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Abstract

Suppose B; := B(p,r;) are nested balls of radius r; about a point p in a
dynamical system (T, X,u). The question of whether T’z € B; infinitely of-
ten (i.0.) for p a.e. x is often called the shrinking target problem. In many
dynamical settings it has been shown that if E, := Y ", u(B;) diverges then
there is a quantitative rate of entry and lim, . E%L Z?Zl 1g,(T'z) — 1 for
p ae x € X. This is a self-norming type of strong law of large num-
bers. We establish self-norming central limit theorems (CLT) of the form
limy, 00 2= > [15,(T"2) — p(Bi)] — N(0,1) (in distribution) for a variety
of hyperbolic and non-uniformly hyperbolic dynamical systems, the normal-

ization constants are a2 ~ E[> 1 15, (T'x) — u(B;)]>. Dynamical systems to
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which our results apply include smooth expanding maps of the interval, Rych-
lik type maps, Gibbs-Markov maps, rational maps and, in higher dimensions,
piecewise expanding maps. For such central limit theorems the main difficulty

is to prove that the non-stationary variance has a limit in probability.
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1 Introduction

Suppose (T, X, u) is an ergodic dynamical system and B;(p) is a nested sequence
of balls about a point p € X. Recently there have been many papers concerning
the behavior of the almost sure limit of the normalized sum E%? > iy 1p,p(x) where
E, == >"  u(Bi(p)) diverges [4, 26, 11, 13, 14, 19, 24]. If the limit is known to
exist almost surely then {B;(p)} is said to satisfy the Strong Borel Cantelli property.
Many of the references we mentioned consider more general sequences of sets than
nested balls. The study of hitting time statistics to a sequence of nested balls is
sometimes called the shrinking target problem. In this paper we study self-norming
central limit theorems for the shrinking target problem, namely the distribution limit
of i Yo B © T" — u(B;)] where a, is a sequence of norming constants. One
important case for applications is the case where u(B;(p)) = %, and hence E, = logn.
Our results are stated for balls satisfying Y-, 11(B;(p)) = co and p(B;(p)) < £ where
(5 is a positive constants and 0 < v < 1. The main difficulty is to establish that
the non-stationary variance has a limit in probability. Our results are limited to non-
uniformly expanding systems i.e. those without a contracting direction and are based
upon the Gordin [12] martingale approximation approach (see also [27]).

More generally, this paper is also an attempt to study the statistics of non-
stationary stochastic processes arising as observations (which perhaps change over
time) on an underlying dynamical system (which may change over time). Conze
and Raugi [6] studied similar problems for sequential expanding dynamical systems.
Somewhat related results were obtained by Nandori, Szdsz and Varju [30] who ob-
tained central limit theorems in the setting in which a fixed observation ¢ : X — R
was considered on a space on which a sequence of different transformations acted
T; : X — X, preserving a common invariant measure p. The main difficulty in [30]
was also controlling the variance, but the setting in which the underlying maps change
but the observation is fixed is simpler in some respects and more difficult in others.

We obtain fairly complete results in the case in which the transfer operator with
respect to the invariant measure is quasicompact in the bounded variation norm.

These results are contained in Proposition 5.1 and Theorem 6.4. For systems in which



the transfer operator is quasicompact in a Holder or Lipschitz space we show that
under the assumption we call (SP) (derived from a Gal-Koksma lemma as formulated
by Sprindzuk [38]) or a form of short returns assumption called Assumption (C) we
have a central limit theorem (Theorem 3.1). Assumption (C) and the SP property
have been shown to hold for generic points in a variety of non-uniformly expanding
systems [5, 15, 21].

In Section 2 we discuss the set-up, describe the martingale approach we use, prove
some general results on variance and discuss the SP property and Assumption (C).
Section 3 gives our results under the assumption of quasi-compactness in Holder
norms and also some applications. In Section 4 we give our results when we have
quasi-compactness of the transfer operator in the bounded variation norm, and we
give applications to piecewise expanding maps in higher dimensions. The last section
is a concluding discussion, while the Appendices describe the Gal-Koksma lemma
we use and show that Assumption (C) is satisfied for generic points in many of our

applications.

2 The setup.

We suppose that (T, X, 1) is an ergodic dynamical system. Let the transfer operator
P be defined by [¢¢p o T'du = [ Poypdp for all ¢, ¢ € £?(u) so that P is the
adjoint of the Koopman operator U¢ := ¢ o T with respect to the invariant measure
p. Suppose B, is a Banach space of functions and ||¢||; < C||¢||, where ||| is the
Banach space norm and ||.||; is the £ norm with respect to x. We assume P restricts
to an operator P : B, — B, such that ||P"¢||. < C10"||¢]|, for all ¢ € B, such that
[ ¢ dp = 0. This implies exponential decay of correlations of the form, that for some
0<0<1,

‘/qbw o du~ [odu [ v du‘ < COlg el
for all ¢ € By, 1 € £1(1). In our applications we will have the pairs (BV (X), £*(u))
or (H,(X),Z'(X)) where BV (X) is the space of function of bounded variation and

H.(X) is the space of Hélder functions of exponent 7. For example if 7" is a smooth



uniformly expanding map of the unit interval X then B, could be taken as the Banach
space of functions of bounded variation BV (X ). In this paper we will consider Lips-
chitz rather than Hdélder functions, as our results and proofs immediately generalize

to the Holder setting with the obvious changes.

Remark 2.1 The weaker assumption of exponential decay of correlations

\ [ovoran- [oau[v du‘ < Ol

implies that | P"¢[|; < C0"||¢|, (by taking 1 to be sign(P"¢)) and hence P contracts
exponentially in the ! norm. This assumption is sufficient for all our results on
variance in Section 2, with the exception of the proof of the boundedness of the
terms w;, given in Lemma 2.10 which seems to require our stronger assumption that
| P"¢lla < C10™||¢||la- These estimates on the growth of w; are used in the proof of

Theorem 3.1. If B, is the space of functions of bounded variation then the w; terms

are easily seen to be uniformly bounded under the assumption ||P"¢|| gy < CO"||9| 5y

Let p € X and let B, (p) be a sequence of nested balls about p such that (B, (p)) <
% for constants Cy > 0 and 0 < v < 1. Let 1p,, be the characteristic function of
B, (p). We will sometimes write E[¢] or [ ¢ for the integral [ ¢ du when the context
is understood. Our standing assumption is that > 7 | u(B;(p)) — 0o as n — oo.

