
1. The Zermelo Fraenkel Axioms of Set Theory

The naive definition of a set as a collection of objects is unsatisfactory: The
objects within a set may themselves be sets, whose elements are also sets, etc. This
leads to an infinite regression. Should this be allowed? If the answer is “yes”,
then such a set certainly would not meet our intuitive expectations of a set. In
particular, a set for which A ∈ A holds contradicts our intuition about a set. This
could be formulated as a first axiom towards a formal approach towards sets. It
will be a later, and not very essential axiom. Not essential because A ∈ A will not
lead to a logical contradiction. This is different from Russel’s paradox:

Let us assume that there is something like a universe of all sets. Given the
property A /∈ A it should define a set R of all sets for which this property holds.
Thus R = {A|A /∈ A}. Is R such a set A? Of course, we must be able to ask this
question. Notice, if R is one of the A′s it must satisfy the condition R /∈ R. But
by the very definition of R, namely R = {A|A /∈ A} we get R ∈ R iff R /∈ R. Of
course, this is a logical contradiction. But how can we resolve it? The answer will
be given by an axiom that restricts the definition of sets by properties. The scope
of a property P (A), like P (A) ≡ A /∈ A, must itself be a set, say B. Thus, instead
of R = {A|A /∈ A} we define for any set B the set R(B) = {A|A ∈ B,A /∈ A}.
This resolves the Russel paradox to the statement that for any set B, one has that
R(B) /∈ B.

In axiomatic set theory we will formalize relationships between abstract objects,
called sets. The only relation we are dealing with is the membership relation.
For specified sets x and y, we either have x ∈ y or x /∈ y. Our axioms will also
guarantee the existence of certain sets, like the empty set ∅ (which will be defined
as the number zero), as well as the existence of the set ω of all natural numbers.
We may think that all sets are within a universe, a mathematical structure (U ,∈)
for which the axiomas apply. Any axiomatic approach requires specification of a
language. The axioms then will be certain expressions within that language. We
will define a “first-order” language for set theory. Axiomatic set theory then is a
collection of axioms on which the rules of logic are applied in order to draw further
conclusions.

Notice that we use lower case letters for sets. We do this because the elements
of a set will also be sets. Thus a distinction of a set A and its elements a no longer
applies. We will use upper case letters, like R and P for properties that define sets.

We will now present the axioms and derive the most basic elements of set theory.

The Axiom of Extensionality: If every element of the set a is an element
of the set b and every element of the set b is an element of the set a, then
a = b.

In other words, two sets are equal iff they contain the same elements. This
should not be considered as a definition of equality of sets. Equality is an unde-
fined, primitive relation and clearly, equal sets have the same elements. The axiom
of extensionality merely states a condition on the relation ∈. We may formalize
extensionality:

∀x∀y
[

∀z
(

(z ∈ x)↔ (z ∈ y)
)

→ (x = y)
]

The elements of the universe (U ,∈) are in the first place just objects without any
structure. What matters is their relationship to other elements with respect to ∈.
We may think of U as a directed graph where the sets in U are nodes and a ∈ b
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corresponds to an edge a← b. Part of the universe may have nodes called 0, 1, 2,
{1} and edges 0← 1, 0← 2, 1← 2, 1← {1}:
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Figure 1. Snapshot of the Universe

An edge 0← {1} would violate the axiom of extensionality, because then 2 and
{1} would have the same elements.

The Null Set Axiom: There is a set with no elements:

∃x∀y ¬(y ∈ x)

By extensionality, there is only one such set. It is denoted by ∅ and called the
empty set. It is a constant within the universe U , i.e., a unique element defined by
a formula.

