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AN ADAPTIVE SURFACE FINITE ELEMENT METHOD BASED ON
VOLUME MESHES∗

ALAN DEMLOW† AND MAXIM A. OLSHANSKII‡

Abstract. In this paper we define an adaptive version of a recently introduced finite element
method for numerical treatment of elliptic PDEs defined on surfaces. The method makes use of a
(standard) outer volume mesh to discretize an equation on a two-dimensional surface embedded in
R3. Extension of the equation from the surface is avoided, but the number of degrees of freedom
(d.o.f.) is optimal in the sense that it is comparable to methods in which the surface is meshed
directly. In previous work it was proved that the method exhibits optimal order of convergence for
an elliptic surface PDE if the volume mesh is uniformly refined. In this paper we extend the method
and develop an a posteriori error analysis which admits adaptively refined meshes. The reliability
of a residual type a posteriori error estimator is proved and both reliability and efficiency of the
estimator are studied numerically in a series of experiments. A simple adaptive refinement strategy
based on the error estimator is numerically demonstrated to provide optimal convergence rate in the
H1 norm for solutions with point singularities.
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1. Introduction.

1.1. Background. Partial differential equations (PDEs) posed on surfaces arise
in mathematical models for many natural phenomena: diffusion along grain bound-
aries, lipid interactions in biomembranes, and transport of surfactants on multiphase
flow interfaces, to mention a few. Recently there has been significant interest in de-
veloping and analyzing numerical methods for the solution of PDEs on surfaces. We
briefly mention some important developments related to the approach studied in this
paper.

The paper of Dziuk [12] contains the first analysis of a finite element method
(FEM) for the Laplace–Beltrami equation on a stationary surface. In that method
the surface Γ is approximated by a regular family {Γh} of consistent triangulations. It
is assumed that all vertices in the triangulations lie on Γ. The finite element space then
consists of scalar functions that are continuous on Γh and linear on each triangle in
the triangulation Γh. If the surface evolves, then its triangulations and finite element
spaces have to be rebuilt. The method has recently been extended from linear to
higher order finite elements in [9]. An adaptive finite element version of the method
(AFEM) based on linear finite elements and suitable a posteriori error estimators is
treated in [8]. In [13] the approach from [12] has been extended to parabolic equations
on a stationary surface, and in [15] the method is combined with Lagrangian surface
tracking and is generalized to equations on evolving surfaces.
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In order to avoid remeshing and make full use of the implicit definition of the
surface as the zero of a level set function, it was first proposed in [5] to extend the
PDE from the surface to a set of positive Lebesgue measure in R3. The resulting PDE
is then solved in one dimension higher but can be solved on a mesh that is unaligned
to the surface, leading to an Eulerian technique. In that paper, finite difference
approximations on rectangular grids independent of a static surface are considered.
The approach was further developed in [1, 17] for finite difference approximations
including moving surfaces. An FEM based on extension of the surface equation was
proposed and developed in [6]. A related finite element approach was studied in [7]
and [14].

Another new Eulerian technique for the numerical solution of an elliptic equation
posed on a hypersurface in R3 was introduced in the recent paper [22]. The main idea
of the method, defined formally in the next section, is to use finite element spaces
that are induced by the volume triangulations (tetrahedral decompositions) of a bulk
domain in order to discretize the PDE on the embedded surface. However, in contrast
to the Eulerian method from [5] this method does not use an extension of the surface
PDE. It is instead based on a restriction (trace) of the outer finite element spaces to
the discrete surface. This leads to discrete problems for which the number of degrees
of freedom (d.o.f.) conforms with the two-dimensional nature of the surface problem,
similar to the Lagrangian approach from [12]. At the same time, the method is es-
sentially Eulerian as a surface is not tracked by a mesh and may be defined implicitly
as the zero of a level set function. If the surface evolves, one must recompute the
surface mass and stiffness matrices, using the same data structures each time. This
feature is attractive from the implementation point of view. Algebraic properties of
the method were studied in [23].

In [22] it was proved that this surface FEM has optimal order of convergence
in the H1 and L2 norms for elliptic surface PDEs if the volume mesh is uniformly
refined. In the present paper, we study the method for the case of locally refined
meshes. Our main theoretical result is a residual-type a posteriori upper bound for
the finite element error in the H1 norm. We note that the analytical technique in
this paper is largely different from that of [22]. As explained in section 2.6, the latter
appears problematic to extend to the case of locally refined meshes. Our analysis
is also more delicate than standard proofs for the Euclidean case or the previously
studied case of surface FEM with regular surface triangulations (cf. [8]). The main
analytical challenge here is the fact that the surface mesh inherited from the bulk
mesh is highly irregular, so tools from approximation theory, inverse estimates, etc.,
may for the most part only be applied on the bulk mesh.

1.2. Summary of results. For clarity, in this work we consider the Laplace–
Beltrami equation

(1.1) −ΔΓu = f on Γ.

Here Γ is a closed C2 surface embedded in R3, and
∫
Γ f ds = 0 =

∫
Γ u ds are enforced

in order to guarantee existence and uniqueness of solutions to u, respectively. Also,
ΔΓ = ∇Γ ·∇Γ, where ∇Γ is the tangential gradient on Γ. Our results can be extended
to more general elliptic surface equations in a standard way. In this case, generic
constants from the corresponding estimates would depend on constants from the el-
lipticity and continuity conditions for the bilinear form of the elliptic problem at hand.

Next we briefly describe our error estimators. An element T of the surface mesh
is the (arbitrary) intersection of a plane with a tetrahedron S. (Precise definitions
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are given below.) It is natural to question whether the area |T | of the surface element
or the corresponding quantity h2T (with hT = diam(S)) derived from the parent
tetrahedron should be used in order to measure mesh size, since in contrast to the
case of regular meshes it sometimes occurs that |T | � h2T . We accordingly define a
family of residual-type error indicators,

(1.2)

ηp(T ) = Cp

(
|T |1/2−1/ph

2/p
T ‖fh +ΔΓh

uh‖L2(T )

+
∑
e⊂∂T

|e|1/2−1/ph
1/p
T ‖�∇Γh

uh�‖L2(e)

)
, p ∈ [2,∞].

Here uh is the finite element solution defined with respect to an approximation fh to f ,
and e denotes an edge of the element T . When p = 2, this reduces to the expression

η2(T ) = C2(hT ‖fh + ΔΓh
uh‖L2(T ) + h

1/2
T ‖�∇Γh

uh�‖L2(∂T )) in which the diameter
of the outer tetrahedron is used to measure the mesh size. At the other extreme
p = ∞, we have instead the expression η∞(T ) = C∞(|T |1/2‖fh + ΔΓh

uh‖L2(T ) +∑
e⊂∂T |e|1/2‖�∇Γh

uh�‖L2(e)) in which the properties of the surface element T are
used in a sharp fashion to measure local mesh size. For p ∈ [2,∞), we show reliability
up to geometric terms of the a posteriori estimators obtained by suitably summing
these local contributions over the mesh. In our theory the constant Cp blows up as
p → ∞ and the limit case p = ∞ is thus excluded. A major conclusion of this work
is that while taking p > 2 seems to allow for sharper accounting of the variations of
the surface mesh properties, the performance of the coarsest indicators η2 is just as
good as that of the finer indicators ηp, p � 2 when employed in an adaptive mesh
refinement algorithm. More generally, as in the previous works [22] and [23], the
properties of the bulk mesh are seen to govern properties of the surface AFEM.

Local efficiency results in which elementwise error indicators are bounded up to
higher order terms by the finite element error are important because they give theo-
retical justification for using such indicators to selectively refine mesh elements. We
study the question of efficiency by a combination of computation and theory. In sec-
tion 4.2 we provide a partial efficiency result (one that considers only the “volumetric”
portion hT ‖fh +ΔΓh

uh‖L2(T ) of the residual indicators) for the indicator η2 that is
slightly weaker than typical results for Euclidean domains. This estimate rests on a
simple but fundamental observation that helps to explain why the properties of the
outer mesh are inherited by the surface mesh: Even though a given surface triangle
T may be irregular (anisotropic) or have diameter much smaller than that of the
bulk tetrahedron from which it is inherited, there is always a surface element in a
small patch surrounding T which is shape regular and “full size” (i.e., it has diameter
equivalent to hT ).

