The problem

$$
-\Delta u=1 \text { in } \Omega=(-1,1)^{2}, \quad u=0 \text { on } \partial \Omega
$$

is discretized with linear finite elements or second order finite differences (5point stencil) on a uniform grid, with mesh size $h=2 / N$. The matrix of the resulting system of linear algebraic equations can be found on page 35 of the lecture notes.
For $N=16,32,64,128$, solve the system using

1) The Gauss elimination method;
2) The Richardson method, with $\tau_{o p t}=\frac{2}{\lambda_{\min }+\lambda_{\max }}, \lambda_{\min }=8 h^{-2} \sin ^{2}\left(\pi \frac{h}{4}\right)$, $\lambda_{\text {min }} \approx 8 h^{-2}$;
3) The Gauss-Seidel method;
4) The Conjugate Gradient method;

Report CPU time for 1)-4) and final iteration numbers for 2)-4). The stopping criterion for 2)-4) is the relative reduction of the ℓ^{2} norm of residual by 10^{9}. Initial guess is zero. Draw conclusions about performance and complexity of the methods.

Verify the accuracy of computed discrete solutions by comparing them at $\mathrm{x}=(0,0)$ to the known analytical solution

$$
\begin{aligned}
u(x, y)=\frac{\left(1-x^{2}\right)}{2}- & \frac{16}{\pi^{3}} \sum_{k=0}^{\infty}\left\{\frac{\sin ((2 k+1) \pi(1+x) / 2)}{(2 k+1)^{3} \operatorname{sh}((2 k+1) \pi)} \times\right. \\
& (\operatorname{sh}((2 k+1) \pi(1+y) / 2)+\operatorname{sh}((2 k+1) \pi(1-y) / 2))\}
\end{aligned}
$$

