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ABSTRACT. In this paper we present a non separable multiresolution struc-
ture based on frames which is defined by radial frame scaling functions. The
Fourier transform of these functions is the indicator (characteristic) function of
a measurable set. We also construct the resulting frame multiwavelets, which
can be isotropic as well. Our construction can be carried out in any number
of dimensions and for a big variety of dilation matrices.

1. INTRODUCTION AND PRELIMINARIES

Let H be a complex Hilbert space. A wunitary system U is a set of unitary
operators acting on H which contains the identity operator I on H. Now, let D
be the (dyadic) Dilation operator

(1) (Df)(t) = 2"2f(2t), fe L*(R")
and Ty be the Translation operator defined by
(2) (Tf)(t) = f(t— k), feL*R"), keZ"

We refer to the unitary system Upzn := {D'Ty : j € Z,k € Z"} as the n-
dimensional separable Affine system. This system has been extensively used in
wavelet analysis for the construction of separable wavelet bases. In fact only a
few non-separable wavelet bases have been constructed and all these examples
were exclusively given in two dimensions. However, an important drawback of
these families of wavelets is the absence of enough symmetry, differentiability
and the absolute lack of isotropy. These examples were also given with respect
to a small class of dilation operators and all of them are compactly supported
in the time domain. Apparently the whole issue of designing wavelet bases in
multidimensions still remains a mostly unexplored area, full of challenges and
revealing interesting and surprising results.

The motivation for the present paper stems from the following elementary ob-
servation: The Fourier transform of the Shannon scaling function (the scaling
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function of the Shannon MRA) is the indicator (characteristic) function of the
interval [—1/2,1/2). Apperently, this function is even. Keeping in mind that
even functions are also radial (a function is radial if it depends only on the ra-
dial variable) one might wonder, what is the multidimensional analogue of even,
Shannon-like scaling functions (scaling functions whose Fourier transform is the
characteristic function of measuarable subset of R"). This particular problem
motivated us to introduce the radial frame multiresolution analysis. Our con-
struction is based on a very general multiresolution scheme of abstract Hilbert
spaces developed by Papadakis in [18], namely the Generalized Frame Multires-
olution Analysis (GFMRA). The main characteristic of GFMRASs is that they
can be generated by redundant sets of frame scaling functions. In fact, GFMRAs
encompass all classical MRAs in one and multidimensions as well as the FMRAs
of Benedetto and Li ([6]).

In this paper we construct non-separable Shannon-like GFMRAs of L?(R")
whose scaling functions are radial and are defined with respect to certain unitary
systems, which we will later introduce. We also derive certain of their associated
frame multiwavelet sets. Scaling functions for L?(R") with n > 2 that are radial
have not been constructed in the past. However, certain classes of non separable
scaling functions in two dimensions, with some continuity properties with respect
to dyadic dilations or dilations induced by the Quincunx matrix only have been
constructed in the past (e.g. [8, 14, 13, 10], [4]). All of them have no axial
symmetries and are not smooth, except those constructed in [5], which can be
made arbitrarily smooth, but are highly asymmetric. Another construction in
the spirit of digital filter design, but not directly related to wavelets can be found
in [1] and [20]. These two and the ridgelets and beamlets ([7, 9, 21]) share two
properties of our Radial GFMRAs: the separability of the designed filters with
respect to polar coordinates and the redundancy of the induced representations.
However, our construction in contrast to those due to Simoncelli et. al., Candes,
Donoho, Starck et al. are in the spirit of classical multiresolution analysis and
can be extended to any number of dimensions and with respect to a great variety
of dilation matrices.

The merit of non separable wavelets and scaling functions is that the resulting
processing of images is more compatible with that of human or mammallian
vision, because mammals do not process images vertically and horizontally as
separable filter banks resulting from separable multiresolution analyses do ([22]).
As Marr suggests in his book [15] our visual system critically depends on edge
detection. In order to model this detection Marr and Hildreth used the Laplacian
operator which is the “lowest order isotropic operator” ([16]), because our visual
system is orientation insensitive to edge detection. This suggests that perhaps
the most desirable property in filter design for image processing is the isotropy
of the filter. Thus radial scaling functions for multiresolutions based on frames
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are the best (and, according to proposition 5 the only) types of image processing
filters that meet the isotropy requirement.

Before we proceed we need a few definitions and results from [18].

The family {z; : i € I} is a frame for the Hilbert space H if there exist constants
A, B > 0 such that for every z € H we have

Alall? < 3 I, z) < Bl -
iel
We refer to the positive constants A, B as frame bounds. Apparently for every
frame its bounds are not uniquely defined. We refer to the frame as tightif A = B
and as Parseval frame if A= B =1. A frame {z; : i € I} of H is called ezact if
each one of its proper subsets is not a frame for H. Riesz bases are exact frames
and vice-versa. The operator S defined by

Sz = {(I,.’L‘Z’>}i61 x e H

is called the analysis operator corresponding to the frame {z; : i € I'}. Using this
operator we can construct the dual frame {z} : i € I'} of {z; : i € I} by setting
xi := (S*S)"'z;. Then, for every z € H we have

x = Z (m, 2y,
i
We are interested in unitary systems U of the form U = UyG, where Uy =
{U? : j € Z} and G is an abelian unitary group. We will often refer to G as a
translation group. Obviously unitary systems of this form generalize the affine
system.