1B, (p) may not lie in B, but we assume we may take an approximation to it, ¢
such that:

(i) 1. — ¢2h < & and;
(i) ||¢%]la < Cn* where C, k are independent of n;
(iii) &3 >0, 95 >,

Remark 2.2 If we are taking a Holder approximation then condition (ii) is satisfied
for the balls B; = B(p,r;) if there exists 6(p) > 0 and C' > 0 such that p{z : r <
d(x,p) < r+ e} < CP). This condition is satisfied if the invariant measure y has
a density h with respect to Lebesgue measure m such that h € £ (m) for some

n > 0.



We define ¢ = ¢ — i ¢ so that J ¢% = 0. For ease of notation we will subse-
quently drop the superscript a on ¢% and gzgfz‘
Define ¢y = 0 and for n > 1

Wy =Py + P2ouat...+P'og=> P,
j=1

so that w; = Pgy, wy = Py + P2y, w3 = Py + P?¢y + P3¢y ete... For n > 1 define
¢n :¢n_wn+1oT+wn

Recall our assumptions ||¢nlla < CnF(s0 ||pnlla < Cn*) and [|[P¢|la < C10"||0]|a
for all ¢ € B, such that [ ¢du = 0; moreover we have the monotonicity property
l|Pn—illa < |lPnllas for j < n. These facts immediately imply that [|wy, |l < Col/dnlla

(where the constant Cy takes care of the sum of the geometric series of in ), ||w, o
Tlla < Cyllgula (since [UP]la < Cll6la for all ¢ € By) and hence [[¢n]la < Cillgnla-
Using the fact that P(w,41 0T) = wy 41 P1 = w,41 one may show that P, = 0.

Since UP(-) = E[-|T'B], Py; = 0 implies that E[¢;|T'B] = 0 and in turn
E[p;oTI|T~177B] = 0 (since T preserves p). Furthermore 1,077 is T~/ B measurable
for all 7 > 0.

Following the approach of Gordin we will express 2?:1 ¢; o T9 as the sum of a
(non-stationary) martingale difference array and a controllable error term and then
use the following Theorem 3.2 from Hall and Heyde [16]:

Theorem 2.3 (Theorem 3.2 [16]) Let {S,;, Fni,1 < i < k,,n > 1} be a zero-
mean square-integrable martingale difference array with differences X, ; and let n* be
an almost sure finite random variable. Suppose that:

(a) max; | X, ;| — 0 in probability;

(b) >, X2, — n* in probability;

(¢) E(max; X7 ;) is bounded in n;

(d) the o-fields are nested: F,; C Fpi1i for 1 <i <k, n>1.

Then Sy, — Z (in distribution) where the random variable Z has the character-

istic function E(exp(—in*t?)).



As is common in the application of martingale theory to non-invertible dynamical
systems we will have to consider the natural extension so that we have a martingale
in backwards time. We outline our scheme of proof.

Let (0,8, m) be the natural extension of (7', X, ). Each ¢; lifts to to a function
¥7 on (2 in a natural way, ¥7(. .. w ow_j.wowi . ..) := P;(wp). To simplify notation we
write simply 1; instead of 7.

We define scaling constants by a;, = E(3_7_, ¢;0T7)*. This sequence of constants
play the role of non-stationary variance. Giving estimates on the growth and non-
degeneracy of a, in this non-stationary setting is more difficult than in the usual
stationary case.

We define a triangular array X, ; = twn,i oot i =1,...,n,n € N, and
put S,; = 23:1 X, ; for the partial sums (along rows). Then X, ; is F; := o'By
measurable where By is the o-algebra B lifted to 2. Note that in Theorem 2.3
we take F,,; = F; for all n and k, = n. The F; form an increasing sequence
of o-algebras. We obtain E[S, ;1|Fi] = Sni + E[X,i+1|Fi] where by stationarity
E[Xni41|Fi) = Eltbn—i—1locBy) = 0. Hence E[S,;11|F:] = Sni and for every n € N
X, ; is a martingale difference array with respect to ;.

We will then verify conditions (a), (b), (¢) and (d) of Theorem 2.3. The hard part
lies in establishing (b). This is in contrast with the stationary setting where condition
(b) is usually a straightforward consequence of the ergodic theorem. Condition (b) is
established in [30] by using [37, Lemma 3.3.], however in our setting the Lipschitz
norms of the observations ¢; are unbounded and other techniques have to be used.

Once we have established (a), (b), (¢) and (d) it follows that lim,,_, i Z?:_g P;o
T7 — N(0,1) in distribution. In the final step we show that = 37" [w; o T7 —w; o

j=1
T — 0in £ which implies that lim,, . i Z;:é $;0T7 — N(0,1) in distribution.

2.1 Some lemmas on variance

In this section we establish some preliminary results on the growth of the variance
E[(3°7_, ¢j o T7)?] that will be useful in determining the scaling constants a,.
For further reference let us notice that ||P"¢||, < C30™(|4]l, and ||é]1 < Cs|9a



and that there exists a constant a such that
i 1
I > Pl < & (2.1)

j>alogi

Lemma 2.4

hrnsup— ZgbZoT’ >1

n—oo

where E, = 37" E(¢73).

Proof: By exponential decay of correlations and (2.1) we get for the long term

>

j>alogi+i

Interactions:

C1
< 2
_ .27

¢;0 T ;0 TV
]

where we used exponential decay and our bound ||¢;]|; < Cs|¢;la < 15, where ¢,k

are independent of j. This bound is from assumption (ii). Recall ¢; = qgj —f ggj and

;] < 2 (for some c3). Thus for the short term interactions we get

i+a log i i+a log 1
/gbloTZgb 0T’ = /gb,oTZgb o T7 4+ O(alogiE(¢;)?)
Jj=i+1 j=i+1
whence
n - A n italogi ~ o A n ~
DY EldioT'¢0T =% ¥ ElgoT'¢;0T]+ Y OlalogiE(é:)?).
i=1 j>i i=1 j=i+1 i=1
Since
B3 00T = S B + 233 Bl o7, o)
=1 7>t
and Y0, Z;:flgz E[di o Ti¢; o TV + 37 alogiE(¢;)? > 0 the lemma is proved. B

Lemma 2.5

E:E:/@ T¢0W—§:/@moTl

=1 j=i+1



Proof: Recalling that ¢y = 0 this follows by a direct calculation and rearrangement
of terms as

1 n n j—1

ni > /qjioTi(bjoTj = ZZ/@OT%OTJ
i=1 j=i+1 7=2 i=1
n j—1

= 33 [Pres,

jz2 i:1j,1

= > [ Prens,
=27 =1

_ .
j;/wj j

The following lemma is the main result of this subsection:

Lemma 2.6

n

= B(Y 60T =S ) - [ui+ [udi,
=1 3

=1

Proof: Let us first observe that factoring out yields

Y2 = ¢+ 20;(w; — wipr o T) + (wj — wjpy 0 T)?

