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CFD technology for 3D simulation of large-scale

hydrodynamic events and disasters

Yu. V. VASSILEVSKI∗, K. D. NIKITIN∗, M. A. OLSHANSKII†,
and K. M. TEREKHOV∗

Abstract — In this paper we discuss the basic components of the computational technology for the
simulation of complex hydrodynamic events, such as a break of a dam, a wave pileup, a landslide, or
a mud flow. The technology uses three-dimensional equations of fluid dynamics with free boundaries.
The mathematical model is based on the Navier–Stokes equations with nonlinear defining relations
between the stress tensor and the rate of strain tensor. The assignment of a particular defining relation
allows one to simulate both Newtonian flows (break of a dam, wave pileup), and non-Newtonian ones
(landslide, mud flow, snow avalanche, flood of lava). The numerical model developed in the paper uses
the method of the grid level set function for calculation of a free surface flow evolution and adaptively
reconstructed three-dimensional grids of the octree type for discretization of the flow equations. The
predictive accuracy of this technology is demonstrated in the paper by comparing the results of certain
numerical calculations with physical experiments; the efficiency of the technology is illustrated by
simulation of the break of a dam and a mud flow using the actual 3D topology of the area around the
Sayano-Shushenskaya dam.

Mathematical modelling is an efficient tool to predict scenarios and consequences
of anthropogenic disasters and natural phenomena. Modelling large-scale hydrody-
namic events, such as the break of a dam, tsunami wave pileup, landslide, or mud
flow, snow avalanche, or lava eruption plays a significant role. The variety of phe-
nomena and possible scenarios generates many approaches to their numerical sim-
ulation. As an example, we note the modelling of oceanic anomalies with the use of
ocean dynamics equations [27], the spread of tsunami based on shallow water equa-
tions [24,30], landslide and debris flow simulation based on different modifications
of hydrodynamics equations [14], calculation of a flood of lava with the use of dis-
crete dynamic systems [8] or snow avalanches runout using dynamic equations for
granulated mixtures [22].

In this paper we study an approach allowing one to simulate various events
and phenomena listed above taking into account their actual physical and geomet-
ric complexity. Standard simplifications based on the ‘shallow water’ theory or on
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model dimension reduction are not used in this paper. Calculations are performed for
a complete three-dimensional system of hydrodynamic equations for flows with free
boundaries. The phenomenological variety of considered processes is reflected in a
special choice of defining relations for the stress tensor. We consider both Newto-
nian media (water) and viscoplastic ones (landslide), but the technology developed
here does not prevent a researcher or a user from choosing other probably more
complex defining relations.

The numerical method developed in this paper is based on several important
methods and technologies. We use the level set method [29] for defining the evo-
lution and finding the position of a free boundary and also adaptively refined oc-
tree grids. Octree grids combine the simplicity of orthogonal grids, the possibility
of hierarchical refining (in this paper we use refining toward the free boundary),
the convenience of data access, and fast reconstruction. As a consequence, nowa-
days such grids have become widespread in numerical simulations and animation,
see, e.g., [15, 18, 20, 21, 25]. The integration in time is performed by the splitting
scheme of Temam–Chorin–Yanenko type. One step in time is split into convec-
tive transport, addition of diffusive and plasticity terms, projection on the space of
discrete-divergence-free functions, and advective transfer of the level set function.
The velocity is approximated on a staggered grid, i.e., the velocity components are
assigned to the centers of faces, the pressure is positioned at the centers of cells.
The spatial approximation of advective transport uses the semi-Lagrangian method,
a finite-difference scheme is used for the diffusion and plasticity terms, the Pois-
son equation for the pressure is approximated by the finite volume method. It is
known that this discretization satisfies the Ladyzhenskaya–Babuska–Brezzi condi-
tion and is stable on such grids. Numerical experiments suggest that stability of this
type is retained on octree meshes. Note once again that it is the combination of the
approaches mentioned above, i.e., the level set method, dynamic octree grids, split-
ting schemes, and compact and stable finite differences, that ensures realistic and
predictive simulation of complex three-dimensional flows with a free boundary.

