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Abstract

We consider exponential large deviations estimates for unbounded observables on
uniformly expanding dynamical systems. We show that uniform expansion does not
imply the existence of a rate function for unbounded observables no matter the tail
behavior of the cumulative distribution function. We give examples of unbounded
observables with exponential decay of autocorrelations, exponential decay under the
transfer operator in each Lp, 1 ≤ p < ∞, and strictly stretched exponential large
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deviation. For observables of form | log d(x, p)|α, p periodic, on uniformly expanding
systems we give the precise stretched exponential decay rate. We also show that a
classical example in the literature of a bounded observable with exponential decay
of autocorrelations yet with no rate function is degenerate as the observable is a
coboundary.

1 Introduction and brief background.

Suppose (T,X, µ) is a probability preserving transformation and ϕ : X → R is a mean-
zero integrable function i.e. E(ϕ) :=

∫
X
ϕ dµ = 0. Throughout this paper we will write

Sn(ϕ) := ϕ+ϕ◦T + . . .+ϕ◦T n−1 for the nth ergodic sum of ϕ. Sometimes we will write
Sn instead of Sn(ϕ) for simplicity of notation or when ϕ is clear from context. If we put
ϕ =

∫
ϕdµ then ergodicity implies limn→∞

1
n
Sn(ϕ) = ϕ.

Large deviations theory concerns the rate of convergence of 1
n
Sn(ϕ) to ϕ.

If for each ε > 0 there exists C > 0 and 0 < θ < 1 such that for all n ≥ 0

µ(| 1
n
Sn(ϕ)− ϕ| > ε) ≤ Cθn

we will say Sn(ϕ) has large deviations with an exponential rate.
If for each ε > 0 there exists C > 0 and 0 < γ < 1 such that for all n ≥ 0

µ(| 1
n
Sn(ϕ)− ϕ| > ε) ≤ Ce−n

γ

we say Sn(ϕ) has large deviations with a stretched exponential rate of order γ > 0.
We now recall the definition of rate function and some other notions of large deviations

theory pertaining to our results.

Definition 1.1. A mean-zero integrable function ϕ : Ω → R is said to satisfy a large
deviation principle with rate function I(α), if there exists a non-empty neighborhood U of
0 and a strictly convex function I : U → R, non-negative and vanishing only at α = 0,
such that

lim
n→∞

1

n
log µ(Sn(ϕ) ≥ nα) = −I(α) (1.1)

for all α > 0 in U and

lim
n→∞

1

n
log µ(Sn(ϕ) ≤ nα) = −I(α) (1.2)

for all α < 0 in U .

In the literature this is referred to as a first level or local (near the average) large
deviations principle.

If ϕ is a mean-zero continuous observable on an SRB attractor then ϕ has exponential
large deviations (see [You90, Theorem 2 (2)]). For mean-zero Hölder observables on
Young Towers with exponential tails (we refer to [You98] or [MN08, Sections 2 and 4]
for the definition) which are not L1 coboundaries in the sense that ϕ 6= ψ ◦ T − ψ for
any ψ ∈ L1(µ)) such an exponential large deviations result holds with rate function
Iϕ(α) [MN08, RBY08]. A formula for the width of U is given in [RBY08] following a
standard approach but it is not useful in concrete estimates.
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2 Erdős-Rényi laws: background.

Erdős-Rényi laws [ER70] give estimates on the size of time-windows over which we should
expect to average to achieve nontrivial almost sure limit laws.

Proposition 2.1 below is found in a proof from Erdős and Rényi [ER70] (see [CR79,
Theorem 2.4.3], Grigull [Gri93], Denker and Kabluchko [DK07] or [DN13] where this
method has been used). The Gauss bracket [ . ] denotes the integer part of a number.
Throughout the proofs of this paper we will concentrate on the case α > 0 as the case
α < 0 is identical with the obvious modifications of statements.

Proposition 2.1 ([ER70, DN13]). (a) Suppose that ϕ satisfies a large deviation principle
with rate function I defined on the open set U . Let α > 0, α ∈ U and set

`n = `n(α) =

[
log n

I(α)

]
n ∈ N.

Then the upper Erdős-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max
0≤j≤n−`n

1

`n
S`n(ϕ) ◦ T j(x) ≤ α.

(b) If for some constant C > 0 and integer τ ≥ 0 for each interval A

µ

(
n−`n⋂
m=0

{S`n(ϕ) ◦ Tm ∈ A}

)
≤ C[µ(S`n ∈ A)]n/(`n)τ (2.1)

then the lower Erdős-Rényi law holds as well, that is, for µ a.e. x ∈ X

lim inf
n→∞

max
0≤j≤n−`n

1

`n
S`n(ϕ) ◦ T j ≥ α.

Remark 2.2. If both Assumptions (a) and (b) of Proposition 2.1 hold then

lim
n→∞

max
0≤m≤n−`n

S`n ◦ Tm

`n
= α.

Remark 2.3. Note that regularity of ϕ is not needed for the proof of Proposition 2.1 and
that Proposition 2.1 (a) applies to unbounded observables.

3 Rate functions and unbounded observables.

Alves et al [AFLV11] have shown that if T is a C1+δ local diffeomorphism of an interval
which has stretched exponential decay of correlations for Hölder functions versus bounded
functions then there exists a Young Tower for T with stretched exponential tails. It is
unknown whether exponential decay of correlations for Hölder functions versus bounded
functions implies there exists a Young Tower for T with exponential tails in the same
setting.