= ¢?+2¢J(w3_w]+1OT)+w]2+w]2+10T—2w]w]+10T

which when integrated leads to

/%2- = /¢?+2/¢j(wj_wj+loT)+/w]2'+/w]erl_Q/ijjJrloT
= /¢?+2/¢jwj_2/P¢jwj+1+/w32'+/w]2'+l_2/ijwj+1
= /¢?+2/¢jwj—2/P¢jwj+1+/w?+/w?+1—2/(wj+1—P¢j)wj+1
= /¢?+2/¢jwj—|—/w?—/w]2-+l.



Since by Lemma 2.5

i _zE 1253 [aoreer= Z(Ew) 2 [ o)
=1 j=i+1
the statement follows by substituting [ 47 — [w? + [w},, for the terms inside the

sum on the RHS and then telescoping out the expected values of wJQ.. |

2.2 Property (SP)

Several authors [25, 4] have used a property derived from the Gal-Koksma theorem
(see Appendix) to prove the SBC property for sequences of balls. Later we will show
that in certain settings the (SP) property also implies a CLT. Property SP (where SP
stands for Sprindzuk Property), states that E(S(m,.))?) < CE(Sqnn)) where f; > 0
and Sinn) = Y., fi, it is a condition that appears in one guise or another often in
proofs of the Borel Cantelli property (which is easily deduced from this).

Suppose B; are balls and let f; = 15, o T*. If

ZZ (fifi) = B(F)E() < C Y B(f)  (SP)

1=m j=1+1

for arbitrary integers n > m then the balls are said to have the (SP) property.

2.3 Short returns and Assumption (C)

In this section we discuss a condition on short return times first considered, to
our knowledge, by P. Collet [5]. We have called it Assumption (C), after Col-
let. This condition has been used to establish extreme value statistics [5, 21, 15]
and dynamical Borel-Cantelli lemmas [14, 19]. Assumption (C) is a strong con-
trol on measure of points making short returns. If Assumption (C) holds for a
point p then the measure of a set of points in nested balls B;(p) about p return-
ing to B;(p) in a time interval smaller than an integer power of —log u(B;(p)) is
smaller than u(B;(p))" where n is greater than one. Note by Kac’s theorem the

-1

expected return time to p(B;(p)) is of order u(B;(p))~", so an integer power of

10



—log 11(B;(p)) is indeed a very short return. This condition fails for periodic points,
as a fixed fraction of the mass of a ball returns after the period. Heuristically if

the first return times to B;(p) follow an exponential law (which one somehow ex-

pects for generic points) then lim; e .5 (p) moyr € Bilp) : 7(x) > B By e —t
and hence lim;_, mu{x € Bi(p) : 7(x) < (Bi(p))} — 1 —e ~ t (for small
t). Suppose now we could solve for m = (—log(u(Bi(p)))*, we would then have

plz € Bi(p) : 7(x) < (—log(u(Bi(p)))*} ~ (—log(u(Bi(p)))*n(Bi(p))*. Note that
our assumption p(B;) < 2 implies that (—log u(B;))* > C(log(i))* for large i.This
train of thought makes Assumption (C) seem reasonable for generic points.

Suppose therefore that p € X and B;(p) is a nested sequence of balls centered at
a point p, with lim; u(B;(p)) = 0.

Assumption (C): We say (B;(p)) satisfies Assumption (C) if there exists n(p) €

(0,1) and k(p) > 1 such that for all ¢ sufficiently large

1(Bi(p) N T By(p)) < p(By(p))™"

forallr=1,..., (logd)".
If (B;(p)) satisfies Assumption (C) then we can say more about the behavior of

the constants a,,.

Remark 2.7 Note that our assumption p(B;) < £ implies that (—log u(B;))" >
C(log(i))* for large 1.

Lemma 2.8 Under Assumption (C) there exists a constant Cy and some large a so

that
/ijj\ < C4,“(ijalogj)1+n log j.

Proof: By the contraction property of the transfer operator one has as in (2.1) for a

sufficiently large constant a

Z /¢]le¢z S ﬂ(ijalogj)?

i<j—alogj

11



Let ¢; = ggj —f gzNSj where q?)j is the B, approximation to 1p,(,). Hence we obtain in
the Z!-norm: (as gz~5j > 0)

[16 < alog](/@P%Jw/@n/@ o [Proa [6 [ )

+0 ((j — alog j)i(Bj—a1og;)?)

_ alog] (/gbjpngb] n + 30(d5-n)it (cbj)) + O)n(Bj-aros;)”

alog]

= Z /¢Jpn¢3 n+O0)u(B)- alogj)2>
Now by Assumption (C) we have

/¢3Pn¢z —n /qb] 00T 0 < (B NT"Bj_p) < c1pu(Bjn) '™,

for n < alogj, and thus

alogj

Z /¢1Pn¢3 n < coap(Bj- alogJ) "log j,
proving the lemma. [

Lemma 2.9 If (B;(p)) satisfies Assumption (C) then

t (Y0 )3 17

Proof: Rearranging the sums yields by Lemma 2.5

E() ¢ioT)? = ZE¢2 +QZZ/¢Z Tig; 0T’
=1

=1 j=i+1
= Y s +2Y [ue,
i=1 =2
and hence the result follows by Lemma 2.8 as n > 1. |

12



2.4 Bounds on w;

We now assume that ||¢|lec < C||¢]|o which under our assumption on the transfer
operator implies that for a mean-zero function ¢ € B, |P"¢||.c < CO"||¢||o for some
C, 0 < 6 < 1 independently of ¢. For example if ||.||, were the Banach space of
Holder functions of exponent « on the unit interval then ||¢]|w < C||¢|lo. In the
BV or quasi-Holder norm indicator functions are bounded, and the proof that w; is
uniformly bounded is straightforward in this case; we would like to stress that the
next result is obtained under the general assumption that (B, (p)) < <.