The remainder of the paper is organized as follows. In Section 1 we present the
mathematical model. Section 2 describes the computational technology for numeri-
cal solution of the differential model. Further we verify the numerical approach by
comparing the results of numerical and physical experiments for models of Newto-
nian and viscoplastic flows. These results are presented in Section 3. Finally, Sec-
tion 4 shows the application of the numerical technology for simulation of such
events as the break of the dam at the Sayano-Shushenskaya hydro power plant and
a landslide in the vicinity of the dam. Both experiments were performed taking
into account the real topography of the region and do not require computational
resources exceeding the capacity of an ordinary (state-of-the-art) workstation.

1. Mathematical model

The mass and momentum conservation laws for an incompressible viscous non-
Newtonian fluid in Euler’s formulation lead to the Navier–Stokes equations for the
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unknown fluid velocity u and stress tensor τ :





ρ

(
∂u

∂ t
+(u ·∇)u

)
−div τ = f

∇ ·u = 0

in Ω(t) (1.1)

where f are given mass forces, Ω(t) ∈ R
3 is a spatial domain occupied by the fluid

and dependent on time, ρ is the density. The system is supplied with defining rela-
tions linking the stress tensor and the rate of strain tensor: Du = [∇u+(∇u)T ]/2.
We use the following nonlinear Hershel–Bulkley relations [12] for viscoplastic me-
dia:

τ = −pI+
(
K |Du|n−1+ τs|Du|

−1
)
Du ⇔ |τ| > τs

Du = 0 ⇔ |τ| 6 τs
(1.2)

where K is the consistency parameter, τs is the yield stress parameter, n is the fluid

index, |Du|=
(
∑16i, j63 |Di ju|

2
)1/2

, I is the unit tensor (Ii j = δ i
j), the scalar function

p denotes the pressure. Particular values of the parameters ρ , K, τs, and n are tuned
for the most accurate modelling of rheological properties of the considered medium.
Thus, τ = 0, n= 1 correspond to Newtonian flows (e.g., water without admixtures),
relations with τ > 0 and n 6= 1 can be applied to model non-Newtonian flows, such
as snow avalanches, underwater landslides, debris flows, or flood of lava [2,4,5,16].

In order to overcome the well-known difficulties related to the indeterminate-
ness of the stress tensor in relations (1.2) inside the plug and rigid zones, i.e.,
where the rate of strain tensor equals zero, we use the regularization of Bercovier–

Engelman [3] which is reduced to the replacement of |Du| by |Du|ε =
√

|Du|2 + ε2

with some small parameter ε . This allows us to write down the equations of fluid
dynamics in the whole volume Ω(t) and exclude the stress tensor:





ρ

(
∂u

∂ t
+(u ·∇)u

)
−div µεDu+∇p= f

∇ ·u = 0

in Ω(t). (1.3)

The ‘efficient’ viscosity parameter is introduced into system (1.3):

µε = K |Du|n−1
ε + τs|Du|

−1
ε

and it depends nonlinearly on the rate of deformations.
We suppose that the volume occupied by the fluid and the initial flow are given

at the initial time moment t = 0:

Ω(0) = Ω0, u|t=0 = u0. (1.4)

Finding Ω(t) for t > 0 is a part of the problem which is solved together with equa-
tions (1.3). To give its mathematical formulation, we divide the boundary of the
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whole volume into the static boundary ΓD (for example, the rigid walls or the bot-
tom of the basin) and the free boundary Γ(t) (typically this is the water-air interface,

i.e., ∂Ω(t) = ΓD∪Γ(t). In our calculations we neglect the influence of the surround-
ing gas (air) onto the liquid. Therefore, the mathematical model is presented for the
liquid–vacuum idealization. However, if necessary, the influence of the surrounding
gas can be taken into account in the model and calculated without any additional
difficulties. Note also that, generally speaking, the static boundary ΓD can depend
on time.