Definition 1. A sequence {V;} ez of closed subspaces of an abstract Hilbert space
H is a Generalized Frame Multiresolution Analysis of H if it is increasing, i.e.
V; C Vi for every j € Z and satisfies the following properties:

(0) Vi=U'(Vo), jEZ

b)N;Vi=A{0}, U, V;=H

(c) There exists a countable subset B of Vi such that the set G(B) = {g¢: g €
G, ¢ € B} is a frame of V.
Every such set B is called a frame multiscaling set for {V;};. Every subset C of
Vi such that G(C) = {g: g € G,v € C} is a frame of Wy := V; NVt is called
a semiorthogonal frame multiwavelet vector set associated with {V;};.

As it was observed in [18] G(B') is the canonical dual of G(B), where B’ :=
{(S*S)™'¢ : ¢ € B}, where S is the analysis operator corresponding to the
frame G(B). Likewise the canonical dual of G(C) is the family G(C"), where
C':={(S*S)" " : ¢ € C} and S is again the analysis operator corresponding to
the frame G(B). We refer to B’ and as the dual frame scaling set corresponding
to B and to C' as the dual frame wavelet set corresponding to C.
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If B is a singleton we refer to its unique element as a frame scaling vector
and, if H = L*(R"), as a frame scaling function. We also let W; := U7 (W), for
every j € Z. Note, that if C is a semiorthogonal frame multiwavelet vector set
associated with the GFMRA {V;}; then the set {Digy: j € Z,g € G,¢p € C} is
a frame for H with the same frame bounds as the frame G(C).

In order to accomplish the construction of the frame multiwavelet sets associ-
ated with a GFMRA {V;}; we need the following additional hypotheses.

e There exists a mapping o : G — G satisfying
gD = Do(g), forevery g € G.

This particular assumption implies that ¢ is an injective homomorphism
and o(@) is a subgroup of G. (See [11] for proofs)
e |G:0(G)] = n < 400, where |G :0(G)| is the index of the subgroup
o(G).
As mentioned before for the purposes of our study we will exclusively use
multidimensional affine unitary systems. Before proceeding we need the following
definition:

Definition 2. An n x n invertible matriz A is expanding if all its entries are
real and all its eigenvalues have modulus greater than 1. A Dilation matriz is an
expanding matriz that leaves Z" invariant, i.e. A(Z") C Z™.

The previous definition readily yields the following observations:

e All the entries of a dilation matrix are integers, because such a matrix
leaves Z™ invariant.
e The previous observation implies that detA is an integer.
The multidimensional affine unitary systems we are interested in are the sys-
tems of the form UyG, where U is the cyclic torsion free group generated by a
dilation operator D defined by

Df(t) = |detA|'? f(At), € [A(R")

where A is a dilation matrix and G = {Tx : k € Z"}. Obviously, G is isomor-
phic with Z". Using the definitions of translations and dilations one can easily
verify Ty D = DTay, thus o(Tx) = Tax, for every k € Z". Note that o is legit-
imally defined, because A(Z") C Z™. Apparently, the quotient group G/o(G)
is homeomorphically isomorphic with Z"/A(Z™). Thus we have |G : 0(G)| =
|Z" : A(Z™)| = |detA|. Now, set qo = 0, p := |detA| and fix q, € Z", for
r=1,2,...,p—1 so that

" JA(Z") = {q. + A(Z"): r=0,1,...,p— 1}.

The translation group G is induced by the lattice Z". Although our results
will be obtained with respect to this particular lattice only, our methods can be
easily extended to all regular lattices, i.e. lattices of the form C(Z"), where C
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is an n X n invertible matrix. Following the tradition of all papers on Harmonic
and Fourier analysis we give the definition of the Fourier transform on L'(R"):

~

f(f) = f(t)e—%rit-&dt, f c R".
Rn

We also reserve F to denote the Fourier transform on L?(R"). In addition, we
adopt the notation T" := [—1/2,1/2)" and ¢; (i € I C N) for the sequence defined
by
1 if I=4
() '_{ 0 if I+#74.

Before proceeding we need to include some final remarks on our notation. If
A is a subset of a topological vector space, then [A] denotes its linear span
and A~ denotes the closure of A. Moreover, if B is a matrix (even an infinite
one), then [B]; denotes the i-th column of B. We conclude this section with the
characterization of the autocorrelation function of a set of frame generators of a
shift-invariant subspace of L*(R"). i.e. of a set of functions {¢; : [ € I'} such that

{Tx¢, : | € I} is a frame for its closed linear span. The following lemma follows
directly from Theorem 4 in [17].