The Pairing Axiom: For any sets a and b there is a set c whose only ele-
ments are a and b:

∀x∀y∃z∀t
[

(t ∈ z)↔
(

(t = x) ∨ (t = y)
)]

By extensionality again, there is for given a and b only one such set c. We write
c = {a, b} for the set whose only elements are a and b. If a and b are the same set,
then c has only one element, namely a. That is, for any set a of the universe U
there is a set whose only element is a. This set is called the singleton {a}; {a, b} is
called a pair if a is different from b. Three applications of the pairing axiom lead to
the existence of the set {{a}, {a, b}}. This is Kuratowski’s definition of the ordered
pair (a, b) of a and b. One easily proves the

Theorem 1. One has that (a, b) = (a′, b′) if and only if a = a′ and b = b′.

The Union Axiom: For any set a there is a set b whose members are pre-
cisely the members of members of a:

∀x∃y∀z
[

(z ∈ y)↔ ∃t
(

(t ∈ x) ∧ (z ∈ t)
)]

The set b is called the union of a and denoted by
⋃

a or
⋃

{x|x ∈ a}. We mention
some consequences:

• For any sets a, b, c there is a set d whose elements are a, b and c:
d =

⋃

{{a, b}, {c}}
• The union of c = {a, b} is denoted by a ∪ b. It is easy to see that
a ∪ b = {x|x ∈ a or x ∈ b}.

Let a and b be sets. We say that a is a subset of b if every element of a is also an
element of b:

(x ⊆ y) ≡ ∀z
[

(z ∈ x)→ (z ∈ y)
]
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The left-hand side is not a formula, because ∈ is the only relation of our universe;
(x ⊆ y) is only an abbreviation of the formula in the variables x and y on the right
hand side. In particular we have by extensionality that

∀x∀y
[

(x = y)↔
(

(x ⊆ y) ∧ (y ⊆ x)
)]

The Power Set Axiom: Let a be a set of the universe U . Then there is a
set b whose elements are precisely the subsets of a:

∀x∃y∀z
[

(z ∈ y)↔ (z ⊆ x)
]

The set b is called the power set of a and we use the notation b = P(a) . We
have P(∅) = {∅} , P({∅}) = {∅, {∅}} , P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

If a is any set of our universe, any c ∈ P(a) corresponds to an intuitive subset of
a, namely {d|d← c} where for each such d, d← a holds. However, not every proper
collection of edges d← a will lend itself to a set c of the universe. For example, if
U happens to be countable then any infinite set a in U will have ”subsets” which
don’t correspond to sets in U . What kind of properties now lead to subsets? We
have reached the point where we have to talk a bit about mathematical logic.

The Language of Axiomatic Set Theory. We are going to describe a formal
language that has the following ingredients.

(1) Symbols
(a) An unlimited supply of variables x0, x1, x2 . . ..
(b) The elements of the universe U are the constants of the language.
(c) The membership symbol ∈ and the equality symbol =.
(d) The symbols for the propositional connectives : ∧ which stands for and,
∨ which stands for or, ¬ which stands for not, → which stands for if,
then, ↔ which stands for if and only if.

(e) For each variable xn one has the universal quantifier ∀xn which stands
for for all xn and the existential quantifier ∃xn which stands for there
exists some xn.

(2) Formation Rules for Formulas
(a) Let u and v stand for any variable or constant. Then (u ∈ v) and

(u = v) are formulas. These are the atomic formulas.
(b) If P and Q are formulas then (P ∧Q), (P ∨Q), ¬P , (P → Q), (P ↔ Q)

are formulas.
(c) If P is a formula then ∀xnP and ∃xnP are formulas.

Only expressions that can be constructed by finitely many applications of these
rules are formulas.
For better readability, different kinds of parentheses will be used, and letters, like
x, y, z, . . . will stand for variables. There are standard conventions concerning
the priorities of the binary propositional connectives in order to avoid an excessive
accumulation of parentheses.