We assume the non-penetration conditions on the static boundary and, depend-
ing on the considered flow, the nonslip or slip with friction conditions. The free
boundary evolves with normal velocity components on the boundary, which is writ-
ten in the form of the kinematic relation

vΓ = u ·nΓ (1.5)

where nΓ is the outer unit normal to the surface Γ(t), vΓ is the normal velocity of the
surface Γ(t). The balance conditions of the surface tension forces and the normal
stresses of the medium also hold on the free surface, which leads to the boundary
condition

τnΓ = ςκnΓ− pextnΓ on Γ(t) (1.6)

where κ is the sum of the principal curvatures of the surface, ς is the surface tension
coefficient, pext is the external pressure. If the surface tension forces are not taken
into account, we may assume ς = 0.

In order to find the position of the free boundary at each time moment, instead
of (1.5) we use the implicit definition of Γ(t) as the zero level set of the globally
defined function ϕ(t,x):

ϕ(t,x)





< 0, x ∈Ω(t)

> 0, x ∈ R
3 \Ω(t)

= 0, x ∈ Γ(t)

∀t ∈ [0,T ].

The function ϕ is called the level set function in the literature. Initial condition (1.4)
allows us to determine the initial ϕ(0,x). At any time moment t > 0, the level set
function satisfies the following transport equation [23]:

∂ϕ

∂ t
+ ũ ·∇ϕ = 0 in R

3× (0,T ] (1.7)

where ũ is the fluid velocity field extended outside Ω(t). Note that one often poses
the additional restriction

|∇ϕ | = 1 (1.8)

onto the level set function to ensure numerical stability, i.e., ϕ is the signed distance
function. Given ϕ , the outer normal and the curvature of the free boundary can be
calculated by the formulas nΓ = ∇ϕ/|∇ϕ | and κ = ∇ ·nΓ.

The mathematical model used in our calculations consists of equations (1.3),
(1.4), (1.6)–(1.8) and appropriate boundary conditions on static boundaries.
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Figure 1. 2D quad-tree greed is refined towards the free boundary (top). 3D adaptively refined octree
grid (cross-section) and values of the level set function at a fixed time moment in the test problem of
flooding a container with an object inside (bottom).

2. Fundamentals of computing technology

The free boundary of a fluid may have a complicated geometry in actual hydro-
dynamic scenarios. As a consequence, an adequate representation of this geome-
try and simulation of surface dynamics require grids with a sufficiently fine spa-
tial resolution in the neighbourhood of Γ(t). The use of uniform grids for three-
dimensional problems becomes too burdensome from the computational viewpoint
in this case. Locally refined and/or coarsened grids require significantly less com-
putational resources. However, if a free boundary evolves, then adaptive grids have
to be reconstructed according to the surface evolution. Grid reconstruction can be
sufficiently efficient from the viewpoint of computational cost if we use structured
octree grids instead of tetrahedral ones traditionally used in finite element meth-
ods. A two-dimensional analogue of the grids used in our calculations is presented
in Fig. 1 (top). An octree grid pattern in the experiment of filling a container with
a water spurt is shown for a certain time moment in Fig. 1 (bottom). An efficient
access and operations with data defined on the octree grids use their natural hierar-
chical structure; details can be found, e.g., in monograph [26].

The grid adaptation strategy used in this work is based on its gradual refinement
in the neighbourhood of the free boundary at the current time moment t in the neigh-
bourhood of Γ(t+∆t), so that the sizes of two adjacent cells cannot differ more than
twice. Here ∆t is the step in time.

