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Abstract

Suppose (f,X , ν) is a measure preserving dynamical system and φ : X → R is an
observable with some degree of regularity. We investigate the maximum process Mn :=
max(X1, . . . , Xn), where Xi = φ ◦ f i is a time series of observations on the system. When
Mn → ∞ almost surely, we establish results on the almost sure growth rate, namely the
existence (or otherwise) of a sequence un → ∞ such that Mn/un → 1 almost surely. For
a wide class of non-uniformly hyperbolic dynamical systems we determine where such an
almost sure limit exists and give examples where it does not.

1 Introduction

Let (f,X , ν) be a dynamical system, where X ⊂ R, f : X → X is a measurable transformation,
and ν is an f -invariant probability measure supported on X . Given an observable φ : X → R,
i.e. a measurable function, we consider the stationary stochastic process X1, X2, . . . defined as

Xi = φ ◦ f i−1, i ≥ 1, (1)

and its associated maximum process Mn defined as

Mn = max(X1, . . . , Xn). (2)

Recent research has investigated the distributional behavior of Mn and in particular the
existence of sequences an, bn ∈ R such that

ν (x ∈ X : an(Mn − bn) ≤ u)→ G(u), (3)

for some non-degenerate distribution function G(u), −∞ < u < ∞. These results have shown
that for sufficiently hyperbolic systems and for regular enough observables φ maximized at
generic points x̃, the distribution limit is the same as that which would hold if (Xi) were
independent identically distributed (i.i.d.) random variables with the same distribution function
as φ [11, 16, 21]. As in the classical situation G(u) can be one of the three extreme value
distributions Type I (Gumbell), Type II (Frechét) and Type III (Weibull). If x̃ is periodic we
expect different behavior (for details see [9, 12, 8, 23]).

In [16, Lemma 1.1] the elementary observation is made:
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Proposition 1.1. Assume a function x 7→ g(x) has a minimum value of zero at a unique point
x̃ ∈ X .

The following are equivalent, where α > 0:

1. A Type I law for x 7→ − log d(x, x̃) with an = 1 and bn = log n;

2. A Type II law for x 7→ d(x, x̃)−α with an = n−α and bn = 0;

3. A Type III law for x 7→ C − d(x, x̃)α with an = nα and bn = C;

(and similarly for other choices of bn in the first case).

This paper will consider the almost sure behavior of Mn. A fundamental problem is to
determine the existence (or otherwise) of a sequence un → ∞ such that Mn/un → 1 (almost
surely) so as to determine almost sure rates of growth of Mn (perhaps with error bounds).
Motivated by Proposition 1.1 and other applications we will consider the functions − log d(x, x̃)
and d(x, x̃)−α. If ν is ergodic and φ is essentially bounded then almost surely, Mn → ess supφ,
hence the limit of Mn in the case of a bounded observable (Type III) is clear.

For independent, identically distributed (i.i.d) random variables the almost sure behavior of
Mn has been widely studied, e.g. in the subject area of extreme value theory [10, 13]. However
within a dynamical systems framework, and also for general dependent random variables less is
known about almost sure growth rates of Mn. There have been other results on the almost sure
behavior of scaled Birkhoff sums of Mn in the iid case (see [4, 29] and related references).

In this article we determine the existence (or otherwise) of sequences un → ∞ such that
Mn/un → 1 for the functions− log d(x, x̃) and d(x, x̃)−α. In the case where φ(x) = − log dist(x, x̃)
for given x̃ ∈ X , we show for a broad class of chaotic systems that for ν-a.e. x̃ ∈ X

lim
n→∞

Mn(x)

log n
=

1

dν
, a.s.,

where dν is the local dimension of the measure ν. Towards proving almost sure convergence of
Mn/un we will establish Borel-Cantelli results for non-uniformly hyperbolic systems and extend
results of [20]. We will also consider observables of the form φ(x) = dist(x, x̃)−α, α > 0. In
this latter case the almost sure limit Mn/un does not necessarily exist for any sequence un, and
instead we give growth rate bounds.

We organise this paper as follows. In Section 2 we state the main assumptions placed on the
dynamical systems. Such assumptions will be phrased in terms of i) the form of the observable
φ : X → R (which will always be assumed to have a unique maxima at a point x̃); ii) the
regularity of the invariant measure ν and the iii) the rate of mixing. Our proofs use recent work
on dynamical Borel Cantelli lemmas. In Section 3.2 we establish almost sure convergence of Mn

for a wide class of chaotic systems under these assumptions. In particular we demonstrate the
sensitivity of the convergence to the form of the observable and the regularity of the measure. In
later sections we make assumptions on return time statistics and obtain more refined estimates
on the almost sure behavior of Mn. statistics. Finally we compare our findings to what is known
in the i.i.d case. This latter work builds upon that of [17].

