HW6 Solutions

Math 3338-10853: Probability (Fall 2006), Dr. Jiwen He
28.
a. $\quad \mathrm{E}(\mathrm{X})=\sum_{x=0}^{4} x \cdot p(x)$

$$
=(0)(.08)+(1)(.15)+(2)(.45)+(3)(.27)+(4)(.05)=2.06
$$

b. $\mathrm{V}(\mathrm{X})=\sum_{x=0}^{4}(x-2.06)^{2} \cdot p(x)=(0-2.06)^{2}(.08)+\ldots+(4-2.06)^{2}(.05)$

$$
=.339488+.168540+.001620+.238572+.188180=.9364
$$

c. $\sigma_{\mathrm{x}}=\sqrt{.9364}=.9677$
d. $\mathrm{V}(\mathrm{X})=\left[\sum_{x=0}^{4} x^{2} \cdot p(x)\right]-(2.06)^{2}=5.1800-4.2436=.9364$
31.
a. $\quad \mathrm{E}(\mathrm{X})=(13.5)(.2)+(15.9)(.5)+(19.1)(.3)=16.38$,
$\mathrm{E}\left(\mathrm{X}^{2}\right)=(13.5)^{2}(.2)+(15.9)^{2}(.5)+(19.1)^{2}(.3)=272.298$, $\mathrm{V}(\mathrm{X})=272.298-(16.38)^{2}=3.9936$
b. $\quad \mathrm{E}(25 \mathrm{X}-8.5)=25 \mathrm{E}(\mathrm{X})-8.5=(25)(16.38)-8.5=401$
c. $\quad \mathrm{V}(25 \mathrm{X}-8.5)=\mathrm{V}(25 \mathrm{X})=(25)^{2} \mathrm{~V}(\mathrm{X})=(625)(3.9936)=2496$
d. $\mathrm{E}[\mathrm{h}(\mathrm{X})]=\mathrm{E}\left[\mathrm{X}-.01 \mathrm{X}^{2}\right]=\mathrm{E}(\mathrm{X})-.01 \mathrm{E}\left(\mathrm{X}^{2}\right)=16.38-2.72=13.66$
33. $\mathrm{E}(\mathrm{X})=\sum_{x=1}^{\infty} x \cdot p(x)=\sum_{x=1}^{\infty} x \cdot \frac{c}{x^{3}}=c \sum_{x=1}^{\infty} \frac{1}{x^{2}}$, but it is a well-known result from the theory of infinite series that $\sum_{x=1}^{\infty} \frac{1}{x^{2}}<\infty$, so $\mathrm{E}(\mathrm{X})$ is finite.
40. $\quad \mathrm{V}(\mathrm{aX}+\mathrm{b})=\sum_{x}[a X+b-E(a X+b)]^{2} \cdot p(x)=\sum_{x}[a X+b-(a \mu+b)]^{2} p(x)$

$$
=\sum_{x}[a X-(a \mu)]^{2} p(x)=a^{2} \sum_{x}[X-\mu]^{2} p(x)=a^{2} V(X) .
$$

45. $\quad M_{X}(t)=\Sigma e^{x t} p(x)=\Sigma e^{x t}(.5)^{x}=\Sigma\left(.5 e^{t}\right)^{x}=\frac{.5 e^{t}}{1-.5 e^{t}}$ or $\frac{e^{t}}{2-e^{t}}$, since the sum ranges from $x=1$
to $x=\infty$. From this, $E(X)=M_{X}^{\prime}(0)=\left.\frac{2 e^{t}}{\left(2-e^{t}\right)^{2}}\right|_{t=0}=2$. Next, $E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=$
$\left.\frac{2 e^{t}\left(2+e^{t}\right)}{\left(2-e^{t}\right)^{3}}\right|_{t=0}=6$, from which $V(X)=6-2^{2}=2$.
46. Following Example 3.29, $M_{X}(t)=\Sigma e^{x t} p(x)=\Sigma e^{x t} p q^{x-1}=p e^{t} \Sigma\left(e^{t} q\right)^{x-1}=p e^{t} \frac{1}{1-e^{t} q}=$
$\frac{p e^{t}}{1-(1-p) e^{t}}$. The MGF of Y exactly corresponds to this format with $p=.75$ (and $q=.25$). Hence, Y is a geometric random variable with parameter $p=.75$, and the PMF of Y is $p_{r}(y)=$ $.75(.25)^{v-1}$ for $y=1,2,3, \ldots$.
47. $\quad R_{X}(t)=\ln \left[M_{X}(t)\right] \rightarrow R_{X}^{\prime}(t)=\frac{M_{X}^{\prime}(t)}{M_{X}(t)} \rightarrow R_{X}^{\prime}(0)=\frac{M_{X}^{\prime}(0)}{M_{X}(0)}=\frac{\mu}{1}=\mu$. Next, using the quotient rule, $R_{X}^{\prime \prime}(t)=\frac{M_{X}(t) M_{X}^{\prime \prime}(t)-M_{X}^{\prime}(t) M_{X}^{\prime}(t)}{\left[M_{X}(t)\right]^{2}} \rightarrow R_{X}^{\prime \prime}(0)=\frac{M_{X}(0) M_{X}^{\prime \prime}(0)-M_{X}^{\prime}(0)^{2}}{\left[M_{X}(0)\right]^{2}}=$ $\frac{1 \cdot E\left(X^{2}\right)-\mu^{2}}{[1]^{2}}=E\left(X^{2}\right)-\mu^{2}=\sigma^{2}$.