Lemma 1.1. Let I C N and {¢y, : k € I} be a subset of L*(R"). Define

ap€) =Y S(E+m)g(E+m) klecl, (€T

mezZn

and ax(§) = (a1,£(£), agk(§), - - ).

(a) Assume that for every k € I the function & — ||ag(§)||,2 is in L*(T") and
that the linear operators ®(&) defined for a.e. € € T" on [0y : k € I] by the
equation ® (&) = ax(§) satisfy the following properties:

(1) ® belongs to L>(T", B(£*(I))), i.e. ® is weakly measurable and for a.e.
& € T" the operator ®(&) belongs to B(¢*(I)) and ||®||, := essup{||®(§)]| :
£eT'} < co.

(2) Let P(§) be the range projection of ®(€) a.e. There exists B > 0 such
that for every x € P(&)(¢*(I)) we have B ||z| < ||®(&)z||.

Then {Tx¢y : | € I,k € Z"} is a frame for its closed linear span with frame
bounds B and ||®|| .

Conversely, if {Tx¢y : | € I,k € Z"} is a frame for its closed linear span
with frame constants B, C, then there exists ® € L*>®(T",B(¢*(I))) such that
|®]|, < C also satisfying

&)k =€) klel, ae T

and property (2). Finally, {Tx¢,: 1 € I,k € Z"} is a Parseval frame for its closed
linear span if and only if (&) is for a.e. & an orthogonal projection.
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Furthemore, {Tx ¢, : | € I,k € Z™} is a Riesz basis for its closed linear span if
and only P(§) = Ip(p), for a.e. £ €T

The function @ is also known as the Grammian of the set {¢; : [ € I}.

2. RAaDpIAL FMRAs

In the present section we will develop the theory of singly generated GFMRAs
of L?(R") defined by radial frame scaling functions. We refer to these GFMRAs
as Radial FMRAs. According to Lemma 1.1 the Fourier transform of a frame
scaling functions which is not a Riesz scaling function cannot be continuous and
at the same time satisfy even a mild decay condition. Indeed, if ¢ is any square-
integrable function whose integer translates form a frame for the subspace they
generate, then, according to Lemma 1.1, the linear operator ®(&) is defined on
C, a.e. in T, by

@(f)z:z(Z‘QAﬁ(f-l—m)Q), ze€C.

It now follows that the range of ®(&) is C, for a.e. £ € T™ for which ®(&) # 0.
By virtue of property (2) of Lemma 1.1, there exists B > 0 such that, for each
such £, we have B |z| < |®(&)z], for every z € C. Since ®(§) is defined on C,
we can identify the operator-valued function ® with the 1-periodic function & —

N 2
ZmEZ“

o€+ m)‘ and from now on consider ® as a complex-valued measurable
function. The discussion on ® now implies that, for a.e. £ € T" satisfying
®(&) > 0 we have ®(§) > B > 0. So, if ¢ is continuous and, for some ¢ > 0

satisfies ‘qg(f)‘ = O((14]€]]) 2¢), for every £ € R, then @ has to be continuous.

Consequently ®(¢) > B > 0 for every & € T". Thus, according to the last
conclusion of Lemma 1.1, the integer translates of ¢ form a Riesz basis for the
subspace they generate. The preceding discussion now leads to the conclusion
that, single frame scaling functions which are not Riesz scaling functions cannot
have a variety of forms, but as it has been shown in [18] this drawback can be
rectified by using sets of frame multiscaling functions. In the present paper we
will be exclusively using single frame scaling functions and, in particular, those
whose Fourier transform is the characteristic function of a measurable subset of
R™.

Our translation group is group-isomorphic to Z", so, one can easily see that the
regular representation of G on ¢?(G), defines a group, which in [18] is denoted
by G* and in our case is homeomorphically isomorphic to the discrete group
Z™. Therefore, the dual group G* is hor/n\eomorphically isomorphic to the n-
dimensional torus T". So, instead of using G* we use T". Recall that we identified
T" with the product space [—1/2,1/2)".
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Now, let D be the sphere with radius 1/2 centered at the origin, and ¢ be such
that ¢ := xp. Since ®(&) = xp(£), for every & € T we have that {Txé : k € Z"}
is a Parseval frame for its closed linear span, which from now on we denote
with Vy. We will consider dilations induced by dilation matrices A satisfying the
following property.

Property D: There exists ¢ > 1 such that for every z € R™ we have ¢ ||z|| <
| Az]].

Property D readily implies ||[A7}|| < ¢! < 1. However, it is interesting to note
that Property D cannot be derived from the definition of dilation matrices. This
fact can be demonstrated by the following example. Let

(3 3)

Obviously A is invertible and leaves the integer lattice invariant, because all its
entries are integers. However,

1/2 -5
_1__
A _4(0 2)'

Since one of the entries of A~! has absolute value greater than 1 we get [|A7Y|| > 1,
so A does not satisfy Property D.