The irregularity of the mesh prevents us from using standard tools to prove a
corresponding result for the “jump” portion of the residual indicators, so we instead
study their efficiency computationally. We found that when using the local error indi-
cators resulting from the a posteriori estimate for adaptive mesh refinement, our local
indicators indeed satisfy a local efficiency property very similar to the corresponding
Euclidean property. Our numerical examples for a Laplace–Beltrami equation having
solutions with point singularities also confirm the reliability of the error indicators for
any 2 ≤ p ≤ ∞. In addition, employing a simple refinement strategy provides optimal
order convergence in the H1 norm, and the choice of p in (1.2) has essentially no effect
on the observed error decrease even with respect to constants. The latter observation
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reinforces our assertion that properties of the bulk mesh govern the properties of the
surface AFEM.

The remainder of the paper is organized as follows. Section 2 collects necessary
preliminaries and assumptions. The surface FEM is defined here. In section 3 we
define the local error indicator and prove the corresponding error bound (the relia-
bility of the indicator). In section 4 we provide some brief theoretical comments on
local efficiency properties of our error indicators. Numerical examples illustrating the
efficiency of the entire approach are presented in section 5. Some closing remarks are
given in section 6.

2. Preliminaries. In this section we make necessary assumptions on the prop-
erties of the surface Γ and its approximation and also introduce volume and surface
finite element spaces and the FEM for (1.1). Furthermore we discuss the assumptions
on triangulations required for our analysis. Finally, we recall some useful results from
the theory of Sobolev spaces.

2.1. Geometry. We assume that Γ is a closed C2 surface embedded in R3. This
implies the existence of a C2 distance function d : U → R such that Γ = {x ∈ U :
d(x) = 0}. Here U is a tubular neighborhood about Γ of width δ; more precisely
U = {x ∈ R3 : dist(x,Γ) < δ}, where δ is bounded by the reciprocal of the maximum
over Γ of the moduli of all principal curvatures. We assume that d is negative inside
of Γ and positive outside. Thus for x ∈ U , dist(x,Γ) = |d(x)|.

Under these conditions, there is an orthogonal projection p : U → Γ given by
p(x) = x − d(x)ν(x), where ν(x) = ∇d(x) is the unit outward normal for x ∈ Γ.
Otherwise it defines the normal direction to Γ: p(x) lies on Γ, and x−p(x) = d(x)ν(x)
is orthogonal to the tangent plane to Γ at p(x). Finally, let H = D2d = ∇ν be the
Weingarten map. More details of the present formalism can be found in [8, section 2.1].

2.2. Finite element mesh and spaces. The key feature of this paper is that
the finite element discretization of (1.1) is defined relative to an “outer” triangulation,
that is, a volume mesh. Let T be a shape regular simplicial decomposition of a (three-
dimensional) neighborhood of Γ; we assume for notational simplicity that T extends
to R3. We define the set of all tetrahedra intersecting the smooth surface Γ,

TΓ =
⋃

S∈T ,S∩Γ�=∅
S,

and require that TΓ ⊂ U . We additionally require that the mesh T resolves Γ and U
in a manner which is made more precise below. Also, denote by Vh the continuous
piecewise linear functions on T . Let Ih : H1(R3) → Vh be the Scott–Zhang interpola-
tion operator, and given S ∈ T , let ωS be the patch of tetrahedral elements touching
S. We furthermore denote by ω′

S the patch of elements touching ωS and by ω′′
S the

patch of elements touching ω′
S .

We now summarize standard properties of Ih which we will need in our arguments.
In the lemma below and further on in the paper, we shall write a � b when a ≤ Cb for
a constant C depending possibly on the shape regularity of T and geometric properties
of Γ, but not on the local mesh size of T .

Lemma 2.1. Assume that u ∈ H3/2(U). Then given S ∈ T ,

(2.1) ‖u− Ihu‖L2(S) � h
3/2
T ‖u‖H3/2(ωS)

and

(2.2) ‖u− Ihu‖H1(S) � h
1/2
T ‖u‖H3/2(ωS).
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Above we have denoted by H3/2 the standard fractional-order Sobolev norm. We
give a precise definition below. The above approximation results are entirely standard
except for the presence of a fractional-order Sobolev space. In the case of fractional-
order Sobolev spaces one gets (2.1) and (2.2) from Theorem 5.1 of [?] (cf. section 6
and Remark 7.3 of [11]).

For computational purposes one needs a discrete approximation Γh of the smooth
surface Γ. A distinct feature of the present approach is that no additional triangulation
or meshing are required for building Γh. To this end, let dh : C(U) → Vh be the
piecewise linear Lagrange interpolant of the distance function d on the volume mesh
TΓ. The computational surface Γh is defined to be the 0-level set of the approximate
distance function dh. Note that Γh is a closed W 1

∞ surface composed of a set of
polygonal faces F . Each face T ∈ F is the intersection of a plane with a tetrahedron
S ∈ T and thus may be either a triangle or a quadrilateral. If T is a quadrilateral,
then T is divided into two triangles, so without loss of generality we may assume
that T is a triangle. Given T ∈ F , let ST be the tetrahedron containing T , and let
hT = diam(ST ). Further, we define the set of all tetrahedra intersecting the discrete
surface Γh:

TΓh
=

⋃
S∈T :S∩Γh �=∅

S.

Note that TΓh
⊂ TΓ since S ∩ Γh �= ∅ implies that dh and thus d changes sign on S.

However, in general TΓh
�= TΓ, since d may change sign on S without dh doing so.

Remark 1. More generally, Γh may be a polygonal approximation to Γ consistent
with the volume triangulation T (cf. [22]). Moreover, in some applications Γ may not
be known at all, and Γh may, for example, be taken to be the 0-level of a discrete
function solving a discrete level set equation on a volume mesh.

2.3. Surface FEM. The key surface finite element space is V Γ
h , the space of

functions obtained by restricting functions in Vh to Γh. Then the surface FEM intro-
duced in [22] reads as follows: Find the finite element solution uh ∈ V Γ

h satisfying

(2.3)

∫
Γh

∇Γh
uh∇Γh

vh dsh =

∫
Γh

fhvh dsh ∀ vh ∈ V Γ
h .

Here fh is an approximation to f defined on Γh, and we require the side conditions∫
Γh
uh dsh =

∫
Γh
fh dsh = 0 in order to ensure existence and uniqueness of solutions

to (2.3). Note that although the method (2.3) employs the outer (volume) finite
element space Vh (through its trace V Γ

h on Γh), only nodal values of functions in Vh
corresponding to nodes lying adjacent to Γh contributed to V Γ

h . Thus, the size of
the resulting linear algebraic system essentially corresponds to the two-dimensional
nature of the original problem (1.1).

Two facts complicate the analysis of the FEM in (2.3). First, even though T
is shape regular, the surface triangulation F may contain triangles with arbitrarily
small angles. Second, it is possible that diam(T ) � hT even if T is shape regular.
Because of these facts, we always seek to apply approximation results on the volume
mesh T and not on the surface mesh F .

The following result for the error of the method (2.3) is known [22]. Assume for
a moment that the volume mesh is quasi-uniform and maxS∈T diam(S) ≤ h. Let
u ∈ H2(Γ) be the weak solution of (1.1) and uh ∈ V Γ

h the solution of (2.3) with
fh = fe − cf , where cf is such that

∫
Γh
fh ds = 0; then it holds that

(2.4) ‖ue − uh‖L2(Γh) + h‖∇Γh
(ue − uh)‖L2(Γh) ≤ c h2 ‖f‖L2(Γ),
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where the constant c is independent of f and h and ue is the extension of u from Γ
as defined in the next paragraph. Thus for a quasi-uniform volume mesh the error
estimate for the surface FEM resembles the standard result for the usual Courant finite
elements. In the present paper we are not assuming the quasi-uniformity property
and allow the volume meshes to be locally refined.

2.4. Correspondence between Γ and Γh. In this section we briefly record
notation and facts that will allow us to easily transfer quantities between the surfaces
Γ and Γh. We refer to [8] for more details regarding both the definitions we make here
and practical computation of various geometric quantities. First, we will routinely
use lifts and extensions of functions. Given ψ ∈ H1(Γ), we denote by ψe ∈ H1(U) its
extension from Γ along normals, i.e., the function defined by ψe(x) = ψ(p(x)); ψe is
constant in the direction normal to Γ. Given ψh ∈ H1(Γh), x ∈ Γh, and p(x) ∈ Γ, we
let ψ�h(p(x)) = ψh(x) be the lift of ψh to Γ.

Given x ∈ Γ, let P = I − ν(x) ⊗ ν(x) be the projection onto the tangent plane
to Γ at x. Note that ν, and thus P, is constant in U in the direction normal to Γ.
Similarly, given x ∈ Γh, we let Ph(x) = I− νh(x) ⊗ νh(x) be the projection onto the
tangent plane to Γh at x; here νh is the outward-pointing normal to Γh.

