4

Math 3331 Differential Equations

4.7 Forced Harmonic Motion

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331

4.7 Forced Harmonic Motion

- Periodically Forced Harmonic Motion
- Forced Undamped Harmonic Motion: Beats
- Forced Undamped Harmonic Motion: Resonance
- Forced Damped Harmonic Motion
- Amplitude and Phase

Periodically Forced Harmonic Motion

Periodically forced mass-spring system: $mx'' + \mu x' + kx = F_0 \cos \omega t$ or $x'' + dx' + \omega_0^2 x = A \cos \omega t$ where $d = \mu/m$, $\omega_0 = \sqrt{k/m}$, $A = F_0/m$

Sinusoidal forcing: $F(t) = A \cos \omega t$

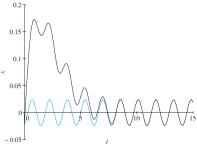
where A is the amplitude and ω is the driving frequency.

General solution:

$$x(t) = x_h(t) + x_p(t)$$

where

- $x_p(t)$: steady state part (persistent oscillation)
- $x_h(t)$: transient part (d > 0) $(x_h(t) \to 0 \text{ for } t \to \infty)$



Forced Undamped Harmonic Motion: Beats ($\omega \neq \omega_0$)

$$x'' + \omega_0^2 x = A \cos \omega t \tag{1}$$

Try particular solution:

$$x_p(t) = a\cos\omega t + b\sin\omega t \Rightarrow$$

$$x_p'' + \omega_0^2 x_p = (\omega_0^2 - \omega^2)(a\cos\omega t + b\sin\omega t)$$

The r.h.s. is equal to $A\cos\omega t$ if

$$(\omega_0^2 - \omega^2)a = A, \quad (\omega_0^2 - \omega^2)b = 0$$

$$\Rightarrow a = A/(\omega_0^2 - \omega^2), \quad b = 0 \Rightarrow$$

$$x_0(t) = [A/(\omega_0^2 - \omega^2)] \cos \omega t \qquad (2)$$

To find general solution, add general solution of

$$x'' + \omega_0^2 x = 0$$
(3)

F.S.S. for (3): $\cos \omega_0 t$, $\sin \omega_0 t$ \Rightarrow general solution of (1):

$$x(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + x_p(t)$$

Beats: $\omega \neq \omega_0$

Beats. Assume IC:
$$x(0) = 0, x'(0) = 0$$

$$\Rightarrow c_1 = -A/(\omega_0^2 - \omega^2), c_2 = 0 \Rightarrow$$

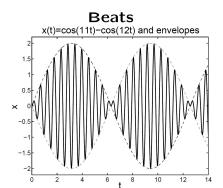
$$x(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos \omega t - \cos \omega_0 t) \quad (4)$$
Set $\delta = (\omega_0 - \omega)/2, \overline{\omega} = (\omega_0 + \omega)/2$
Use $(\alpha = \omega t, \beta = \omega_0 t)$

$$\cos \alpha - \cos \beta = 2\sin(\frac{\beta - \alpha}{2})\sin(\frac{\beta + \alpha}{2})$$

$$\Rightarrow x(t) = \frac{A\sin \delta t}{2\overline{\omega}\delta}\sin \overline{\omega}t \quad (5)$$

If $\delta << \overline{\omega} \Rightarrow [A/(2\overline{\omega}\delta)] \sin \delta t$ is slowly varying envelope

Beats in Forced, Undamped, Harmonic Motion



In acoustics, a beat is an interference between two sounds of slightly different frequencies, perceived as periodic variations in volume whose rate is the difference between the two frequencies.

$$x(t) = \cos wt - \cos w_0 t = 2\sin \delta t \sin \bar{\omega} t$$

where the mean frequency $\bar{\omega}$ and the half difference δ are defined by

$$\bar{\omega} = (\omega_0 + \omega)/2, \quad \delta = (\omega_0 - \omega)/2.$$

Forced Undamped Harmonic Motion: Resonance $(\omega=\omega_0)$

Resonant Case:
$$\omega = \omega_0$$

Solution (2) is not valid if $\omega = \omega_0$. In this case try $x_p(t) = t(a\cos\omega_0 t + b\sin\omega_0 t)$
 $\Rightarrow x_p'' + \omega_0^2 x_p =$
 $-2a\sin\omega_0 t + 2b\cos\omega_0 t$
The r.h.s. equals $A\cos\omega_0 t$ if