The proofs of [MN08, RBY08] of exponential large deviations with a rate function for
a Hölder function ϕ on a dynamical system modeled by a Young Tower with exponential
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tails use spectral techniques. It is necessary to establish the analyticity of the linear
operator Pz : B → B, z ∈ C, defined by Pzv = P (ezϕv) where P is a transfer operator
with spectral gap on a Banach space of functions B. This method of proof fails if ϕ
is unbounded. We remark that recently the almost sure invariance principle has been
proved for certain classes of unbounded functions on both uniformly expanding maps
and intermittent type maps with a neutral fixed point [DGM10]. In this section we
give an example to show that we cannot expect exponential large deviations with a rate
function for unbounded observables on uniformly expanding maps, even if they satisfy
the monotonicity and moment conditions of [DGM10] and the tails of the cumulative
distribution function P (ϕ > t) decay at any prescribed rate.

Theorem 3.1. Suppose T : X → X is a measure preserving map of a compact Rie-
mannian manifold (X,µ). Let p be a periodic point of period τ . Suppose that T is C1

on an open neighborhood of the orbit of p. Suppose also there exists γ > 0 such that
T n(x) ∈ Bn−γ (p) i.o. for µ a.e. x ∈ X. Let ϕ be a continuous observable on X/{p}
such that limx→p ϕ(p) = ∞,

∫
ϕdµ = 0 and ϕ > −ρ for some ρ > 0. Then the station-

ary stochastic process {ϕ ◦ T j} does not satisfy exponential large deviations with a rate
function.

Proof. Without loss of generality we take the period of p to be one. If ϕ satisfies a large
deviation principle with rate function I defined on an open set U then by Proposition 2.1
(a) if α > 0 is in the interval where I(α) is defined and we let

`n = `n(α) =

[
log n

I(α)

]
n ∈ N

the upper Erdős-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max{S`n(ϕ) ◦ T j(x)/`n : 0 ≤ j ≤ n− `n} ≤ α.

Since T is C1, |DT |∞ < K for some K > 0 on an open neighborhood of the orbit of p.

Fix α > 0 in U and let M >
[
α+ρ
I(α)

]
2 logK
γ

. Choose N large enough that ϕ(x) > M for

all x such that d(x, p) < 1
Nγ/2 .

If d(T n(x), p) ≤ 1
nγ

then d(T n+j(x), p) ≤ 1
nγ/2

for at least j iterates, 1 ≤ j ≤ γ logn
2 logK

(this estimate comes from solving Kj 1
nγ

= 1
nγ/2

). Moreover if n > N , j ≤ γ logn
2 logK

and

T n+j(x) ∈ [0, 1
nγ

], then ϕ(T n+j(x)) ≥ M . By assumption T n(x) ∈ Bn−γ(p) i.o. for µ a.e.

x ∈ X. If T n(x) ∈ Bn−γ (p) then S`n(ϕ) ◦ T j(x) > M(γ logn
2 logK

)− ρ logn
I(α)

(as ϕ ≥ −ρ). Since

M >
[
α+ρ
I(α)

]
2 logK
γ

this implies that for µ a.e. x

lim sup
n→∞

max{S`n(ϕ) ◦ T j(x)/`n : 0 ≤ j ≤ n− `n} > α

which is a contradiction to the upper Erdős-Rényi law. Hence exponential large deviations
with a rate function cannot hold for this observable.

Moreover, for such observables the logarithmic moment generating function is infinite,
as shown by the next proposition.
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Proposition 3.2. Suppose T : X → X is a measure preserving map of a compact mani-
fold (X,µ). Let p be a periodic point such that on an open neighborhood of the orbit of p the
map T is C1, and there are positive constants d and c such that µ({x : d(x, p) < r}) ≥ crd

for small r > 0. Let ϕ be an observable on X such that limx→p ϕ(p) =∞,
∫
ϕdµ = 0.

Then for any t > 0

lim
n→∞

1

n
log

(∫
etSn(ϕ)dµ

)
=∞ (3.1)

Proof. Without loss of generality, can assume that p is a fixed point.
Pick λ > 1 such that |T ′| < λ in a neighborhood of p.
Fix t > 0; for L > 0, let M > L/t and r > 0 such that

d(x, p) < r =⇒ ϕ(x) > M.

Since
d(x, p) <

r

λn
=⇒ ϕ(T k(x)) > M for k ≤ n =⇒ Sn(x) ≥ nM

we conclude that ∫
etSn(ϕ)dµ ≥ µ({x : d(x, p) <

r

λn
})etnM ≥ crd

λdn
etnM

and therefore

lim inf
n→∞

1

n
log

(∫
etSn(ϕ)dµ

)
≥ tM − d log λ ≥ L− d log λ

Since L was arbitrary, we obtain (3.1).

Example 3.3. (i) Suppose T : X → X is a C1 map of a compact Riemannian metric
space X which preserves a measure µ equivalent to volume and T is exponentially mixing
for Hölder functions in the sense that for all ϕ, ψ which are α-Hölder on X there exist
constants C, 0 < θ < 1 such that for all n ≥ 0

|
∫
ϕψ ◦ T ndµ−

∫
ϕdµ

∫
ψdµ| ≤ Cθn‖ϕ‖α‖ψ‖α

Theorem 5.1 of [HNPV13] shows that if Bi is a nested sequence of balls with center a
periodic point p ∈ X and there exists a constant C3 > 0 such that µ(Bi) ≥ C3/i for all
i > 0 then µ a.e. x ∈ X satisfies T nx ∈ Bn infinitely often. Thus in this setting if ϕ is
a continuous observable on X/{p} such that limx→p ϕ(p) = ∞,

∫
ϕdµ = 0 and ϕ > −ρ

for some ρ > 0 then {ϕ ◦ T j} does not satisfy exponential large deviations with a rate
function.

(ii) In particular, the tent map T of the unit interval Ω = [0, 1]:

T (x) =

{
2x if 0 ≤ x ≤ 1

2
;

2x− 1 if 1
2
≤ x ≤ 1.

preserves Lebesgue measure and has exponential decay of correlations for Hölder observ-
ables on the system. The function ϕ(x) = log(1− log x)−

∫
log(1− log x)dx is continuous

except at the fixed point 0, and satisfies the assumptions of Theorem 3.1 so does not have
exponential large deviations with a rate function.
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3.1 Exponential decay of autocorrelations and in Lp, but strictly
stretched exponential large deviations.