Now, define V; := D7(V}), where j € Z. We will now establish V_; C V;. First,
let B := AT, where the superscript 7' denotes the transpose operation. Since
(AT)™! = (A™HT and the operator norm of a matrix is equal to the operator
norm of its transpose, we obtain that dilation matrices A satisfying Property D,
therefore, satisfies |B!|| < 1. Thus B !(D) is contained in D. Next, let 1o be
the measurable function defined on R" such that (&) = xp-1m)(§), for every
¢ € T", which is periodically extended on R™ with respect to the tiling of R
induced by the integer translates of T". Then pg belongs to L?*(T") and satisfies

A

B(BE) = uo(£)d(€) ae,

because g?)(Bﬁ) = xB-1(n) (&), for every £ € R*. This implies that D*¢, belongs to
Vo, which in turn establishes V_; C V4, and thus V; C Vj,4, for every integer j.
Since F(V;) = L*(B/(D)), for all j € Z, we finally obtain that both properties in
(b) of the definition of a GFMRA are satisfied. From the preceding argument we
conclude that {V;}; isa GFMRA of L?(R"), singly generated by the radial scaling
function ¢. So {V;}; is a Radial FMRA of L*(R™). We may also occasionally refer
to ¢ as a Parseval frame scaling function in order to indicate that {Tx¢ : k € Z"}
is a Parseval frame for Vj,. Following the terminology and the notation introduced
in [18] the analysis operator S induced by the frame scaling set {¢} maps V} into
L*(T™) and is defined by

Sf = Z <fa TkQS)eka

KEZ
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where ey (&) = 72" for every ¢ € R*. Since ¢ is a Parseval frame scaling
function we obtain that S is an isometry. Moreover it is not hard to verify that
the range of S is the space containing all square-integrable Z"-periodic functions
vanishing outside D.

According to Definition 3 in [18], the low pass filter my corresponding to ¢
is given by mo := SD*¢. Since we consider {V;}; as singly generated we have
only one low pass filter, so M,, the low pass filter associated with the frame
multiscaling set {¢} is equal to my. Since, S is an isometry we obtain Y = S,
where Y is defined by the polar decomposition of S, namely S = Y'|S|. In fact,
we have Y = S'. Let us now find m,. Taking the Fourier transforms of both
sides of

(3) D¢ =Y (D*¢, Tu)Txt
kezn

we obtain

(4) B(BE) = |detA| "> mo(€)p(€)  ae.

Now, recall

(5) A(BE) = 11o(£)p(&)  ace.

Unfortunately, the fact that, the set of the integer translates of ¢ is not a basis for
Vo but an overcomplete frame, does not automatically imply \detA|1/ 2 Mo = My.
However, both mg and p vanish outside D, so egs. (4) and (5) imply

(6) mo(€) = |det A" xp-1m) (€), €€ T

Obviously, all radial functions of the form xp, where D is a sphere centered at
the origin with radius < 1/2 are radial Parseval frame scaling functions. We
will not distinguish this particular case from the case r = 1/2, because the latter
case is generic and also optimizes the frequency spectrum subject to subband
filtering, induced by this particular selection of the scaling function ¢. This
frequency spectrum is equal to the support of the autocorrelation function of
¢, because every signal in V{, will be encoded by the Analysis operator with an
(?(Z)-sequence, whose Fourier transform has support contained in D. Therefore,
the frequency spectrum subject to subband filtering induced by {V;}; equals
D. This suggests that a prefiltering step transforming a random digital signal
into another signal whose frequency spectrum is contained in I is necessary
prior to the application of the decomposition algorithm induced by {V;},. This
prefiltering step is called initialization of the input signal. In the light of these
remarks one might wonder whether we may be able to increase the frequency

Following [18] 7hg := Y D*¢ = my; thus, My = 1ing = Mo.
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spectrum that these FMRAs can filter by allowing r > 1/2. We will later show
that the selection r = 1/2 is optimum.

The frame scaling function can be determined in terms of Bessel functions,
because it is a radial function.

Jﬁ(ﬂ'R)
(2R)" , R>0.

The proof of eq. (7) can be found in [19] Lemma 2.5.1.

We will not give any details regarding Bessel functions. However, the reader
may refer to [19] and [3] for an extensive treatment of their main properties and of
course to the bible of the topic [23]. Here, we only include the following formula.

(7) ¢(R) =

( Ic )2k+a

> -1,z > 0.
kz_%k'rk+a+1) “ v

The function J, given by the above equation is called the Bessel function of the
first kind of order a.

Apparently every function in Vj; is bandlimited, because its Fourier transform
is supported on ). Since D is contained in T™ we can readily infer from the
classical sampling theorem that if f is in 1}, then

(®) F=) fl)Tw,

kezn

where the RHS of the previous equation converges in the L2-norm and w(z1, za, . .., Z,) =
1T sin(nze) " If P, is the projection onto Vp, then applying P, on both sides of

=1 7z4
eq. (8) gives
f=Y fK)P(Tww) = Y f(k)TiPo(w
kezZ® kezZ"
because Py commutes with the translation operator Tj, for every k € Z". Since

Py(w) = ¢, we conclude the following sampling theorem:

Theorem 3. Let f be in Vy. Then,

(9) f=> [T,

kezn

where the RHS of equation (9) converges in the L? norm. Moreover, the same
series converges uniformly to f, if we assume that f is continuous.

