1. Equivalence of Sets

Two sets a and b are said to be equivalent if there is some bijection from a onto b. This is obviously an equivalence relation whose domain is the class of all sets. We write $a \approx b$ for equivalent sets a and b. Intuitively, the sets a and b are equivalent if they have the same number of elements. That a has not more elements than b can be formalized by defining: $a \leq_{i n} b$ iff there is an injection from a to b; or quite similarly: $a \leq_{p r} b$ iff there is a surjection from b onto a. Both relations are quasi orders (i.e., reflexive and transitive relations) on the class of all sets. Clearly, $\emptyset \leq_{\text {in }} a$ for every set $a \neq \emptyset$. (The empty map is injective from \emptyset to a and surjective from a to \emptyset) In the following we always assume that $a \neq \emptyset$.

Proposition 1. Let $f: a \rightarrow b$ and $g: b \rightarrow a$ be maps. Assume that $g \circ f=i d_{a}$. Then f is injective and g is surjective.

Proposition 2. Assume that $f: a \rightarrow b$ is injective. Then there is some map $g: b \rightarrow a$ such that $g \circ f=i d_{a}$. That is, every injective map has at least one left inverse.
Proposition 3 (AC). Assume that $g: b \rightarrow a$ is surjective. Then there is some map $f: a \rightarrow b$ such that $g \circ f=i d_{a}$. That is, under the assumption of $A C$, every surjective map has at least one right inverse.

The proofs are very easy. The map f for Proposition 3 is defined with the help of a choice function on $\mathcal{P}(b) \backslash\{\emptyset\}$ which picks for every $c \in a$ some element $d \in g^{-1}(a)=\{d \mid g(d)=a\}$.
Hence, $a \leq_{i n} b$ always yields $a \leq_{p r} b$ but the converse needs the AC. Thus $a \leq_{i n} b$ iff $a \leq_{p r} b$ holds under the assumption of the axiom of choice.

For every map $f: a \rightarrow b$ the equivalence kernel, or just the kernel, is defined by $c_{1} \sim_{f} c_{2}$ iff $f\left(c_{1}\right)=f\left(c_{2}\right)$. This is an equivalence relation on the set a where the classes are the largest subsets of a on which the map f is constant. As usual, a / \sim_{f} denotes the set of equivalence classes and $c \mapsto[c]$ is the canonical projection q_{f}. The map $[c] \mapsto f(c)$ then is the canonical injection \dot{f}.
Proposition 4. Every map $f: a \rightarrow b$ decomposes into a surjection followed by an injection: $\dot{f} \circ q_{f}=f$.
Theorem 5 (Cantor-Bernstein). $a \leq_{\text {in }} b$ and $b \leq_{\text {in }} a$ if and only if $a \approx b$.
Proof. Let $f: a \rightarrow b$ and $g: b \rightarrow a$ be injections. We need to find a bijection from a to b. We call an element $c_{0} \in a$ moving if it allows for an infinite diagram as in figure 1. That is, we can define two sequences $c_{\nu}=g\left(d_{\nu}\right)$ and $d_{\nu}=f\left(c_{\nu+1}\right)$,

Figure 1. A moving element
$\nu \in \omega$, where c_{ν} has a (unique) counter image d_{ν} in b and where d_{ν} then has a (unique) counter image $c_{\nu+1}$ in a. We call an element $c \in a$ stationary if it is not moving. An element c is stationary if for a first ν we don't have a d_{ν}, i.e., c_{ν} is not in the range of the map $g(c$ gets stopped in $a)$ or we don't have a $c_{\nu+1}$, i.e., d_{ν} is not in the range of $f(c$ gets stopped in $b)$. Let a_{1} be the subset of a consisting of all moving elements and the elements which are stopped in b; the set a_{2} then is the complement of a_{1}, i.e., the set of all elements of a which are stopped in a. We define a map $h: a \rightarrow b$ by pieces. On a_{1} an element c is mapped to d, where $g(d)=c$. This makes sense. If c is moving, then clearly $c \in \operatorname{ran}(g)$. If c is not moving, then it got stopped in b, so again we must have that at least $c \in \operatorname{ran}(g)$. On a_{2} an element c is mapped to $f(c)$.
The map h is injective because f and g are injective, and $g\left(d_{0}\right)=c_{0}$ and $d_{0}=f(c)$ for $c_{0} \in a_{1}$ and $c \in a_{2}$ cannot happen. If c_{0} is moving then $d_{0}=f\left(c_{1}\right)$ for some $c_{1} \in a_{1}$. If c_{0} is stationary, it is stopped in b; hence again we conclude from $d_{0}=f(c)$ that $c=c_{1} \in a_{1}$.
Let $d \in b$. If $g(d)$ is moving, then $h(g(d))=d$. If $g(d)$ is not moving and got stopped in b, then again $h(g(d))=d$. If $g(d)=c$ got stopped in a, then we must have some c_{1} in a such that $f\left(c_{1}\right)=d$, otherwise c would have been stopped at d in b. Clearly $c_{1} \in a_{2}$ and $h\left(c_{1}\right)=d$.