In this section we consider piecewise expanding C2 maps of the interval or, more gen-
erally, Rychlik maps. For the definition of a Rychlik map (piecewise expanding with
countable many branches and additional properties) see [Ryc83] or [BG97, Section 5.4].
In Remark 3.5 we discuss further applications. We consider observables of the form
ϕ(x) = (− log |x− p|)α where p is periodic. We will show that ϕ(x) has strictly stretched
exponential large deviations, despite having exponential decay of autocorrelations and
exponential decay in Lp.

Recall that for a µ-preserving map T which is non-singular, the transfer operator
P : L1(µ)→ L1(µ) is defined uniquely by the condition

∫
(Pf)g dµ =

∫
f(g ◦T ) dµ for all

f ∈ L1(µ), g ∈ L∞(µ).

Theorem 3.4. Let (T,Ω, µ) be a topologically mixing Rychlik map of the unit interval
Ω = [0, 1] and ϕ(x) := (− log |x− p|)α where p is periodic for T and α > 0. Assume that
T is C1 on a neighborhood of the orbit of p. Then:

(a) There are c, C, r > 0 such that for all ε > 0 close to zero and δ > 0

c exp(−rn
1

1+α ) ≤ µ

(
Sn(ϕ)− n

∫
ϕdµ ≥ nε

)
≤ C exp(−n

1
1+α
−δ) as n→∞

Therefore, for any ε > 0 close to zero,

lim
n→∞

log
[
− log µ

(
Sn(ϕ)− n

∫
ϕdµ ≥ nε

)]
log n

=
1

1 + α

(b) ϕ has exponential decay of autocorrelations: there exists 0 < θ < 1 and C > 0 such
that ∣∣∣∣∫ (ϕ ◦ T n − ϕ)(ϕ− ϕ) dµ

∣∣∣∣ ≤ Ce−θn for all n.

See Proposition 3.10 for a more general setting.
(c) ‖P n(ϕ− ϕ)‖Lp → 0 exponentially fast for each p ∈ [1,∞); see (a) of Proposi-

tion 3.13 for details and more results.

Remark 3.5. By equation (3.2), for p a fixed point it suffices in (a) to take r > (
∫
ϕdµ+

ε)1/α + log |T ′(p)|.
More generally than Rychlik maps, one can consider mixing AFN maps introduced

in [Zwe98]. For more about these, see [KS19, Section 1.3]. These maps satisfy Property D
introduced by Schindler [Sch15] and described also in [KS19], see the discussion preceding
Proposition 6.1 in the Appendix.

The mixing assumption is only used for the upper bound in (a). For the lower bound
in (a) it suffices that µ be an a.c.i.p. whose density is bounded below in a neighborhood of
the orbit of p.

Remark 3.6. For example consider ϕ(x) = − log x, an observable defined on the tent
map (T, [0, 1],Lebesgue). Clearly ϕ is integrable,

∫
ϕdx = 1, ϕ has moments of all orders

and E[etϕ] =
∫
etxe−xdx exists for |t| < 1.
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This satisfies the assumptions of Theorem 3.1, see Example 3.3 of the previous section,
and hence does not satisfy exponential large deviations with a rate function.

However, if Xi is a sequence of i.i.d. random variables with the same distribution
function as ϕ and Sn =

∑n
j=1Xj, then (exponential) large deviations with a rate function

holds: for 0 < ε < 1

lim
n→∞

1

n
logP

(
Sn
n
> 1 + ε

)
= −ε+ log(1 + ε)

This follows from [Dur10, Theorem 2.6.3]; e.g., note that ϕ has an exponential distribution
as µ(ϕ > t) = e−t and see [Dur10, Example 2.6.2].

Remark 3.7. By [AFLV11, Proposition 4.1, part (2)] applied to the tent or doubling
map on the unit interval (so their θ is 1), there exist constants C1, C2 such that for
ϕ(x) := − log |x− z|, {ϕ ◦ T j} has stretched exponential deviations at rate at least as fast

as C1e
−C2n

1
9−δ for any δ > 0.

However, for z a fixed point of the map, Theorem 3.4 above with α = 1 gives an upper
bound C exp(−n 1

2
−δ) and a lower bound c exp(−[(

∫
ϕdµ+ ε) + log 2 + δ]n

1
2 ), δ > 0.

Remark 3.8. In the setting of non-uniformly expanding maps Araújo [Ara07a, Theorem
3.1] gives an asymptotic condition on observables of form ϕ(x) = − log |x − p|, called
exponential slow recurrence to p, which implies exponential large deviations for ϕ. He
also proves that singular points for certain Lorenz-like maps with unbounded derivatives
satisfy this condition, which is in general difficult to check.

Proof of Theorem 3.4. We will only prove (a) here, for parts (b) and (c) see Proposi-
tion 3.10 and Proposition 3.13.

We obtain the lower bound from an easy direct computation. For the upper bound
we use recent results of Tanja Schindler [Sch15, Lemma 6.15], see Proposition 6.1 in the
Appendix. Related estimates are given in [KS19].

We mention here that with the argument of Schindler it does not seem possible to
obtain exponential decay of correlations by assuming observables have slower growth rate
than − log+(x).

Beyond Property D, we use the fact that a mixing Rychlik map has an invariant
density in BV [(0, 1]), bounded away from zero.