Let ds and dsh denote surface measure on Γ and Γh, respectively. We then
define μh to be the ratio of these measures or, more precisely, for x ∈ Γh we have
μh(x) dsh(x) = ds(p(x)). Then

∫
Γ v(x) ds =

∫
Γh
ve(x)μh(x) dsh, and

∫
Γh
vh(x) dsh =∫

Γ v
�
h(x)

1
μh(x)

ds. We also define the transfer operator Ah for the Dirichlet form

by Ah(x) = A�
h(p(x)) = 1

μh(x)
[P(x)][(I − dH)(x)][Ph(x)][(I − dH)(x)][P(x)]. Then∫

Γh
∇Γh

vh∇Γh
ψh dsh =

∫
Γ A

�
h∇Γv

�
h∇Γψ

�
h ds.

2.5. A mesh restriction. We first introduce further notation. A tetrahedron
S ∈ T in the outer (also called bulk or volume) triangulation may or may not cor-

respond to a flat surface element T ∈ F . Given S ∈ T , we let T̃S = S ∩ Γ be the
curved “element” intersecting S. Recall that for the discrete surface element T ∈ F
the corresponding volume element is denoted by ST . We shall denote by T̃ the in-
tersection of ST with Γ, that is, T̃ = T̃ST . Note carefully that T̃S may be nonempty
even if S does not contain any flat surface element lying in F and that given T ∈ F
it is generally true that p(T ) �= T̃ .

In our proofs below we will apply approximation results for curved surface ele-
ments T̃ , that is, error estimates for the difference between functions on T̃ and the
restriction of polynomials defined on ST to T̃ . In contrast, the natural residual equa-
tions for our surface FEM involve comparing polynomials on flat elements T with
the extension ψe of ψ ∈ H1(Γ). We shall have to account for this difference in our
estimates, which becomes somewhat technical because as noted above there is not an
a priori guarantee that p(T ) ⊂ ST . In order to control the number of volume elements
that p(T ) can touch, we make the following assumption.

Assumption 1. For a discrete surface element T ∈ F , let ΩT = {y : y = tx+(1−
t)p(x) for some 0 ≤ t ≤ 1, x ∈ T }. That is, ΩT is the set of all points that lie on a
line segment connecting some point x ∈ T and its image p(x) ∈ Γ. We assume that

(2.5) ΩT ⊂ ωST .

We will also need the following similar assumption.
Assumption 2. Let P be the plane containing a given surface element T ∈ F .

Then

(2.6) p(ωST ∩ P) ⊂ ω′
ST
.
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Assumptions 1 and 2 are always satisfied if Γ is sufficiently resolved by the outer
triangulation. To verify this assertion for Assumption 1, note that ΩT consists of
points lying a distance no more than c1h

2
T from T for some c1 > 0, since for x ∈ T

we have |d(x)| = |d(x) − dh(x)| ≤ c1h
2
T by standard properties of the Lagrange

interpolant. On the other hand, shape regularity of T implies local quasi-uniformity
of T , which in turn implies that the patch ωST contains all points lying a distance at
most C2hT from T for some C2 > 0. Here C2 depends on shape regularity properties
of the outer triangulation. Thus Assumption 1 is satisfied when c1h

2
T ≤ C2hT , i.e.,

when hT ≤ C2

c1
. Note that C2

c1
depends on geometric properties of Γ, properties of the

Lagrange interpolant, and the shape regularity of T . We do not attempt to bound c1
C2

,
though it should in principle be possible to do. One could also check this assumption
in practice if desired without too great of difficulty. A similar argument holds for
Assumption 2 after noting that by standard properties of the Lagrange interpolant
|d(x)| ≤ c̃1h

2
T for x ∈ P ∩ ωST .

We now state an elementary lemma which gives a bound for the difference between
the restriction of finite element functions ψh ∈ Vh to Γh (that is, ψh|Γh

) and their
extensions from Γ to Γh (that is, ψeh|Γh

). Note that below we bound the pointwise
quantity |ψh(x) − ψeh(x)| defined on the surface Γh by an L2 term over the volume
patch ωST .

Lemma 2.2. Let ψh ∈ Vh and T ∈ F . Then for x ∈ T ,

(2.7) |ψh(x) − ψeh(x)| � h
1/2
T ‖∇ψh‖L2(ωST

).

Proof. Let T ∈ F . Let also g(t) = ψh(tx + (1 − t)p(x)), 0 ≤ t ≤ 1, so that
g(0) = ψh(p(x)) and g(1) = ψh(x). Noting that for x /∈ Γ ν(x) = 1

d(x)(p(x) − x) and

thus g′(t) = ∇ψh(tx + (1 − t)p(x)) · (x − p(x)) = −d(x)∇ψh(tx + (1 − t)p(x)) · ν(x),
we have for any x ∈ T

|ψh(x)− ψeh(x)| = |ψh(x) − ψh(p(x))| = |g(0)− g(1)| =
∣∣∣∣∫ 1

0

g′(t) dt

∣∣∣∣
=

∣∣∣∣d(x)∫ 1

0

∇ψh(tx+ (1 − t)p(x)) · ν(x) dt
∣∣∣∣

� |d(x)|‖∇ψh‖L∞(ΩT ).

Using Assumption 1 and recalling that |d(x)| ≤ Ch2T for x ∈ T , noting that hT � hT ′

for T ′ ⊂ ωST by shape regularity of T , and employing an inverse estimate, we proceed:

(2.8) |ψh(x) − ψeh(x)| ≤ Ch2T ‖∇ψh‖L∞(ωST
) ≤ Ch

1/2
T ‖∇ψh‖L2(ωST

) ∀ x ∈ T .

2.6. Sobolev spaces, extensions, and imbeddings. In [22] a priori error esti-
mates for the surface FEM defined above were proved assuming quasi-uniform volume
meshes. An important tool in this analysis was the use of the canonical extension ue of
the solution to elliptic PDE from smooth surface, i.e., the extension which is constant
in the normal direction. One major technical difficulty with extending the techniques
of [22] for the case of a posteriori estimates is that local approximation estimates
from [22] (see, e.g., (3.26) on p. 3343) involve on the right-hand side a norm of a
function over the normal projection onto the smooth surface Γ of a volume element
intersecting Γ. If the outer tetrahedrons are quasi-uniform, then there is finite over-
lap of such projections over all tetrahedron intersecting the surface, so these local
norms on the right-hand of an inequality sum up to a global norm. However, if one
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allows the tetrahedrons to be refined adaptively to a point or a line on the smooth
surface, then it is impossible to show a uniform bound on the number of the outer
tetrahedrons whose projections onto Γ have nonempty overlap. Therefore “generic”
constants on the right-hand side may depend on the refinement level. Since we want
our a posteriori estimates to remain useful in the adaptive case, we take an approach
different from [22]. The new approach relies on an extension operator from H1(Γ) to
H3/2(R3).

Next we recall fractional-order Sobolev spaces. Given a subdomain Ω of Rn, and
1 ≤ p < ∞, we let W s

p (Ω) be the standard Sobolev space having Lp index p and
smoothness index s when s is a nonnegative integer. In the general case, let s = s̄+θ,
where s̄ is an integer and 0 < θ < 1. We then define the seminorm

(2.9) |u|pW s
p (Ω) =

∑
|α|=s̄

∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|p
|x− y|n+θp dx dy

and the norm

(2.10) ‖u‖W s
p (Ω) =

(
‖u‖pW s̄

p (Ω) + |u|pW s
p (Ω)

)1/p
;

cf. [18, Definition 1.3.2.1]. We will use the above definitions with p = 2 only, and
accordingly set Hs(Ω) =W s

2 (Ω).
We now state the following important lemma.
Lemma 2.3. Let Γ be a C2 surface as above. Then given ψ ∈ H1(Γ), there exists

ψ̃ ∈ H3/2(R3) such that

(2.11) ‖ψ̃‖H3/2(R3) � ‖ψ‖H1(Γ), ψ̃|Γ = ψ.

Proof. Take ψ̃ to be the harmonic extension of ψ from Γ to R3. The desired result
is stated in [20, p. 198].

Below ψ will generally be fixed, and we shall denote by ψ both an H1 function
on Γ and its bounded H3/2 extension to R3.

