Math 3338: Probability (Fall 2006)

Jiwen He

Section Number: 10853
http://math.uh.edu/~jiwenhe/math3338fall06.html

Chapter Two: Probability (I)

2.1 Sample Spaces and Events

The sample space of an experiment

- Experiment: any action or process whose outcome is subject to uncertainty.
- Sample space of an experiment: denoted by Ω, the set of all possible outcomes of that experiment.
- Sample point: denoted by ω, a point in Ω.
- The sample space provides a model of an ideal experiment in the sense that, by definition, every thinkable outcome of the experiment is completely described by one, and only one, sample point.

$$
\forall \text { outcome of the experiment, } \exists!\omega \in \Omega \Rightarrow \text { outcome }=\omega
$$

- Examples:
- 2.1: For an experiment consisting of examining a single fuse to see whether it is defective, the sample space $\Omega_{1}=\{N, D\}$, where N represents not defective, D represents defective.
- 2.2 : For an experiment consisting of examining three fuses in sequence, the sample space $\Omega_{3}=\Omega_{1} \times \Omega_{1} \times \Omega_{1}=\left\{\left(\omega_{1}, \omega_{2}, \omega_{3}\right), \omega_{i} \in\{N, D\}\right\}$.
-2.4 : For an experiment consisting of testing each battery as it comes off an assembly line until we first observe a success, $\Omega=\{S, F S, F F S, F F F S, \ldots\}$, which contains an infinite number of possible outcomes.

Events

- Event: denoted by capital letters, is a subset of Ω.
- It is meaningful to talk about an event A only when it is clear for every outcome of the experiment whether the event A has or has not occurred.

$$
\forall \omega \in \Omega, \text { we have } \omega \in A \text { or } \omega \notin A .
$$

- Elementary event: also called simple event, is an event consisting of exactly one outcome: elementary event $=$ sample point.

An event A occurs if and only if one of the elementary event ω in A occurs.

- Certain event $:=\Omega$, which always occurs regardless the outcome of the experiment.
- Impossible event $:=\emptyset$.
- Example 2.7:
- For Ω defined in example 2.4 , compound events include

$$
\begin{aligned}
A & =\{S, F S, F F S\} \\
& =\text { the event tat at most three batteries are examined } \\
E & =\{F S, F F F S, F F F F F S, \ldots\} \\
& =\text { the event that an even number of batteries are examined. }
\end{aligned}
$$

Operations with events

- Complement: The complement of an event A is denoted by A^{c} or A^{\prime}, and is the event that A does not occur.

$$
A^{c}=\{\omega \mid \omega \notin A\} ; \quad \Omega^{c}=\emptyset ; \emptyset^{c}=\Omega,\left(A^{c}\right)^{c}=A .
$$

- Union: The union $A \cup B$ of two events A and B is the event consisting of the occurrence of at least one of the events A and B.

$$
A \cup B=\{\omega \mid \omega \in A \text { or } \omega \in B\} .
$$

- Intersection: The intersection $A \cap B$ of two events A and B is the event consisting of the occurrence of both events A and B.

$$
A \cap B=\{\omega \mid \omega \in A \text { and } \omega \in B\} .
$$

- Mutually exclusive events: Two events are said mutually exclusive if $A \cap B=\emptyset$, i.e., the event $A \cap B$ is impossible.
- Figure 2.1 - Venn diagrams : An even is nothing but a set, so elementary set theory can be used to study events.

(a) Venn diagram of events A and B

(b) Shaded region is $A \cap B$

(c) Shaded region is $A \cup B$

(d) Shaded region is A^{\prime}

(e) Mutually exclusive events

Relations among events

- $\mathbf{A} \subset \mathbf{B}$: The occurrence of A implies the occurrence of B, i.e., if $\omega \in A$, then $\omega \in B$.
- $\mathbf{A} \supset \mathbf{B}$: The occurrence of A is implied by the occurrence of B, i.e., if $\omega \in B$, then $\omega \in A$.
- $\mathbf{A}=\mathbf{B}$: The events A and B are identical.

$$
A=B \text { if and only if } A \subset B \text { and } B \subset A .
$$

- $\mathbf{A} \cap \mathbf{B}^{\mathbf{c}}: A$ but not B occurs.
- $\mathbf{A}-\mathbf{B}$: If $A \supset B$, we denote $A \cap B^{c}$ by $\mathbf{A}-\mathbf{B}$.
- $\mathbf{A}+\mathbf{B}$: If $A \cap B=\emptyset$, we denote $A \cup B$ by $\mathbf{A}+\mathbf{B}$.
- $\mathbf{A} \cap \mathbf{B}=\emptyset$: means that $A \subset B^{c}$ and $B \subset A^{c}$, i.e., if A and B are mutually exclusive, the occurrence of A implies the non-occurrence of B and vice versa.
- $\mathbf{A}-\mathbf{A} \cap \mathbf{B}$: the occurrence of A but not of both A and B. Thus $A-A \cap B=A \cap B^{c}$.
- Indicator: The indicator of an event A is $I_{A}: \Omega \mapsto\{1,0\}$ s.t. $I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A, \\ 0 & \text { if } \omega \notin A .\end{cases}$

We have then

$$
\begin{aligned}
& A=B \text { if and only if } I_{A}=I_{B} \\
& I_{A \cap B}=I_{A} \cdot I_{B} \\
& I_{A \cup B}=I_{A}+I_{B}-I_{A} \cdot I_{B}
\end{aligned}
$$

Various Laws

- Commutative law:

$$
\begin{aligned}
A \cup B & =B \cup A \\
A \cap B & =B \cap A
\end{aligned}
$$

- Associative law:

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C)=: A \cup B \cup C \\
& (A \cap B) \cap C=A \cap(B \cap C)=: A \cap B \cap C
\end{aligned}
$$

- Distributive law:

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

- De Morgan's law:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

- Proofs : Based on the relation

$$
\text { Left }=\text { Right } \quad \text { if and only if } \quad\left\{\begin{array}{l}
\text { (1) } \\
\text { Left } \subset \text { Right } \\
\text { (2) } \\
\text { Right } \subset \text { Left }
\end{array}\right.
$$

