Math 2331 - Linear Algebra
 2.1 Matrix Operations Key Exercises 13, 17-26

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

2.1 Matrix Operations Key Exercises 13, 17-26

- The definition of a matrix product $A B$ is important; it gives the proper view of $A B$ for nearly all matrix calculations.
- The dual fact about the rows of A and the rows of $A B$ is seldom used here, mainly because vectors are usually written as columns.
- Key Exercises: 13, 17-26
- Exercises 23 and 26 are cited in the proof of Theorem 8 in Section 2.3.
- Exercises 27 and 28 introduce the scalar product (or inner product) and the outer product of two vectors. Outer products also appear in the spectral decomposition of a symmetric matrix in Section 7.1.

13. Let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{p}$ be vectors in \mathbb{R}^{n}, and let Q be an $m \times n$ matrix. Write the matrix [$Q \mathbf{r}_{1} \cdots \quad Q \mathbf{r}_{p}$] as a product of two matrices (neither of which is an identity matrix).
14. If $A=\left[\begin{array}{rr}1 & -3 \\ -3 & 5\end{array}\right]$ and $A B=\left[\begin{array}{rr}-3 & -11 \\ 1 & 17\end{array}\right]$, determine the first and second columns of B.
15. Suppose the third column of B is all zeros. What can be said about the third column of $A B$?
16. Suppose the third column of B is the sum of the first two columns. What can be said about the third column of $A B$? Why?
17. Suppose the first two columns, \mathbf{b}_{1} and \mathbf{b}_{2}, of B are equal. What can be said about the columns of $A B$? Why?
18. Suppose the last column of $A B$ is entirely zeros but B itself has no column of zeros. What can be said about the columns of A ?
19. Show that if the columns of B are linearly dependent, then so are the columns of $A B$.
20. Suppose $C A=I_{n}$ (the $n \times n$ identity matrix). Show that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Explain why A cannot have more columns than rows.
21. Suppose A is a $3 \times n$ matrix whose columns span \mathbb{R}^{3}. Explain how to construct an $n \times 3$ matrix D such that $A D=I_{3}$.
22. Suppose A is an $m \times n$ matrix and there exist $n \times m$ matrices C and D such that $C A=I_{n}$ and $A D=I_{m}$. Prove that $m=n$ and $C=D$. [Hint: Think about the product $C A D$.]
23. Suppose $A D=I_{m}$ (the $m \times m$ identity matrix). Show that for any \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution. [Hint: Think about the equation $A D \mathbf{b}=\mathbf{b}$.] Explain why A cannot have more rows than columns.