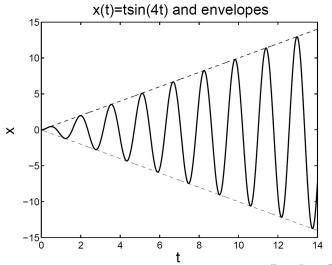
$$\Rightarrow x_p(t) = [A/(2\omega_0)]t \sin \omega_0 t$$
 (linearly growing oscillation)

Note: $x_p(0) = 0$, $x_p'(0) = 0$. Ex.: A = 8, $\omega_0 = 4 \Rightarrow x_p(t) = t \sin 4t$

 $a=0, 2\omega_0 b=A\Rightarrow b=A/(2\omega_0)$

Resonance in Forced, Undamped, Harmonic Motion

Growing Oscillation



Forced Damped Harmonic Motion

$$x'' + dx' + \omega_0^2 x = A \cos \omega t \tag{6}$$

Since $A\cos\omega t=\mathrm{Re}(Ae^{i\omega t})$, any solution x(t) is the real part of a solution z(t) of

$$z'' + dz' + \omega_0^2 z = Ae^{i\omega t} \tag{7}$$

Solution Strategy:

- Find particular solution of (7)
- Real part → particular solution of (6)

Particular Solution of (7)

Try **complex exponential** for (7):

$$z_p(t) = ae^{i\omega t} \Rightarrow z_p'' + dz_p' + \omega_0^2 z_p =$$

$$((i\omega)^2 + i\omega d + \omega_0^2) ae^{i\omega t} = Ae^{i\omega t}$$

$$\Rightarrow [(\omega_0^2 - \omega^2) + i\omega d] a = A$$

$$\Rightarrow \frac{a}{A} = \frac{1}{(\omega_0^2 - \omega^2) + i\omega d}$$
Use $1/(\alpha + i\beta) = (\alpha - i\beta)/(\alpha^2 + \beta^2)$

$$\Rightarrow \frac{a}{A} = \frac{(\omega_0^2 - \omega^2) - i\omega d}{D}$$
where $D = (\omega_0^2 - \omega^2)^2 + \omega^2 d^2$

Amplitude and Phase

Amplitude and Phase: Set

$$a/A = Ge^{-i\phi} = G\cos\phi - iG\sin\phi$$

$$\Rightarrow G^2 = \left(\frac{(\omega_0^2 - \omega^2)}{D}\right)^2 + \left(\frac{\omega d}{D}\right)^2$$

$$= \frac{(\omega_0^2 - \omega^2)^2 + \omega^2 d^2}{D^2} = \frac{D}{D^2}$$

$$\Rightarrow G = 1/\sqrt{D} \equiv G(\omega) \text{ (gain), hence}$$

$$G(\omega) = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 d^2}} \tag{8}$$

Phase angle:

$$\omega_0^2 - \omega^2 = G\cos\phi, \ \omega d = G\sin\phi$$
 where $0 \le \phi < \pi$ (since $\sin\phi \ge 0$)
$$\Rightarrow \phi(\omega) = \operatorname{arccot}\left(\frac{\omega_0^2 - \omega^2}{\omega d}\right) \quad (9)$$

Solution of (6)

Particular Solution of (6):

$$z_p(t) = ae^{i\omega t} = G(\omega)Ae^{i(\omega t - \phi)} \Rightarrow$$

$$x_p(t) = \operatorname{Re}z_p(t) = GA\cos(\omega t - \phi)$$
 (10)

General Solution of (6):

$$x(t) = x_h(t) + x_p(t) \tag{11}$$

where
$$x_h(t) = c_1 x_1(t) + c_2 x_2(t)$$
 (12)

and
$$x_1(t)$$
, $x_2(t)$ is F.S.S. of

$$x'' + dx' + \omega_0^2 x = 0$$

Steady State and Transient Parts:

- $x_p(t)$: steady state part (persistent oscillation)
- $x_h(t)$: transient part (d > 0) $\Rightarrow x_h(t) \to 0$ for $t \to \infty$

