Math 3338: Probability (Fall 2006)

Jiwen He

Section Number: 10853
http://math.uh.edu/~jiwenhe/math3338fall06.html

2.5 Independence

Definition of independent events

- Definition: Two events A and B are independent if

$$
P(A \mid B)=P(A)
$$

and are dependent otherwise.

- The equality in the definition implies the following equality (and vice versa)

$$
P(B \mid A)=P(B)
$$

- It is also straightforward to show that if A and B are independent, then so are the following pairs of events: (1) A^{\prime} and B, (2) A and B^{\prime}, and (3) A^{\prime} and B^{\prime}.
- 2.31: Tossing a die $A=\{2,4,6\}, B=\{1,2,3\}$, and $C=\{1,2,3,4\}$. We have

$$
P(A)=\frac{1}{2}, \quad P(A \mid B)=\frac{1}{3}, \quad P(A \mid C)=\frac{1}{2} .
$$

That is, A and B are dependent, whereas A and C are independent.

- 2.32 Let A and B be mutually exclusive with $P(A)>0$. Since $A \cap B=\emptyset$, then $P(A \mid B)=0 \neq P(A)$, so A and B can not be independent. For example, $A=\{$ carisblue $\}$ and $B=\{$ carisred $\}, A$ and B are mutually exclusive, then dependent.

$P(A \cap B)$ When A and B are Independent

- Proposition: A and B are independent if and only if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

- Proof: $P(A \cap B)=P(A \mid B) \cdot P(B)=P(A) \cdot P(B)$ where the second equality is valid if and only if A and B are independent.
- Definition of the independence of more than two events: Events A_{1}, \ldots, A_{n} are mutually independent if for every $k(k=2,3, \ldots, n)$ and every subset of indices i_{1}, \ldots, i_{k},

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right)
$$

- 2.35: Let A_{i} denote the event that the lifetime of cell i exceeds $t_{0}(i=1, \ldots, 6)$. We assume that A_{i} 's are independent events and that $P\left(A_{i}\right)=.9$ for every i since the cells are identical.

$$
\begin{aligned}
P\left(\text { system lifetime exceeds } t_{0}\right)= & P\left[\left(A_{1} \cap A_{2} \cap A_{3}\right) \cup\left(A_{4} \cap A_{5} \cap A_{6}\right)\right] \\
= & P\left(A_{1} \cap A_{2} \cap A_{3}\right)+P\left(A_{4} \cap A_{5} \cap A_{6}\right) \\
& -P\left[\left(A_{1} \cap A_{2} \cap A_{3}\right) \cap\left(A_{4} \cap A_{5} \cap A_{6}\right)\right] \\
= & (.9)(.9)(.9)+(.9)(.9)(.9)-(.9)(.9)(.9)(.9)(.9)(.9)=.927
\end{aligned}
$$