Lemma 2.10 Assume ||P"¢||o < CO"||¢||o then there exists a constant Cs such that

lw;lloe < C for all 5

Proof: For some a > 0 we can achieve > 7_ 1. [ ' Dnjloo < €15 lalogn] 67 (n —
7)F = O(n™?%) and in particular |P7¢,,_j|o = O(n™2) for all j > |alogn] and all n. As
in the previous lemma let Q;j be the B, approximation for 1p, and ¢; = ggj — ,u(quSj). In
view of the tail estimate it is only necessary to bound ZLCL logn] pj ¢n—j independently
of n.

(i) Bound from below: Since ¢; > —u(p;) > —cop(B;) > — %5 (c2,¢3 > 0) one ob-
tains ZWOg" Pig, ; > Ztalog"J nc?’].) > o log” for some constant ¢, independent
of 7 and n. Hence w, > —c5 for some c5 > 0 and all n.

(ii) Bound from above: Since 1p,,, < 1p, one has $;11 < ¢; and in particular
1(G541) < u(@y). Hence ¢ju1 — 5 < p(d;) — p(dy01) and (as ¢y = 0)

m—1
Wy — Wip—1 = ij Gm—j — Pm—1-;) + P" o

< ”f(u@m_l_j)—m_»)
lalogm|
< 2 (Hdns) — 4lOny)) + O,

13



Consequently (w; = Pgy = 0)

Wp = Z(wm_wm—1>+w1

IN
S
=
-

3

N

|
=
-
3

J

N

+
S
3
o

m=2 Jj=1
lalogn| n ~

= Y (w1 + O )
= m=2V[ea |
lalogn| ~ ~

= Y (W@y )~ H(Ba) 02V D)
=1

< G

for a constant ¢g independent of n because

lalogn| B alOg?’L
> Hony) Ser— == =0
j=1
as n — oo and
lalogn| lalogn]
~ i
. )Y —
> by )< 3 (€T =0
J= J=

for constants c7, cg independent of n.

3 Decay in Lipschitz versus .£!

We take B, to be the space of Lipschitz functions, the arguments we give hold for

Holder norms with obvious modification. We assume that the transfer operator P,

when restricted to Lip(X), contracts exponentially:

1P| ip < CO"(|0] Lip

for all Lipschitz functions ¢ such that [¢du = 0 where § € (0,1) and C are inde-

pendent of ¢.

14



This implies

\ [ ov o = BB < 0016l 1012 (3.2)

for the same 6 € (0,1) and C independent of ¢, 1.

For a sequence of (nested) balls B; we put £, = >_7"  u(B;) and S, = > | 1p,0T"
for the ‘hit counter’ for an orbit segment of length n. The sequence of balls B; satisfies
the strong Borel-Cantelli (SBC) property if

Sp,
lim —(x)

n—oo I,

=1 (3.3)
for almost every x € X.

Theorem 3.1 Assume that the transfer operator, when restricted to Lip(X), con-
tracts exponentially as in (3.1) for some 6 € (0,1).

Suppose B;(p) be nested balls about a point p such that ), p(B;) = oo and
w(Bi(p)) < £ for constants Cy > 0 and 0 < v < 1. Let a2 = E(X (1, ©
T" — u(By)))*.

(1) If the nested sequence of balls (B;(p)) satisfies Assumption (C) and the SBC prop-
erty (3.3) then

n

1 .
Qn, =
mn distribution.

(II) If (Bi(p)) has the SP property then

LS00 - () (L)

Proof: We will let ¢; = ngj - ggj,where ggj be a Lipschitz approximation to 15, such

that .
l¢; — 1,1 < ]%
il < Cj* .
¢; =20

15



We define w,, = P¢,_1 + P?¢p_o+ ...+ P'¢y and put v, = ¢, — Wppy o T + wy,.
Then Py, = Pop — wnp1+ 0, Pi¢,_; 11 = 0 which corresponds to [ ¢, x0T du =
J xPiy, dp = 0 for any integrable x. Note that [|¢;||oc < |10j]]Lip: |51 < 0] Lip-

Lemma 3.2 There exist constants Cg, k so that
(1) |lwnlzip < Cn”,

(1) [[walo < Cé,

(I11) |Jwy ||, < Cg'B2.

nYy

Proof of Lemma 3.2. (I) By the contraction of the transfer operator for Lipschitz

continuous functions one obtains
n n
lwnllip < NP Gnjllip <> C10||¢njllLip < c1n”
j=1 j=1

(IT) Is a consequence of Lemma 2.10.

(I1T) For sufficiently large a we get

alogn n
lwally < D0 1P Gusslli+ Y- ([P usylly
j=1 j=alogn+1
alogn n
< D il D PGl
7j=1 j=alogn+1
alogn n
< D bl D Clldnll
j=1 j=alogn+1
log®n
< C(alogn)u(Bn-alogn) + ca—3
n
1
S es ogn
n”y
for some ¢y, c5 independent of n.
Now put Cs = max(cq, ¢s). |

As before let (o, Q,m) be the natural extension of (T, X, ) and put a;, = E(3_7_, ¢;0
T7)? for the rescaling factors where the 1, lift to © in a natural way. Again we put

Xp; = 2pp_;007% i =1,...,n which are F; = 0'By measurable where B, is the
) an

16



o-algebra B lifted to 2. The F; form an increasing sequence of o-algebras. We put
Sni = 2321 X, i=1,...,n (k, =n), and obtain E[S,, ;+1|F;] = Sni + E[Xs i41|Fi]
but by stationarity E[X,, ;+1|Fi] = E[¢n—i—1|0B] = 0. Hence E[S,, ;41|Fi] = Sy and
X, is a martingale difference array with respect to ;.

Condition (d) clearly holds; instead conditions (a) and (c) simply follow since
||6n||oo is bounded and a,, tends to infinity.