Proof. The first conclusion of the theorem has already been established. We will
now prove the uniform convergence to f of the series in the RHS of eq. (9)
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assuming that f is continuous. Let t € R". Then, for N € N, we have

(10) ) = g e FOOTiO()

(11) = ‘fqrn (f(f) - Z||k||oo§N f(k)efmg'kXD(f)) emg'tdt‘

(12) < |f = Saen F0exs| -

As N — oo the first term of the RHS of the previous inequality tends to zero.
This establishes the final conclusion of theorem 3. O

Remark 1. The continuity hypothesis that we imposed on f in order to derive
the uniform convergence to f of the series in the RHS of eq. (9) is not at all
artificial. It is well known that since f is band-limited, f is almost everywhere
equal to an infinitely differentiable function, namely the inverse Fourier transform
of f. Thus instead of using f itself we can use the reflection of F(F(f)).

Remark 2. Although ¢ is a radial function, its dilations D’¢, for j # 0 may
cease to be radial, for if j = —1, then F(D*¢) = |det A|"/ xB-1(p) and B~'(D)
may not be an isotropic domain. However, in several interesting cases of dilation
matrices A all the dilations of ¢ are radial.

The preceding remark motivates the following definition:

Definition 4. An expansive matriz A is called radially expansive if A = aU,
where a > 0 and U is a unitary matriz.

Expansive matrices obviously satisfy a™ = |detA| and ||A|| = a. Apparently
radially expansive dilation matrices satisfy Property D. When this is the case, we
immediately obtain that all D7¢ are radial functions as well, and, in particular,

(13 oy =2 g
e PO
Combining egs. (4), (6) and (13) we conclude
e 2 TR
oK) = — 07— :
(2 1k][)

Proposition 5. Let A be a radially expansive dilation matriz, and D, be the
sphere with radius r centered at the origin. Then, there exists ro > 0 such that,
if r > 1o and ¢ :== F 1 (xp,), then no measurable Z™-periodic function u satisfies

~

(14) B(BE) = p(€)d(¢)

for a.e. & in R*. Thus, such a ¢ cannot be a frame scaling function.



NON-SEPARABLE RADIAL FRAME MRA 11

Proof. Let r > 0 and ¢ = xp,. Assume A = alU, where a > 1. Then, ¢(B¢) =
XD,,,(£), a.e. § in R", which in conjunction with eq. (14) imply u(§) = xp, , (§)
forae £e T If L > %, then p(€) = 1 for a.e. € in T, which, due to the
Z"-periodicity of p, implies u(€) = 1 a.e. in R”. This obviously contradicts eq.
(14). Thus, r < % Now, pick such an 7. If r <7 := %5, then D, and k+ D, /q,
for every k € Z\{0} do not intersect.

Now, assume r > ry. In this case we obviously have % <rg<r< % Next,
translate T" by u := (1,0,0,...,0). Due to the periodicity of u we have p(§) =1
for a.e. & in the intersection of the sphere u + D,/, and u + T". Since r > 7o
we can find z such that max{Z, 3} < z < ro. Then, there exists a ball centered
at (2,0,0,...,0), which is contained in the intersection of u + D, /,, u + T" and
R"\D,, so, eq. (14) fails to be true for every point in this ball. O

If 1/2 < r < 7o, then ¢ := F~'(xp,) is a frame scaling function. This can
be shown by invoking lemma 1.1, which establishes that {Tx¢ : k € Z"} is
a frame (but not a Parseval frame) for V; and the argument showing. V; =
F Y L*(B’(D)). We will omit the details of this proof since we think that this
particular case is not as interesting as the case r < 1/2, because the FMRAs de-
fined by such frame scaling functions ¢ still cannot filter the entire n-dimensional

torus T". Having finished this intermezzo we return to the initial hypothesis,
r=1/2.

Let us now discuss the construction of certain frame multiwavelet sets asso-
ciated with {V;};. It has been pointed in [18] that unlikely with MRAs the
cardinality of the frame multiwavelet sets associated with the same GFMRA
may vary. This observation readily indicates that there is room for alternative
constructions of GFMRA frame multiwavelet sets. However, all these sets must
satisfy certain necessary and sufficient conditions, which we present in theorem
6.