Remark 2. The a posteriori error analysis below could be substantially simplified
if we could prove the uniform boundedness over a whole family of surfaces {Γh} of
the corresponding H3/2 extension operators. In particular, let T0 be an initial volume
mesh, and let Γ0 be the corresponding discrete surface approximation. Also let T be
the set of all shape regular meshes that can be derived by systematic refinement (e.g.,
newest-vertex bisection) of T0, and let ΓT be the corresponding family of discrete
approximations of Γ. It is reasonable to conjecture that ΓT is a uniform family of
approximations to Γ in the Lipschitz norm (though we do not prove this), and the
bounded extension result (2.11) only requires that Γ be Lipschitz. Thus we conjecture
that the constant in (2.11) is in fact uniformly bounded over ΓT. If this conjecture is
true, one can (i) avoid entirely two flattening arguments that we employ below and
also thereby avoid the assumptions (2.5) and (2.6) above on the resolution of Γ by the
mesh T , and (ii) avoid using larger patches of elements; cf. the definition of ω′

S and
ω′′
S in section 2.2. However, proving (2.11) uniformly over ΓT would involve proving

several nontrivial results from harmonic analysis also with uniform constants, and we
do not pursue such a uniform bound.

Next we state Sobolev imbedding and trace results. We first state an imbedding
result that will allow us to trace the dependence of imbedding constants on an in-
tegrability index p. This result is fairly standard for n = 2 and can be derived, for
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example, from [16, p. 158]. For fractional-order spaces (n = 1), the result can be
found in [21].

Lemma 2.4. Let 2 ≤ p <∞, and assume that u ∈ H
n/2
0 (Rn), n = 1, 2. Then

(2.12) ‖u‖Lp(Rn) �
√
p|u|Hn/2(Rn).

We next state trace results; the lemma below contains special cases of [2, Theo-
rem 7.58].

Lemma 2.5. Let s > 0 and 1 ≤ k ≤ n. Then if u ∈ Hs+(n−k)/2(Rn),

(2.13) ‖u‖Hs(Rk) � ‖u‖Hs+(n−k)/2(Rn).

Finally we state extension results. The result below is found, for example, in The-
orem 1.4.3.1 of [18]. (Note that the unit simplex has uniformly Lipschitz boundary.)

Lemma 2.6. Let K̂ be the unit simplex in Rn, n = 2, 3. Then there exists an
extension operator E : Hs(K̂) → Hs(Rn) such that

(2.14) ‖Ev‖Hs(Rn) � ‖v‖Hs(K̂), s = 1, 3
2
, v ∈ Hs(K̂).

3. A posteriori error estimate.

3.1. Error indicators. The basic philosophy of the error analysis of the surface
FEM studied here is to employ approximation properties on the outer triangulation.
From this standpoint, it appears natural to consider an error indicator

(3.1) η2(T ) = hT ‖fh +ΔΓh
uh‖L2(T ) + h

1/2
T ‖�∇Γh

uh�‖L2(∂T )

and corresponding error estimator (
∑

T∈F η2(T )
2)1/2 for the energy norm. As we

show below, this estimator reliably estimates the energy error up to geometric terms,
and numerical tests also indicate that it possesses a certain local efficiency property.

Since the discrete surface Γh may intersect the outer triangulation in an arbitrary
way, a surface element edge length |e| and area |T | are sometimes much smaller than
hT and h2T , respectively. We seek to take this fact into account in our estimator in
the sharpest fashion possible. Given p ∈ [2,∞], we thus define the error estimator

(3.2)

ηp = Cp

(
|T |1/2−1/ph

2/p
T ‖fh +ΔΓh

uh‖L2(T )

+
∑
e⊂∂T

|e|1/2−1/ph
1/p
T ‖�∇Γh

uh�‖L2(e)

)
.

Taking p = 2, we see that η2 in (3.1) and (3.2) coincide up to a constant factor. At
the same time, it would be desirable to consider the other extreme case of p = ∞.
However, proving reliability of the resulting error estimator

(3.3)

(∑
T∈F

|T |‖fh +ΔΓh
uh‖2L2(T ) +

∑
e⊂∂T

|e|‖�∇Γh
uh�‖2L2(e)

)1/2

using our techniques below would require that certain limit cases of Sobolev embed-
dings hold. They do not, as, for example, (2.12) demonstrates. Stated differently, in
our arguments Cp blows up as p→ ∞. Thus although numerical experiments suggest
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that p = ∞ remains a reasonable choice, we are unable to prove that the estimator
in (3.3) is reliable, so in the analysis below we always assume p ∈ [2,∞).

Remark 3. An even finer estimator can be derived by noting that p may be
chosen differently on each element T and on each edge e and that from (2.12) we have
Cp =

√
p. Let T ∈ F have edges each of which is denoted by e, and let pT , pe ∈ [2,∞],

where again pe may be different for each edge of T . Letting p̃ be the vector consisting
of pT and the pe, we then define the elementwise error indicator

(3.4)

ηp̃(T ) =
√
pT |T |1/2−1/pT h

2/pT
T ‖fh +ΔΓh

uh‖L2(T )

+
∑
e⊂∂T

√
pe|e|1/2−1/peh

1/pe
T ‖�∇Γh

uh�‖L2(e).

Seeking values of pT and pe which minimize ηp̃(T ) yields pT = max{2, 2 ln(h2T /|T |)}
and pe = max{2, 2 ln(hT /|e|)}.

In order to keep notation manageable we will prove up to geometric terms the
reliability of the H1 error estimator (

∑
T∈F η

2
p(T ))

1
2 , where p has a fixed value in

[2,∞) and Cp =
√
p. It will be clear from our proofs, however, that p may be chosen

independently on each element T and face e. We do not treat the more complicated
case (3.4) separately or otherwise consider it further.

3.2. Statement of results. We now state our main theoretical result giving
reliability up to geometric terms of estimators derived from our error indicators.

Theorem 3.1. Suppose that Γ is a closed, compact C2 surface embedded in
R3 as in section 2.1 and that all assumptions concerning the finite element mesh in
sections 2.4 and 2.5 are satisfied. Let u and uh be the solutions to (1.1) and (2.3),
respectively. Then for p ∈ [2,∞)

(3.5)
‖∇Γ(u− u�h)‖L2(Γ) ≤ C1

(∑
T∈F

ηp(T )
2

)1/2

+ ‖Bh∇Γh
uh‖L2(Γh) + C2‖

√
μhf

e − fh/
√
μh‖L2(Γh).

Here C1 depends on the shape regularity of the outer mesh T and the geometric prop-
erties of Γ, Bh =

√
μh[P−Ah][I−dH]−1[I−(νh⊗ν)/(νh ·ν)], and C2 is the Poincaré

constant for Γ, i.e., ‖ψ‖L2(Γ) ≤ C2‖∇Γψ‖L2(Γ) when
∫
Γ
ψ ds = 0.

We now briefly compare our results with those in [8], where a posteriori esti-
mates for FEM based on shape-regular surface triangulations were proved. First, the
constants corresponding to C1 in [8] are locally defined, and their dependence on geo-
metric properties of Γ is computed explicitly. While C1 here depends on roughly the
same quantities as the corresponding constants in [8], its dependence on geometry is
much more complicated (depending, for example, on the constant hidden in the H3/2

extension inequality (2.11)), and we do not attempt to trace it.
The last two terms in (3.5) control the error induced by discretizing Γ and are

essentially the same as the corresponding terms encountered in [8]. ‖Bh∇Γh
uh‖L2(Γh)

is of higher order (O(h2) in an a priori sense), and the operator Bh explicitly and
locally measures dependence on geometry. The term ‖√μhfe − fh/

√
μh‖L2(Γh) mea-

sures the deviation of fh from fe in an appropriate sense; in particular we see that
taking fh = μhf

e eliminates this term. Note also that |1 − μh| � h2, so that taking
fh = fe also results in this term being of higher order. It should also be noted that
the fact that the geometric terms are of higher order in hT is not affected by the
lack of regularity of the surface mesh, since the order of the corresponding geometric



1634 ALAN DEMLOW AND MAXIM A. OLSHANSKII

properties is determined by the error d− dh in the Lagrange interpolant of d on the
outer mesh. Because of the nearly complete correspondence of these terms with the
similar terms in [8], we do not study them in any further detail below.

3.3. Residual equation. Consider the surface finite element error eh = ue−uh
on Γh. In our analysis we prove an a posteriori bound for the lift of eh on Γ, i.e.,
e�h = u− u�h on Γ. Recalling that

(3.6) ‖∇Γe
�
h‖L2(Γ) = sup

ψ:
‖∇Γψ‖L2(Γ) = 1∫
Γ
ψ = 0

∫
Γ

∇Γe
�
h∇Γψ ds,

we let ψ ∈ H1(Γ) with ‖∇Γψ‖L2(Γ) = 1,
∫
Γ ψ ds = 0, and then find as in (3.3.5) of [8]

that for any ψh ∈ V Γ
h it holds that∫

Γ

∇Γe
�
h∇Γψ ds =

∫
Γh

(fh +ΔΓh
uh)(ψ

e − ψh) dsh

− 1

2

∑
T∈F

∫
∂T

�∇Γh
uh�(ψ

e − ψh) dr

−
∫
Γ

[P−A�
h]∇Γu

�
h∇Γψ ds+

∫
Γh

(feμh − fh)ψ
e dsh.