In order to discretize equations (1.3) with respect to spatial variables, we use a
stable scheme on staggered grids. In this scheme the unknown velocity components
are assigned to the faces of cells (the ith velocity component is approximated at the
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center of the cubic cell which is orthogonal to the ith coordinate axis) and the pres-
sure is approximated at the centers of cells. This location of the unknowns ensures
the mass conservation law for the discrete solution locally for each cell of the parti-
tion. The level set function is approximated at the vertices of cells. Finite-difference
analogues of differential operators on such grids are discussed in detail in [19].

The discretization in time utilizes the approach based on the Chorin–Temam–
Yanenko splitting scheme [6]. Given u(t), p(t), ϕ(t) at a current time moment, one
time step consists in the determination of u(t+∆t), p(t+∆t), ϕ(t+∆t) and is split
into several substeps. First we update the level set function and calculate the new
domain occupied by the fluid, Ω(t) → Ω(t +∆t). At this step, we use the method
of numerical integration along the characteristics for the transport equation (1.7),
which is also known as the semi-Lagrangian method [28]. In this case the equation
for the characteristics is integrated with the second order of accuracy. Due to ap-
proximation errors, the numerical integration of equation (1.7) may lead and often
does lead to an erroneous loss or gain of the fluid volume, i.e., |Ω(t)| 6= |Ω(t+∆t)|
without the outflow (or inflow) of the fluid. The loss of volume decreases with adap-
tation of the grid to the boundary and with the use of the method of particles [11].
An additional correction is performed by finding the constant δ from the equation

meas{x : ϕ(x) 6 δ} = Volreference

and further correction ϕnew = ϕ − δ . The value of δ is calculated by the secant
method, and the Monte-Carlo method is used for an approximate calculation of
meas{x : ϕ(x) < δ}. Further we apply the reinitialization of ϕnew, so that the re-
sulting level set function is the signed distance function. The details of the reini-
tialization used here can be found in [19, 20]. At this step, the calculation of the
new flow domain Ω(t) →Ω(t+∆t) is finished, the reconstruction of the grid is per-
formed, and all variables are interpolated from the old grid to the new one. In the
process of interpolation and integration of equation (1.7) we have to calculate an ex-
tension of the velocity function u(t) from Ω(t) into the whole computation domain.
In this case the extension is built constant along the normals to the free boundary,
i.e., (∇ϕ) ·∇u(t) = 0 outside of Ω(t).

The second part of the time step of the splitting scheme consists in finding the
new values of hydrodynamic variables inΩ(t+∆t): {u(t), p(t)}→{u(t+∆t), p(t+
∆t)}. The procedure is divided into several substeps according to the classic splitting
scheme:

• the convective step is performed by the semi-Lagrangian method;

• the viscous and plasticity terms are added;

• the obtained velocity field is projected onto the space of divergence-free vec-
tor functions by solving the grid Poisson equation for the pressure.

The stability of the numerical integration of the system is ensured by the choice
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of the time step satisfying the Courant condition

∆t = min

{
C1hmin

(
max
x∈Ω(t)

|u(t)|

)−1

, C2ρ
1
2 h

3
2

minς
− 1

2

}

where C1 and C2 are parameters dependent on a particular application. In most nu-
merical calculations we have taken C1 = 0.66 and C2 = 1.4.

3. Verification of the method

In this section we present the results of few numerical experiments for model flows.
The results are compared with experimental data and demonstrate a high predicting
ability of the numerical method.

