Math 3331 Differential Equations 6.2 Runge-Kutta Methods (RKM)

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math3331

Jiwen He, University of Houston

6.2 Runge-Kutta Methods (RKM)

- 2nd Order RKM
 - 2nd Order RKM: Improved Euler Method
 - 2nd Order RKM: Iteration Scheme
 - Examples Errors in 2nd Order RKM: Second Order
- 4th Order RKM
 - 4th Order RKM: Basic Idea
 - 4th Order RKM: Iteration Scheme
 - Errors in 4th Order RKM: Fourth Order

2nd Order RKM: Improved Euler Method

6.2

Failure of Euler Method:

Only slope on left end of interval [t, t + h] is used.

Improvement: Given t, y(t),

• compute slope at t

 $s_l = f(t, y(t))$

• find slope at t + h via EM

$$y_E = y(t) + hs_l$$

$$s_r = f(t+h, y_E)$$

• approximate y(t+h) via average slope

$$y(t+h) \approx y(t) + h(s_l+s_r)/2$$

2nd Order RKM: Iteration Scheme

2nd Order RKM Iteration Scheme

Start: y_0, t_0 For k = 0 to k = N: $t_{k+1} = t_k + h$ $s_l = f(t_k, y_k)$ $s_r = f(t_{k+1}, y_k + hs_l)$ $y_{k+1} = y_k + h(s_l + s_r)/2$

6.2

6.2

Example

Ex. Approximate the solution to $u' = t - u, \ u(0) = 0.5$ in 0 < t < 1 using h = 0.25. **Start:** $y_0 = 0.5, t_0 = 0$ $t_1 = 0.25$ $s_l = t_0 - y_0 = -0.5$ $s_r = t_1 - (y_0 + hs_l) = -0.125$ $= y_0 + h(s_l + s_r)/2 = 0.4219$ y_1 $t_2 = 0.5$ $s_l = t_1 - y_1 = -0.1719$ $s_r = t_2 - (y_1 + hs_l) = 0.1211$ $y_2 = y_1 + h(s_l + s_r)/2 = 0.4155$

 $\begin{array}{rcl} t_3 &=& 0.75\\ s_l &=& t_2 - y_2 = 0.0845\\ s_r &=& t_3 - (y_2 + hs_l) = 0.3134\\ y_3 &=& y_2 + h(s_l + s_r)/2 = 0.4653\\ t_4 &=& 1\\ s_l &=& t_3 - y_3 = 0.0845\\ s_r &=& t_4 - (y_3 + hs_l) = 0.3134\\ y_4 &=& y_3 + h(s_l + s_r)/2 = 0.4653 \end{array}$

Errors in 2nd Order RKM: Second Order

62

Ex.: y' = t - y, y(0) = 0.5Approximate y(1) for stepsizes h = 1/m, m = 1, 2, 4, 8, 16, 32Exact Value: y(1) = 0.551819Error: $E(h) = |y(1) - y_m|$

h	y_m	E(h)
1	0.75	0.198181
1/2	0.585938	0.034118
1/4	0.558794	0.006974
1/8	0.553400	0.001581
1/16	0.552196	0.000377
1/32	0.551911	0.000092

 $E(h/2) \approx E(h)/4 \Rightarrow E(h) \approx C h^2$

Theorem: There $\exists C > 0$ s.t.

 $E(h) \leq C h^2$

(2nd order RKM is second order method)

4th Order RKM: Basic Idea

4th Order RKM

Idea: Given t and y = y(t), compute slopes s_1, s_2, s_3, s_4 at four carefully chosen points s.t. error is minimized.

6.2

Approximation:

 $y(t+h) \approx y + \frac{h}{6}(s_1 + 2s_2 + 2s_3 + s_4)$

4th Order RKM: Iteration Scheme

4th Order RKM

Iteration $k \rightarrow k + 1$:

6.2

$$s_{1} = f(t_{k}, y_{k})$$

$$s_{2} = f(t_{k} + h/2, y_{k} + hs_{1}/2)$$

$$s_{3} = f(t_{k} + h/2, y_{k} + hs_{2}/2)$$

$$s_{4} = f(t_{k} + h, y_{k} + hs_{3})$$

$$y_{k+1} = y_{k} + \frac{h}{6}(s_{1} + 2s_{2} + 2s_{3} + s_{4})$$

$$t_{k+1} = t_{k} + h$$

- ₹ 🗦 🕨

Errors in 4th Order RKM: Fourth Order

6.2

Ex.: y' = t - y, y(0) = 0.5, $y(1) \approx y_m$ m = 1, 2, 4, 8, 16, 32, h = 1/mExact Value: y(1) = 0.551819162Error: $E(h) = |y(1) - y_m|$

h	y_m	E(h)
1	0.5625	0.010680838
1/2	0.552256266	0.000437105
1/4	0.551841299	0.000022137
1/8	0.551820408	0.000001246
1/16	0.551819236	0.00000074
1/32	0.551819166	0.00000005

 $E(h/2) \approx E(h)/16 \Rightarrow E(h) \approx C h^4$

Theorem: There $\exists C > 0$ s.t. $E(h) \leq C h^4$ (4th order RKM is fourth order method)