(3.7)

In the above, let e be an edge shared by elements T1 and T2 which have normals �n1

and �n2, respectively. Then �∇Γh
uh� = ∇Γh

uh|T1 · �n1 −∇Γh
uh|T2 · �n2 is the jump in

the normal derivative across e.
We now fix p with 2 ≤ p < ∞ and let q be the conjugate index satisfying

1
p+

1
q = 1. Since it should not cause confusion we also denote by ψ the H3/2 extension

of ψ to R3 given by Lemma 2.3. Further, we take ψh = Ihψ in (3.7). Using Hölder’s
inequality (‖fh+ΔΓh

uh‖Lq(T ) � |T |1/2−1/p‖fh+ΔΓh
uh‖L2(T ), and ‖�∇Γh

uh�‖Lq(e) �
|e|1/2−1/q‖�∇Γh

uh�‖L2(e)), we compute

(3.8)

∫
Γh

(fh +Δuh)(ψ
e − Ihψ) dsh −

1

2

∑
T∈F

∫
∂T

�∇Γh
uh�(ψ

e − Ihψ) dr

�
∑
T∈F

[
‖fh +Δuh‖Lq(T )‖ψe − Ihψ‖Lp(T )

+
∑
e⊂∂T

‖�∇Γh
uh�‖Lq(e)‖ψe − Ihψ‖Lp(e)

]

�
∑
T∈F

ηp(T )p
−1/2

(
h
−2/p
T ‖ψe − Ihψ‖Lp(T ) +

∑
e⊂∂T

h
−1/p
T ‖ψe − Ihψ‖Lp(e)

)

�
(∑
T∈F

ηp(T )
2

)1/2(
p−1

∑
T∈F

[
h
−4/p
T ‖ψe − Ihψ‖2Lp(T )

+
∑
e⊂∂T

h
−2/p
T ‖ψe − Ihψ‖2Lp(e)

])1/2

.

The volume term ‖ψe − Ihψ‖Lp(T ) and the edge terms ‖ψe − Ihψ‖Lp(e) on the right-
hand side of (3.8) are treated separately below.
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3.4. Bounding the volume term. We first bound the term p−1h
−4/p
T ‖ψe −

Ihψ‖2Lp(T ). Using (2.7) and noting that |T | ≤ Ch2T , we compute

(3.9)

h
−2/p
T ‖ψe − Ihψ‖Lp(T )

� h
−2/p
T (‖ψe − (Ihψ)

e‖Lp(T ) + ‖(Ihψ)e − Ihψ‖Lp(T ))

� h
−2/p
T (‖ψe − (Ihψ)

e‖Lp(T ) + |T |1/p‖(Ihψ)e − Ihψ‖L∞(T ))

� h
−2/p
T ‖ψe − (Ihψ)

e‖Lp(T ) + ‖(Ihψ)e − Ihψ‖L∞(T )

� h
−2/p
T ‖ψe − (Ihψ)

e‖Lp(T ) + h
1/2
T ‖∇(Ihψ)‖L2(ωST

).

Here (Ihψ)
e denotes the extension of the trace of Ihψ on Γ, that is, (Ihψ)

e =

([Ihψ]|Γ)e. In order to bound the term h
−2/p
T ‖ψe−(Ihψ)

e‖Lp(T ), we write ρ = ψ−Ihψ
and use (2.5) in order to find that

(3.10) ‖ψe − (Ihψ)
e‖Lp(T ) = ‖ρe‖Lp(T ) � ‖ρ‖Lp(p(T )) ≤

∑
S∈ωST

‖ρ‖Lp(T̃S).

Next we define a reference mapping which flattens T̃S for a given element S ∈ T .
Fixing S ∈ T and letting K̂ be the reference unit simplex in R3 as above, let ϕ : K̂ →
S be an affine mapping with ‖∇ϕ‖ � hT and ‖(∇ϕ)−1‖ � h−1

T . Such a mapping exists
because of the shape regularity of the outer triangulation. We next recall that because
Γ is a C2 surface, there exists a C2 chart Φ̃ with uniformly bounded derivatives and
for which Φ̃−1 has uniformly bounded derivatives, which maps an O(1)-neighborhood

N of T̃S in R3 to R3 and which has the property that Γ ∩ N lies in a plane. It
is not difficult to extend Φ̃ to all of R3 so that the resulting extension has bounded
derivatives, has a bounded inverse, and flattens an O(1)-neighborhood of T̃S . We then

define a corresponding flattening map for the reference space by Φ = ϕ−1 ◦ Φ̃◦ϕ. It is
easy to check that then Φ and Φ−1 are also uniformly bounded in C2 and Φ(ϕ−1(T̃S))
is flat.

Define ρ̂ on K̂ by ρ̂ = ρ ◦ ϕ. Let also μ be a cutoff function which is 1 on a
neighborhood of K̂ and 0 outside of a fixed ball about K̂ and which is uniformly
bounded in C2. Given S ∈ T and recalling the definition of the extension operator E
from Lemma 2.6 and preceding, we then compute

(3.11)

h
−2/p
T ‖ρ‖Lp(T̃S) � ‖ρ̂‖Lp(ϕ−1(T̃S))

= ‖Eρ̂‖Lp(ϕ−1(T̃S))

� ‖Eρ̂ ◦ Φ−1‖Lp(Φ(ϕ−1(T̃S)))

� ‖μ(Eρ̂ ◦ Φ−1)‖Lp(P).

Here P is a plane in R3 containing the flattened surface element Φ(ϕ−1(T̃S)). Next we
apply (2.12) with p as above and n = 2 and then apply (2.13) with k = 2, n = 3, and
s = 1 (so that s+ (n− k)/2 = 3/2). Using the smoothness of Φ and η, and recalling
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from Lemma 2.6 that E is a bounded extension operator, we thus compute that

(3.12)

‖μ(Eρ̂ ◦ Φ−1)‖Lp(P) �
√
p‖μ(Eρ̂ ◦ Φ−1)‖H1(P)

� √
p‖Eρ̂ ◦ Φ−1‖H1(P)

� √
p‖Eρ̂ ◦ Φ−1‖H3/2(R3)

� √
p‖Eρ̂‖H3/2(R3)

� √
p‖ρ̂‖H3/2(K̂).

Noting that ∇Îhψ is constant on the reference element K̂, we find that ‖ρ̂‖H3/2(K̂) =

‖ ̂ψ − Ihψ‖H1(K̂)+ |ψ̂|H3/2(K̂). Applying a scaling argument and then employing (2.1)

and (2.2) yields

(3.13)

‖ρ̂‖H3/2(K̂) � h
−3/2
T ‖ψ − Ihψ‖L2(S) + h

−1/2
T ‖∇(ψ − Ihψ)‖L2(S)

+ ‖ψ‖H3/2(ωS)

� ‖ψ‖H3/2(ωS).

Carrying out a similar argument for each S ∈ ωST and collecting the resulting
bounds (3.13), (3.12), and (3.11) into (3.10) yields

(3.14) h
−2/p
T ‖ψe − (Ihψ)

e‖Lp(T ) �
√
p‖ψ‖H3/2(ω′

ST
).

Noting from (2.2) and the fact that hT � 1 that h
1/2
T ‖∇(Ihψ)‖L2(ωST

) � ‖∇ψ‖L2(ω′
ST

),

we finally insert this inequality and (3.14) into (3.9) in order to obtain

(3.15) p−1/2h
−2/p
T ‖ψe − Ihψ‖Lp(T ) � ‖ψ‖H3/2(ω′

ST
).

Exploiting finite overlap of the patches ω′
ST

and using (2.11), we finally obtain∑
T∈F

p−1h
−4/p
T ‖ψe − Ihψ‖2Lp(T ) � ‖ψ‖2H3/2(R3) � ‖ψ‖2H1(Γ)(3.16)

� ‖∇Γψ‖2L2(Γ)
= 1.

The last inequality in (3.16) holds thanks to the condition
∫
Γ
ψ ds = 0.