In the discussion that follows we present two constructions of frame multi-
wavelet sets associated with {V;},. Each one has its own merit. The first one
of them does not depend on the dimension of the underlying Euclidean space
R™, and we believe that it is the most elegant from all of them. The second one
specifically applies only if the underlying space is R? and the dilation operators

are defined by A =2, or A = < Lol . It can easily be seen that both ma-

—1 1
trices are radially expansive dilation matrices. The latter of these two matrices
generates the so-called Quincunx subsampling lattice. Subsampling lattices are
used in the applications of the Decomposition and Reconstruction algorithms.
We will discuss Decomposition and Reconstruction algorithms induced by {V;},
and initialization algorithms in a follow up paper.
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First construction: We adopt the proof of Theorem 13 of [18] to the radial
FMRA {V;};. First, set V; := F(V;) and W := F(W,), where j € Z. Recall
that Vj = F(Vy) = L*(D), and that the Fourier transform is a unitary operator
on L?(R"). Combining these facts with V_; = L2(B~1(D)), we conclude

W =VonVY =I1%(Q),

where Q is the annulus D N (B~!(D))¢, and the superscript ¢ denotes the set-
theoretic complement. Since an arbitrary orthogonal projection R defined on a
Hilbert space H maps every orthonormal basis of H onto a Parseval frame for
R(H) ([2, 12]), we obtain that the orthogonal projection defined on L?(T") by
multiplication with the indicator function of Q gives a Parseval frame for L?(Q),
namely the set {exxg : k € Z"}.

Next, observe that each k € Z™ belongs to exactly one of the elements of the
quotient group Z"/A(Z™); thus there exist q and r € {0,1,...,p — 1} such that
k = q, + A(q). Therefore, ey = eq,e4(q). We now define the following functions:

(15) hy ==eq,xg 1 €{0,1,...,p—1}

Apparently {eauh, : k € Z", r =0,1,...,p— 1} is a Parseval frame for L?(Q),
thus for W_, as well. Therefore, {TagF 'h, : k € Z", r = 0,1,...,p — 1}
is a Parseval frame for W_;, because the Fourier transform is unitary. Setting
Y, == DFth, (r =0,1,...,p — 1) we finally have that {T}, : k € Z", r =
0,1,...,p—1} is a Parseval frame for Wy, therefore {¢), : r =0,1,...,p—1} isa
Parseval frame multiwavelet set associated with the FMRA {V;},. This concludes
the first construction of a frame multiwavelet set associated with {V}};.

The reader might wonder whether it is possible to give a more explicit formula
for the frame wavelets 1,. In the light of remark 2, 1)y may not be radial as
well. This may yield a rather unattractive time domain formula for all these
wavelets. It worths mentioning that ., where r > 0, are never radial if v, is
radial. However, if A is a radially expansive dilation matrix and a = || A]|, then
. J%(TFR) _ J%(’ZTE)

(F~'he)(R) = Tk (QaR)a% . R>0.

Therefore, under this assumption, v, is radial and
a%J% (maR) — Jn (7 R)
(2aR)> ’

Yo(R) = R > 0;

and forr=1,2,...,p— 1.

() = DTy DWo(t) = tho(t — A”'q)
azJn(mallt — A7 q,||) = Ja(n ||t — A7 q,
_ il Al - B Al e
(2allt — A~'q,[])2
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Notice that in this case p = |detA| = a™.

We now continue with the preliminaries of the second construction. From now
on and until the end of the present section we work with GFMRAs of L*(R?)
only.

One of the instrumental tools of this construction is the square root of the
autocorrelation function @, which is defined by A(£)? = ®(€), a.e. on T? ([18]).
Also, the inverse of A(€) is defined on the range of () and is denoted by A(£)™".
It has also been proved in [18] that the range projection P of the Analysis operator
S is defined by Pw(§) = P(§)w(€), where w € L?(T?), and that for a.e. £ € T?
the range projection of ®(&) is the projection P(§). For the sake of completeness,
it must be noted that P(-) is a projection-valued weakly measurable function
defined on T?. Since, ® = xp, we deduce P(£) = xp(€) a.e. in T?. The latter
observation in conjunction with the preceding argument imply A(§)™! = 1, if
¢ € D. For all other £ € T? we have A(£) = 0, so for these £ we adopt the
notational convention A(£)~! = 0. Last but not least, an abelian group very
instrumental in the discussion that follows is the kernel of the homomorphism p
defined by

p(€)(k) = mEA ke 77,

The latter equation implies that, for every & € T2, p(£) is the unique point in
T2, such that p(¢) + k = ATE. The kernel of p is homeomorphically isomorphic
to dual group of the quotient group Z?/A(Z?) ([18]). Now, let us fix k,, where
r=0,1,...,p—1,in T?, so that Kerp = {k, : 7 =0,1,...,p — 1}.

We are now ready to adopt Theorem 10 from [18] for case of the FMRA {V}};
generated by ¢.

Theorem 6. Let I C N. Assume H : T2 — B(¢2(I),C). Define
1

H(E+Xk,) H(E + k).

