Math 2331 – Linear Algebra 2.1 Matrix Operations Key Exercises 13, 17–26

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

▲ @ ▶ < ∃ ▶ <</p>

Jiwen He, University of Houston

2.1 Matrix Operations Key Exercises 13, 17–26

- The definition of a matrix product *AB* is important; it gives the proper view of *AB* for nearly all matrix calculations.
- The dual fact about the rows of A and the rows of AB is seldom used here, mainly because vectors are usually written as columns.
- Key Exercises: 13, 17-26
 - Exercises 23 and 26 are cited in the proof of Theorem 8 in Section 2.3.
 - Exercises 27 and 28 introduce the scalar product (or inner product) and the outer product of two vectors. Outer products also appear in the spectral decomposition of a symmetric matrix in Section 7.1.

13. Let $\mathbf{r}_1, \ldots, \mathbf{r}_p$ be vectors in \mathbb{R}^n , and let Q be an $m \times n$ matrix. Write the matrix [$Q\mathbf{r}_1 \cdots Q\mathbf{r}_p$] as a *product* of two matrices (neither of which is an identity matrix).

イロト 人間ト イヨト イヨト

17. If
$$A = \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix}$$
 and $AB = \begin{bmatrix} -3 & -11 \\ 1 & 17 \end{bmatrix}$, determine the

first and second columns of B.

2

<ロ> (日) (日) (日) (日) (日)

Jiwen He, University of Houston

18. Suppose the third column of B is all zeros. What can be said about the third column of AB?

E

∃ → (∃ →

< 4 → <

19. Suppose the third column of *B* is the sum of the first two columns. What can be said about the third column of *AB*? Why?

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

20. Suppose the first two columns, \mathbf{b}_1 and \mathbf{b}_2 , of *B* are equal. What can be said about the columns of *AB*? Why?

- 4 @ ▶ 4 @ ▶ 4 @ ▶

21. Suppose the last column of *AB* is entirely zeros but *B* itself has no column of zeros. What can be said about the columns of *A*?

э

(日) (同) (三) (三)

22. Show that if the columns of B are linearly dependent, then so are the columns of AB.

æ

글 > - + 글 >

23. Suppose $CA = I_n$ (the $n \times n$ identity matrix). Show that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Explain why *A* cannot have more columns than rows.

イロト イ押ト イヨト イヨト

24. Suppose *A* is a $3 \times n$ matrix whose columns span \mathbb{R}^3 . Explain how to construct an $n \times 3$ matrix *D* such that $AD = I_3$.

< ⊢□

-∢∃>

25. Suppose *A* is an $m \times n$ matrix and there exist $n \times m$ matrices *C* and *D* such that $CA = I_n$ and $AD = I_m$. Prove that m = n and C = D. [*Hint:* Think about the product *CAD*.]

イロト イ押ト イヨト イヨト

26. Suppose $AD = I_m$ (the $m \times m$ identity matrix). Show that for any **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution. [*Hint:* Think about the equation $AD\mathbf{b} = \mathbf{b}$.] Explain why *A* cannot have more rows than columns.

Image: Image: