Name and ID: \qquad
50 points

1. Use the Laplace Transform to find the solution of the following initial-value problems
a. $\quad y^{\prime \prime}+y=\sin 2 t, \quad y(0)=0, \quad y^{\prime}(0)=1$.
b. $\quad y^{\prime \prime}-y=e^{-t}, \quad y(0)=0, \quad y^{\prime}(0)=0$.

Hint: Table of the Laplace Transform:

$$
\begin{array}{c|c}
F=\mathcal{L}(f) & \Leftrightarrow f=\mathcal{L}^{-1}(F) \\
F(s) & \mathcal{L}^{-1}\{F(s)\}(t) \\
\hline \frac{1}{s-c} & e^{c t} \\
\frac{1}{(s-c)^{k}} & \frac{t^{k-1}}{(k-1)!} e^{c t} \\
\frac{1}{(s-\alpha)^{2}+\beta^{2}} & \frac{e^{\alpha t} \sin \beta t}{\beta} \\
\frac{s-\alpha}{(s-\alpha)^{2}+\beta^{2}} & e^{\alpha t} \cos \beta t
\end{array}
$$

50 points 2. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=x+t, \quad x(0)=1 . \tag{1}
\end{equation*}
$$

Carry out one step calculation of the Euler, RK2 and RK4 methods with step size $h=0.5$ to approximate the value of $x(0.5)$ and compute the error of your numerical solution.

20 points
3. (BONUS PROBLEM) Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=-t x^{2}, \quad 0 \leq t \leq 2, \quad x(0)=3 . \tag{2}
\end{equation*}
$$

The equation is separable and the solution is $x(t)=6 /\left(3 t^{2}+2\right)$. We used the Euler, RK2 and RK4 methods to compute the value of $x(2)$ and constructed a plot of the logarithm of the error versus the logarithm of the step size for each numerical method. The slope of the solid line is 1.0135 , the slope of the dashed line is 2.0303 , and the slope of the dotted line is 4.0256 . Indicate each line by its corresponding numerical method and explain your answer.

Name and ID:
Problem 1.

Name and ID:
Problem 2.

Name and ID:
Problem 3.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

