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2.3 Counting Techniques (I) - Ordered Samples
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Elements of combinatorial analysis
• Proposition (The product rule of ordered pairs): Given n1 elements a1, . . ., an1

and n2

elements b1, . . ., bn2
, there are precisely n1 × n2 distinct ordered pairs (ai, bj) containing

one element of each kind.
Proof: Arrange the pairs in a rectangular array in the form of a multiplication table with n1

rows and n2 columns so that (ai, bj) stands at the interection of the ith row and jth column.
Then each pair appears once and only once, and the assertion becomes obvious.

• Proposition (General product rule of ordered multiplets): Given n1 elements a1, . . ., an1
, n2

elements b1, . . ., bn2
, etc, up to nr elements x1, . . ., xnr

, there are precisely
n1 × n2 × · · · × nr distinct ordered r-tuples (ai1 , bi2 , . . . , xir

) containing one element of
each kind.
Proof (by induction): If r = 2 the assertion reduces to the product rule of ordered pairs.
Suppose it holds for r − 1, so that in particular there are precisely n2 · · ·nr (r − 1)-tuples
(bi2 , . . . , xir

) containing one element of each kind. Then, regarding the (r − 1)-tuples as
elements of a new kind, we note that each r-tuple (ai1 , bi2 , . . . , xir

) can be regarded as made
up of a (r − 1)-tuple (bi2 , . . . , xir

) and an element ai1 . Hence, by the product rule of ordered
pairs, there are precisely n1(n2 · · ·nr) = n1n2 · · ·nr r-tuples containing one element of
each kind.
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Examples
• 2.17: Given n1 = 12 plumbers P1, . . ., P12 and n2 = 9 electricians Q1, . . ., Q9, there are

N = n1n2 = (12)(9) = 108 possible way of choosing the two types of contractors (Pi, Qj).

• 2.18: There are n1 = 4 obstetricians, Q1, . . ., Q4, and for each Qi there are n2 = 3 choices
of pediatricians Pj for which Oi and Pj are associated with the same clinic. Applying the
product rule gives N = n1n2 = (4)(3) = 12 possible choices.

• 2.19 (2.17 continued): Given n3 = 5 appliance dealers. There are
N = n1n2n3 = (12)(9)(5) = 540 way to choose the three types of contractors
(Pi, Qj , Dk).

• 2.20 (2.18 continued): If each clinic has both n3 = 3 specialists in internal medicine and
n4 = 2 general surgeons, applying the product rule gives
N = n1n2n3n4 = (4)(3)(3)(2) = 72 possible ways to select one doctor of each type such
that all doctors practice at the same clinic.
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Ideal Experiment
• Important facts:

• The sample space (together with probability distribution defined on it) defines the ideal

experiment.
• The nature of the sample points is irrelevant for our theory.
• The same sample space can admit of a great variety of different interpretation. A number

of situations in which the intuitive background varies, all are however, abstractly
equivalent to the same sample space, in the sense that the outcome differ only in their
verbal description.

• Combinatorial product rule: Let

A1 = { a1, . . . , an1
}, B2 = { b1, . . . , bn2

}, · · · , Xr = {x1, . . . , xnr
}.

We define

A1 × B2 × · · · × Xr = { (ai1 , bi2 , . . . , xir
), ii = 1, · · · , n1, · · · , ir = 1, · · · , nr }.

We have then
|A1 × B2 × · · · × Xr| = |A1| × |B2| × · · · × |Xr|.
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Ordered Samples
• Sampling with replacement and with ordering: Suppose that we choose r objects in succession

from a set or “population” of n distinct objects a1, . . ., an, in such a way that after choosing
each object and recording the choice, we return the object to the population before making the
next choice. This gives an ordered sample of size r (ai1 , ai2 , . . . , air

). Setting
n1 = n2 = · · · = nr = n in the product rule, we find that there are precisely

N = nr

distinct ordered samples of the size r.

• Sampling without replacement and with ordering: Suppose that we choose r objects in
succession from a set or “population” of n distinct objects a1, . . ., an, in such a way that an
object once chosen is removed from the population. This gives a permutation of size r, which is
again an ordered sample of size r (ai1 , ai2 , . . . , air

), but now a1, . . ., an are distinct, and
there are n − 1 objects left after the first choice, n − 2 objects left after the second choice, and
so on. Cleary this corresponds to setting n1 = n, n2 = n − 1, . . ., nr = n − r + 1 in the
product rule. Hence, instead of nr distinct samples as in the case of sampling with
replacement, there are now only

N = n(n − 1) · · · (n − r + 1) =: Pr,n

distinct permutations of size r. Denote Pn,n by n! := n(n − 1) · · · 1. We have

Pr,n =
n!