Without loss of generality we will take p to be a fixed point.
Denote Sn(ϕ) by Sn for short. Denote the absolutely continuous invariant probability

of T by dµ = h dx, with 0 < m ≤ h ≤M .
Lower bound: We will discuss only the case T ′(p) > 0 and p 6= 1, the others being

similar. Pick λ > 1 such that T ′(x) ≤ λ in a neighborhood of p.
Consider x ∈ [p, p + e−rn

ω
] with r, ω > 0 to be determined later. Then T j(x) ∈

[p, p + λje−rn
ω
] so ϕ(T j(x)) ≥ [rnω − j log(λ)]1/α as long as all the iterates stay close to

p, and therefore, for K ≤ n,

Sn(x) ≥
K∑
j=1

ϕ(T j(x)) ≥ K[rnω −K log(λ)]1/α = K̃
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Thus
µ(Sn − nϕ ≥ nε) ≥ µ([p, p+ e−rn

ω

]) ≥ me−rn
ω

as long as

K̃ ≥ n(ϕ+ ε) ⇐⇒ rnω ≥
(
n(ϕ+ ε)

K

)1/α

+K log λ and λKe−rn
ω � 1

The choice

ω =
1

1 + α
, K = nω, r > (ϕ+ ε)1/α + log λ (3.2)

satisfies both conditions as n→∞.
Upper bound: We define a sequence of functions (truncated ϕ) by

gn(x) =

{
0 if d(x, p) ≤ e−n

β
;

ϕ(x) if d(x, p) > e−n
β
.

Then ‖gn‖BV ≤ 3|gn|∞ = 3nβα. We calculate E(gn) = E(ϕ)+O(e−nβ(nβ)α). Hence, by
Schindler’s estimate [Sch15] (see Proposition 6.1 in the Appendix), if Gn :=

∑n
j=1 gn ◦ T j

and En :=
∫
Gndµ then for any sequence ζn tending to zero (we take ζn = (log log n)−1),

for n sufficiently large

µ(|Gn − En| > εEn) ≤ 2 exp

(
−nE(gn)

nβα
ζn

)
= 2 exp

(
−n1−βαϕ+O(e−nβ(nβ)α)

log log n

)
≤ 2e−n

1−βα−δ

for δ > 0 as n → ∞. Taking into account that µ(Sn 6= Gn) ≤ O(ne−n
β
), we choose β to

maximize min(1− βα, β); this gives β = 1
1+α

and thus the claimed upper bound.

We establish next exponential decay of auto correlations.

Remark 3.9. Since for the above maps T the transfer operator P has a spectral gap on
BV , it follows easily that for any z ∈ [0, 1] the function ϕ(x) := (− log d(x, z))α, α > 0,
has exponential decay against BV -observables.

Proposition 3.10. Assume T : [0, 1] → [0, 1] has an a.c.i.p. µ with density bounded
above, and its transfer operator P has a spectral gap on BV . Then ϕ(x) := (− log d(x, z))α,
α > 0, has exponential decay of autocorrelations.

Namely, let r be the spectral radius of P on BV ∩ {f |
∫
fdµ = 0}. Then, for every

β < min{− log r, 1
2
} there exists a constant Cβ > 0 such that∣∣∣∣∫ (ϕ ◦ T n − ϕ)(ϕ− ϕ) dµ

∣∣∣∣ ≤ Cβe
−βn for all n.

Proof. Define a sequence of truncations

hn(x) := min{Mn, ϕ(x)}, δn := ϕ− hn, ϕ :=

∫
ϕdµ, hn :=

∫
hndµ
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with Mn to be determined later. Note that ϕ ∈ L2(µ) since µ has a density bounded
above.

Obviously ‖hn‖BV ≤ 3|hn|∞ = 3Mn. Using the spectral gap of the transfer operator
P in BV , for every r < ρ < 1 there is a CP > 0 such that |P n(h)|∞ ≤ ‖P n(h)‖BV ≤
CPρ

n‖h‖BV provided
∫
hdµ = 0.

Then, using the spectral gap of P on BV, Hölder’s inequality and that |hn − ϕ| =
|
∫
δndµ| ≤ ‖δn‖L2 , and denoting by C all constants that do not change with Mn and n:∣∣∣∣∫ ϕ ◦ T n · (ϕ− ϕ)dµ

∣∣∣∣ =

∣∣∣∣∫ ϕ ◦ T n · [(hn − hn) + (δn + hn − ϕ)dµ

∣∣∣∣
≤
∣∣∣∣∫ ϕ · P n(hn − hn)dµ

∣∣∣∣+ ‖ϕ‖L2(‖δn‖L2 + |hn − ϕ|)

≤ Cρn‖ϕ‖L1‖hn − hn‖BV + C‖ϕ‖L2‖δn‖L2

Since
δn(x) 6= 0 ⇐⇒ d(x, z) ≤M1/α

n

and µ has a density bounded above, for any δ > 0 we obtain

‖δn‖2
L2 ≤ C

∫
|x−z|≤M1/α

n

| log(|x− p|)|2αdx ≤ Cδe
−(1−δ)M1/α

n

and therefore∣∣∣∣∫ ϕ ◦ T n · (ϕ− ϕ)dµ

∣∣∣∣ ≤ C‖ϕ‖L1Mnρ
n + CCδ‖ϕ‖L2e−

1
2

(1−δ)M1/α
n

Choose now Mn = nα. Hence for every β < min{− log ρ, 1
2
} there exists a constant Cβ > 0

such that for all n ∣∣∣∣∫ (ϕ ◦ T n − ϕ)(ϕ− ϕ) dµ

∣∣∣∣ ≤ Cβe
−βn.

3.2 Stretched exponential large deviations from exponential de-
cay on Lipschitz functions

In this section we slightly improve estimates of [AFLV11][Proposition 4.1 (b)] to obtain
a better stretched exponent decay rate.

Theorem 3.11. Let (T,X, µ) with X = [0, 1] be a dynamical system where µ is a T -
invariant a.c.i.p having density bounded above, d µ/d Lebesgue ≤ Cµ.