3.5. Bounding the edge terms. We now bound the edge terms in (3.8),

p−1h
−2/p
T ‖ψe − Ihψ‖2Lp(e)

. Assume that e is an edge of the element T ∈ F . We

begin by again applying Hölder’s inequality and (2.7) to compute

(3.17)

h
−1/p
T ‖ψe − Ihψ‖Lp(e) � h

−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) + ‖(Ihψ)e − Ihψ‖L∞(e)

� h
−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) + h
1
2

T ‖∇(Ihψ)‖L2(ωST
)

� h
−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) + ‖ψ‖H3/2(ωST
).

Observe next that while Φ(ϕ−1(T̃ )) is flat (a subset of a plane), it is not necessarily
true that Φ(ϕ−1(p(e))) is a line segment. We must thus apply a somewhat different
flattening argument than above. Let P now be the plane containing the (flat) element
T containing the edge e. Although the element T itself may have diameter � hT , the
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shape regularity of T guarantees that there is a shape regular triangle V lying in P

but not necessarily in F such that diam(V ) is equivalent to hT and T ⊂ V ⊂ ωST .
Equation (2.6) of Assumption 2 and the latter inclusion also imply that p(V ) ⊂ ω′

ST
.

The normal projection p : V → Γ has uniformly bounded gradient on V with
(∇p)−1 uniformly bounded on any tangent plane of p(V ), i.e., p is a smooth diffeo-

morphism on V . Let now ϕ : V̂ → V be a standard affine reference transformation,
where V̂ is the reference triangle in R2. Because V is shape regular with diameter
hT , we have ‖∇ϕ‖ � hT and ‖∇ϕ−1‖ � h−1

T . Writing ρ = ψ − Ihψ and ρ̂e = ρe ◦ ϕ
as before, we then have

(3.18) h
−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) � ‖ρ̂e‖Lp(ϕ−1(e)).

We now use a trace inequality in order to bound the one-dimensional edge term
by a two-dimensional norm. Let μ be a cutoff function which is 1 on V̂ and 0 outside
of a fixed ball containing V̂ and which is uniformly bounded in C2. We first apply
the extension operator described in Lemma 2.6 and then apply (2.12) with n = 1 and
p as above. Following that, we apply the trace inequality (2.13) with k = 1, n = 2,
and s = 1/2 (so that s + (n − k)/2 = 1) and then finally the bound (2.14) for the

extension operator E. Letting L̂ be the line containing ϕ−1(e), we thus obtain

(3.19)

‖ρ̂e‖Lp(ϕ−1(e)) � ‖μEρ̂e‖Lp(L̂)

� √
p‖μEρ̂e‖H1/2(L̂)

� √
p‖μEρ̂e‖H1(R2)

� √
p‖Eρ̂e‖H1(R2)

� √
p‖ρ̂e‖H1(V̂ ).

Combining (3.18) and (3.19) with a scaling argument yields

(3.20) p−1/2h
−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) � h−1
T ‖ρe‖L2(V ) + ‖∇Pρ

e‖L2(V ).

Recall next that from Assumption 2 it follows that p(V ) ⊂ ω′
ST

. Using the
equivalence of norms on V and p(V ), we thus have

(3.21) h−1
T ‖ρe‖L2(V ) + ‖∇Pρ

e‖L2(V ) �
∑

S∈ω′
ST

h−1
T ‖ρ‖L2(T̃S) + ‖∇Γρ‖L2(T̃S).

We next compute as in (3.11) (with p = 2 and taking into account the fact that
∇ρ̂ is equivalent to h−1

T ∇Γh
ρ), employ (2.13) with k = 2, n = 3, and s = 1 (so

s+ (n− k)/2 = 3/2), and then recall (2.14) to obtain for S ∈ ω′
ST

(3.22)
‖∇Γρ‖L2(T̃S) � ‖Eρ̂ ◦ Φ−1‖H1(Φ(ϕ−1(T̃S))) � ‖Eρ̂ ◦ Φ−1‖H3/2(R3)

� ‖ρ̂‖H3/2(K̂) � ‖ψ‖H3/2(ωS).

The last inequality in (3.22) was shown in (3.13). Employing (3.11), (3.12), and (3.13)
also directly yields

(3.23) h−1
T ‖ρ‖L2(T̃S) � ‖ψ‖H3/2(ωS).

Inserting (3.23) and (3.22) into (3.21) and finally into (3.20) yields

(3.24) p−1/2h
−1/p
T ‖ψe − (Ihψ)

e‖Lp(e) � ‖ψ‖H3/2(ω′′
ST

),
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which when combined with (3.17) yields

(3.25) p−1/2h
−1/p
T ‖ψe − Ihψ‖Lp(e) � ‖ψ‖H3/2(ω′′

ST
).

Employing the finite overlap of the patches ω′′
ST

finally yields

∑
T∈F

p−1
∑
e⊂∂T

h
−2/p
T ‖ψe − Ihψ‖2Lp(e)

� ‖ψ‖2H3/2(R3) � ‖ψ‖2H1(Γ)(3.26)

� ‖∇Γψ‖2L2(Γ)
= 1.

3.6. Completing the proof. Inserting (3.16) and (3.26) into (3.8), we obtain

(3.27)

∫
Γh

(fh +Δuh)(ψ
e − Ihψ̃) dsh−

1

2

∑
T∈F

∫
∂T

�∇Γh
uh�(ψ

e − Ihψ̃)dr

�
(∑
T∈F

ηp(T )
2

)1/2

.

We recall identity (2.2.19) from [8], ∇Γu
�
h = [I − dH]−1[I − νh⊗ν

νh·ν ]∇Γuh, so that

applying Hölder’s inequality and recalling that ‖∇Γψ‖L2(Γ) = 1 we obtain

(3.28)

∫
Γ

[P−A�
h]∇Γu

�
h∇Γψ ds ≤ ‖[P−A�

h]∇Γu
�
h‖L2(Γ)‖∇Γψ‖L2(Γ)

= ‖Bh∇Γh
uh‖L2(Γh).

Finally,

(3.29)

∫
Γh

(feμh − fh)ψ dsh ≤ ‖√μhfe − fh/
√
μh‖L2(Γh)‖

√
μhψ

e‖L2(Γh)

= ‖√μhfe − fh/
√
μh‖L2(Γh)‖ψ‖L2(Γ)

≤ C2‖
√
μhf

e − fh/
√
μh‖L2(Γh)‖∇Γψ‖L2(Γ)

= C2‖
√
μhf

e − fh/
√
μh‖L2(Γh).

Inserting (3.27), (3.28), and (3.29) into (3.7) completes the proof of Theorem 3.1.

4. Comments on efficiency.

4.1. Standard efficiency results. We begin by quoting efficiency results (a
posteriori lower bounds) typical for residual-type error estimators for elliptic problems.
Assuming momentarily that u and uh solve an elliptic problem and the corresponding
finite element equations, respectively, on a Euclidean domain, a standard result is

(4.1)

hT ‖f +Δuh‖L2(T )+h
1/2
T ‖�∇uh�‖L2(∂T )

� ‖∇(u− uh)‖L2(ωedge,T ) +
∑
T ′∈ωT

hT ‖f − fT ′‖L2(T ′).



A SURFACE AFEM BASED ON VOLUME MESHES 1639

Here ωedge,T is the patch of all elements sharing at least an edge with T and fT is
a suitable polynomial approximation to f on T , e.g., the average value of f over T
in the case of piecewise linear finite element spaces. hT ‖f − fT ′‖L2(T ′) is the data
oscillation term and is of higher order so long as f is piecewise smooth on the mesh.
When considering only the volumetric residual, a slightly more local (elementwise)
result holds:

(4.2) hT ‖f +Δuh‖L2(T ) � ‖∇(u− uh)‖L2(T ) + hT ‖f − fT ‖L2(T ).

An analogue of (4.1) in which geometric terms also appear holds for surface finite
elements on shape regular surface meshes; cf. [8]. However, the standard proofs of
such estimates do not carry over to the irregular meshes considered here. On the other
hand, in our numerical experiments below the indicators (3.1) and (3.2) do satisfy an
efficiency property similar to (4.1). Below we give some theoretical explanation for
this experimental observation, although full efficiency results are so far missing.

4.2. Efficiency of the volume residual. In this section we provide a nonstan-
dard argument that the volume residual is generally bounded above by the error, up
to higher order terms of geometric and data oscillation type.

With slight modification of the argument in [8, equation (3.3.27)], we first obtain
the following proposition.

Proposition 4.1. Assume that T ∈ F is shape regular with diameter equivalent
to hT . Then

(4.3)
hT ‖fh +ΔΓh

uh‖L2(T ) � ‖∇Γ(u − u�h)‖L2(p(T )) + ‖Bh∇Γh
uh‖L2(T )

+ hT ‖feμh − fT ‖L2(T ) + hT ‖μhfe − fh‖L2(T ).