We now prove (I) and show that under Assumption (C), 31", X, — 1 in prob-
ability and hence condition (b) holds.

Lemma 3.3
1 :
= > o T/ 1
ay <=

in probability as n — oo.

Proof. We follow an argument given by Peligrad [31]. As ¢; = ¢; + w; —wjy1 0T

we obtain

v = 6]+ 205w+ wi Fwi, 0T = 2wip o T(g; + wy)
= ¢? + 20;w; + wgz‘ + wg2'+1 ol —2wj 0T (¢Y; +wjp10T)
- ¢? + (wy2 - wg2‘+1 oT) —2¢jwjqq o T + 2¢w;.

We want to sum over 7 = 1,...,n and normalize by logn and wish to estimate the
error terms which are the last four terms on the RHS. The terms wJQ. = wJQ. 071 are
bounded and telescope so may be neglected.

In order to estimate the third of the error terms, ¥;w;;; o T'" we proceed like
Peligrad (page 9) using a truncation argument. Let w§ = w;1{ju;|<ca,}, Where for

simplicity of notation we have left out the dependence on n. Then

n 2 n n
/ (Z i 0 TIws,, o TJ‘+1> => / (¢ 0 TS,y o TV < a2 Z/¢§
j=1 j=1 j=1
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since the cross terms vanish (for j > i), as
J@usa e o i, 01 o T = (W, 0T o T (bt o)
= [@us o T) o T PG, o )
= /(¢jw§+1 oT) o TV """ twi, Py =0

P(lz)iwfﬂ © T) = waP@/}i,
For any a > ¢ we obtain using Tchebycheff’s inequality (on the second term):
D 50 Twjy o TV

1
M a—2 >a
7j=1
>a>

,u(ma,x ‘leoTJJr { >ean) —I—,u(

IN

Z@Z)JOTJ oTﬁ'1

1<j<n

< M(lrg]ax wjs1 0 TV > eay)

2

€
= Ti+l i
Mg e o T > ean) + g

In the last line we used )7, [1%] ~ a, by Lemmata 2.6 and 2.8. By boundedness
of the w; (Lemma 2.10) one gets that P(maxi<j<, |wji1 0T > ea,) — 0 for every
e > 0asn — oo. Choosing a = €2 we conclude that é D1y 0 THwjgy o TIH!
converges to zero in probability as n — 0o.

For the fourth error term - 2 Zj (¢jw;) o TV we obtain by Lemma 2.9:

n

Z(gb]w] )o TV

j=1

< Z [¢jw;lli < CQZN j—alog ) Hlog j

Thus a% > i1(¢jw;) o T9 — 0 in probability.
Since the term 1 Z i1 qb2 o T converges to 1 almost surely by the SBC property
the proof is complete. |

Lemma 3.3 completes the proof of part (I) of the theorem. In order to show (II)

we proceed as in the proof of (I) except for the verification of condition (b). We
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will prove an SBC property for qbf + 2w;¢;. Decomposing ¢; = q?)j — ,u(gz;j) and
defining w; = Pdj_1 + ... + Plelosilg, (.1 we see that |3 — &3”1 < Cu(B;j)?
and |Jw;¢; — ;0] < C’u( i —alogj)>log j. Note that both @, and ¢; are positive
functions and moreover that similarly to Lemma 3.2 there exists a constant Cg such
that ||@;]|e < Cs and ||w;]| i < Csj*. Let &, := > i1 E[gzgs + 2w, Tt suffices to
consider the sequence ¢ +2w;¢;. This is because Y| E[¢7 +2w;¢;] = > E[d7 +
2w;;] + 377 (Cr(B;)? + Cpu(Bj_a1og)?10g j) and hence i almost surely,

n

= (¢7 0TV +2(w;¢;) o TY).

7=1

1

g§j¢oW+%w@wTw &

We will use Proposition 8.1, a form of the Gal and Koksma theorem as stated by
Sprindzuk to show that % > ngi oT7 4 2(w;¢p;) o T7 — 1 almost surely. For this we
want to use Proposition 8.1 with f; = ¢% 4 2w;¢;, g; = [ f; and h; to be determined

- N N N
below. We need to estimate the terms in [ (Zz":m(gb? + 2w;0; — [ ng? + ijgzﬁj))

In order to verify the condition of the proposition we look at the three individual
sums of terms [ ¢; 0 Ti7ig, f(éju?]) o TV~idp; and f((ﬁjuij) o Ti=ig, as follows:

(i) The fact that condition (SP) holds for the functions ¢; implies
S [om6) - E B <0 ) Bl (3.4
i=m j=i+1 i=m
Since E((;BQ) — E(¢;) = O(j~*) we obtain
S0 [For i - HEEE <o Y B+ Y06,
i=m j=i+1 i=m i=m
(i) Here we estimate the sums of the terms [ (¢;;) o TV (¢u;) — E[dji;] E|psis).

By exponential decay of correlations one has for some constant 5 > 0

(/@oWZ@ BloEG]) = 3 ([ 6076 - BblEG]) + 0l
i+Blogi i+LBlogi

and therefore
2. /cb] TG < Y ElG]E[G1+OG) (/¢ o TV~(¢;) — El¢;|E w)
Jj=i+1

j=i+1 Jj=i+1

i+ logz

J=i+1 j=i+1
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Using the uniform bound on |0;]s this implies

i+pPlogi

> [ oG
< (i%giEw 3+ 0G™) ( [ 0176 - Eld1E w))

j=i+1 j=it1

By decay of correlation and since ||ij¢~)j”a < Cgj* we get with a possibly larger 3
that

Z [t 0T Gu) - Efgyi Bl

- ﬂz ([ or@un) - BgaEGa] ) + 06
< C‘éiggimm E[¢;] +02 ( / b0 T () — [@]E[&A)W(f’“)
< ( w’]m(’g”; ( / 3, 0 T7(3,) — Eld, ]E[&A))wu—%

for some k > 1. Since E[¢;]?logi < ¢;E[¢;] Vi and some ¢, and since for every m,n

inequality (3.4) holds we now obtain

Z Z (/ 65) TV (§si;) — E[ngwj]E[QEiwi]) <3y Blo]+ 03
i=m j=i+1 i=m

(iii) A similar argument shows that for the ‘mixed’ terms
Z Z / (/5ij o T E[‘Z;ij]E[Qgﬂ < C4ZE[Q%J'] + Z <(9(i_%)> .
i=m j=i+1 i=m i=m

Combining (i), (ii) and (iii) yields for all m < n and some constant cs:

/(i (&§+2wjéj—/q3§+2wjéj)> <C5Z< 6] + O( ’k)>

We choose h; = E[¢] + OG %), and so Proposition 8.1 implies that
v B (gf}jz o TV + 2(1;¢;) o Tj> — 1 almost surely, provided & > 2. |
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4 Applications to dynamical systems.