Consider the observation ϕ : [0, 1]→ R, ϕ(x) := | log d(x, z)| for some z ∈ X.
Assume P , the transfer operator w.r.t. µ, has exponential decay in the space of Lips-

chitz functions: there are constants θ, CP > 0 such that

‖P nf‖Lip ≤ CP e
−θn ‖f‖Lip provided

∫
fdµ = 0.

Fix α < 1/5. Then for ε > 0 close to zero there are C = Cε,α > 0 and r = rε,α > 0
such that

µ

(∣∣∣∣Sn(ϕ−
∫
ϕdµ)

∣∣∣∣ > nε

)
≤ C exp(−rnα)
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Remark 3.12.

1. The doubling map satisfies the hypothesis of Theorem 3.11. Therefore, by Theo-
rem 3.4 cannot have decay rate faster than exp(−n1/2).

2. In this setting a similar stretched exponential large deviations was also obtained in
[AFLV11][Proposition 4.1 (b)], but with rate exp(−n1/9).

Proof. For simplicity, we take z to be zero, so ϕ = | log x|.
We denote by

f̃ := f −
∫
fdµ

and when this correction
∫
fdµ is O(1) we might ignore it in the estimates.

We introduce three parameters, Mn, Cn and α, whose optimal value will be determined
at the end.

Denote h(n) := min{ϕ,Mn}. Define w(n) :=
∑

k≥1 P
kh̃(n) and write h(n) := g(n) +w(n)◦

T − w(n). Since Pg(n) = 0, its Birkhoff sums form a martingale.
Recall the Azuma-Hoeffding inequality: if Sn :=

∑n
k=1 Xn is a martingale whose

increments Xn satisfy |Xn| ≤Mn then

P (Sn ≥ A) ≤ exp

(
− A2

2
∑n

i=1M
2
i

)
Using Azuma-Hoeffding,

µ(Sn(h̃(n)) > 3nε) ≤ µ(Sn(g̃(n)) > nε) + 2µ(w(n) > nε)

≤ exp(− n2ε2

2n|g̃(n)|2L∞
) + 2µ(w(n) > nε)

and therefore

µ(Sn(ϕ̃) > 3nε) ≤ µ(Sn(h̃(n)) > 3nε) + nµ(h(n) 6= ϕ)

≤ exp(− n2ε2

2n|g̃(n)|2L∞
) + 2µ(w(n) > nε) + Cµne

−Mn (3.3)

Compute

|g̃(n)|L∞ ≤ |h(n)|L∞ + 2|w(n)|L∞ (3.4)

and, using the exponential decay of P and that |Pf |L∞ ≤ |f |L∞ ,

|w(n)|L∞ = |
∞∑
k=1

P kh̃(n)|L∞

≤
Cn∑
k=1

|P kh̃(n)|L∞ +
∞∑

k=Cn+1

∥∥∥P kh̃(n)

∥∥∥
Lip

≤ CnMn + CP

∞∑
k=Cn+1

e−θk
∥∥∥h̃(n)

∥∥∥
Lip

≤ CnMn + C ′e−θCn
∥∥∥h̃(n)

∥∥∥
Lip

≤ CnMn + C ′e−θCneMn (3.5)
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We want to bound each term in (3.3) by exp(−nα). For the first term this requires

|g̃(n)|L∞ ≈ n(1−α)/2, hence, in view of (3.4) and (3.5), need

CnMn ≈ n(1−α)/2 − θCn +Mn .
1− α

2
log n (3.6)

which lead to

Mn = n(1−α)/4 Cn =
1

θ
Mn =

1

θ
n(1−α)/4

Then the second term in (3.3) is zero because |w(n)|L∞ . n(1−α)/2, and the third term
becomes ne−Mn ≈ exp(−n(1−α)/4).

Thus the best α comes from max min{nα, n(1−α)/4} = n1/5 for α = 1/5.

3.3 Exponential decay in Lp for all p ≥ 1 does not imply expo-
nential large deviations

We now show that exponential decay of the transfer operator in each Lp does not imply
exponential large deviations.

The next result is stated for the doubling map, but the proof applies, with the appro-
priate changes, to any map having an a.c.i.p. with density bounded above, and whose
transfer operator has a spectral gap, e.g. on BV .

Proposition 3.13. Let (T,X, µ) be the doubling map on X = [0, 1], P its transfer oper-
ator with respect to the Lebesgue measure. Denote by e−θ the exponential decay rate of its
transfer operator on BV functions of mean zero, and by CT the constant that is involved
(see (3.7) for the precise meaning of θ and CT ).

(a) Let ϕ1(x) := (− log x)α, α > 0. Then for all p ≥ 1, there is a constant Cαp such
that ∥∥∥∥P n

(
ϕ1 −

∫
ϕ1dx

)∥∥∥∥
Lp
≤ e−θn(CTMn + CαpM

α
n ), where Mn = npθ.

In particular, the decay is exponential with rate e−β for any β < θ. The constant
Cαp comes from (3.8).

