Math 3331 Differential Equations

2.5 Mixing Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331

2..5 Mixing Problems

- Balance Law
- Mixture of Water and Salt
 - Example 5.1
 - Example 5.3

Mixing Problems

Solution of a mixture of water and salt

x(t): amount of salt

V(t): volume of the solution

c(t): concentration of salt

$$\Rightarrow$$
 $c(t) = \frac{x(t)}{V(t)}$

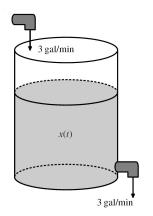
Balance Law

$$\frac{dx}{dt}$$
 = rate in - rate out

rate = flow rate \times concentration

Example 1

See Text, Example 2.5.1


V(t)=100 gal, kept constant concentration in = 2 lb/gal flow rate in = 3 gal/min flow rate out = flow rate in $\Rightarrow c(t)=x(t)/100$ lb/gal

$$\Rightarrow$$
 rate in = 6 lb/min

$$\Rightarrow$$
 rate out $=3x(t)/100$ lb/min

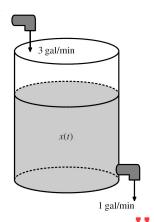
Balance Law

$$\frac{dx}{dt} = 6 - 3x/100$$

Example 2

See Text, Example 2.5.2

concentration in = 1.5 lb/gal flow rate in = 3 gal/min flow rate out = 1 gal/min $V(0) = 300 \, \mathrm{gal}$


$$\Rightarrow$$
 $V(t) = 300 + 2t \text{ lb/gal}$

$$\Rightarrow$$
 $c(t) = x(t)/(300 + 2t)$ lb/gal

- \Rightarrow rate in = 4.5 lb/min
- \Rightarrow rate out =x(t)/(300+2t) lb/min

$$\frac{dx}{dt} = 4.5 - x/(300 + 2t)$$