Theorem 3.1 applies to a variety of dynamical systems including Gibbs-Markov
maps [1] and rational maps [17]. For Gibbs-Markov maps it has been shown [14,
Theorem 1] that nested sequences of balls (B;(p)) satisfy both the Strong Borel Can-
telli property and Assumption (C), so that (I) applies. For rational maps [17, Theorem
10] shows that the transfer operator contracts exponentially in the Z*° norm hence if
the (SP) property is also proved then (II) holds. More generally (II) shows that prov-
ing the (SP) property for systems whose associated transfer operator has exponential

decay suffices to prove the SBC property and the CLT for shrinking targets.

5 Decay in BV (X) versus .£!

It is known that summable decay of correlations in BV (X) versus ! implies the
SP property by work of Kim [26, Proof of Theorem 2.1] (see also Gupta et al [14,
Proposition 2.6]). Hence the statement in this setting is simpler.

Let the transfer operator P be defined by [ ¢¢po T'du = [ Ppypdp for all ¢, ¢ €
Z?*(n), that is P is the adjoint of the Koopman operator U¢ := ¢ o T.

We assume that the restriction of P to the space BV(X) is exponentially con-
tracting, i.e. P: BV (X) — BV(X) satisfies

|1P"pllsv < CO"[|¢] By (5.1)

for all ¢ € BV (X) such that [ ¢ du=0.
This implies that (7', X, ) has exponential decay of correlations in BV versus

£, so that for some 0 < 6 < 1,

[ovorau= [oau [vau| < cololmlol, (52)
for all p € BV(X), v € £ (). In particular the measure y is ergodic.

Proposition 5.1 Assume the transfer operator P contracts exponentially as given

by (5.1)
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Let B; := B(p, ;) be nested balls of radius r; about a point p such that ), j(B;) =
oo and p(Bi(p)) < £ for constants Co > 0 and 0 <y < 1. Let a% = By (1p, 0
T' — u(B;)))?. Then:
(1)

n

- > (1, 0T = u(By)) — N(0,1).

L

(II) If the nested sequence of balls (B;(p)) about p satisfies Assumption (C) then
1 & ,
—> (15 0T = u(By)) = N(0,1)

. distribution.

Proof: The proof is the same as for Theorem 3.1 with the simplification that the SP
property holds automatically as we have summable decay of correlations in BV (X)
versus £ (see proof of [26, Theorem 2.1]). Furthermore Lemma 2.4 shows that the
variance is unbounded and Lemma 2.9 gives a precise rate of growth in the case that
Assumption (C) holds. |

Remark 5.2 For one-dimensional maps of the interval, Proposition 5.1 is basically
a consequence of Conze and Raugi [6, Theorem 5.1]. Follow the proof of [6, Theorem
5.1] taking T, = T for all k, m to be the invariant measure p and choosing f, =
1g,(p). The rates of growth are given by Lemma 2.4 which shows that the variance is
unbounded. Lemma 2.9 gives a precise rate of growth in the case that Assumption (C)
holds. In Proposition 6.2 we extend these results to piecewise expanding maps in

higher dimensions.

6 Applications of Proposition 5.1.

Proposition 5.1 applies to certain classes of one-dimensional maps such as piecewise
expanding maps of the interval 7' : X — X with % of bounded variation and pos-

sessing an absolutely continuous invariant measure with density bounded away from

22



zero (those maps satisfying the assumptions of [26, Theorem 2.1], see also [14]). For
these systems, Assumption (C) has been shown to hold for nested balls about
a.e. p € X [21, 15]. In the next subsection we generalize these results to piecewise

expanding maps in higher dimensions.

6.1 Piecewise expanding maps in higher dimensions

In this section we prove the Strong Borel Cantelli property and the CLT for shrinking
balls in a class of expanding maps in higher dimensions. We also show that assumption
C holds for p-a.e. point.

The Banach spaces will be given by !, defined with respect to the Lebesgue
measure on R”, and a quasi-Holder space with properties analogous to BV which we
define below. A key property of the quasi-Holder space is that characteristic functions
of balls have bounded norm (as in the BV norm) which turns out to be a very useful
property.

The maps are defined on compact sets Z € RY. Denote by dist(-,-) the usual
metric in RY and for ¢ > 0 let B.(z) = {y € RY : dist(z,y) < €} be the e-ball
centred at z. Let B.(A) = {y € RY : dist(y, A) < &} and write Z° for the interior of
Z and Z its closure.

A map T : Z — Z is said to be a multidimensional piecewise expanding map, if
there exists a family of finitely many disjoint open sets {Z; } such that Leb(Z\|J, Z;) =
0 and there exist open sets Z; D Z; and C1*® maps T}, : Z; — RN (for some 0 < a < 1)

and some sufficiently small real number ¢; > 0 such that for all 7,

o (H1) Ti(Zi) > B, (T(Z:)) and Tj|z, = T z;
e (H2) For z,y € T(Z;) with dist(z,y) < &1,

|det DT, (x) — det DT, *(y)| < ¢| det DT, ! ()|dist(z, y);

e (H3) There exists s = s(T) < 1 such that Vz,y € T(Z;) with dist(x,y) < e,
we have

dist(T; 'z, T, 'y) < sdist(x,y).