Qualitative Forms

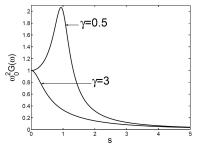
Qualitative Forms of $G(\omega)$, $\phi(\omega)$:

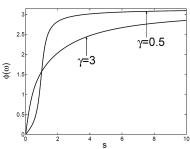
Set
$$s = \omega/\omega_0$$
, $\gamma = d/\omega_0 \Rightarrow$

$$\omega_0^2 G(\omega) = \frac{1}{\sqrt{(1 - s^2)^2 + s^2 \gamma^2}}$$

$$\phi(\omega) = \operatorname{arccot}\left(\frac{1 - s^2}{s\gamma}\right)$$

- $G(\omega)$ has max at $s_m = \sqrt{1 \gamma^2/2}$, $\omega_0^2 G_m = 2/(\gamma \sqrt{4 \gamma^2})$, if $\gamma < \sqrt{2}$, and is monotonic for $\gamma > \sqrt{2}$
- $\phi(\omega) = \operatorname{arccot}\Bigl(\frac{1-s^2}{s\gamma}\Bigr) \qquad \qquad \stackrel{\bullet}{\bullet} \phi(\omega) \text{ is "steep" for small } \gamma \text{ and "flat" for large } \gamma \qquad \qquad _3$





Example 4.7.18

Ex.: Consider a mass-spring system with $m=5\,kg$, $\mu=7\,kg/s$, $k=3\,kg/s^2$, and a forcing term $2\cos 4t\,N$

(a) Find the steady periodic solution $x_p(t)$ and determine its amplitude and phase.

Answer: Equation: $5x'' + 7x' + 3x = 2\cos 4t \Rightarrow x'' + 1.4x' + 0.6x = 0.4\cos 4t$ Use complex method: $x_p(t) = \text{Re}z_p(t)$, where z_p is particular solution of

$$z'' + 1.4z' + 0.6z = 0.4e^{4it}$$

Try
$$z_p = ae^{4it} \Rightarrow (-16 + 5.6i + 0.6)ae^{4it} = 0.4e^{4it}$$

$$\Rightarrow a = \frac{0.4}{-15.4 + 5.6i} = \frac{0.4 \times (-15.4 - 5.6i)}{15.4^2 + 5.6^2} = -0.0229 - 0.0083i$$

$$\Rightarrow z_p(t) = (-0.0229 - 0.0083i)(\cos 4t + i \sin 4t)$$

 $\Rightarrow x_v(t) = \text{Re}(z_v(t)) = 0.0083 \sin 4t - 0.0229 \cos 4t \text{ (superposition form)}$

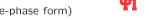
To find amplitude and phase compute polar form: $a = A_0 e^{-i\phi}$, where

$$A_0 = \sqrt{0.0229^2 + 0.0083^2} = 0.0244$$

 $\phi = \operatorname{arccot}(-0.0229/0.0083) = 2.7939$

$$\Rightarrow z_p(t) = A_0 e^{i(4t-\phi)}$$

$$\Rightarrow x_p(t) = 0.0244 \cos(4t - 2.7939) \text{ (amplitude-phase form)}$$



Example 4.7.18 (cont.)

(b) Find the position x(t) if x(0) = 0, x'(0) = 1 m/s

Answer: Find transient part: $x'' + 1.4x' + 0.6x = 0 \Rightarrow p(\lambda) = \lambda^2 + 1.4\lambda + 0.6 = 0$ $\Rightarrow \lambda = -0.7 + 0.3317i$

$$\Rightarrow x_h(t) = e^{-0.7t}[c_1\cos(0.3317t) + c_2\sin(0.3317t)]$$
 and $x(t) = x_h(t) + x_p(t)$

Match c_1, c_2 to IC: (use superposition form)

$$x(0) = c_1 - 0.0229 = 0 \Rightarrow c_1 = 0.0229$$

 $x'(0) = -0.7c_1 + 0.3317c_2 + 4 \times 0.0083 = 1 \Rightarrow c_2 = 2.9630$ \Rightarrow

 $x(t) = e^{-0.7t}[0.0229\cos(0.3317t) + 2.9630\sin(0.3317t)] + 0.0244\cos(4t - 2.7939)$