Here fT is the average value of feμh on T . The last three terms ‖Bh∇Γh
uh‖L2(T ),

hT ‖f − fT ‖L2(T ), and hT ‖μhfe − fh‖L2(T ) are all generally of higher order, so (4.3)
is in effect very similar to the Euclidean result (4.1).

We now argue that even though we cannot expect (4.3) to hold for irregular
elements T in F having area � h2T , we can instead obtain a patchwise efficiency
result, at least if f is sufficiently regular. Two facts work to our advantage in proving
this result. First, ΔΓh

uh = 0 in the present case of piecewise linear FEMs and second,
there is always a shape regular element of size hT “close” to any element T ∈ F . We
now formalize the latter statement.

Proposition 4.2. Assume that T ∈ F , and let ω̃T = ωST ∩ Γh. Then there is
an element T1 ⊂ ω̃T (T1 ∈ F) such that T1 is shape regular and diam(T1) � hT .

Proof. The shape regularity of the outer mesh T implies that the area of ω̃T is
uniformly equivalent to h2T . To prove this, note that shape regularity of T implies
that there is a constant c such that for any point x ∈ T , the (three-dimensional)
ball BchT (x) ⊂ ωST . This guarantees that area(ωT ) � h2T . On the other hand, the
number of elements in ωST is bounded by shape regularity, and the intersection of Γh
with each element in ωST has area at most hT . This proves the upper bound.

Shape regularity of T also implies that the number of elements in F intersecting
ωST is uniformly bounded above, so at least one of these elements T ′ must have area
� h2T . In addition, T ′ must also be shape regular, since it has diameter � hT .

We finally state and prove our efficiency result, then make some remarks concern-
ing its structure.
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Lemma 4.3. Let fh,T be the average value of fh over T . With assumptions as
above,
(4.4)

hT ‖fh +ΔΓh
uh‖L2(T ) � ‖∇Γ(u− u�h)‖L2(p(ω̃T ))

+
∑
T ′∈ω̃T

[
hT ‖μhfe − fT ′‖L2(T ′) + hT ‖μhfe − fh‖L2(T ′)

]
+ ‖Bh∇Γh

uh‖L2(T ) + max
T ′∈ω̃T

h2T |fh,T ′ − fh,T |.

Proof. Let T ′ ∈ ω̃T be the shape regular element of size hT described in Propo-
sition 4.2. Recall that hT and hT ′ are equivalent by the shape regularity of T . Then
noting that ΔΓh

uh = 0, applying Hölder’s inequality while recalling that |T |1/2 � hT ,
applying an inverse inequality on the shape-regular element T ′, and finally making
use of (4.3) yields

hT ‖fh +Δhuh‖L2(T ) = hT ‖fh‖L2(T )

≤ hT ‖fh − fh,T ‖L2(T ) + h2T |fh,T |

≤ hT ‖fh − fh,T ‖L2(T ) + h2T |fh,T − fh,T ′ |+ h2T |fh,T ′ |

� hT ‖fh − fh,T ‖L2(T ) + h2T |fh,T − fh,T ′ |+ hT ‖fh,T ′‖L2(T ′)

� hT ‖fh − fh,T ‖L2(T ) + h2T |fh,T − fh,T ′ |
+ hT ‖fh,T ′ − fh‖L2(T ′) + hT ‖fh +ΔΓh

uh‖L2(T ′)

� hT ‖fh − fh,T ‖L2(T ) + h2T |fh,T − fh,T ′ |

+ hT ‖fh,T ′ − fh‖L2(T ′) + ‖∇Γ(u − u�h)‖L2(p(T ′))

+ ‖Bh∇Γh
uh‖L2(T ′) + hT ‖feμh − fT ′‖L2(T ′)

+ hT ‖μhfe − fh‖L2(T ′).

(4.5)

Collecting terms and extending integrals over ω̃T as necessary completes the proof of
(4.4).

We now make a few comments about Lemma 4.3. First, the patch ω̃T is not the
patch of elements consisting of all elements in F sharing an edge with T . Rather, this
patch is based on the volume mesh. Letting ωT be the set of elements in F sharing
a vertex with T , it is clear that ωT ⊂ ω̃T , but equality does not generally hold.
However, in our numerical experiments below we check efficiency ratios for element
patches ωT and consistently achieve a bounded ratio of elementwise error indicators
to the L2 norm of the error integrated over the corresponding patch ωT . This may
indicate that our efficiency bounds could be tightened, but it also may indicate either
that ω̃T and ωT generally coincide in our examples or that the element T ′ used in the
proof above always may be taken within ωT for the meshes in our examples.

Second, we emphasize that Lemma 4.3 holds for the coarsest estimator η2 defined
above. Again, this is confirmed by our computational results, which indicate that
η2 is efficient and reliable, although with upper and lower bounds that are slightly
farther apart than for the sharper estimators ηp, p� 2.

Finally, we note that the term maxT ′∈ω̃T h
2
T |fh,T ′ − fh,T | is not standard in ef-

ficiency bounds. However, it is easy to see that it is of higher order if f is suffi-
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ciently regular. For example, if fh ∈ W 1
∞(ω̃T ), then maxT ′∈ω̃T h

2
T |fh,T ′ − fh,T | �

h3T ‖∇fh‖L∞(ω̃T ).

5. Numerical tests. For the test problem we consider the Laplace–Beltrami
equation on the unit sphere,

−ΔΓu = f on Γ,

with Γ = {x ∈ R3 | ‖x‖2 = 1} and the bulk domain Ω = (−2, 2)3.
The solution and the source term in spherical coordinates are given by

(5.1) u = sinλ θ sinφ, f = (λ2 + λ) sinλ θ sinφ+ (1− λ2) sinλ−2 θ sinφ.

One also verifies

∇Γu = sinλ−1 θ

(
1

2
sin 2φ(λ cos2 θ − 1), sin2 φ(λ cos2 θ − 1) + 1, −1

2
λ sin 2θ sinφ

)T
.

In [8] and [3] the choice is λ = 0.6. For λ < 1 the solution u is singular at the north
and south poles of the sphere so that u ∈ H1(Γ), but u /∈ H2(Γ).

Computational experiments were carried out using the software package DROPS
[10], and all visualizations were done with the help of the open-source package Par-
aview [24]. In Table 5.1 we compute the H1 norms of the surface finite element error
for the uniform refinement of the outer triangulation. Here l is the refinement level
as described in [22, p. 3355]. It holds that hT ≤

√
3 2−l. As expected, the optimal

convergence order of O(h) in H1 is observed for λ = 1, while for the smaller values of
λ the convergence order is suboptimal and decreases as λ → 0. Similar results were
observed for the convergence rates in L2 norm (not shown), which also decreased
from optimal O(h2) for λ = 1 to suboptimal O(hα), α ∈ [1.36, 1.5] for λ = 0.4. Thus
adaptive mesh refinement is desirable.

In our adaptive code we implemented the residual estimator η2p,Γ =
∑
T∈F ηp(T )

2.

The additional geometric terms in (3.5) were ignored as their effects are known to
be higher order. Doing so had no apparent effect on convergence for this example
with simple geometry, though as demonstrated in [8], geometric error terms should
be included on surfaces with regions having high curvature. We consider p = 2,
p = 10, and p = ∞ in (3.2) and always assume Cp = 1. The assumption Cp = 1 is not
warranted by our theory but rather was used to test whether our estimates might hold
for the limiting case p = ∞. We employed a “maximum” marking strategy in which all
volume tetrahedras ST from TΓh

with ηp(T ) >
1
2 maxT∈F ηp(T ) are marked for further

refinement. The refinement procedure in DROPS uses the algorithm from [19]. The
initial volume mesh in our computations was obtained by the uniform triangulation
of (−1, 1)3; it consists of 48 tetrahedras with hS =

√
3 resulting in 15 surface d.o.f.,

i.e., dim(V Γ
h ) = 15.

Table 5.1

Uniform refinement: the H1 seminorms of the error, ‖∇Γh
(ue − uh)‖L2(Γh), and convergence

order for various values of the exponent λ.

l #d.o.f. λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
2 100 1.21e-0 – 6.85e-1 – 4.13e-1 – 3.31e-1 –
3 448 9.38e-1 0.367 4.46e-1 0.619 2.16e-1 0.935 1.55e-1 1.094
4 1864 7.24e-1 0.374 2.98e-1 0.582 1.21e-1 0.836 7.76e-2 0.998
5 7552 5.56e-1 0.381 1.99e-1 0.583 6.80e-2 0.831 3.85e-2 1.011
6 30412 4.26e-1 0.384 1.33e-1 0.581 3.87e-2 0.813 1.95e-2 0.981
7 121708 3.25e-1 0.390 8.86e-2 0.586 2.20e-2 0.815 9.72e-3 1.004
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Fig. 5.1. Decrease of the error and error indicators (left) and global efficiency ηp,Γ/‖∇Γ(u −
u�
h)‖L2(Γ) (right) for the adaptive algorithm with p = 2, p = 10, and p = ∞.
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Fig. 5.2. Decrease of the error in H1 norm (left) and L2 norm (right) for the adaptive algorithm
(p = 2) within 20 refinement steps for various values of λ.