)
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e (H4) Let G(¢) :=sup, G(x,¢,e1) where

Leb(T; 'B.(0T Z;) U B(1_ 4.
G(l’,g,ﬁl) — Z € ( i (a )U (1-s) 1(‘7:))

(6.1)
- Leb(B(1-s), (2))
and assume that G
sup (s* + 2sup ﬁéa) < 1! (6.2)
0<ey e<éd e

We now introduce the Banach space of quasi-Holder functions in which the spec-
trum of the Perron-Frobenius operator P is investigated. Given a Borel set I' C Z,

we define the oscillation of ¢ € £*(Leb) over I as
osc(p,I') := ess sup p — essrinf ©.
r

The function = +— osc(p, B-(x)) is measurable (see [23, Proposition 3.1]) For

0 <a<1andegy> 0, we define the a-seminorm of ¢ as

ola = sup = [ osclip. Bu(a)) dLeb(a)
RN

0<e<eg

Let us consider the space of functions with bounded a-seminorm
Vo ={p € £ (Leb) : |plo < 00},
and endow V,, with the norm

I lla =11+ 1+ o

IThis condition could be greatly simplified as follows. Suppose the boundaries of Z; are C!

codimension one embedded compact submanifold, then define the quantity:

4s En_i
1- SY(T) Y

no(T) := s +

where
Y(T) = sup Z # {smooth pieces intersecting 0Z; containing x},
€T .
K2
is the maximal number of smooth components of the boundaries that can meet in one point and
N/2

En = (’]TV/Q)!, the N-volume of the N-dimensional unit ball of RY. We require that 1o(7) < 1, and

this may replace the condition (6.2) above.
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which makes it into a Banach space. We note that V,, is independent of the choice
of g9 and that V,, is continuously injected in Z*°(Leb). According to [34, Theorem
5.1], there exists an absolutely continuous invariant probability measure (a.c.i.p.) u,
with density bounded above, and bounded below from zero, which has exponential
decay of correlations against .Z! observables on the finitely many mixing components
of V,: in view of the next Theorem 6.4 we will from now restrict ourselves to one of
those components, by taking a mixing iterate of T'. More precisely, if the map 7' is as
defined above and if p is the mixing a.c.i.p., then there exist constants C' < co and
¥ < 1 such that

| /ﬂoT”hdM— / vdu / hdp| < Ol | ]la?" (6.3)

for all ¢ € Z! and for all h € V,,. Moreover |P"¢|lo < C|/¢||o for all ¢ € V,, and

thus equation 5.1 holds.

We now show that characteristic functions of balls are bounded in the || - ||, norm.

Lemma 6.1 Let B;(p) be a nested sequence of balls about a point p € X, then there

exists a constant D(a) such that
15,lla < D(a)

for all 1.

Proof: Take any set A with a rectifiable boundary. If p is not in a 2e neighborhood
of the boundary of A, then the oscillation is zero, otherwise it is 1. Therefore we have
[ osc(14, B(p)) dLeb(p) < cie. Then we must divide by €*. As o < 1 we have the

ratio bounded by ¢; * el 7%, |
The boundedness of the characteristic functions in the ||-||,-norm allows us to proceed

as in Proposition 5.1 (see also [6]) and to obtain the following result.

Proposition 6.2 Assume a piecewise expanding map T on a compact set Z C R"
satisfies conditions (H1)-(H/) and is mizing with respect to its absolutely continuous

invariant measure p. Let B; := B(p,r;) be balls of radius r; about a point p such
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that 3, i(B;) = oo and pu(B;) < £ for some constants Cy and v € (0,1]. Then the

variance ap = E[(327_ (15, 0 T' — 1))?] satisfies

lim sup >1
n—oo  Vl1ogn
and
1 «— o1
> (g 0T = 2) = N(0,1)
ay, 1

J=1

mn distribution.

Proof: The SBC property (I) is immediate from the decay of correlations, Equa-
tion 6.3 and the bound ||1g, ||« < D(«) by the proof of Proposition 6.1. The growth

estimate follows from Lemma 2.4. [ |

We now make an additional assumption. Suppose that we have M domains of local
injectivity for the map T} if we take the join 27 := \//_, T='Z, where Z denotes
the partition, mod-0, into the closed sets Z;,i = 1,---, M, then on each element
Zl(j ) ,1=1,--- 27|, each of which is the closure of its interior, the map 77 is injective

and of class C'*® on an open neighborhood of Zl(j ). we call Zl(j ) such an extension.
In order to prove condition (C) we require a further assumption which is also called

the finite range structure. We assume:

o (H5) Let UV := {1927 Wl = 1,--- |27}, and put Y = U2, U, Then U
consists of only finitely many subsets of Z with positive Lebesgue measure,

hence U,, = infye, m(U) is bounded below.

Lemma 6.3 Under the assumptions (H1)-(H5) Assumption (C) is satisfied.

Proof. Denote
&(€) i= {; dist(T"z, x) < €}.

By Lemma 8.2 (see Appendix) it is enough to prove that there exists C' > 0, § > 0
such that for all k and ¢,
u(&(e)) < O
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We now fix 5 and consider the cylinder, say, Zl(j). Let us suppose that {zj}r>1 is

)| namely dist(zx, ) — 0 when

a sequence of points in Zl(j ) converging to r € Zl(j
k — oo, and that dist(77(z;),z) — 0 for k& — oco. With abuse of definition we say
that such a point x is fized. If there are points in the sequence {zj}r>1 which are
on the boundary of Zl(j), we think of 77 as its C''™® extension on Zl(j). We want
to show that in Zl(j) there is only one fixed point x. By contradiction, suppose y
is another fixed point and {wy}x a sequence converging to y and whose T images
converge to y as well. Suppose that Zl(j ) is a convex set in such a way the segment
[,y] is contained in Zl(j )2 We now fix 1 small enough and take k big enough and
such that dist(z, 2;), dist(x, T7(z)), dist(y, wg), dist(y, T?(wy)), are all smaller than
n. We also put D,,; := inf{||DT7(x)||} > 1, where the inf is taken over the points
x where the derivative is defined. The norm is the operator norm, which is strictly

larger than 1 since the map is uniformly expanding. Then we have
dist(z,y) > dist(TY (z1), T (wy)) — dist(z, T7(2)) — dist(y, TV (wy))
and by applying Taylor’s formula
dist(z,y) > D,y jdist(zy, wg) — 21 > D,, ;[dist(x,y) — 2n] — 2n

which gives a contradiction, since D,, ; > 1, by sending 1 to 0. Hence z is the only
fixed point.