=

@2(¢)

I
<)

Moreover assume that the following conditions are satisfied
(a) For a.e. £ € suppPs, where Py(§) is the range projection of the operator
Q2(8), the operator Q2(€) |pyeyery): P2(&)(P*(I)) — Pa(E)(£*(X)) is in-

vertible and the functions & — HQ2(§) |P2(§)(e2([))H , &€ — H(Qg(f) |p2(§)(£2(1)))_1H
are essentially bounded.
(b) For a.e. £ € T? the closed linear span of the columns of the matriz

My(€) CH(¢)
My(§ + k) H(+ k)

MyE+Xn)  HE+Kp)



14 M. PAPADAKIS ET AL.

is equal to P(€)(CP), where
p—1
P(¢) = Z@ P(+k,) a.e. inT? and
r=0

(c) 0= My(€ +k, ) H(E + k) ae.
If we define
vi:= Yy ) DIT'T3,

m,neZ

where {ag,?,n 21 € I,m,n € Z} are defined by the equation

[IN{()]Z = Z agl),nem,n

m,neL
then, {1; 1 i € I} is a frame multiwavelet set associated with the FMRA {V}};.

A measurable, Z2-periodic operator-valued function H, satisfying the hypothe-
ses of the previous theorem is called a high pass filter associated with M. If the
dilation matrix satisfies Property D, then one obvious choice for H following from
eq. (15) is

H = (erXQ, €q1 XQ5 -+ eqp—IXQ) .

Let us first study the case where the dilation matrix A = 215. In this case
it is well-known that p = 4 and, that we can set k; = (3,0), ko = (3,1) and
k; = (0,1). The reader will find useful to recall, that addition in T? is defined
modulo the integer lattice Z2.

Obviously,
xp(§) 0 © 0 0
~ . 0 XDtk (€ 0 0
PE=1 o DH(; XDk, (€) 0
0 0 0 XDtks (§)

On the other hand, according to theorem 6, we must first determine the values
of P before finding the high pass filter H. All the values of P are 4 x 4 diagonal
matrices whose diagonal entries are either equal to 1 or 0. Therefore, the range
of P is finite.

So, we can find a partition of T?, say {B(cy.e,es.e5)}, Where (e, €1, €2, €3) is the
vector formed by the entries of the main diagonal of an arbitrary value of P.
Apparently each ¢,, where p = 0,1, 2, 3, takes only two values, namely 0 and 1.
Since each of the sets D + k,, where r = 0,1, 2, 3, overlap with at least another
one of these sets, there will be no values of P with a single non zero diagonal
entry (see fig. 1). The definition of the addition operation on T? implies that
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FIGURE 1

D + k; is the union of the two half disks with radii 1/2 centered at k; and —ky;
D + k3 is the union of the two half disks with radii 1/2 centered at k3 and —ks;
and, D + k, is the union of the four quarter disks with radii 1/2 centered at
ks, —ko, (—3,3) and (3, —1). Since all four sets D + k,, where r =0, 1,2, 3, are
symmetric with respect to both coordinate axes, it follows that all sets B(c;,e; es.¢5)
share the same symmetry property. This observation contributes a great deal in
identifying these sets. The reader can now refer to figure 1 where the subregions of
T? corresponding to each one of the vectors (e, €1, €3, €3) are depicted. According
to theorem 6 the values of the high pass filter H must be row matrices. This is
justified by the fact that {V;}; is generated by a single scaling function. However,
the range of every f’(f) is a subspace of C*. Furthermore, according to hypothesis
(b) of theorem 6 the columns of the modulation matrix must span P(£)(C*).
Thus, we anticipate that the modulation matrix must have at least three more
columns. So, H(£) must be at least 1 x 3 matrix. For reasons that will become
more clear later on in our discussion we choose H (€) to be 1 x 4 matrix, for every
£ € T?, namely H(E) := 2(h1(€), ha(€), hs(€), ha(€)). The factor 2 in the RHS
of the previous equation is a normalization factor that helps to obtain a simple
form for the each of the functions h;. According to the conclusion of theorem 6,
the columns of H, i.e. the functions h; (1 =1,2.3,4), define a frame multiwavelet
set associated with {V;};.
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Therefore the modulation matrix has the following form:

XD(«S) ha(€) ha(£) hs(€) ha(€)
41, (&) i~z1(§ + k) ilz(§ +k;) ilg(f + k) il4(§ +k;)
XD+k é) hy (€ + ko) }le({: +ky) }Nl3(§ + ks) il4(f + k)
XD tkq (&) h(E+ks) ho(€+ks) ha(€é+ks) ha(€+ks)

The disk 2 5 has radius 1/4, so this disk and all its translations by k, (r = 1,2, 3)
have null intersections. Thus, for every & in T2, the first column of the modulation
matrix has at most one non zero entry. Since, for every £ in T?, the columns of the
modulation matrix must span P(¢)(C*), we obtain the remaining columns of the
modulation matrix, so that together with the first column they form the standard
orthonormal basis of P(£)(C*). This suggests that the high pass filters h; are
the Z?-periodic extensions of the characteristic functions of certain measurable
subsets of T?. Next, we will identify those subsets of T2, which we will denote by
C;, where 1 = 1,2, 3, 4.

a.e. in T?.