2 Statement of results

In this section we consider a measure preserving system (f,X , ν), where X ⊂ Rd, and ν is
an ergodic Sinai-Ruelle-Bowen (SRB) measure. We first make precise our notion of decay of
correlations.
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Definition 2.1. We say that (f,X , ν) has decay of correlations in B1 versus B2 (where B1 and
B2 are Banach spaces) with rate function Θ(j)→ 0 if for all ϕ1 ∈ B1 and ϕ2 ∈ B2 we have:

Cj(ϕ1, ϕ2, ν) :=

∣∣∣∣∫ ϕ1 · ϕ2 ◦ f jdν −
∫
ϕ1dν

∫
ϕ2dν

∣∣∣∣ ≤ Θ(j)‖ϕ1‖B1‖ϕ2‖B2 ,

where ‖ · ‖Bi denotes the corresponding norms on the Banach spaces.

Given this definition we state the following assumption:

(A1) (Decay of correlations). There exists a monotonically decreasing sequence Θ(j) → 0
such that for all Lipschitz ϕ1 and ϕ2:

Cj(ϕ1, ϕ2, ν) ≤ Θ(j)‖ϕ1‖Lip‖ϕ2‖Lip,

where ‖ · ‖Lip denotes the Lipschitz norm.

For a wide class of non-uniformly hyperbolic systems (including those with stable foliations) it
is known that condition (A1) holds with estimates on Θ(j). We also consider variants of (A1),
such as decay of correlations for Lipschitz versus L∞ or decay for BV versus L1, where BV is
the space of functions of bounded variation. For these latter conditions, we can make stronger
statements about almost sure convergence rates for Mn, but these conditions are in general valid
only for a more restricted class of dynamical system.

We now consider the regularity of the measure ν. For non-uniformly hyperbolic systems the
measure ν need not be absolutely continuous with respect to Lebesgue measure. Its regularity
may sometimes be quantified by local dimension estimates. Recall that the pointwise local
dimension of ν at x is given by:

dν(x) := lim
r→0

log ν(B(x, r))

log r
, (4)

whenever this limit exists. Here B(x, r) denotes the ball of radius r centered at x ∈ X . For the
examples we consider the local dimension of ν exists and is the same for ν-a.e. x ∈ X . We will
call this value dν . For the measure ν, we also need control its regularity on certain shrinking
annuli about a distinguished point x̃. We say assumption (A2) holds for x̃ if:

(A2) (Regularity of ν on shrinking annuli about x̃). There exists δ > 0, and r0 > 0 such
that for all ε < r < r0:

|ν(B(x̃, r + ε))− ν(B(x̃, r))| ≤ Cεδ. (5)

The constant C depends on x̃ (but not on δ).

In the statement of our results, we consider observable functions of the form φ(x) = ψ(dist(x, x̃)),
with ψ : R+ → R. We will assume that ψ is monotonically decreasing and limy→0 ψ(y) = ∞.
For this observable class, the level sets (φ(x) ≥ u), for given u ∈ R correspond to balls in the
Euclidean metric. To establish almost sure growth estimates of Mn, we need to know how ν
scales on these level sets (as u→∞). In particular equation (4), and assumption (A2) is phrased
in terms of how ν scales on small balls. For the majority of our results, we focus on the explicit
cases ψ(y) = − log y, and ψ(y) = y−α (for some α > 0). However, our approach is quite general
and can be adapted to other functional forms for ψ. We have the following result:

Theorem 2.2. Suppose that (f,X , ν) is a probability measure preserving system with ergodic
SRB measure ν. Suppose that the local dimension dν is defined at x̃ and (A2) holds for x̃. Let
φ(x) = − log(dist(x, x̃)). If:
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1. (A1) holds and Θ(n) = O(θn0 ) for some θ0 < 1, then

lim
n→∞

Mn(x)

log n
=

1

dν
, a.s. (6)

2. (A1) holds and Θ(n) = O(n−ζ) for ζ > 2δ−1, then there exists β ∈ (0, 1) such that

β

dν
≤ lim inf

n→∞

Mn(x)

log n
, lim sup

n→∞

Mn(x)

log n
≤ 1

dν
, a.s. (7)

Remark 2.3. For systems with superpolynomial decay of correlations, i.e. where for all ζ > 0
we have Θ(n) = O(n−ζ), then in Case 2 of Theorem 2.2 the constant β can be chosen arbitrarily
close to 1. In fact, we will derive an explicit lower bound on β in terms of ζ and δ.

The conclusions above depend essentially on having decay of correlations and a sufficiently
regular ergodic measure. The recurrence statistics associated to the reference point x̃ do not
feature in the statements. This is contrary to the case of distributional limits for Mn in the
context of extreme value theory. Distributional limits for linear scalings of Mn in the sense of
equation (3), i.e. the form of the limit law G(u), depend on the recurrence properties of x̃ (e.g.
periodic versus non-periodic), see for example [21, 16, 12, 23, 8]. In Section 5 we will discuss
refined estimates on the almost sure bounds of Mn, and these bounds will use information on
the recurrence statistics associated to x̃, and the distributional limit behavior of Mn. If ν is
absolutely continuous with respect to Lebesgue measure on X we obtain more refined estimates.
To state the following results we use the notation (An, ev), (An occurs eventually) to denote the
event

⋃
n≥0

⋂
k≥nAk, when given a sequence of events An ⊂ X . Similarly we denote the event⋂

n≥0

⋃
k≥nAk by (An, i.o.), if An occurs infinitely often. We have the following result