(b) Let ϕ2(x) := x−α with 0 < α < 1. Then for 1 ≤ p < 1/α∥∥∥∥P n

(
ϕ2 −

∫
ϕ2dx

)∥∥∥∥
Lp

. e−nθ(1−αp) as n→∞

Proof. The transfer operator P is a contraction in each Lp, p ≥ 1, and has exponential
decay on functions in BV with mean zero; so can find CT , θ > 0 such that for f ∈ Lp 1

‖Pf‖p ≤ ‖f‖p,
∥∥∥∥P n

(
ϕ−

∫
ϕdx

)∥∥∥∥
BV

≤ CT e
−θn
∥∥∥∥P n

(
ϕ−

∫
ϕdx

)∥∥∥∥
BV

(3.7)

1These inequalities also hold when f is not in Lp or BV , in that case the RHS is infinity.
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For ϕk, k = 1, 2, substract for simplicity its mean, and denote ψ̃ := ϕk −mk where
mk =

∫
ϕkdx, and let ψn := min{ψ̃,Mn}; in what follows we will ignore this constant mk,

it does not change much.
Then ‖ψn‖BV = Mn (more precisely, Mn +mk), and

‖P nψ̃‖p ≤ ‖P nψn‖p + ‖P n(ψ̃ − ψn)‖p
≤ ‖P nψn‖BV + ‖ψ̃ − ψn‖p ≤ CT e

−θn‖ψn‖BV + ‖ψ̃ − ψn‖p
≤ CT e

−θnMn + ‖ψ̃ − ψn‖p

Now compute that for ϕ1(x) := (− log x)α, α > 0 (ignoring again m1):

‖ψ̃ − ψn‖p =

(∫
ϕ1>Mn

|ϕ1 −Mn|pdx
)1/p

≤
(∫

0<x<e−Mn
| log(x)|αpdx

)1/p

≤ Cαp

(
x| log(x)|αp

∣∣∣x=e−Mn

x=0
dx

)1/p

= Cαpe
−Mn/pMα

n (3.8)

Take Mn = npθ to get the desired decay in Lp.
Doing the same for ϕ2(x) := x−α, 0 < α < 1, 1 ≤ p < 1/α:

‖ψ̃ − ψn‖p ≤
(∫

0<x<M
−1/α
n

x−αpdx

)1/p

=
1

(1− αp)1/p
M

1− 1
αp

n

Take Mn = exp(pαθn) to get exponential decay at rate e−θ(1−αp).

4 Exponential large deviations without a rate func-

tion for bounded observables.

Examples exist in the literature [Bra89, OP88, BS93, Chu11] of stationary processes
which have exponential large deviations but a rate function does not exist. In particular
there is an example of a mean zero bounded function f taking only 3 values on an
aperiodic recurrent Markov chain (Xn) with a countable state space such that the system
has exponential large deviations but does not have a rate function. In this example
defining Sn =

∑n−1
j=0 f(Xj) for all ε > 0, there exist constants C(ε), 0 < γ < 1 such

that P(|Sn
n
| > ε) ≤ C(ε)e−γn, giving exponential convergence in the strong law of large

numbers yet there is no rate function controlling the rate of decay. We show in the next
section that in these examples f is a coboundary and there exists ψ ∈ L2(P) such that
f(Xj) = ψ(Xj+1) − ψ(Xj) for all j ≥ 0 so that the example is degenerate (the variance
σ2 = 0). The assumption that the observable is not a coboundary (and hence that σ2 > 0)
is made in the statements of the theorems establishing large deviations with rate functions
in [MN08].

According to Bryc and Smolenski [BS93] the idea of the example was due to
Bradley [Bra89] and also adapted by Orey and Pelikan [OP88, Example 4.1].
Bradley [Bra89] produced an example of a stationary, pairwise independent, absolutely
regular stochastic process for which the central limit theorem does not hold. Orey and
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Pelikan presented this system as an example of a strongly mixing shift for which the
large deviation principle with rate function fails. Bryc and Smolenski showed that there
is in fact also an exponential convergence in the strong law of large numbers. Bryc and
Smolenski’s work was recast by Chung [Chu11] into dynamical systems language, and the
system was expressed as a Young Tower (F,∆, ν). We will also recast as a dynamical
system and show that f is a coboundary, in fact f = ψ ◦ F − ψ where ψ is unbounded
but ψ ∈ L2. This seems to have been overlooked in the literature. In fact if f were not
a coboundary the example would contradict results of [MN08, RBY08] which imply that
any bounded Lipschitz function on a Young Tower with exponential tails which is not a
coboundary has exponential large deviations with a rate function. In Section 4.1 we also
present the example in a dynamical setting following Bryc and Smolenski’s notation and
overall presentation and give an explicit coboundary for f . As far as we know there is no
example of a bounded observable on a dynamical system, with non-zero variance, which
has exponential large deviations and yet no rate function.

4.1 The example of Bryc and Smolenski

Let ∆0 (which for concreteness we will identify with the unit interval [0, 1]) be the base
of a Young Tower ∆ with ∆0 partitioned into intervals Λ0,Λ1, . . . ,Λk...,. Let n(0) = 1/2,

n(k) = 12k, pk = Ce−
n(k)
2 where C−1 =

∑∞
k=0 e

−n(k)
2 is a normalization constant to ensure

the Tower has a probability measure. Each Λk will have Lebesgue measure pk and we
define the Tower return time function on Λk as RΛk := R(k) = 2n(k). We now build the
Tower ∆ above the base. We write Λk,0 := Λk and define, for 0 ≤ j ≤ R(k)− 1 the levels
Λk,j of the Tower lying above Λk by

∆ =
⋃

k∈N+,0≤j≤Rk−1

{(x, j) : x ∈ Λ0,k}

with the tower map F : ∆→ ∆ given by

F (x, j) =

{
(x, j + 1) if x ∈ Λk,0, j < R(k)− 1

(Tkx, 0) if x ∈ Λk,0, j = R(k)− 1
.

where Tk has constant derivative and maps the interval Λk,0 bijectively onto ∆0. We define
F on Λ0,0 by requiring that F map Λ0,0 bijectively onto ∆0. Note that m(Λ0,0) = Ce−1/4.
This requirement on the height R(0) of Λ0,0 to be 1 is to ensure aperiodicity.

We lift Lebesgue measure m from the base to the Tower to obtain a measure ν̃ on ∆
and then define a probability measure ν = ν̃ by normalization. The map F preserves ν
and is exponentially mixing for a Banach space of observables on ∆ [You98].