The axioms of set theory as stated so far are all formulas, actually sentences, that
is, all occurrences of variables are bound. If Q is a formula then every occurrence
of xn within P of a subformula ∀xnP or ∃xnP of Q is said to be bound. Variables
xn which are not bound, i.e., which are not within the scope of a quantifier ∀xn
or ∃xn of Q, are said to be free. If we underline in a formula a variable then this
variable is meant to occur only bound.
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Formulas can be represented by certain labelled, directed trees. An atomic for-
mula is just a node, e.g.,

(x ∈ a)

which is a tree. If Γ1 is the tree for P1 and if Γ2 is the tree for P2 , then the tree
for (P1 ∧ P2) is the graph:

Γ Γ
1 2

∧

Figure 2. The Graph of a Conjunction

Any node of the tree Γ for the formula Q determines a subformula P of Q. For
example, a node labelled ∧ determines a conjunction P ≡ (P1∧P2) as a subformula
of Q, where P1 and P2 are subformulas of P ; P1 and P2 are the scope of the node
∧. Similarly, a node ∀x determines a subformula P ≡ ∀xnP1, where the subformula
P1 of P is the scope of the node ∀xn within Q.

Whenever we indicate a formula P as P (x0, x1, . . . , xn−1), it is understood
that the free variables of P , if there are any, are are among x0, x1, . . . , xn.
The constants within a formula are often called parameters. So we write
P (x0, . . . , xn−1, a0, . . . , am−1) to indicate the free variables and parameters of a
formula. A sentence P is either true or false in the universe U . More generally, if
P (x0, . . . , xn−1) is a formula with free variables x0, . . . , xn−1 and if a0, . . . , an−1 be-
long to U , then a simultaneous substitution of the xi by the ai makes P (a0, . . . an−1)
either true or false. When we say that a formula P (x0, . . . xn−1) holds on U , it is
meant that its closure, i.e.,

∀x0 . . .∀xn−1P (x0, . . . , xn−1)

holds on U . Because we have used the equality sign = as a symbol within the
language, equality of formulas, or more generally their equivalence, is denoted by
≡, e.g., x = y ≡ y = x. That is, we write P ≡ Q if and only if P ↔ Q is a theorem
of logic. Formulas without parameters are called pure formulas of set theory.

A formula in one free variable, or argument, is called a class.

S(x, a) ≡ (x ∈ a) and R(x) ≡ ¬(x ∈ x)

are examples of classes. The first class defines a set, namely a, while the second
one does not define a set: b satisfies S(x, a) iff b ∈ a; there is no set r such that b
satisfies R(x) iff b ∈ r.

Formulas P (x0, . . . , xn−1) are called n-ary relations. Formulas in two arguments
are called binary relations. We also use the terms predicates, properties and expres-
sions for formulas. Let E(x) be a class. We say that R(x, y) is a relation on E(x)
if

∀x∀y
[

R(x, y)→
(

E(x) ∧ E(y)
)]

holds on U .
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Let R(x, y) be a binary relation. We define domain and range as the classes

dom of R(x, y) ≡ ∃yR(x, y) and ran of R(x, y) ≡ ∃xR(x, y)

Then R(x, y) is a relation on

E(z) ≡ dom of R(z, y) ∨ ran of R(x, z)

which we call the extent of R(x, y).
A binary relation R(x, y) is called reflexive if

∀x∀y
[

R(x, y)→
(

(R(x, x) ∧R(y, y)
)]

holds on U .
The relation R(x, y) is symmetric if

∀x∀y
[

R(x, y)→ R(y, x)
]

holds on U .
The relation R(x, y) is transitive if

∀x∀y∀z
[(

R(x, y) ∧R(y, z)
)

→ R(x, z)
]

holds on U .
The binary relation E(x, y) is called an equivalence if it is reflexive, symmetric

and transitive. It is easy to see that for any reflexive relation, e.g., an equivalence
E(x, y) one has that,

dom of E(x, y) ≡ E(x, x) and ran of E(x, y) ≡ E(y, y)

and therefore E(x, y) is a relation on its domain D(x).
The binary relation R(x, y) is called anti-symmetric if

∀x∀y
[(

R(x, y) ∧R(y, x)
)