The first test is the problem of an instantaneous collapse of a water column in
a horizontal channel of a rectangular cross-section (see, e.g., [10]). A schematic
setup of the problem is shown in Fig. 2 (left). At the initial time moment the fluid
is in its rest state and bounded by a unit cube, i.e., x = y = h = 1. At the next
time moment, the fluid column collapses under the action of the force of gravity
directed along the axis z. The values of the parameters K,ρ ,ς (viscosity, density,
surface tension coefficient) in the experiments were taken to simulate a water flow.
In particular, τs = 0 and n = 1. The statistics we are interested in is the position of
the bottom ream front point of the water depending on time. The calculations were
performed on a sequence of octree grids. Each grid was obtained by a refinement
of the previous one. The results of numerical experiments are presented in Fig. 2
(right) where they are compared with experimentally measured values from [17]
(the time shift of −0.007 s is used for the results, which corresponds to the time of
the gate opening). It is well seen that, starting from the value corresponding to the
minimal size of a cell equal to 1/256, the calculation results do not visually differ
from each other and match well the results of physical experiments.
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Figure 2. Left: the schematic setup of the problem of an instantaneous collapse of a water column
in a horizontal channel. Right: Graphs of the x-coordinate of the center point of water bottom ream
obtained in calculations with different minimal sizes of octree grid cells. Comparison is done with
experimental data from [17].
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Figure 3. Outflow of a viscoplastic fluid from a tank over an inclined plane. Different colors cor-
respond to different depths. The solution calculated numerically is shown for the inclination angle
α = 12o at the time moments t ∈ {0.2,0.6,1.0,2.0} s.

The next experiment is the numerical simulation of a viscoplastic flow over an
inclined plane. The importance of viscoplastic flows over inclined planes in practical
problems causes great interest in calculation and analysis of such flows (see, e.g., a
detailed review in [1,13]). In contrast to many other studies, the present technology
allows one to calculate such flows with all their complexity taking into account the
effects of inertia, surface tension, and a complex three-dimensional geometry.

The following experiment is simulated numerically: consider a plane inclined
at an angle α to the horizon. A rectangular tank with the length X and width Y
is placed onto the plane. The tank is filled with a viscoplastic medium of volume
V . We assume that the rheology of the medium satisfies the Herschel–Bulkley law.
The side of the tank positioned lower on the inclined plane has a gate perpendicular
to the plane. When the gate is opened, the fluid is released and flows downwards
the inclined plane. An example of the flow is shown for different time moments in
Fig. 3.

The numerical experiments were performed with the set of parameters corre-
sponding to the physical experiments from [7]: X = 0.51m,Y = 0.3m,V = 0.06m3,
α ∈ {12◦, 18◦}, and the following set of rheological parameters for the Herschel–
Bulkley model: K = 47.68 Pa s−n, n= 0.415, τs = 89 Pa. It was found in [7] that the
Herschel–Bulkley model with these parameters sufficiently well approximates the
rheology of 0.3% Carbopol Ultrez 10 used in physical experiments. Further details
of the numerical experiments and calculations with other values of the parameters
can be found in [20].

Figure 4 shows the evolution of the middle profile of the fluid free surface for
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Figure 4. Middle profiles of the free flow surface at the time moments t = 0.2k (s), k = 1, . . . ,10 for
different plane inclination angles: (a) α = 12◦, (b) α = 18◦.

different inclination angles of the plane (note the different scaling in the abscissa
and ordinate axes), these graphs are in a good agreement with the data (similar
graphs) of the real viscoplastic material from the experiments in [7]. It is clearly
seen from these graphs that the fluid begins to flow sufficiently fast at the initial
moment and then slows down sharply around the time moment of t = 0.8 s. After
that the front of the fluid continues moving over the inclined plane slower and more
or less uniformly. Note that such dual behaviour of the viscoplastic flow obtained
by numerical calculations is in excellent correspondence with experimental obser-
vations. In particular, describing the fluid dynamics in experiments with a Carbopol
solution, the authors of [7] pointed out: ‘... we observed two regimes: at the very
beginning (t < 1 s), the flow was in an inertial regime; the front velocity was nearly
constant. Then, quite abruptly, a pseudo-equilibrium regime occurred, for which the
front velocity decayed as a power-law function of time’. Note that the time scale of
this physical experiment was about 8 hours, whereas we stopped our calculations
for t = 2 s and did not study the asymptotic behaviour of the flow.