If k 6= 0 we define f : λk,j → {−1, 0, 1} by

f(x, j) =

{
1 if x ∈ Λk, j ≤ n(k)− 1

−1 if x ∈ Λk, n(k) ≤ j ≤ 2n(k)− 1
.

if k = 0 we take f(0, 0) = 0. This is the example model of [Bra89, OP88, BS93, Chu11].
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Now define a function ψ, which will be a coboundary for f , by

ψ(x, j) =

{
j if x ∈ Λk, 0 ≤ j ≤ n(k)

2n(k)− j if x ∈ Λk, n(k) < j ≤ 2n(k)− 1
.

and we take ψ(0, 0) = 0.
It is easy to check that

f = ψ ◦ F − ψ

Hence Sn(f) = ψ ◦ F n − ψ. We remark that, as f = ψ ◦ F − ψ is a coboundary and
ψ ∈ L2, Sn(f) has zero-variance and does not satisfy a non-trivial central limit theorem.

Since
ν(ψ ◦ F n > n) = ν(ψ > n) ∼ e−n/2

it is easy to see that ν(|Sn/n| > ε) decays exponentially for any ε (and obtain explicit
estimates).

In [Var84, Theorem 2.2] Varadhan shows that large deviations with rate function fails
if 1

n
logE(exp(Sn)) does not have a limit as n→∞ and it is easy to show (see also [BS93])

that 1
n

logE(eSn) has no limit in this example.

For example consider points in x ∈ Λk,0 where ν(Λk,0) = Ce−
n(k)
2 . Then Sn(k)(x) =

ψ ◦ F n(k) = n(k) so that eSn(k)(x) = en(k). Hence

1

n(k)
logE(eSn(k))) =

1

2n(k)
log(Ce−

n(k)
2 en(k)) =

1

4
+

logC

n(k)
.

Thus lim sup 1
n

logE(eSn) ≥ 1
4
. Similar considerations show that lim inf 1

n
logE(eSn) ≤ 0

and consequently 1
n

logE(eSn) has no limit.

5 Discussion and open problems.

Large deviations theory is well developed in the probabilistic setting and there are many
standard texts [DZ10, Ell06, Var84]. Fundamental work was done by Donsker-Varadhan
[DV75, DV76, DV83] for certain random processes, including Markov chains and Brownian
motion.

In the discrete case, assume given an identically distributed process X0, X1, . . . taking
values in a Polish space X , and ϕ a suitable observable on X . A level I Large Deviation
Principle estimates the (exponentially decaying with the sample size) probability of sample
averages being away from the mean. The stronger level II Large Deviation Principle
estimates the probability of the empirical distribution being in a given set of probability
distributions on X that does not contain the common distribution of the Xk’s. See
e.g. [Var08].

In the case of a dynamical system we describe the case of a level I large deviation with
rate function; the sample mean is replaced by Birkhoff averages, namely

lim
n→∞

1

n
log µ(Sn(ϕ) ≥ nα) = −I(α) (5.1)
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for α close to the mean
∫
ϕdµ of ϕ, where I(α) is strictly convex and vanishes only at∫

ϕdµ. Such a function is called a rate function and is often characterized in terms of
thermodynamic quantities.

In the setting of dynamical systems with some degree of hyperbolicity there have
been many results on large deviations going back to the 1980s. Takahashi [Tak84] has
a very first attempt to study large deviation in dynamics. Orey [Ore86] proves large
deviation results for Markov chains, and applies it to one-dimensional dynamical systems;
see also Denker [Den92]. Orey and Pelikan [OP89] obtained a large deviation theorem
for Hölder observables on Anosov diffeomorphisms. Lopes [Lop90] using similar ideas
obtained large deviations with respect to the measure of maximal entropy in the setting
of an expanding rational map of the Riemann sphere of degree d ≥ 2 restricted to its
Julia set. Kifer [Kif90] proved large deviations results for uniformly hyperbolic systems,
including flows. Young [You90] gave general theorems for continuous transformations
on a compact metric space and more detailed quantitative estimates in the setting of
SRB attractors, Axiom A attractors and subshifts of finite type. Takahashi [Tak87] has
similar results to Young, using techniques from thermodynamical formalism and at about
the same time. Kifer [Kif90] and Young [You90] formulated quite general large deviation
principles for dynamical systems; for example Kifer obtained the upper bound half of (5.1)
for uniformly partially hyperbolic dynamical systems. However, these results yield strong
conclusions (in particular (5.1)) only if it is known that there is a unique equilibrium
measure for the underlying map. There is also work of Waddington [Wad96] on large
deviations for continuous observables on Anosov flows.

Thus large deviations theory for uniformly hyperbolic (Axiom A) dynamical systems,
for both discrete and continuous time, is fairly well-understood by these results. Further-
more, when X is an Axiom A attractor and µ is an SRB measure, then µ can be replaced
by Lebesgue measure in (5.1).

Following these results there were also level II large deviation principles by Grigull [Gri93]
(see also the survey by Denker [Den96]) for Hölder observables on parabolic rational maps.
For intermittent type maps Pollicott, Sharp and Yuri [PSY98] have upper bounds for
sums of the preimages weighted by the derivative. For a general class of one-dimensional
unimodal maps, Keller and Nowicki [KN92] obtained large deviations results (5.1) for
observables of bounded variation in terms of Lebesgue measure.