→ (x = y)
]

holds on U .
A binary relation PO(x, y) which is reflexive, transitive and anti-symmetric is

called a partial order. Again we have by reflexivity that domain and range define
the same class and that PO(x, y) is a relation on its domain. A partial order L(x, y)
is called linear or total, if

∀x∀y
[(

D(x) ∧D(y)
)

→
(

L(x, y) ∨ L(y, x)
)]

holds on U . D(x) denotes the domain of L(x, y).
An (n+ 1)-ary relation F (x0, . . . , xn−1, y) is called functional if

∀x . . .∀xn−1∀y1∀y2

[(

F (x0, . . . , xn−1, y1) ∧ F (x0, . . . , xn−1, y2))→ (y1 = y2

)]

holds on U .
We define for any relation P (x0, . . . , xn−1, y) domain and range

dom of P (x0, . . . , xn−1, y) ≡ ∃yP (xo, . . . , xn−1, y)

ran of P (x0, . . . , xn−1, y) ≡ ∃x0 . . .∃xn−1P (x0, . . . , xn−1, y)

The domain is an n− ary relation D(x0, . . . , xn−1) while the range is a class R(y).
The binary relation

P (x, y) ≡ ∀z
[

(z ∈ y)↔ (z ⊆ x)
]

is functional in the variable x. It assigns to a set a the power set b = P(a). We
have that

dom of P (x, y) ≡ (x = x) and ran of P (x, y) ≡ ∃x∀z
[

(z ∈ y)↔ (z ⊆ x)
]



6

Instead of P (x, y) we will often use the more suggestive notation y = P(x). We
similarly write z = (x, y), z = {x, y} and z = x∪y for the corresponding functional
predicates.

We define for a formula F (x, y, z) the expression

fun
(

F (x, y, z)
)

≡ ∀x∀y1∀y2

[

F (x, y1, z) ∧ F (x, y2, z)→ y1 = y2

]

which holds for a set a in U if and only if F (x, y, a) is functional.

The Schemes of Replacement and Comprehension. In the previous section
we didn’t stipulate the existence of sets. For example, domain and range of a binary
relation were defined as classes, i.e., as formulas in one variable. Of course, given
a binary relation on a given set a, domain and range should be subsets of a. The
existence of sets according to standard constructions in mathematics is guaranteed
by

The Axiom Scheme of Replacement: Let F (x, y, x0, . . . , xn−1) be a pure
formula of axiomatic set theory such that for sets a0, . . . , an−1 the binary
relation F (x, y, a0, a1, . . . , an−1) is functional. Let a be any set. Then there
is a set b such that d ∈ b holds if and only if there is some c ∈ a such that
F (c, d, a0, . . . , an−1) holds on U :

∀x0 . . .∀xn−1

(

fun
(

F (x, y, x0, . . . , xn−1)
)

→
∀x∃y∀v[v ∈ y ↔ ∃u[u ∈ x ∧ F (u, v, x0, . . . , xn−1)]]

)

Because this is supposed to hold for every pure formula F (x, y, x0, . . . , xn−1), where
at least x and y are free, this list of axioms is called a scheme. It is called replace-
ment because it allows us to replace some of the elements c of the set a simultane-
ously by sets d in order to create a set b. As a first application of replacement we
will deduce its weaker cousin

The Scheme of Comprehension: LetA(x, x0, . . . , xn−1) be a pure formula
of axiomatic set theory and let a0, . . . , an−1 be sets. Then for any set a
there is a set b which consists exactly of those elements c of a for which
A(c, a0, . . . , an−1) holds on U :

∀x0 . . .∀xn−1∀x∃y∀z
[

z ∈ y ↔
(

z ∈ x ∧A(z, x0, . . . , xn−1)
)]

In order to deduce this from replacement, we only have to note that

F (x, y, x0, . . . , xn−1) ≡ (y = x ∧A(x, x0, . . . , xn−1)
)

is functional.
The standard notation for the subset b of a, which is defined by the property

A(x, a, .., a), is
b = {x|x ∈ a ∧A(x, a0, . . . , an−1)}

Constructions within the Universe. The existence of the union of a set a was
stipulated as an axiom. We don’t need a further axiom for the intersection.

