
1. Equivalence of Sets

Two sets a and b are said to be equivalent if there is some bijection from a onto
b. This is obviously an equivalence relation whose domain is the class of all sets. We
write a ≈ b for equivalent sets a and b. Intuitively, the sets a and b are equivalent
if they have the same number of elements. That a has not more elements than
b can be formalized by defining: a ≤in b iff there is an injection from a to b; or
quite similarly: a ≤pr b iff there is a surjection from b onto a. Both relations are
quasi orders (i.e., reflexive and transitive relations) on the class of all sets. Clearly,
∅ ≤in a for every set a 6= ∅. (The empty map is injective from ∅ to a and surjective
from a to ∅) In the following we always assume that a 6= ∅.

Proposition 1. Let f : a→ b and g : b→ a be maps. Assume that g ◦ f = ida.
Then f is injective and g is surjective.

Proposition 2. Assume that f : a → b is injective. Then there is some map
g : b→ a such that g ◦ f = ida . That is, every injective map has at least one
left inverse.

Proposition 3 (AC). Assume that g : b→ a is surjective. Then there is some
map f : a → b such that g ◦ f = ida. That is, under the assumption of AC,
every surjective map has at least one right inverse.

The proofs are very easy. The map f for Proposition 3 is defined with the
help of a choice function on P(b) \ {∅} which picks for every c ∈ a some element
d ∈ g−1(a) = {d|g(d) = a}.
Hence, a ≤in b always yields a ≤pr b but the converse needs the AC. Thus a ≤in b
iff a ≤pr b holds under the assumption of the axiom of choice.

For every map f : a → b the equivalence kernel, or just the kernel, is defined by
c1 ∼f c2 iff f(c1) = f(c2). This is an equivalence relation on the set a where the
classes are the largest subsets of a on which the map f is constant. As usual, a/∼f
denotes the set of equivalence classes and c 7→ [c] is the canonical projection qf .

The map [c] 7→ f(c) then is the canonical injection ḟ .

Proposition 4. Every map f : a → b decomposes into a surjection followed
by an injection: ḟ ◦ qf = f .

Theorem 5 (Cantor-Bernstein). a ≤in b and b ≤in a if and only if a ≈ b.

Proof. Let f : a → b and g : b → a be injections. We need to find a bijection
from a to b. We call an element c0 ∈ a moving if it allows for an infinite diagram
as in figure 1. That is, we can define two sequences cν = g(dν) and dν = f(cν+1),
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Figure 1. A moving element
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ν ∈ ω, where cν has a (unique) counter image dν in b and where dν then has a
(unique) counter image cν+1 in a. We call an element c ∈ a stationary if it is not
moving. An element c is stationary if for a first ν we don’t have a dν , i.e., cν is not
in the range of the map g (c gets stopped in a) or we don’t have a cν+1 , i.e., dν
is not in the range of f (c gets stopped in b). Let a1 be the subset of a consisting
of all moving elements and the elements which are stopped in b; the set a2 then
is the complement of a1, i.e., the set of all elements of a which are stopped in a.
We define a map h : a → b by pieces. On a1 an element c is mapped to d, where
g(d) = c. This makes sense. If c is moving, then clearly c ∈ ran(g). If c is not
moving, then it got stopped in b, so again we must have that at least c ∈ ran(g).
On a2 an element c is mapped to f(c).
The map h is injective because f and g are injective, and g(d0) = c0 and d0 = f(c)
for c0 ∈ a1 and c ∈ a2 cannot happen. If c0 is moving then d0 = f(c1) for some
c1 ∈ a1. If c0 is stationary, it is stopped in b; hence again we conclude from
d0 = f(c) that c = c1 ∈ a1.
Let d ∈ b. If g(d) is moving, then h(g(d)) = d. If g(d) is not moving and got
stopped in b, then again h(g(d)) = d. If g(d) = c got stopped in a, then we must
have some c1 in a such that f(c1) = d, otherwise c would have been stopped at d
in b. Clearly c1 ∈ a2 and h(c1) = d. 2

Corollary 6. If a ≤in b ≤in c and a ≈ c then a ≈ b.

