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2.7

EUT

2.7 Existence and Uniqueness of Solutions
@ Existence of Solution

o Existence for Linear Equation

o Existence when the Right-hand Side is Discontinuous
@ Interval of Existence of a Solution

@ Uniqueness of Solution

@ Worked out Examples from Exercises:
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2.7 Exercises
Existence and Uniqueness Theorem

Basic Existence and Uniqueness Theorem (EUT):

Suppose f(t,z) is defined and continuous, and has a continuous
partial derivative df(t,z)/dx on a rectangle R in the tz—plane.
Then, given any initial point (tg,zg) in R, the initial value problem

' = f(t,x), x(tg) =g
has a unique solution z(t) defined in an interval containing
tg. Furthermore, the solution will be defined at least until the
solution leaves R.
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2.7 Exercises
Example

EX.: to' =2+ 3t2 = o' =2/t + 3t

e f and 9f/0x are defined and
continuous for any (t,z) if ¢t 0

e General solution (use Sec. 2.6):

Vo T g
3 \ \\ |/
x(t) =3t + Ct \ \\\ / / /
\ % ¢ /
e For any C: z(0) = 0, hence X \T/ //
. \ A\ 1D /
— no solution for (0) = zg % 0 \/

— oo solutions for z(0) =0
e Solution for x(to) = zo, to > 0:

3t8—|—0to =0 => C:l‘o/to—?ﬂ‘,o 4

() — 342 4 (.
= x(t) = 3t* + (20/to — 3to)t Figure 1 All solutions of (7.2)
unique solution with IoE (0, 00) pass through {0,0).

e EUT applies to any rectangle
that is not intersected by the ver- [Fl
tical line t = 0.
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2.7 Exercises

Example: Non-Uniqueness of Solution

0.6 T y(r)
Ex.: o’ = z!/3

S.0.V.: /xﬂﬁmxz(aonﬁ3:t+D
= 2a () = £[(2/3)14+C]¥2 (C = 2D/3)

e Let C=0= 2.(0)=0

-023

e Other solution with z(0) = 0:

x(t) =0 x
= At least 3 solutions for IC 0o
z(0) =0

e EUT doesn't apply to any rec-
tangle that is intersected by the x(1)
horizontal line . =0 o e

-0.2
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2.7 Exercises
Interval of Existence

Interval of Existence:

Largest interval in which a solution of a first order ODE can be
defined.
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2.7 Exercises

Example

EX.: ' = —22, x(0) = a0
S.o.V.: — /(1/;172)(1417 =1/z=t+4+C
= x=1/(t+C)
2(0)=1/C=20 = C=1/x0
= z(t) = zo/(1 + zot)

xg >0 . (=1/x0,00)
20 <0 } =~ leb: { (—o00, —1/z0)

Ifzg =0 = z(t) =0, IoE: (—o0, c0)

e f(t,x) = —x? satisfies hypothe-
ses of EUT in any rectangle

= Unique solution for any zo

e x(t) leaves any rectangle in finite
time

= Solution is not defined for all re-

als if zo # 0 [l].l
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2.7 Exercises

Existence W the RHS is Discontinuous

Ex.: IVP y' = -2y + f(t), y(0) =3

N[O if t<1
f(t)_{s if t>1

t<l:y =-2y = yt) =32
Fort—1: y(1) =3e?
Continue solution beyond ¢t = 1:

t>1:y =-2y+5, y(1) =3e >

ot
= () = Be2t 3—2f/ 205 gt \
y(t) e <l 4 ¢ /i € a /
= 5/2+4 (3 —-562/2)e %
Combine:

0
3e~2 if t<1 0 3
y(t) =

5/2+ (3 —5¢e2/2)e 2 if t>1

e f is discontinuous at t = 1, but
unique solution exists for all ¢ [Fl

e 3/(t) is discontinuous at ¢t = 1
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2.7 Exercises
Exercise 2.7.1

Ex. 1: y = 4+ y?, y(0) = 1. Does IVP have a unique solution?

Yes, because f = 4 + y? and 9f/9y = 2y are continuous everywhere.
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2.7 Exercises
Exercise 2.7.3

Ex. 3: v =t tan"!(y), y(0) = 2. Does IVP have a unique solution?
Yes (as Ex. 1).
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2.7 Exercises

Exercise 2.7.5

Ex. 5: 2’ =t/(x+ 1), (0) = 0. Does IVP have a unigue solution?

Yes, because f and 9f/0x = —t/(x+ 1)? are continuous in any rectangle away
from the horizontal line z = —1, and x(0) # —1.
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2.7 Exercises

Exercise 2.7.7

Ex. 7: ty —y=t2cost, y(0) = —3.

(i) Find general solution and sketch several solutions.
(ii) Show IVP has no solution and explain why this doesn't contradict EUT.

Answer (i): y —y/t =tcost, use integrating factor:

y(t)=tsin(t)+Ct for
C=-2-1,01.2

u(t) = exp(— /(l/t)dt) = exp(—Int) =1/t e
= (y/t) = cost =>'y/t =sint+C = y(t) =tsint+Ct = o

Answer (ii): Since y(0) = 0 for any C, there is no
solution that satisfies y(0) = —3. This doesn’'t con-
tradict EUT because f is not continuous at ¢t = 0. 026 A0 0 {10 20
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