The Intersection of a Set: Let a be non-empty set. Then there is a set
b whose members are precisely the members of all members of a.

∀x
[

¬(x = ∅)→ ∃y∀z
[

(z ∈ y)↔ ∀t
(

t ∈ x→ z ∈ t)
]]
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This follows at once from comprehension. Note that the intersection of the set a
is contained in any of its members c. The standard notation for the intersection
of a set a is

⋂

a or
⋂

{x|x ∈ a}. Why is it important to assume that the set a is
non-empty?

The Cartesian product of Two Sets: Let a and b be sets. Then there is
a set c such that e ∈ c if, and only if, e = (f, g) where f ∈ a and g ∈ b:

∀x∀y∃z∀t
[

(t ∈ z)↔ ∃u∃v
(

t = (u, v) ∧ (u ∈ x) ∧ (v ∈ y)
)]

The equation z = (x, y) is shorthand for the functional relation Q(x, y, z) which
says that z is the ordered pair (x, y), which according to Kuratowski’s definition is
the set {{x}, {x, y}}. Thus:

Q(x, y, z) ≡ ∀t
[

(t ∈ z)↔

∃u∃v
{

(

t = u ∨ t = v
)

∧ ∀s
[

s ∈ u↔ s = x
]

∧ ∀s′
[

s′ ∈ v ↔
(

s′ = x ∨ s′ = y
)]

}]

If = (f, g) = {{f}, {f, g}} where f ∈ a and g ∈ b then {f} ∈ P(a) and {f, g} ∈
P(a ∪ b). Hence (f, g) ∈ P(P(a ∪ b)). We now apply comprehension to

P (z, a, b) ≡ ∃u∃v
[

Q(u, v, z) ∧ u ∈ a ∧ v ∈ b
]

which says that “z is an ordered pair whose two components belong to a and b”,
respectively and get the desired result as

c = {e|e ∈ P(P(a ∪ b)) ∧ P (e, a, b)}

The set c is called the cartesian product a× b of a and b. The cartesian product of
finitely many sets is similarly defined. The formula

C(x, y, z) ≡ ∀t
[

t ∈ z ↔ ∃u∃v
[

Q(u, v, t) ∧ (u ∈ x) ∧ (v ∈ y)
]

is functional and says that z is the cartesian product of x and y.
We remark that a binary relation R(x, y) may be perceived as a unary relation

R∗(z) :
R∗(z) ≡ ∃x∃y

(

Q(x, y, z) ∧R(x, y)
)

That is, R∗(e) holds if and only if e = (c, d) and R(c, d) holds.
Relations as Sets: Let R(x, y) be a binary relation. Assume that domain

and range of R(x, y) are sets a and b, respectively. Then define the set

r = {e|e = (c, d) ∈ a× b, R(c, d)}

We now have e = (c, d) ∈ r if and only if R∗(e) holds. In this sense we may identify
a binary relation, for which the extent is a set, by a set of ordered pairs.

Graphs of Functions: If the binary relation F (x, y) is functional and the
domain of F (x, y) is a set a, then, according to replacement, the range is
also a set. Let b be any set containing the range of F (x, y). The set

{e|e = (c, d) ∈ a× b, F (c, d)}

is called the graph of the function f : a→ b.
The projections are important examples of functional relations:

F1(x, y, z, p) ≡ Q(x, y, z) ∧ p = x

F2(x, y, z, q) ≡ Q(x, y, z) ∧ q = y
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We have that F1(a, b, c, d) holds on U iff c = (a, b) and d = a, i.e., d is the first
component of the ordered pair c. The predicate

P1(t, x) ≡ ∃u∃v
[

F1(u, v, t, x)
]

then holds if “x is the first component of the ordered pair t”. That f is a function
from a to b is expressed by F (a, b, f) where

F (x, y, z) ≡ ∃p
[

C(x, y, p) ∧ z ⊆ p
]

∧ ∀u
[

u ∈ x→ ∃t
(

t ∈ z ∧ P1(t, u)
)]

∧
∀t∀t′∀s∀u∀u′

[

t ∈ z ∧ t′ ∈ z ∧ P1(t, s) ∧ P1(t′, s) ∧ P2(t, u) ∧ P2(t′, u′)→ u = u′
]

The Exponentiation of Sets: Let a and b be sets. Then there is a set c
whose elements are given by the functions f : a→ b.

