{3}+\cdots \\
\text { Ratio Test }: & \left(\left|a_{k}\right|\right)^{\frac{1}{k}}=\left(\left(\frac{k+1}{k}\right)^{k^{2}}|x|^{k}\right)^{\frac{1}{k}}=\left(\frac{k+1}{k}\right)^{k}|x| \\
& =\left(1+\frac{1}{k}\right)^{k}|x| \rightarrow e|x|<1 \quad \text { if }|x|<1 / e
\end{aligned}
\end{aligned}
$$

Thus the series converges absolutely when $|x|<1 / e$ and diverges when $|x|>$ $1 / e$.

Interval of Convergence

For a series with radius of convergence r, the interval of convergence can be $[-r, r],(-r, r],[-r, r)$, or $(-r, r)$.

Example 6. In general, the behavior of a power series at $-r$ and at r is not predictable. For example, the series

$$
\sum x^{k}, \quad \sum \frac{(-1)^{k}}{k} x^{k}, \quad \sum \frac{1}{k} x^{k}, \quad \sum \frac{1}{k^{2}} x^{k}
$$

all have radius of convergence 1 , but the first series converges only on $(-1,1)$, the second converges on $(-1,1]$, but the third converges on $[-1,1)$, the fourth on $[-1,1]$.

Enternal pf Convergence

$$
\begin{gathered}
f(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k} \\
\text { Ratio Test : }\left|\frac{a_{k+1}}{a_{k}}\right|=\left|\frac{x^{k+1} /(k+1)}{x^{k} / k}\right|=\frac{k}{k+1}|x| \rightarrow|x|
\end{gathered}
$$

Thus the series converges absolutely when $|x|<1$ and diverges when $|x|>1$. So the radius of convergence is 1

$$
\begin{aligned}
& x=-1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}(-1)^{k}=\sum_{k=1}^{\infty} \frac{-1}{k} \text { diverges } \\
& x=1: \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}(1)^{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text { converges conditionally }
\end{aligned}
$$

The interval of convergence is $(-1,1]$.

2 Differentiation and Integration

2.1 Differentiation and Integration

Differentiation and Integration

Theorem

Let $f(x)=\sum a_{k} x^{k}$ be a power series with a nonzero radius of convergence r. Then

$$
\begin{aligned}
& f^{\prime}(x)=\sum a_{k} k x^{k-1} \quad \text { for }|x|<r \\
& \int f(x) d x=\sum \frac{a_{k}}{k+1} x^{k+1}+C \quad \text { for }|x|<r
\end{aligned}
$$

$$
\begin{aligned}
& \text { Geometric series: } \quad \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad \text { for }|x|<1 \\
& \text { Differentiation: } \frac{1}{(1-x)^{2}}=\sum_{k=0}^{\infty} k x^{k-1} \sum_{k=0}^{\infty}(k+1) x^{k} \text { for }|x|<1 \\
& \text { Integration: }-\ln (1-x)=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1}=\sum_{k=1}^{\infty} \frac{1}{k} x^{k} \text { for }|x|<1
\end{aligned}
$$

2.2 Examples

Power Series Expansion of $\ln (1+x)$

$$
\begin{aligned}
& \text { Note: } \frac{d}{d x} \ln (1+x)=\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k} \text { for }|x|<1 \\
& \text { Integration: } \ln (1+x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1} x^{k+1}(+C=0) \\
& \qquad=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} x^{k}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots
\end{aligned}
$$

The interval of convergence is $(-1,1]$. At $x=1$,

$$
\ln 2=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

Power Series Expansion of $\tan ^{-1} x$

$$
\begin{aligned}
& \text { Note: } \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} \text { for }|x|<1 \\
& \text { Integration: } \tan ^{-1} x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}(+C=0) \\
& \qquad=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots
\end{aligned}
$$

The interval of convergence is $(-1,1]$. At $x=1$,

$$
\tan ^{-1} 1=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}
$$

Outline

Contents

1 Power Series 1
1.1 Geometric Series 1
1.2 Radius of Convergence 2
2 Diff and Integ 4
2.1 Diff and Integ 4
2.2 Examples 5

