Math 3338: Probability (Fall 2006)

Jiwen He

Section Number: 10853

http://math.uh.edu/~jiwenhe/math3338fall06.html

Chapter Two: Probability (I)

2.1 Sample Spaces and Events

The sample space of an experiment

- **Experiment:** any action or process whose outcome is subject to uncertainty.
- Sample space of an experiment: denoted by Ω , the set of all possible outcomes of that experiment.
- Sample point: denoted by ω , a point in Ω .
 - The sample space provides a model of an ideal experiment in the sense that, by definition, every thinkable outcome of the experiment is completely described by one, and only one, sample point.

 $\forall \text{outcome of the experiment}, \exists ! \omega \in \Omega \Rightarrow \text{outcome} = \omega$

- Examples:
 - 2.1 : For an experiment consisting of examining a single fuse to see whether it is defective, the sample space Ω₁ = {N, D}, where N represents not defective, D represents defective.
 - 2.2: For an experiment consisting of examining three fuses in sequence, the sample space $\Omega_3 = \Omega_1 \times \Omega_1 \times \Omega_1 = \{(\omega_1, \omega_2, \omega_3), \omega_i \in \{N, D\}\}.$
 - 2.4: For an experiment consisting of testing each battery as it comes off an assembly line until we first observe a success, Ω = {S, FS, FFS, FFFS, ...}, which contains an infinite number of possible outcomes.

Events

- **Event**: denoted by capital letters, is a subset of Ω .
 - It is meaningful to talk about an event A only when it is clear for every outcome of the experiment whether the event A has or has not occurred.

 $\forall \omega \in \Omega$, we have $\omega \in A$ or $\omega \notin A$.

• Elementary event: also called simple event, is an event consisting of exactly one outcome: elementary event = sample point.

An event A occurs if and only if one of the elementary event ω in A occurs.

- Certain event : = Ω , which always occurs regardless the outcome of the experiment.
- Impossible event : = \emptyset .
- Example 2.7:
 - For Ω defined in example 2.4, compound events include
 - $A = \{S, FS, FFS\}$
 - = the event tat at most three batteries are examined

$$E = \{FS, FFFS, FFFFFS, \ldots\}$$

= the event that an even number of batteries are examined.

Operations with events

- Complement: The complement of an event A is denoted by A^c or A', and is the event that A does not occur.
 A^c = {ω|ω ∉ A}; Ω^c = ∅; ∅^c = Ω, (A^c)^c = A.
- Union: The union *A* ∪ *B* of two events *A* and *B* is the event consisting of the occurrence of at least one of the events *A* and *B*.

$$A\cup B=\{\omega|\omega\in A \text{ or } \omega\in B\}.$$

• Intersection: The intersection $A \cap B$ of two events A and B is the event consisting of the occurrence of both events A and B.

$$A \cap B = \{ \omega | \omega \in A \text{ and } \omega \in B \}.$$

- Mutually exclusive events: Two events are said mutually exclusive if $A \cap B = \emptyset$, i.e., the event $A \cap B$ is impossible.
- Figure 2.1 Venn diagrams : An even is nothing but a set, so *elementary set theory* can be used to study events.

Relations among events

- $A \subset B$: The occurrence of A implies the occurrence of B, i.e., if $\omega \in A$, then $\omega \in B$.
- $\mathbf{A} \supset \mathbf{B}$: The occurrence of A is implied by the occurrence of B, i.e., if $\omega \in B$, then $\omega \in A$.
- $\mathbf{A} = \mathbf{B}$: The events A and B are identical.

A = B if and only if $A \subset B$ and $B \subset A$.

- $\mathbf{A} \cap \mathbf{B^c}$: *A* but not *B* occurs.
- $\mathbf{A} \mathbf{B}$: If $A \supset B$, we denote $A \cap B^c$ by $\mathbf{A} \mathbf{B}$.
- $\mathbf{A} + \mathbf{B}$: If $A \cap B = \emptyset$, we denote $A \cup B$ by $\mathbf{A} + \mathbf{B}$.
- $\mathbf{A} \cap \mathbf{B} = \emptyset$: means that $A \subset B^c$ and $B \subset A^c$, i.e., if A and B are mutually exclusive, the occurrence of A implies the non-occurrence of B and vice versa.
- $\mathbf{A} \mathbf{A} \cap \mathbf{B}$: the occurrence of A but not of both A and B. Thus $A A \cap B = A \cap B^c$.
- Indicator: The indicator of an event A is $I_A : \Omega \mapsto \{1, 0\}$ s.t. $I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A. \end{cases}$

We have then

$$A = B$$
 if and only if $I_A = I_B$
 $I_{A \cap B} = I_A \cdot I_B$
 $I_{A \cup B} = I_A + I_B - I_A \cdot I_B$

Various Laws

• Commutative law:

A
$$\cup B = B \cup A$$

A $\cap B = B \cap A$
Associative law:
 $(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$
 $(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$
Distributive law:
 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
De Morgan's law:
 $(A \cup B)^c = A^c \cap B^c$
 $(A \cap B)^c = A^c \cup B^c$

• **Proofs** : Based on the relation

Left = Right if and only if
$$\begin{cases} (1) & \text{Left} \subset \text{Right} \\ (2) & \text{Right} \subset \text{Left} \end{cases}$$