Remark 3. Let Q be the first quadrant of 72?. Then it is not difficult to verify
that the family {Q + k, : 7 = 0,1, 2,3} forms a partition of T?, in the sense that
T? = U2_,Q + k,, but the intersections of every two of the sets @ + k, have zero
measure. Now, let £ be in () +k,. Then & = &) + k.., where & € ). Without any
loss of generality we can assume r = 1. Then,

(hi(€), hi(€+ka), hi(E+ka), hi(E+ks))™ = (hi(&o+ka), hi(é0), hi(Sotks), hi(&o+ka))”

Thus, the values of the modulation matrix are completely determined by its
values, when £ ranges only throughout the first quadrant.

As we have previously mentioned, the family {B(c, e, e,c5) }» Where (€, €1, €2, €3)
ranges throughout the vectors formed by the diagonal entries of the values of P, is
a partition of T?. Therefore, {Q N B(c,e1,e0.65)} i @ partition of Q. Furtheremore,
each of the sets @ N B¢, e,¢5) 18, in turn, partitioned into a finite number of
subsets which are formed by the intersections of Q N B¢ e;,¢2,e;) With each one of
the disks 2, 2 + ki, 2 + ko, 2 + k3 and the complement of their union. This
results in a partition of @) into 29 sets (see fig. 2). We denote these sets by FEj,
where 1 < s < 29. We now have to obtain, for every £ in each of the sets F,, the
remaining four columns of the modulation matrix, so that they span P(£)(C*).
This process is not difficult to carry out. However, for the sake of the clarity of
our presentation, we deem necessary to show how to specifically accomplish this
task, when £ belongs to three of the sets Fj.

Case s = 1. This set is contained in the complement of the union of the disks
% + k., r=0,1,2,3, so the first column of the modulation matrix at £ is equal
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FIGURE 2

to zero. Now, let £ € E;. On the other hand, P(£)(C') = C® 08 Ca® C, so
we choose to complement the modulation matrix by setting its second, third and
fourth columns equal to (1,0,0,0)%, (0,0,1,0)T and (0,0,0,1)T respectively, and

the fifth column equal to zero.
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Case s = 18. Let £ € Eyg. Then, P(£)(C!) = C® C® C @ C. Moreover, £ € %.
This suggests the following form for the modulation matrix at &:

1 0000
01000
001 0O
000T1PO0

Case s = 19. Let £ € Eig. Then, P(¢)(CH) =00 Ca C® 0. Now, £ € (2 + k)

yielding the following form for the modulation matrix at &:

000O0O
01000
10000
000O0O

It is now easy to verify that C;, where ¢ = 1,2, 3,4, are the sets depicted in
figures 3, 4, 5 and 6 respectively.

1 1

Let us now briefly review the case A = (_1 1

>. In this case p = |detA| = 2.

It is also not hard to verify k; = (3, 3) and

15(6) _ (Xnmo(f) 0 > '

XDtk (§)

Notice that ID + k; is now the union of the four quarter disks with radii %
centered at the vertices of the fundamental domain TZ.

Each one of them overlaps with D (fig. 7(a)). This, as in the case of A = 215,
yields a partition of T?, namely the collection of subsets By, ,), Where, (e, €1)
is the vector of the entries of the main diagonal of an arbitrary value of P, and
Bieo,e;) contains all points in T? at which the vector of the entries of the main
diagonal of P is equal to (e, €1) (see fig. 7(b)). The low pass filter is now given
by mo(§) = ﬁX%(@, £ € T?, (see eq. (6)). This can easily follow from the

form of the dilation matrix which is a composition of a rotation by m/4 matrix
and v/2I,. We can now take H (&) := v/2(hi(£), ho(€)), for every & € T2. The
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FIGURE 3

modulation matrix now has a much simpler form, namely

x2(6) () ha(€) -
X%Jrkl(f) hi(€ +k1) ho(€+ky) a.e. 1 1=

Let us now set () to be the closed square whose vertices are the mid points
of the sides of T2. It is not hard to see that @) + k; is the union of the four
orthogonal isosceles triangles defined by the vertices of @ and T2. Obviously,
{Q,Q + k1 } is a partition of T2 modulo null sets. An argument similar to the
one in remark 3 shows that it is enough to determine the filters h; (1=1,2) only
on (). It will also be helpful to observe that the sides of () are tangent to the
circle of radius % centered at the origin and that () can also be partitioned by
the sets @ N Biey.e,), Where (eo,€1) = (1,0),(1,1) (see fig. 7(b)). Each of these
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FIGURE 4

two sets will also be partitioned by its intersections with each one of %, % +k;
and the complement of the union of the latter pair of sets (see fig. 6). This, now
results in a partition of () into 17 sets.

Arguing as in the case of A = 2I,, we can now obtain the sets C; and Cs, so that
hi(€) = xc, (€), where & € T2 and i = 1,2 (see fig. 8(a) and 8(b) respectively).
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FIGURE 5
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FIGURE 6
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