Let us now take a measurable set V C Zl(j ) containing the fixed point x € Zl(j ),
We require that the diameter of the image 77(V) be at most ¢; such an image will
therefore be contained in the ball of center 77(x) and of radius €. The Lebesgue
measure of this ball will be equal to éye, where the factor £y was defined in the

preceding footnote. Then we have

Leb(B.(7)) = &Ene > Leb(T9(V)) > | det(DTY(k))|Leb(V)

2If not we could join x and y with a chain of segments contained each in Zl(j ). the argument will
work again since the sum of the lengths of those segments is larger than the distance between x and

y and this is what we need in bounding from below.

27



for a suitable point kK € Zl] , where in the last inequality we used a local change of
variable and the continuity of DTY. By distortion, we could replace this point by
another one, say ¢ such that Leb(T7(ZY) = | det(DT?(1))[Leb(Z): we call B the

distortion constant satisfying %m < B. We therefore get

Ene B Ene B Leb(Zz(j))
Leb(V) < ° <
(V) < St o)) = U

Since the density of the absolutely continuous invariant measure p is bounded from
above (remember it is in .Z>°(Leb)), by, say, has, and since each Zl(j ) will contribute
with at most one fixed point, by taking the sum over the [ we will equivalently get an
upper bound on the total measure of the balls including the 77(V'); hence we finally

get

Envhar eV B

A

and this bound is independent of j. |

p{a; dist(TVz, )} <

As a consequence of Lemma 2.8 we have,

Theorem 6.4 Assume a piecewise expanding map T on a compact set Z C R"
satisfies conditions (H1)-(H5) and is mizing with respect to its absolutely continu-
ous invariant measure p. For p a.e. p if B;(p) are nested balls about p such that

S 1(B;) = 00 and p(B;) < 2 for some constants Cy > 0 and ~y € (0,1]. Then

n

a2 = B[} (15,0 T %))2] —logn + O(1)

J=1

and

1 o1
lg,0oT"——) — N(0,1

i distribution.

7 Discussion.

There are several natural questions remaining unanswered. In particular can the

CLT for shrinking targets be proved for Anosov systems or non-uniformly hyperbolic
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diffeomorphisms? Chernov and Kleinbock have proved the SBC property for balls in
Anosov systems [4] but the SBC property is unknown for non-uniformly hyperbolic
diffeomorphisms. More generally can a limit theory be developed for the statistics
of non-stationary stochastic processes arising as observations (which change in time)
on deterministic dynamical systems which may also may evolve in time, such as

sequential dynamical systems?

8 Appendices

8.1 Gal-Koksma Theorem.

We recall the following result of Gal and Koksma as formulated by W. Schmidt [35, 36]
and stated by Sprindzuk [38]:

Proposition 8.1 Let (€2, B, 1) be a probability space and let fi(w), (k=1,2,...) be
a sequence of mon-negative p measurable functions and g, hy be sequences of real
numbers such that 0 < g < hy <1, (k=1,2,...,). Suppose there exists C > 0 such
that

/ ( ) <fk<w>—gk>) w<C Y I (+)

m<k<n m<k<n

for arbitrary integers m < n. Then for any ¢ > 0

Y flw)= ) gk +0(02(n)log” >t O(n))

1<k<n 1<k<n

for pa.e. w e Q, where O(n) =37 o), I

8.2 Assumption (C) for expanding systems

In this appendix we show that if the invariant measure p has a density p(z) with

respect to Lebesgue measure m then Assumption (C) is valid. Recall we define

&(€) == {x : d(T*z,2) < €}
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Lemma 8.2 Let B;(z) denote a decreasing sequence of balls with center x and sup-
pose u(Bj(z)) < 2 for some constants Cy,Cy and 0 < v < 1. Suppose pu has a
density p with respect to Lebesgue measure m with support X and there exists C7 > 0,
0 > 0 such that for all k, €,

H(E(€)) < Cré?

Then for u a.e. p € X there exists n(p) € (0,1) and k > 1 such that for all i
sufficiently large
#(Bi(p) N T By(p)) < n(Bi(p))'*"

forallr=1,...,log" 1.

Proof. Let p(x) = j—y’jl(a:) be the density of ;1 with respect to Lebesgue measure m.
Let 0 > 1 and v > 0. We choose ¢, so that for all z a ball of radius ¢, about =z,
denoted B(z,¢;), satisfies ¢, /k% < m(B(xz,¢;)) < ¢2/k°, so € ~ k~7/P where D is
the dimension of X and ¢, ¢y > 0.
Let © > 1 and define Ay := {z : d(TVz,z) < ¢, for some 1 < j < log"k}.
Evidently Ay C U;‘ffkéj By the estimate on & (¢) for all large k, p(Ax) < cs€],
where 7 < 0. Let

Fy:={z: p(B(z,ex) N Ag) > 1/k}

and define the Hardy-Littlewood maximal function My for ¢(x) = 14, (x)p(x) by

1
My(w) = sup B )

If v € F}, then My > c; 'ko.
A theorem of Hardy and Littlewood ([10] Theorem 3.17) states that

/B . La, (y)p(y) dm(y).

1
m(|M| > C) < 04%

for some constant ¢4, where | - ||; is the £ norm with respect to m. Hence

m(Fy) < m(My > ¢ 'k777) < capu(Ag)eah? ™7 < k7o)

where 0 < 7 < 7/D. We need to alter 7/D to T to take into account the fact that a

ball of radius € has measure roughly €.
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Choosing o large enough that 07 > 1 and then taking ¢ < v < o — 1+ o7 the
series ), m(Fy) converges.

So for m a.e. x there exists an N(xzg) such that xg & Fj, for all k£ > N(zg). Hence
for k > N(xo), u(B(z,ex) N Ag) < 1/k7, thus p(B(x,e) N Ax) < m(B(z, e;))' ™ for
some 7 > 0 (recall m(B(z,€)) ~ 7= and v > o).

Furthermore by the Lebesgue differentiation theorem for m a.e. x

o o
lim m(B()) /Be(x) p(y)dm = p(x)

and for p a.e. x , p(xr) > 0 as X is the support of p. Hence for m a.e. xzq there
exists an N(zg) and 77 > 0 such that for all k& > N(zo) we have u(B(z,e;) N Ay) <
(B, €)' .

As k was arbitrary by interpolating between the sequence €, we have that for p

a.e. x € X there exists n’ > 0, k' > 1 such that
p(Bi(z) N T Bi(x)) < p(By(x))"*"

for 1 < r <log" i. This is Assumption (C). n
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