In the late 1990s the study of the statistical properties of non-uniformly hyperbolic
dynamical systems was advanced significantly by L-S. Young [You98, You99] with the
application of an inducing scheme formulated as a Young Tower. Using the structure of
a Young Tower and transfer operator techniques Melbourne and Nicol [MN08] obtained
large deviation estimates for a large class of nonuniformly hyperbolic systems: namely
those modelled by Young towers with summable decay of correlations. In the case of
exponential decay of correlations, they obtained exponential large deviation estimates
given by a rate function. In the case of polynomial decay of correlations, using martingale
techniques, they obtained polynomial large deviation estimates, and exhibited examples
where these estimates are essentially optimal. For Hölder observables they obtained ex-
ponential estimates in situations where the space of equilibrium measures is not known to
be a singleton, as well as polynomial estimates in situations where there is not a unique
equilibrium measure. Melbourne improved the range of parameters for which the esti-
mates hold in [Mel09] and also gave moderate deviations results. Roughly at the same
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time Rey-Bellet and Young [RBY08] proved large deviation and moderate deviation re-
sults for dynamical systems modeled by Young towers with exponential tails. The proofs
of [MN08] and [RBY08] are largely based on quasicompactness of the transfer operator
on an appropriately chosen Banach space. The manuscript of Hennion and Hervé [HH01]
gives a good account of this theory. In the setting of intermittent maps Pollicott and
Sharp [PS09] established level II large deviations for Hölder observables and among other
results showed that if ϕ(0) > ε (here 0 is the indifferent fixed point) then an exponential
large deviation holds.

Other results in the non-uniformly hyperbolic setting include those by Araújo and
Pacifico [AP06] who obtained large deviation results, in terms of Lebesgue measure, for
continuous functions over non-uniformly expanding maps with non-flat singularities or
criticalities and for certain partially hyperbolic non-uniformly expanding attracting sets.
Araújo [Ara07b] extended these results to obtain large deviation bounds for continuous
functions on suspension semiflows over a non-uniformly expanding base transformation
with non-flat singularities or criticalities (including semiflows modeling the geometric
Lorenz flow and the Lorenz flow). But these results in [Ara07b, AP06] yield strong
conclusions only when there is a unique equilibrium measure. Several recent works have
obtained large deviations under weakened notions of specification. A partial list includes
Bomfim and Varandas [BV19], Varandas [Var12], Pfister and Sullivan [PS05].

Aaronson and Denker [AD90, Theorem 3] give exponential rate large deviations for
infinite measure preserving transformations.

We note that some approaches, such as those based on specification [You90], allow
large deviation results for continuous observables to be established while transfer oper-
ator techniques usually require more regularity of the observable. On the other hand
the thermodynamical approach of Young [You90] in general requires the uniqueness of
equilibrium states and specification to hold.

Open problems.

A theory of large deviations for unbounded observables on hyperbolic dynamical systems
has yet to be developed. There are many settings in which such observables arise naturally.
For example is there a rate function for − logDTu, the derivative of the Jacobian in
the unstable direction when the underlying system is the billiard map associated to a
planar Sinai dispersing billiard? In other situations we may wish for an estimate of the
rate of convergence of finite time Lyapunov exponents to their spatial average when the
underlying map or flow has an unbounded derivative. For dynamical systems that are
polynomially mixing close to optimal large deviations estimates can probably be obtained
using martingale methods, so roughly speaking the problem is to obtain optimal large
deviations estimates for an unbounded, integrable observable on an exponentially mixing
dynamical system. Here are some more concrete questions that arise from this paper.

(1) Does the observable ϕ(x) = − log d(x, p) on a uniformly expanding map of the in-
terval satisfy exponential large deviations for a full measure set of p? If p is a non-periodic
point does the observable ϕ(x) = − log d(x, p) satisfy exponential large deviations?

(2) Are there conditions on the decay rate of the tail of the distribution µ(ϕ > t)
which imply exponential large deviations if ϕ is an unbounded observable on a uniformly
expanding map? Theorem 3.1 shows that we cannot expect to have exponential large
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deviations with a rate function.
(3) Is there an example of a non-degenerate bounded observable ϕ, ϕ 6= ψ−ψ ◦ T , on

a (smooth) dynamical system which satisfies exponential large deviations but does not
have a rate function?

In addition, obtaining type II large deviations in this setting is also an open problem;
some results were obtained by Grigull [Gri93] in his dissertation.

6 Appendix

We describe Schindler’s result that we use, [Sch15, Lemma 6.15], which states that Prop-
erty D for (Ω,B, T, µ,F , ‖ · ‖, χ) implies Property A for (χ ◦ T n−1)n, with Property D
defined in [Sch15, Definition 1.7 in Section 1.2] and Property A in [Sch15, Definition 2.2].
We state this result only for the situation we are interested in, namely the Banach space
F being BV ([0, 1)]. We will use ‖f‖BV := var(f) + |f |∞ with var denoting the total
variation seminorm.

For a function χ : Ω→ R and ` ∈ R, denote its truncation by χ` := χ · 1{χ≤`}.

Proposition 6.1 ([Sch15, Lemma 6.15]). Let T : [0, 1] → [0, 1] be a transformation and
µ a T -invariant probability measure for which T is non-singular; denote by P the transfer
operator associated to T with respect to the measure µ. Assume:

(a) the T -invariant probability measure µ is mixing;

(b) P is bounded on BV [(0, 1)] and has a spectral gap on BV (that is, the spectral radius
of P restricted to the codimension one subspace BV ∩ {f |

∫
fdµ = 0} is less than

1);

(c) χ ∈ L1(µ) with χ ≥ 0 and |χ|L∞ =∞;

(d) there exists C > 0 such that for all ` > 0,∥∥χ`∥∥
BV
≤ C · `

where Xf := X · 1X≤f .

Then, for every sequence (ξn)n∈N tending monotonically to zero and for every ε > 0,
there exists N ∈ N such that for every positive valued sequence (fm):

n ≥ N =⇒ P
(∣∣T fnn − E

(
T fnn
)∣∣ > εE

(
T fnn
))
≤ 2 exp

(
−ξn

E
(
T fnn
)

fn

)

where T fnn :=
∑n

k=1 χ
fn ◦ T k is the Birkhoff sum of n truncated terms.

[Note that if χ ≥ 0 is bounded then we get this estimate with fn = |χ|L∞(µ).]
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