(n − r)!
.
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Distribution of r balls in n cells
• Suppose we place r distinguishable balls into n different cells. “Placing balls into cells”

amounts to choosing one cell for each ball. Numbering both the balls and the cells, let i1 be the
number of the cell into which the first ball is placed, i2 be the number of the cell into which the
second ball is placed, and so on. Then the arrangement of the balls in the cells is described by
an ordered r-tuple (i1, i2, . . . , ir). This is equivalent to sampling with ordering.
• Cell allowed to contain more than one ball: With r balls we have r independent choices.

This is equivalent to sampling with replacement and with ordering. Therefore r balls can
be placed into n cells in nr different ways.

• No cell allowed to contain more than one ball (r ≤ n): Clearly, there are n1 = n empty
cells originally, n2 = n − 1 emply cells after one cell has been occupied, and so on. Then
the arrangement of the balls in the cells is described by a permutations of size r. Hence
the total number of distinct arrangements of the balls in the cells is Pr,n.

• A great variety of conceptual experiments are abstractly equivalent to that of placing balls into
cells.
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Distribution of r balls in n cells (cont.)
1. Birthdays: The possible configurations of the birthdays of r people correspond to the different

arrangements of r balls in n = 365 cells (assuming the year to have 365 days).

2. Dice: The possible outcomes of the experiment of throwing a die r times (or throwing r dice)
correspond to placing r balls into n = 6 cells.

3. Coin: When tossing a coin, we are in effect dealing with only n = 2 cells.

4. Sampling: Let a group of r people be classified according to age,or profession. The categories
play the role of our cells, the people that of balls.

5. Ramdom digits: The possible orderings of a sequence of r digits correspond to the distribution
of r balls (=places) into ten cells called 0, 1, . . ., 9.

6. Accidents: Classifying r accidents according to the weekdays when they occurred is equivalent
to placing r balls into n = 7 cells.

7. Elevator: An elevator starts with r passengers and stops at n floors. The different arrangements
of discharging the passengers are replicas of the different distribution of r balls in n cells.

8. Sex distribution: The sex distribution of r people. Here we have n = 2 cells and r balls.
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Example - Birthdays
• Question: There are r people gathered in a room.

1. What is the probability that two (at least) have the same birthday?
2. What is the probability that at least one has the same birthday as you?

• Answer: Denote the sample space by Ω = {(i1, i2, . . . , ir)}, where, for k = 1, . . . , r,
ik ∈ {1, . . . , n = 365} is the birthday of the kth person. Then |Ω| = 365r .

1. Denote the complementary event
Ac = {all birthdays are different},

which is equivalent to sampling without replacement and with ordering. The product rule
gives |Ac| = Pr,365. So the probability that all birthdays are distinct is P (Ac) =

Pr,365

365r

and that two or more people have the same birthday is
P (A) = 1 − P (Ac) = 1 −

Pr,365

365r . For r = 22, P (A) ≈ 0.4927; for r = 23,
P (A) ≈ 0.5243.

2. Denote the complementary event
Ac = {The birthdays of others are different than my birthday},

which is equivalent to sampling with replacement and with ordering. The product rule
gives |Ac| = (365 − 1)r . So the probability that at least one has the same birthday as me
is P (A) = 1 − P (Ac) = 1 − 364

r

365r . If we want P (A) ≈ 1/2, we have
r ≈ −1/log2(364/365) ≈ 252.61.

Probability – p.9/15



Jiwen He, University of Houston, jiwenhe@math.uh.edu
Math 3338: Probability (Fall 2006), August 28- September 1, 2006

More Examples
• Generality: We consider random samples of size r with replacement taken from a population of

the n elements a1,. . ., an. We are interested in the event A that in such a sample a1,. . ., an no
element appears twice, that is, that our sample could have been obtained also by sampling
without replacement. The product rule shows that there are nr different samples in all, of
which Pr,n satisfy the stipulated condition. Assuming that all arrangements have equal
probability, we conclude that the probability of no repetition in our sample is

P (A) =
|A|

|Ω|
=

Pr,n

nr
=

n(n − 1) · · · (n − r + 1)

nr
.