The function f : a → b is an element of P(a × b). Hence c is defined by compre-
hension:

c = {f |f ∈ P(a× b), F (a, b, f)}
For the set c one uses exponential notation c = ba.

Union and Intersection of a Family of Sets: A function s with domain
i is sometimes called a family of sets aj , j ∈ i, where, of course aj = s(j).
The union of the family s is the union of the range r of s, which is, according
to the replacement axiom, a set u. We write u =

⋃

{aj |j ∈ i} =
⋃

s. The
intersection of a non-empty family s is defined similarly.

The Cartesian Product of a Family of Sets: Let s be a family of sets,
indexed by the set i. A function f : i → u from i into the union u of
the range r of s is called a choice function if for every j ∈ i one has that
f(j) ∈ aj . Then there is a set c whose members are all the choice functions
for s. This set is called the cartesian product of the family s and is denoted
by c =

∏

{aj |j ∈ i}.
This follows from comprehension: We will use the expression (x, y) ∈ z as shorthand
for ∃p(Q(x, y, p) ∧ (p ∈ z)). Then c = {f |f ∈ ui ∧ ∀x∀y∀z

((

(x, y) ∈ f ∧ (x, z) ∈
s
)

→ (y ∈ z)
)

}

The Remaining Axioms of ZF. Within the universe U we certainly can find the
sets 0 = ∅, 1 = {0}, 2 = {0, 1},. . ., n = {0, 1, . . . , n− 1}. Note that n+ 1 = n∪{n}
where n is not a member of n. Hence n has exactly n elements and n 7→ n is an
injective map from the “set” N of natural numbers into the universe U . The sets
n are called the natural number objects of U . Notice that we have n < m if and
only if n ∈ m, and n ∈ m is the same as n ⊂ m, ⊂ standing for strict inclusion.
On the basis of the axioms stated so far we have no way of telling whether there is
a set whose elements are exactly the sets n. An axiom stating that there is a set ω
consisting exactly of all natural number sets n is objectionable: Such a definition
of ω would not be given by a first order sentence of our language of set theory. This
deficiency was resolved by Dedekind:

For any set x, x ∪ {x} is called the successor x+ of x. For example, 1 is the
successor of 0.

A set i is called inductive if we have that ∅ ∈ i and x ∈ i implies that x+ is in i.
The Axiom of Infinity: There is an inductive set i0.

It is obvious that any inductive set i0 must contain all n. In this sense we
have stipulated the existence of some infinite set, namely of i0. Notice that the
intersection of any inductive set i with i0 is inductive. We therefore have a smallest
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inductive set, called ω, namely the intersection of all inductive sets within i0. There
is no danger to think that ω consists exactly of all finite numbers n. And the vast
majority of mathematicians feels that way. On the other hand, any axiomatic
definition of ω allows for elements ν which are nonstandard, i.e., different from any
ordinary number n. However, whether one realizes this possibility or not seems to
be irrelevant for the formal development of mathematics.

There are two more axioms most mathematicians consider as“true”, the Axiom
of Choice and the Axiom of Foundation. These axioms are listed separately, mainly
because because a great deal of set theory can be developed without them.

The Axiom of Choice (AC): The Cartesian product of a family of non-
empty sets is itself non-empty.

The Axiom of Foundation (AF): Every non-empty set a contains a set b
which is disjoint to a.

