Math 4377/6308 Advanced Linear Algebra 5.2 Diagonalizability

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math4377

Jiwen He, University of Houston

5pring, 2015 1 ,

5.2 Diagonalizability

5.2

- Diagonalizability
- Multiplicity
- Direct Sums

- 4 回 ト - 4 回 ト

Diagonalizability

Theorem (5.5)

Let T be a linear operator on a vector space V, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. If v_1, \dots, v_k are the corresponding eigenvectors, then $\{v_1, \dots, v_k\}$ is linearly independent.

5.2

Corollary

Let T be a linear operator on an *n*-dimensional vector space V. If T has *n* distinct eigenvalues, then T is diagonalizable.

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Spring, 2015 3 /

• • • • • • • • • • • •

Diagonalizability (cont.)

Definition

A polynomial f(t) in P(F) splits over F if there are scalars c, a_1 , \cdots , a_n in F such that $f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n)$.

5.2

Theorem (5.6)

The characteristic polynomial of any diagonalizable operator splits.

▲ @ ▶ ▲ ∃ ▶ ▲

Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - I_V)$. The set E_{λ} is the eigenspace of T corresponding to the eigenvalue λ . The eigenspace of a square matrix A is the eigenspace of L_A .

Multiplicity (cont.)

Theorem (5.7)

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

5.2

Diagonalizability

Lemma

Let T be a linear operator, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \dots, k$, let $v_i \in E_{\lambda_i}$. If

5.2

$$v_1+v_2+\cdots+v_k=0,$$

then $v_i = 0$ for all *i*.

Theorem (5.8)

Let T be a linear operator on a vector space V, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \dots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup \dots \cup S_k$ is a linearly independent subset of V.

< 177 ▶

Diagonalizability

Theorem (5.9)

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues of T. Then

(a) *T* is diagonalizable if and only if the multiplicity of λ_i is equal to dim (E_{λ_i}) for all *i*.

5.2

(b) If T is diagonalizable and β_i is an ordered basis for E_{λ_i} , for each i, then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T.

イロト イ押ト イヨト イヨト

Diagonalizability (cont.)

Test for Diagonalization

Let T be a linear operator on an *n*-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold.

5.2

- The characteristic polynomial of T splits.
- The multiplicity of each eigenvalue λ equals $n \operatorname{rank}(T \lambda I)$.

Direct Sums

Definition

The sum of the subspaces W_1, \dots, W_k of a vector space is the set

5.2

$$\sum_{i=1}^k W_i = \{v_1 + \cdots + v_k : v_i \in W_i \text{ for } 1 \leq i \leq k\}.$$

Definition

A vector space V is the direct sum of subspaces W_1, \dots, W_k , denoted $V = W_1 \oplus \dots \oplus W_k$, if

$$V = \sum_{i=1}^k W_i \text{ and } W_j \cap \sum_{i \neq j} W_i = \{0\} \text{ for each } j, 1 \leq j \leq k.$$

Jiwen He, University of Houston

Math 4377/6308, Advanced Linear Algebra

Direct Sums (cont.)

Theorem (5.10)

Let W_1, \dots, W_k be subspaces of finite-dimensional vector space V. The following are equivalent:

5.2

(a)
$$V = W_1 \oplus \cdots \oplus W_k$$
.

- (b) $V = \sum_{i=1}^{k} W_i$ and for any v_1, \dots, v_k s.t. $v_i \in W_i$ $(1 \le i \le k)$, if $v_1 + \dots + v_k = 0$, then $v_i = 0$ for all i.
- (c) Each $v \in V$ can be uniquely written as $v = v_1 + \cdots + v_k$, where $v_i \in W_i$.
- (d) If γ_i is an ordered basis for W_i $(1 \le i \le k)$, then $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
- (e) For each $i = 1, \dots, k$ there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \dots \cup \gamma_k$ is an ordered basis for V.

イロト 不得下 イヨト イヨト

Direct Sums (cont.)

Theorem (5.11)

A linear operator T on finite-dimensional vector space V is diagonalizable if and only if V is the direct sum of the eigenspaces of T.

5.2

