#### Math 2331 – Linear Algebra

5.1-5.3 Eigenvalues & Eigenvectors
Key Exercises

#### Jiwen He

Department of Mathematics, University of Houston

 ${\tt jiwenhe@math.uh.edu} \\ {\tt math.uh.edu} / {\sim} {\tt jiwenhe/math2331} \\$ 





## 5.1 Eigenvectors & Eigenvalues Key Exercises 21–27, 29–33

• Key Exercises: 21-27, 29-33.





A is an  $n \times n$  matrix. Mark each statement True or False. Justify each answer.

- **21.** a. If  $A\mathbf{x} = \lambda \mathbf{x}$  for some vector  $\mathbf{x}$ , then  $\lambda$  is an eigenvalue of A.
  - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
  - c. A number c is an eigenvalue of A if and only if the equation  $(A cI)\mathbf{x} = \mathbf{0}$  has a nontrivial solution.
  - d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
  - e. To find the eigenvalues of A, reduce A to echelon form.





A is an  $n \times n$  matrix. Mark each statement True or False. Justify each answer.

- 22. a. If  $A\mathbf{x} = \lambda \mathbf{x}$  for some scalar  $\lambda$ , then  $\mathbf{x}$  is an eigenvector of A.
  - b. If  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
  - c. A steady-state vector for a stochastic matrix is actually an eigenvector.
  - d. The eigenvalues of a matrix are on its main diagonal.
  - e. An eigenspace of A is a null space of a certain matrix.





23. Explain why a  $2 \times 2$  matrix can have at most two distinct eigenvalues. Explain why an  $n \times n$  matrix can have at most *n* distinct eigenvalues.





**24.** Construct an example of a  $2 \times 2$  matrix with only one distinct eigenvalue.









**26.** Show that if  $A^2$  is the zero matrix, then the only eigenvalue of A is 0.





**27.** Show that  $\lambda$  is an eigenvalue of A if and only if  $\lambda$  is an eigenvalue of  $A^T$ . [Hint: Find out how  $A - \lambda I$  and  $A^T - \lambda I$  are related.]





**29.** Consider an  $n \times n$  matrix A with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector.]





**30.** Consider an  $n \times n$  matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercises 27 and 29.]





In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.

- **31.** *T* is the transformation on  $\mathbb{R}^2$  that reflects points across some line through the origin.
- **32.** T is the transformation on  $\mathbb{R}^3$  that rotates points about some line through the origin.





# 5.2 The Characteristic Equation Key Exercises 19–24

• Key Exercises: 19-24.





**19.** Let *A* be an  $n \times n$  matrix, and suppose *A* has *n* real eigenvalues,  $\lambda_1, \ldots, \lambda_n$ , repeated according to multiplicities, so that

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

Explain why  $\det A$  is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)





**20.** Use a property of determinants to show that A and  $A^T$  have the same characteristic polynomial.





A and B are  $n \times n$  matrices. Mark each statement True or False. Justify each answer.

- **21.** a. The determinant of *A* is the product of the diagonal entries in *A*.
  - b. An elementary row operation on A does not change the determinant.
  - c.  $(\det A)(\det B) = \det AB$
  - d. If  $\lambda + 5$  is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.





A is  $n \times n$  matrix. Mark each statement True or False. Justify each answer.

- **22.** a. If A is  $3 \times 3$ , with columns  $\mathbf{a}_1$ ,  $\mathbf{a}_2$ ,  $\mathbf{a}_3$ , then det A equals the volume of the parallelepiped determined by  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ .
  - b.  $\det A^{T} = (-1) \det A$ .
  - c. The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
  - d. A row replacement operation on A does not change the eigenvalues.





**23.** Show that if A = QR with Q invertible, then A is similar to  $A_1 = RQ$ .





**24.** Show that if A and B are similar, then  $\det A = \det B$ .





### 5.3 Diagonalization Key Exercises 21–28, 31–32

• Key Exercises: 21-28, 31-32.





A, P and D are  $n \times n$  matrices. Mark each statement True or False. Justify each answer.

- **21.** a. *A* is diagonalizable if  $A = PDP^{-1}$  for some matrix *D* and some invertible matrix *P*.
  - b. If  $\mathbb{R}^n$  has a basis of eigenvectors of A, then A is diagonalizable.
  - c. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
  - d. If A is diagonalizable, then A is invertible.





A, P and D are  $n \times n$  matrices. Mark each statement True or False. Justify each answer.

- **22.** a. A is diagonalizable if A has n eigenvectors.
  - b. If A is diagonalizable, then A has n distinct eigenvalues.
  - c. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
  - d. If A is invertible, then A is diagonalizable.





23. A is a  $5 \times 5$  matrix with two eigenvalues. One eigenspace is three-dimensional, and the other eigenspace is two-dimensional. Is A diagonalizable? Why?





**24.** A is a  $3 \times 3$  matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?





**25.** A is a  $4 \times 4$  matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is *not* diagonalizable? Justify your answer.





**26.** A is a  $7 \times 7$  matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is three-dimensional. Is it possible that A is *not* diagonalizable? Justify your answer.





27. Show that if A is both diagonalizable and invertible, then so is  $A^{-1}$ .





**28.** Show that if A has n linearly independent eigenvectors, then so does  $A^T$ . [*Hint*: Use the Diagonalization Theorem.]





**31.** Construct a nonzero  $2 \times 2$  matrix that is invertible but not diagonalizable.





**32.** Construct a nondiagonal  $2 \times 2$  matrix that is diagonalizable but not invertible.