Corollary 6. If $a \leq_{i n} b \leq_{i n} c$ and $a \approx c$ then $a \approx b$.
Proof. We have $a \leq_{i n} b$ and $b \leq_{i n} c \approx a$, yields also $b \leq_{i n} a$. The claim follows now from Cantor-Bernstein.

Theorem 7 (Cantor). For any set a one has that $a<_{\text {in }} \mathcal{P}(a)$. That is $a \leq_{\text {in }}$ $\mathcal{P}(a)$ but not $\mathcal{P}(a) \leq_{\text {in }} a$.

Proof. We have that $c \mapsto\{c\}$ establishes an injective map from a into $\mathcal{P}(a)$. We need to show that there is no surjection from a to $\mathcal{P}(a)$. Let $h: a \rightarrow \mathcal{P}(a)$ be any map. The set $r=\{c \mid c \in a, c \notin h(c)\}$ then is not within the range of h : $h\left(c_{0}\right)=r$ yields the Russel Paradox $c_{0} \in h\left(c_{0}\right)$ iff $c_{0} \in r$ iff $c_{0} \notin h\left(c_{0}\right)$. Hence h is not surjective.

A set a is called countable if it is equivalent to ω. Infinite sets which are not countable are called uncountable. The set of all real numbers is an example of an uncountable set.

Let r be the set of real numbers and (a, b) and (c, d) any two (proper) open intervals. Then $(a, b) \approx(c, d)$ by means of a simple linear equation. Clearly $(-1,1) \leq_{\text {in }}$ $[-1,1] \leq_{i n}(-2,2)$ and $(-1,1) \approx(-2,2)$ then yields $(-1,1) \approx[-1,1]$. Hence any two proper intervals, whether open, closed or half-open, are equivalent. The arctangent function maps r bijectively onto the open interval $(-\pi / 2, \pi / 2)$. Hence r is equivalent to any of its proper intervals. The function $1 / x$ maps $(0,1]$ to $[1, \infty)$ and, as before, any two improper intervals are equivalent. Thus r is equivalent to any of its intervals. On the other hand, with the help of the binary representation of real numbers, one easily establishes $[0,1] \approx 2^{\omega}$.

Proposition 8. The set r of real numbers, the continuum, is equivalent to the powerset of the set ω of natural numbers.

Proposition 9. The set ω of natural numbers and the set q of rational numbers are equivalent.

Proof. We provide an enumeration of all positive rational numbers. Every positive rational number admits a unique representation in the form m / n where m and n are natural numbers which are relatively prime. For any natural number $k \geq 2$ there are only finitely many rational numbers $q=m / n$ where $n+m=k$. For $k=2$ there is only one such fraction, namely $1=1 / 1$. For $k=3$ we have two such numbers, namely $1 / 2$ and $2 / 1$. For $k=4$ we have $1 / 3,3 / 1$. For $k=5$ we get $1 / 4,2 / 3,3 / 2,4 / 1$.
This method leads to an enumeration of all rational numbers: $1,1 / 2,2=2 / 1,1 / 3,3=$ $3 / 1,1 / 4,2 / 3,3 / 2,4=4 / 1, \ldots$

The proof actually showed

$$
\omega \approx \omega \times \omega
$$

It can be shown that the set r of real numbers is equivalent to $\mathcal{P}(\omega)$. Thus $\omega \leq_{i n} r$, but ω and r are not equivalent.

The continuum hypothesis states that every subset s of the set r of real numbers is either equivalent to ω or to r. On the basis of the Zermelo Fraenkel axioms, this can neither be proven or disproven.

Problem 1. An infinite subset s of ω is countable. (Hint: You may use the ordering of $\omega: 0<1<\ldots$ and that every non-empty subset of ω has a smallest element.)
Problem 2. For any sets a and b, one defines a^{b} as the set of functions from b to a. That is

$$
a^{b}=\{f \mid f: b \rightarrow a\}
$$

(1) If a has n elements and b has m elements, what is the number of elements in a^{b} ?
(2) Let a be any set. Establish an equivalence of the powerset $\mathcal{P}(a)$ of a and the set 2^{a}. (Hint: For any subset s of a define the characteristic function c_{s} as $c_{s}(x)=1$ if $x \in s$, and $c_{s}(x)=0$ if $x \notin s$. For every function $c: a \rightarrow 2$ define the support of s_{c} as $\left.s_{c}=\{x \mid c(x)=1\}.\right)$
(3) Explain how binary representation of numbers can be used to establish the equivalence of the set of real numbers and the powerset of natural numbers.

Problem 3. (1) Show that there is a function $f:[0,1] \rightarrow[0,1]$ such that for every $y \in[0,1]$ one has exactly two elements $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y$.
(2) Any such function f of the previous problem cannot be continuous. This is a celebrated Intermediate Analysis exercise. (Hint: Use that every continuous function on a closed and bounded interval takes on a maximum and minimum, and use the intermediate value theorem for continuous functions which are defined on an interval.)