5.1. Reliability and global efficiency. Results produced by the adaptive al-
gorithm with λ = 0.6 and p = 2, p = 10, and p = ∞ are displayed in Figure 5.1. In
the left plot the error decrease is displayed, and in the right plot the ratio of the error
estimators ηp,Γ to the resulting global error is displayed. Here we see that all three
estimators lead to optimal order error decrease, and in fact the error lines for the
AFEM based on the three estimators are essentially indistinguishable. Using larger p
does, however, lead to slightly more accurate estimation of the error, at least if Cp is
taken to be 1.

Figure 5.2 shows the decrease of the error within 20 steps of the refinement algo-
rithm for various values of the exponent λ. We notice that for more singular solutions,
more refinement steps are needed to get the error under a desired tolerance; however,
for all tested values the convergence rate stays optimal with respect to the number of
d.o.f. Although we have not studied in this paper estimates and indicators for the L2

norm of the error, we show in the right plot the convergence history for it and observe
that the rate appears optimal for the L2 norm as well.

Figure 5.3 displays a cutaway view which includes both the adaptively refined
bulk and surface meshes. The meshes are shown for the ninth refinement level and
consists of 11,632 volume tetraheda; 3525 of them are intersected by Γh, resulting in
dim(V Γ

h ) = 1172. Figure 5.4 displays the surface mesh near the north pole magnified
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Fig. 5.3. Cutaway visualization of the volume and surface meshes with refinement at the north
pole.

Fig. 5.4. Visualization of the refinement near the north pole, zoomed in 20×.

20 times. This mesh clearly displays the irregularity typical of our algorithm; note the
presence both of highly anisotropic (long, thin) elements and of very small elements
sharing vertices with much large elements. Neither of these characteristics is present in
shape regular meshes, and they correspondingly make our analysis more challenging.
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5.2. Local efficiency. Our goal in this subsection is to test whether, and for
what values of p, the local efficiency result ηp(T ) � ‖∇Γ(u−u�h)‖L2(ωT )+h.o.t. holds,
where h.o.t. are higher order terms consisting of geometric and data oscillation terms
as in (4.4). We also illustrate the efficiency estimate (4.4) for the volume residual.

We first describe two local efficiency tests for p = 2. First we checked the ratio
hT ‖f+ΔΓh

uh‖L2(T )/‖∇Γh
(ue−uh)‖L2(T ) for a heavily refined mesh (refinement level

n = 23). The maximum ratio over the mesh was about 400. Thus we conclude that
(4.3) does not hold for general elements. We then tested the ratio η2(T )/‖∇Γh

(ue −
uh)‖L2(ωT ). As can be observed in Figure 5.5, there is some increase in the maximum
ratio as the mesh is refined, but the increase appears to level off at a value of around
9. This experiment confirms the correctness of Lemma 4.3 and also strongly indicates
that even with the coarser scaling used in η2, the edge (jump) residual terms yield
an efficient as well as a reliable approximation to the true error, although sometimes
with constants that are not very close to 1.

Note that ηp is nonincreasing in p, which implies that if a given efficiency estimate
ηp(T ) � ‖∇Γh

(ue − uh)‖L2(ωT ) + h.o.t. does not hold for p = ∞, then it will also not
hold for finite values of p in [2,∞). Thus although p = ∞ is not included in our
reliability theory, as above it still provides an interesting computational test case for
purposes of comparison. We repeated both tests here that were carried out for the
case p = 2. First checking the ratio |T |1/2‖f + ΔΓh

uh‖L2(T )/‖∇Γh
(ue − uh)‖L2(T )

for a heavily refined mesh (mesh level n = 23) as above, we found a maximum ratio
of about 9. This indicates that the volume portion of the error indicator η∞ is in
fact elementwise efficient in the sense of (4.3), though we do not have proof. In
addition, the maximum ratio over the mesh of element indicators to patchwise errors
η∞(T )/‖∇Γh

(ue − uh)‖L2(ωT ) was about 4.
These local efficiency experiments, along with the global efficiency experiments

in the preceding section, indicate that using the sharper scaling in the indicators ηp,
p > 2, has only moderate advantages. The constants in the patchwise efficiency and
global reliability estimates appear to be a factor of about two times better when
using the most extreme scaling p = ∞ (which again is not allowed by our theory).
While this gain is of some importance with respect to the ability of estimators to give
reasonable error estimates, there appears to be essentially no gain at all in the ability
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Fig. 5.6. Growth in the number of CG iterations: Comparison between uniform and adaptive
refinement (p = 2) (left) and for adaptive refinement for varying singularity strengths (right).

of the resulting AFEM to reduce the error when using sharper error indicators. This
reinforces an important fact about the surface FEM defined in [22] and studied here:
it is the approximation properties of the outer bulk mesh that are inherited by the
surface FEM.

5.3. Efficiency of linear solvers. We finally briefly comment on the efficiency
of the linear solvers used in our computations. Consider the system of functions from
V Γ
h which are traces of outer nodal basis functions; only nodal functions with non-

zero traces contribute to the system. Clearly this system spans V Γ
h and, following

[22], we use it to decompose the surface solution uh and to build finite element stiff-
ness matrices. The resulting stiffness matrix can be rank deficient, with an at most
two-dimensional kernel. However, since the finite element problem (2.3) is well-posed
(subject to zero mean conditions), the corresponding algebraic system is always con-
sistent. The discrete surface Γh cuts the outer tetrahedra in an arbitrary way; hence
the support measure of the surface basis functions can vary from (almost) zero to
the full size O(h2T ). Thus diagonal scaling of resulting stiffness and mass matrices is
necessary even for a regular bulk mesh. A detailed study of matrix properties of the
surface finite element method that we use here is given in [23] for the case of regular
mesh refinement, i.e., quasi-uniform meshes. There an effective spectral condition
number of O(| ln h|h−2) is proved for the diagonally scaled stiffness matrix in the case
of a one-dimensional surface embedded in R2. (Here h is the mesh diameter of a
quasi-uniform mesh.) Computational experiments confirm that this behavior carries
over to the case of two-dimensional surfaces studied here.

For the current case of adaptively refined meshes we do not study the condition
number directly, but instead use the number of conjugate gradient iterations as a
proxy since this is the most important quantity in practice in any case. Our code em-
ploys a preconditioned conjugate gradient algorithm with a symmetric Gauss–Seidel
preconditioner applied to diagonally scaled matrices. The iteration is stopped when
the relative decrease of the residual reaches 10−9. Note that the CG method applies
to consistent linear algebraic systems even with rank deficient symmetric nonnega-
tive definite matrices if the initial guess is from the appropriate subspace. (In our
experiments we use the zero initial guess.) In this case, the number of CG iterations
necessary to reach a given tolerance should scale as

√
κ, where κ is the effective con-

dition number [4]. For uniform meshes, h−2 ∼ d.o.f., where d.o.f. is the number of
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degrees of freedom in the surface mesh. Thus we expect that the number of CG itera-
tions should be proportional to

√
d.o.f. if the behavior is consistent with the uniform

case. Experiments in Figure 5.6 show behavior consistent with this expectation. In
the first plot, it is seen that the number of iterations required for the adaptive case
grows slightly faster with respect to d.o.f. than in the case of uniform refinement, but
it still is consistent with an O(

√
d.o.f.) scaling. In the second plot, we see that the

behavior of the linear solvers for adaptively refined meshes is robust when the singu-
larity strength is increased. Thus the behavior of the linear solvers is still standard
for the surface FEM studied here even under adaptive refinement.

6. Conclusions and outlook. The surface FEM studied in this paper enjoys
a posteriori error estimates largely resembling the ones for a standard FEM in a Eu-
clidean domain. Although our analysis of the method is nonstandard, the resulting
error indicator is simple, proved to be reliable, and shown numerically to be efficient.
A straightforward adaptive strategy based on the indicator leads to optimal conver-
gence rate in H1 norm. Additional research is required to prove the numerically
observed reliability of the p = ∞ indicator as well as the efficiency of the “jump” part
of the indicator for p ≥ 2.
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