Both axioms are independent of ZF.
The Axiom of Choice has many other equivalent formulations. For example, it says
that given any set p of non-empty, and pairwise disjoint sets, then there is a set r
such that for every c ∈ p one has that r∩c is a one-element set. We may think that
p is the partition according to an equivalence relation e on the union of p. Then the
AC says that there is a set r of representatives which picks from every equivalence
class c exactly one element, a representative for the whole class c. In this version,
AC looks rather obvious and this is what most mathematicians think. But how can
we find such a set of representativs? If it is the case that somehow every class c is
ordered in a way that it has a minimum then just take for every c the minimum.
But what if c is not ordered? Can we always order any non-empty set c? The
answer is yes, but only if we assume AC. This is actually a big theorem. Recall
that a total order is called a well-order if every non-empty subset has a minimum.
Then one has

Well-Ordering Theorem. The Axiom of Choice holds if and only if every non-
empty set admits a well ordering.

We have developed set theory in this chapter to the extent that all elementary
mathematics can be carried out in a rigorous, axiomatic fashion. Sets that should
exist intuitively, have been be shown to exist according to ZF axioms. Higher set
theory deals primarily with the theory of infinite sets, in particular with well-ordered
sets for which the set of natural numbers, ω, is the smallest infinite example.
We conclude with a few problems.

Problem 1. Is it true that that P(a) = P(b) only if a = b?

Problem 2. Show that for any set a one has that r(a) /∈ a where

r(a) = {c|c ∈ a, c /∈ c}.
Conclude that R(x) ≡ (x = x) defines a proper class.

Problem 3. Show that AF implies a /∈ a for every set a. Hint: Apply AF to
c = {a}.

This consequence of AF is probably the most intuitive statement about sets. A
set consists of items and these items make up the set. A set is of higher rank than
any of its members. In naive set theory one writes S = {a, b, . . .} and uses capital
letters, like S, to denote a set, and lower-case letters to denote its elements.
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The following problems show that our set ω satisfies the Peano Axioms for
natural numbers:

P1: 0 is not a successor, that is 0 6= n+ for every n ∈ ω.
P2: n+ = m+ only if n = m.
P3=Complete Induction: If S is a set of natural numbers, that is of ele-

ments of ω such that 0 ∈ ω and that if n ∈ ω then n+ ∈ ω, one has that
S = ω.

Recall that we have defined 0 as the empty set ∅, and ω as the smallest inductive
set. Of course ∅ cannot be a successor, a successor is of the form x ∪ {x}, and
therefore contains at least one element, namely x. Thus P1 is obvious for ω. Because
the successor of n is n+ = n∪{n}, complete induction is also trivial for ω. However,
the second Peano Axioms requires a proof. In order for doing this, one best proceeds
by proving some preliminary statements. You may have some fun proving these
basic facts on ω.

Lemma. If x ∈ y where y ∈ ω then x ⊆ y.

This lemma says that ∈ is a transitive relation on ω: If x, y, z are elements of ω
where z ∈ x and x ∈ y then z ∈ y. Or, if y is an element of ω then every element
x of y is a subset of y. That it is a proper subset is the

Proposition. For every y ∈ ω one has that an element x ∈ y is a proper subset.

Corollary. x /∈ x for every x ∈ ω.

The second Peano Axiom is now the

Proposition. Let x, y ∈ ω. Then

x+ = y+ =⇒ x = y

Quite useful is

Problem 4. Let x 6= 0 be an element of ω. Then x = y+ for some unique y ∈ ω.

We have defined ω as the smallest set in the universe of sets which contains
0 = ∅ and which contains with any x the successor of x+. Can we conclude that
ω = {0, 1, 2, . . .}? The answer is no! One can think that ω contains elements which
are different from the “ordinary” natural numbers, which are “infinite”. On the
other hand, one can also assume that ω conains just these ordinary numbers which
we can construct from ∅ by applying “finitely” many times the successor operation.
If this makes you wonder, our short introduction to axiomatic set theory has served
its purpose.
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Figure 3. The Graph of the Extensionality Axiom


