Math 4377/6308 Advanced Linear Algebra

5.1 Eigenvalues and Eigenvectors

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

5.1 Eigenvalues and Eigenvectors

- Diagonalization
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Properties

Diagonalization

Definition

A linear operator T on a finite-dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if L_A is diagonalizable.

Eigenvalues and Eigenvectors

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v) = \lambda v$.

Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^n$ is an eigenvector of A if v is an eigenvector of L_A ; that is, if $Av = \lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.

Eigenvalues and Eigenvectors: Example

Example

Let
$$A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Examine the images of \mathbf{u} and \mathbf{v} under multiplication by A .

Solution

$$A\mathbf{u} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \\ -2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -2\mathbf{u}$$

u is called an *eigenvector* of A since A**u** is a multiple of **u**.

$$A\mathbf{v} = \left[egin{array}{cc} 0 & -2 \ -4 & 2 \end{array}
ight] \left[egin{array}{c} -1 \ 1 \end{array}
ight] = \left[egin{array}{c} -2 \ 6 \end{array}
ight]
eq \lambda \mathbf{v}$$

 \mathbf{v} is not an eigenvector of A since $A\mathbf{v}$ is not a multiple of v.

$$A\mathbf{u} = -2\mathbf{u}$$
, but $A\mathbf{v} \neq \lambda \mathbf{v}$

Eigenvalues and Eigenvectors: Example

Example

Show that 4 is an eigenvalue of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$ and find the corresponding eigenvectors.

Solution: Scalar 4 is an eigenvalue of A if and only if $A\mathbf{x} = 4\mathbf{x}$ has a nontrivial solution.

$$Ax-4x = 0$$

 $Ax-4(_{---})x = 0$
 $(A-4I)x = 0$.

To solve $(A-4I) \mathbf{x} = \mathbf{0}$, we need to find A-4I first:

$$A-4I = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix}$$

Eigenvalues and Eigenvectors: Example

Now solve (A-4I) x = 0:

$$\left[\begin{array}{ccc} -4 & -2 & 0 \\ -4 & -2 & 0 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$\Rightarrow \qquad \mathbf{x} = \left[\begin{array}{c} -\frac{1}{2}x_2 \\ x_2 \end{array} \right] = x_2 \left[\begin{array}{c} -\frac{1}{2} \\ 1 \end{array} \right].$$

Each vector of the form $x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $\lambda = 4$.

Eigenspace for $\lambda = 4$

The set of all solutions to $(A-\lambda I)\mathbf{x} = \mathbf{0}$ is called the **eigenspace** of A corresponding to λ .

Diagonalization

Theorem (5.1)

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta = \{v_1, \cdots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_{\beta}$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \le j \le n$.

Diagonalization

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

Characteristic Polynomial

Theorem (5.2)

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Characteristic Polynomial

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is called the characteristic polynomial of A.

Characteristic Polynomial

Definition

Let T be a linear operator on an n-dimensional vector space Vwith ordered basis β . We define the characteristic polynomial f(t)of T to be the characteristic polynomial of $A = [T]_{\beta}$: $f(t) = \det(A - tI_n).$

Properties

Theorem (5.3)

Let $A \in M_{n \times n}(F)$.

- (a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$.
- (b) A has at most n distinct eigenvalues.

Properties

Theorem (5.4)

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