The following concrete interpretations of this formula will reveal surprising features:
1. Throwing a die six times: the probability that all faces (n = 6) turn up is

n!

nn = 6!

66 ≈ 0.01543, extremely improbable.
2. Elevator: An elevator starts with r = 7 passengers and stops at n = 10 floors. The

probability that no two passengers leave at the same floor is P7,10

107 ≈ 0.06048, quite
improbable.

3. Random sampling numbers: Consider the number e = 2.71828 . . .. Every succession of
five digites represents a sample of size r = 5 for a population consisting of the ten digits
0, 1, . . ., 9. The probability that five consecutive random digits are all different is
P5,10

105
= 0.3024.
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2.3 Counting Techniques (II) - Subpopulations
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Subpopulation: sampling without ordering
• Any set of r elements chosen from a population of n elements, without replacement and

without ordering is called a subpopulation of size r of the original population. The number of
such subpopulations is given by
• Theorem: A population of n elements has precisely

Cn
r =

n!

r!(n − r)!

subpopulations of size r ≤ n.
• Proof: If order mattered, then the elements of each subpopulation could be arranged in r!

distinct ways. Hence there are r! times more “ordered samples” of r elements than
subpopulations of size r. But there are precisely n(n − 1) · · · (n − r + 1) such ordered
samples and hence jsut

n(n − 1) · · · (n − r + 1)

r!
=

n!

r!(n − r)!

subpopulations of size r.
• Remark: An expression of the form Cn

r is called a binomial coefficient, often denoted by
„

n
r

«

instead of Cn
r . The number Cn

r is sometimes called the number of combinations

of n things taken r at a time (without regard of order).
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Bridge and Poker
• Example 2.22 - Bridge: A bridge hand consists of any 13 cards selected from a 52-card deck

without regard to order. There are C52
13

≈ 635 billion different bridge hands. Suppose a bridge
hand is dealt from a well-shuffled deck (i.e., 13 cards are randomly selected from among 52
probabilities) and C52

13
possible outcomes are equally likely. Let

A = {the hand consists entirely of spades and clubs with both suits represented}

B = {the hand consists of exactly two suits}

Since there are 13 cards in each suit, the number of hands consisting entirely of spades and/or
clubs (i.e., no red cards) is C26

13
≈ 10 millions. One of these C26

13
consists entirely of spades, and

one consists entirely of clubs, so |A| = C26
13

− 2. Since there are C4
2

= 6 combinations
consisting of two suits, of which spades and clubs is one such combination, using the product
rule gives |B| = C4

2
× |A|. Then

P (A) =
C26

13
− 2

C52
13

= 0.0000164, P (B) =
C4

2
× (C26

13
− 2)

C52
13

= 0.0000983 ≈
1

10, 000
.

• Poker: There exisits C52
5

≈ 2.5 millions hands at poker. Let
A = {the hand consists of five different faces values}

These face values can be chosen in C13
5

ways, and corresponds to each card we are free to
choose one of the four suits. Using the product rule gives |A| = 45 × C13

5
and

P (A) =
4
5×C13

5

C52
5

= 0.5071.
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More examples
• Placing r balls in n cells: There are nr possible arrangements. Let k ≤ n and

A = {a specified cell contains exactly k balls}

The k balls can be chosen in Cr
k

ways, and the remaining r − k balls can be placed into the
remaining n − 1 cells in (n − 1)r−k ways; using the product rule gives
|A| = Cr

k
× (n − 1)r−k . It follows that

P (A) =
|A|

nr
=

Cr
k
× (n − 1)r−k

nr
= Cr

k ×
1

nk
×

„

1 −
1

n

«r−k

.

The is a special case of the so-called binomial distribution.

• Example 2.23: A technician selects 6 of 25 printers, of which 10 are laser printers and 15 are
inkject printers; there are N = C25

6
ways of doing it. Let r ≤ 6 and

Ar = {exactly r of the 6 selected are inkjet printers}.

There are C15
r ways of choosing the r inkjet printers and then C10

6−r ways of choosing the
6 − r laser printers; using the product rule gives |Ar| = C15

r × C10
6−r . Then

P (A3) =
|A3|
N

= .3083, and

P (A3 ∪ A4 ∪ A5) = P (A3) + P (A4) + P (A5) =
|A3|

N
+

|A4|

N
+

|A5|

N
= .853.
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2.3 Counting Techniques (III) - Partitions
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