Summing up, we point out that the mathematical model and the numerical tech-
nology developed here predict the qualitative behaviour and statistically meaningful
characteristics of three-dimensional flows of Newtonian and viscoplastic fluids. We
have illustrated this by comparing the results of numerical calculations and phys-
ical experiments. This allows us to use these model and technology for predictive
simulation of large-scale hydrodynamic events (such as the break of a dam, snow
avalanches, landslide etc. using the real region topology). Some examples of such
calculations are presented in the next section.

4. Some calculations of large-scale hydrodynamic events

As an example of numerical simulation of large-scale hydrodynamics events (dis-
asters), we present the calculation of the consequences of the break of the dam and
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Figure 5. The dam and surrounding area. The points where the monitoring of the water level variation
is performed are marked in the figure. Different colors indicate the magnitude of the fluid velocity
vector.

the landslide at the Sayano-Shushenskaya dam. Note that the calculations presented
below do not simulate actual or possible disaster scenarios for this hydro power,
but only show that such simulations are practically possible with the use of the
technology described here in the presence of more detailed geophysical data for the
riverside area and the dam conditions. In these calculations we have used the to-
pographic map of the area obtained with the help of the Shuttle Radar Topography
Mission (NASA) [31], the resolution of this map is about 90 m. We used the Google
SketchUp to construct a polygonal approximation of the dam and the earth surface
in the neighbourhood of the dam. The computational domain and the part of the
dam simulated as ‘broken’ are shown in Fig. 5.

We are interested in computing the following data: the water rise level at given
points (points P1–P4 are indicated in Fig. 5) and the pressure onto the base of the
dam at the tail-water under the spillway. The obtained results are shown as graphs
in Fig. 6 (in this section all variables are dimensional and given in the SI system).

The following calculation simulates a rock landslide on the left-bank slope near
the dam. Since more accurate data were absent, the landslide simulation was per-
formed using the Herschel–Bulkley model of a viscoplastic medium with the co-
efficients K, τs, n taken from [4], where these coefficients were chosen so that the
model describe well the rheological properties of rock landslides in the Puglia re-
gion in the south of Italy. We recall that simulation of realizable scenarios possibly
requires additional data concerning the properties of the rocks and the conditions of
the slopes in the region; in our case we have no such data.

In the simulation of the landslide we are interested in the final deposit of land-
slide and the pressure acting on the dam structures at the place of the landslide.
Figure 7 shows the top view at the final and intermediate time moments of the cal-
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Figure 6. Dependence of water level on time at points P1–P4 (left). Graph of the pressure over the
base of the dam at the tail-water under the spillway (right).

Figure 7. Migration of the landslide at time moments t = 100s and t = 167 s. Different colors mark
the velocity vector magnitudes for the particles of the landslide.

culation. The variation of the total kinetic energy of the whole landslide masses in
time is shown in Fig. 8 (right). Note that the landslide has lost a considerable part
of its kinetic energy by the end of the calculations, thus, it is reasonable to assume
that we have determined the final deposit of the landslide masses. The graph of the
maximal pressure onto the body of the dam at the place of the landslide is given in
Fig. 8 (left). Note that the maximal number of cubic cells slightly exceeded 520 and
560 thousand in the simulation of an emergency spill through a dam break and the
landslide calculation, respectively.
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Figure 8. Pressure onto the dam body at the place of the landslide. Variation of the kinetic energy of
the whole landslide mass in time.

Conclusion

In this paper we have presented a numerical technology allowing one to simulate
complex hydrodynamic events based on three-dimensional equations of continuous
medium with free boundaries. The accuracy and reliability of this numerical ap-
proach has been tested on model academic problems. The abilities of the method
have been demonstrated for large-scale hydrodynamic problems, where we com-
pute such important indicators as the water rise level and the pressure on the dam
base in the case of a dam break or an emergency water spill and also the case of a
landslide runout. The use of splitting schemes for integration of equations in time
makes it possible to include other physical models into this numerical method, for
example, heat exchange or heat transfer. Simulation of multiphase flows with a free
boundary (including possible phase transitions, i.e., in a flood of lava) is part of our
future plans.
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