Math 3338: Probability (Fall 2006)

Jiwen He

Section Number: 10853
http://math.uh.edu/~jiwenhe/math3338fall06.html

2.2 Axioms, Interpretations, and Properties of Probability

Definition and three axioms

- Definition: A probability measure on the sample space Ω is a function of events,

$$
P: A \subset \Omega \mapsto P(A) \in R
$$

satisfying three axioms
Axiom 1: For any event $A, P(A) \geq 0$.
Axiom 2: $\quad P(\Omega)=1$.
Axiom 3: If A_{1}, A_{2}, \ldots is an infinite collection of disjoint events, then

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

- Proposition:

1. $P(\emptyset)=0$ where \emptyset is the null event.
2. Axiom 3 is valid for a finite collection of events.

Proof: 1. Consider $A_{1}=\emptyset, A_{2}=\emptyset, \ldots$ Axiom 3 gives $P(\emptyset)=\sum P(\emptyset)$, which can happen only if $P(\emptyset)=0.2$. Consider k disjoint events $A_{1}, A_{2}, \ldots, A_{k}$ and append to these the infinite collection $A_{k+1}=\emptyset, A_{k+2}=\emptyset, \ldots$. Again invoking Axiom 3,

$$
P\left(\bigcup_{i=1}^{k} A_{i}\right)=P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{k} P\left(A_{i}\right)
$$

as desired.

Deductions from the axioms

- Proposition:

1. For any event $A, P(A)=1-P\left(A^{c}\right)$. Then $0 \leq P(A) \leq 1$.
2. For any two events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

3. For any three events A, B, and C,

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C) .
$$

4. For any n events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=P_{1}-P_{2}+P_{3}-P_{4}+\cdots+(-1)^{n+1} P_{n}
$$

where

$$
P_{1}=\sum_{i=1}^{n} P\left(A_{i}\right), P_{2}=\sum_{1 \leq i \leq j \leq n} P\left(A_{i} \cap A_{j}\right), P_{3}=\sum_{1 \leq i \leq j \leq k \leq n} P\left(A_{i} \cap A_{j} \cap A_{k}\right), \ldots
$$

Proof: 1.- 3. by the partition, 4. by induction.

Examples

- 2.11: $\Omega=\{U, D\}$. For any $0 \leq p \leq 1, P(U)=p, P(D)=1-p$ is a probability assignment consistent with the axioms: $1=P(\Omega)=P(U)+p(D)$.
- 2.11: $\Omega=\{S, F S, F F S, F F F S, \cdots$. For any $0 \leq p \leq 1$, suppose the probability of any particular battery being satisfactory is p. Then it can be shown that $P(S)=p$, $P(F S)=(1-p) p, P(F F S)=(1-p)^{2} p, \ldots$, is a probability assignment consistent with the axioms:

$$
1=P(\Omega)=P(S)+p(F S)+P(F F S)+\cdots=p \sum_{i=0}^{\infty}(1-p)^{i}=p \frac{1}{1-(1-p)}
$$

- 2.13: Let A be the event that the system fails. Suppose the probability of any particular component being satisfactory is $p, 0 \leq p \leq 1$.

$$
P(A)=1-P\left(A^{c}\right)=1-P(S S S S S)=1-p^{5} . \quad \sqrt{1}-2-\sqrt{4}-\sqrt{5}
$$

- 2.14: P (subscribes to at least one of the two newspapers)

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=.6+.8-.5=.9
$$

More properties

- Proposition:

1. For any two events A and B such that $A \subset B$,

$$
P(B-A)=P(B)-P(A)
$$

Then

$$
P(A) \leq P(B)
$$

2. (Boole's Inequality) For any n events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Proof:

1. By the partition: $B=A+(B-A)$, we have $P(B)=P(A)+P(B-A)$.
2. By induction. For $n=2$, it follows that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq P(A)+P(B) .
$$

Suppose that it holds for any $n-1$ events. Then

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n} A_{i}\right) & =P\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cup A_{n}\right) \leq P\left(\bigcup_{i=1}^{n-1} A_{i}\right)+P\left(A_{n}\right) \\
& \leq \sum_{i=1}^{n-1} P\left(A_{i}\right)+P\left(A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

Determining probability systematically

- A simple way to determine probability measure for any countable sample space $\Omega=\left\{E_{1}, E_{2}, \ldots, E_{i}, \ldots\right\}$ is to

1. Determine probabilities $P\left(E_{i}\right)$ for all simple events such that

$$
P\left(E_{i}\right) \geq 0, \quad \sum_{i} P\left(E_{i}\right)=1
$$

2. For any event A, the probability $P(A)$ is computed by adding together the $P\left(E_{i}\right)$'s for all E_{i} 's in A :

$$
P(A)=\sum_{E_{i} \in A} P\left(E_{i}\right)
$$

Thus, $P(\cdot)$ is a function defined for all events and it can be shown that $P(\cdot)$ is a probability measure satisfying the three axioms.

- Example 2.15 - tossing a die: $\Omega=\{1,2, \ldots, 6\}=:\left\{E_{1}, E_{2}, \ldots, E_{6}\right\}$. An probability assignment to simple events is

$$
P\left(E_{1}\right)=P\left(E_{3}\right)=P\left(E_{5}\right)=1 / 9, \quad P\left(E_{2}\right)=P\left(E_{4}\right)=P\left(E_{6}\right)=2 / 9
$$

Then for the event $A=\{$ outcome is even $\}$, we have

$$
A=\left\{E_{2}, E_{4}, E_{6}\right\}, \quad P(A)=P\left(E_{2}\right)+P\left(E_{4}\right)+P\left(E_{6}\right)=6 / 9
$$

Equally likely outcomes

- In the very special case that Ω is finite and contains exactly N point, i.e., $\Omega=\left\{E_{1}, E_{2}, \ldots, E_{i}, \ldots, E_{N}\right\}$ and $|\Omega|=N$, we may attach equal probability p to all N points, $P\left(E_{i}\right)=p$ for every i,

$$
1=\sum_{i=1}^{N} P\left(E_{i}\right)=p N \quad \text { so that } \quad p=\frac{1}{N} .
$$

That is, if there are N possible outcomes, then the probability assigned to each is $1 / N$.

- For any event A, with $|A|$ denoting the number of points contained in A. Then

$$
P(A)=\sum_{E_{i} \in A} P\left(E_{i}\right)=\frac{|A|}{|\Omega|}
$$

- Once we have counted the number N of outcomes in the sample spaces, to compute the probability of any event we must count the number of outcomes contained in that event and take the ratio. When outcomes are equally likely, computing probability reduces to counting.
- Example 2.16-Rolling two dice separately: $N=36$. If both the dices are fair, all 36 outcomes are equally likely, so $P\left(E_{i}\right)=1 / 36$. Then the event $A=\{$ sum of two numbers $=7\}$ consists of the six outcomes: $(1,6),(2,5),(3,4),(4,3),(5,2)$, and $(6,1)$, so

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{6}{36}=1 / 6 .
$$