Proof. We have a ≤in b and b ≤in c ≈ a, yields also b ≤in a. The claim follows
now from Cantor-Bernstein. 2

Theorem 7 (Cantor). For any set a one has that a <in P(a). That is a ≤in
P(a) but not P(a) ≤in a.

Proof. We have that c 7→ {c} establishes an injective map from a into P(a).
We need to show that there is no surjection from a to P(a). Let h : a → P(a)
be any map. The set r = {c|c ∈ a, c /∈ h(c)} then is not within the range of h:
h(c0) = r yields the Russel Paradox c0 ∈ h(c0) iff c0 ∈ r iff c0 /∈ h(c0). Hence h is
not surjective. 2

A set a is called countable if it is equivalent to ω. Infinite sets which are not
countable are called uncountable. The set of all real numbers is an example of an
uncountable set.

Let r be the set of real numbers and (a, b) and (c, d) any two (proper) open inter-
vals. Then (a, b) ≈ (c, d) by means of a simple linear equation. Clearly (−1, 1) ≤in
[−1, 1] ≤in (−2, 2) and (−1, 1) ≈ (−2, 2) then yields (−1, 1) ≈ [−1, 1]. Hence any
two proper intervals, whether open, closed or half-open, are equivalent. The
arctangent function maps r bijectively onto the open interval (−π/2, π/2). Hence
r is equivalent to any of its proper intervals. The function 1/x maps (0, 1] to
[1,∞) and, as before, any two improper intervals are equivalent. Thus r is equiv-
alent to any of its intervals. On the other hand, with the help of the binary
representation of real numbers, one easily establishes [0, 1] ≈ 2ω.

Proposition 8. The set r of real numbers, the continuum, is equivalent to
the powerset of the set ω of natural numbers. 2

Proposition 9. The set ω of natural numbers and the set q of rational num-
bers are equivalent.
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Proof. We provide an enumeration of all positive rational numbers. Every
positive rational number admits a unique representation in the form m/n where
m and n are natural numbers which are relatively prime. For any natural number
k ≥ 2 there are only finitely many rational numbers q = m/n where n +m = k.
For k = 2 there is only one such fraction, namely 1 = 1/1. For k = 3 we have two
such numbers, namely 1/2 and 2/1. For k = 4 we have 1/3, 3/1. For k = 5 we get
1/4, 2/3, 3/2, 4/1.
This method leads to an enumeration of all rational numbers: 1, 1/2, 2 = 2/1, 1/3, 3 =
3/1, 1/4, 2/3, 3/2, 4 = 4/1, . . . 2

The proof actually showed
ω ≈ ω × ω

It can be shown that the set r of real numbers is equivalent to P(ω). Thus
ω ≤in r, but ω and r are not equivalent.

The continuum hypothesis states that every subset s of the set r of real numbers
is either equivalent to ω or to r. On the basis of the Zermelo Fraenkel axioms, this
can neither be proven or disproven.

Problem 1. An infinite subset s of ω is countable. (Hint: You may use
the ordering of ω: 0 < 1 < . . . and that every non-empty subset of ω has a
smallest element.)

Problem 2. For any sets a and b, one defines ab as the set of functions from
b to a. That is

ab = {f |f : b→ a}
(1) If a has n elements and b has m elements, what is the number of

elements in ab?
(2) Let a be any set. Establish an equivalence of the powerset P(a) of a

and the set 2a. (Hint: For any subset s of a define the characteristic
function cs as cs(x) = 1 if x ∈ s, and cs(x) = 0 if x /∈ s. For every
function c : a→ 2 define the support of sc as sc = {x|c(x) = 1}.)

(3) Explain how binary representation of numbers can be used to establish
the equivalence of the set of real numbers and the powerset of natural
numbers.

Problem 3. (1) Show that there is a function f : [0, 1] → [0, 1] such that
for every y ∈ [0, 1] one has exactly two elements x1, x2 ∈ [0, 1] such
that f(x1) = f(x2) = y.

(2) Any such function f of the previous problem cannot be continuous.
This is a celebrated Intermediate Analysis exercise. (Hint: Use that
every continuous function on a closed and bounded interval takes on
a maximum and minimum, and use the intermediate value theorem
for continuous functions which are defined on an interval.)


