Math 3338: Probability (Fall 2006)

Jiwen He

Section Number: 10853
http://math.uh.edu/~jiwenhe/math3338fall06.html

2.4 Conditional Probability

Definition of conditional probability

- Definition: For any two events A and B with $P(B)>0$, the conditional probability of A given B has occurred is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

That is, the conditional probability is expressed as a ratio of unconditional probabilities.

- Given that B has occurred, the relevant sample space is no longer Ω but consists of outcomes in B; A has occurred if and only if one of the outcomes in the intersection occurred, so the conditional probability of A given B is proportional to $P(A \cap B)$. The proportionality constant $1 / P(B)$ is used to ensure that the probability $P(B \mid B)$ of the sample space B equals 1 .

Examples

- 2.24: Let $A=\{$ a line A component is selected $\}, B=\{$ the chosen component is defective $\}$.

$$
\begin{array}{cccl}
\text { Line } & B & B^{\prime} & P(A)=\frac{|A|}{|\Omega|}=\frac{8}{18}=.44 \\
A & 2 & 6 & P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{2}{18}}{\frac{3}{18}}=\frac{2}{3}
\end{array}
$$

- 2.25: Let $A=\{$ memory card purchased $\}$ and $B=\{$ battery purchased $\}$. Then

$$
P(A)=.6, \quad P(B)=.4, \quad P(A \cap B)=.3
$$

The conditional probabilities are

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{.3}{.4}=.75, \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{.3}{.6}=.5 .
$$

- 2.26: Reading habits with respect to "Art" (A), "Book" (B), and "Cinema" (C) :

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{.08}{.23}=.348 \\
& P(A \mid B \cup C)=\frac{P(A \cap(B \cup C))}{P(B \cup C)}=\frac{.04+.05+.03}{.47}=.255 \\
& P(A \mid A \cup B \cup C)=\frac{P(A \cap(A \cup B \cup C))}{P(A \cup B \cup C)}=\frac{P(A))}{P(A \cup B \cup C)}=\frac{.14}{.49}=.286 \\
& P(A \cup B \mid C)=\frac{P((A \cup B) \cap C)}{P(C)}=\frac{.04+.05+.08}{.37}=.459
\end{aligned}
$$

Multiplication Rule for $P(A \cap B)$

- Multiplication rule:

$$
\begin{aligned}
P(A \cap B) & =P(A \mid B) \cdot P(B) \\
& =P(B \mid A) \cdot P(A)
\end{aligned}
$$

- 2.27: Four individuals are selected in random order for typing. Only type $\mathrm{O}+\mathrm{is}$ desired and only one of the four actually has this type. What is the probability that at least three individuals must be typed to obtain the desired type? Let

$$
\begin{aligned}
\Omega & =\left\{\text { four blood types, in which only one type is } \mathrm{O}_{+}\right\} \\
B & =\left\{\text { first type is not } \mathrm{O}_{+}\right\} \\
A & =\left\{\text { second type is not } \mathrm{O}_{+}\right\}
\end{aligned}
$$

As three of the four types are not $\mathrm{O}+$, and given that the first type is not $\mathrm{O}+$, two of the three left types are not $\mathrm{O}+$, we have

$$
P(B)=\frac{3}{4}, \quad P(A \mid B)=\frac{2}{3}
$$

The intersection of A and B gives the event that at least three individuals are typed. The multiplication rule now gives

$$
P(A \cap B)=P(A \mid B) \cdot P(B)=\frac{2}{3} \cdot \frac{3}{4}=.5
$$

Multiplication Rule for $P(A \cap B \cap C)$

- The multiplication rule is most useful when the experiment consists of several stages in succession, where A_{1} occurs first, followed by A_{2}, and finally A_{3} : The multiplication

$$
P\left(A_{3} \cap A_{2} \cap A_{3}\right)=P\left(A_{3} \mid A_{1} \cup A_{2}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{1}\right)
$$

- 2.28 (2.27 cont.):
$P\left(\right.$ third type is $\left.\mathrm{O}_{+}\right) \quad=P($ third is \mid first isn't \cap second isn't) $\cdot P($ second isn't \mid first isn't) $\cdot P($ first isn't $)$

$$
=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=\frac{1}{4}=.25
$$

- 2.29 - Bayes' theorem:

The Law of Total Probability

- Mutually exclusive: Events A_{1}, \ldots, A_{k} are mutually exclusive if no two have any common outcomes, so that $A_{i} \cap A_{j}=\emptyset$ for any $i, j=1, \ldots, k$.
- Exhaustive: Events A_{1}, \ldots, A_{k} are exhaustive if one A_{i} must occur, so that $A_{1} \cup \cdots \cup A_{k}=\Omega$.
- Theorem: Let A_{1}, \ldots, A_{k} be mutually exclusive and exhaustive events, so that $A_{1}+\cdots+A_{k}=\Omega$. Then for any other event B,

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

- Proof: From the partition of B

$$
B=B \cap \Omega=B \cap\left(A_{1}+\cdots+A_{k}\right)=B \cap A_{1}+\cdots+B \cap A_{k}=\sum_{i=1}^{k} B \cap A_{i}
$$

it follows that

$$
P(B)=P\left(\sum_{i=1}^{k} B \cap A_{i}\right)=\sum_{i=1}^{k} P\left(B \cap A_{i}\right)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)
$$

Bayes' Theorem

- Theorem: Let A_{1}, \ldots, A_{k} be mutually exclusive and exhaustive events with $P\left(A_{i}\right)>0$ for $i=1, \ldots, k$. Then for any other event B for which $P(B)>0$, we have, for $j=1, \ldots, k$,

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}{\sum_{j=1}^{k} P\left(B \mid A_{j}\right) \cdot P\left(A_{j}\right)}
$$

- Proof: combine the total probability law and the multiplication rule.
- Prior and posterior Probabilities: The computation, provided by Bayes' theorem, of a posterior probability $P\left(A_{i} \mid B\right)$ from given prior probabilities $P\left(A_{i}\right)$ and conditional probabilities $P\left(B \mid A_{i}\right)$, which occupies a central position in elementary probability.

Example 2.30

- Incidence of a rare disease: Let

$$
\begin{aligned}
& A_{1}=\{\text { individual has the disease }\} \\
& A_{1}=\{\text { individual does not have the disease }\} \\
& B_{1}=\{\text { positive test result }\}
\end{aligned}
$$

We have

- The disease is rare and the test only moderately reliable, most positive test results arise from errors rather than from diseased individuals. To get a further increase in the posterior probability, a diagnostic test with much smaller error rates is needed.