Theorem 2.4. Suppose that (f,X , ν) is probability measure preserving, where ν is ergodic and
absolutely continuous with respect to Lebesgue measure, and (A2) holds for x̃. Let φ(x) =
− log(dist(x, x̃)). If:

1. (A1) holds and Θ(n) = O(θn0 ) for some θ0 < 1, then there exists β > 0 such that for all
η > 1:

ν
(
x ∈ X : d−1

ν (log n+ η log log n) ≥Mn(x) ≥ d−1
ν (log n− β log log n), ev

)
= 1. (8)

2. (A1) holds and Θ(n) = O(n−ζ) for ζ > 2δ−1, then there exists β > 0 such that for all
η > 1:

ν
(
x ∈ X : d−1

ν (log n+ η log log n) ≥Mn(x) ≥ d−1
ν β log n, ev

)
= 1. (9)

In Case 2, a lower bound for the constant β can be made explicit in terms of δ and ζ.
The proof of this theorem requires the determination of (optimal) sequences un and vn so that
ν(vn ≤ Mn ≤ un, ev) = 1. From equations (8) and (9), the respective almost sure convergence
results of Cases 1 and 2 in Theorem 2.2 apply. To obtain such results the relative sizes of the
sequences un and vn need to be determined. Indeed, if we cannot obtain sequences satisfying
un ∼ vn, then we only obtain almost sure growth bounds on Mn. The sequences depend on the
form of the observable φ(x).

Theorem 2.5. Suppose that (f,X , ν) is a measure preserving system with ergodic SRB mea-
sure ν. Suppose that the local dimension dν is defined at x̃ and (A2) holds at x̃. Let φ(x) =
dist(x, x̃)−α for some α > 0. If:
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1. (A1) holds and Θ(n) = O(θn0 ) for some θ0 < 1, then for all ε > 0:

ν(x ∈ X : n
α
dν
−ε ≤Mn(x) ≤ n

α
dν

+ε, ev) = 1. (10)

2. (A1) holds and Θ(n) = O(n−ζ) for ζ > 2δ−1, then there exists β > 0 such that for all
ε > 0:

ν(x ∈ X : n
βα
dν
−ε ≤Mn(x) ≤ n

α
dν

+ε, ev) = 1. (11)

Remark 2.6. In the case of an absolutely continuous invariant measure ν we can further refine
the estimates given in Theorem 2.5. See Propositions 3.5 and 3.6.

In the case of the observable φ(x) = dist(x, x̃)−α, the theorem above gives only almost sure
bounds on the growth of Mn. Hence, we are led to the question on existence of an almost sure
growth rate. The following result shows that for certain observables there is no almost sure
limit.

Theorem 2.7. Suppose that (f,X , ν) is a measure preserving system with ergodic measure ν
which is absolutely continuous with respect to Lebesgue measure, (A2) holds at x̃, and the density
of ν at x̃ lies in (0,∞). Moreover suppose that we have decay of correlations in BV versus L1

with rate function Θ(j) satisfying
∑

j Θ(j) < ∞. Consider the observable φ(x) = dist(x, x̃)−α

for some α > 0. Then we have for any monotone sequence un →∞:

ν

(
lim sup
n→∞

Mn(x)

un
= 0

)
= 1, or ν

(
lim sup
n→∞

Mn(x)

un
=∞

)
= 1. (12)

We remark that decay of correlations of BV against L1 is a strong condition. It is known to
hold for certain expanding maps with exponential decay of correlations, see [20]. However, we
show that the conclusion of Theorem 2.7 is more widely applicable, especially for systems where
quantitative recurrence statistics are known to hold for shrinking targets around generic x̃ ∈ X .
We will discuss this in Section 5.

In Section 4 we apply the main theorems given above to study the behaviour of Mn for a
range of dynamical systems models of various complexity. At this stage, it is worth examining
a simple case study.
The Tent Map.

The tent map f : X → X , is given by f(x) = 1 − |1 − 2x| on X = [0, 1]. For this map
Lebesgue measure m is invariant and ergodic, and condition (A1) holds with exponential decay,
in fact for BV versus L1(m).

In this case B(x, r) is just the interval [x− r, x + r], and m(B(x, r)) = 2r. It is easy to see
that (A2) holds for all x̃ ∈ X , with δ = 1. For the observable φ(x) = − log dist(x, x̃), we can
apply Theorem 2.4, and deduce that for Lebesgue a.e. x ∈ [0, 1], there exists N(x) > 0 such
that for all n ≥ N :

log n+ δ log log n ≥Mn(x) ≥ log n− β log log n,

for all δ > 1 and some β > 0 (in fact β = 3 will suffice). In this case we have Mn/ log n → 1
(almost surely).

In the case of having the observable φ(x) = dist(x, x̃)−α, the results of Section 3.2 imply
that for Lebesgue a.e. x ∈ [0, 1], there exists N(x) > 0 such that for all n ≥ N :

nα(log n)αδ ≥Mn(x) ≥ nα(log n)−3α.

In this case we only achieve almost sure bounds. Moreover Theorem 2.7 applies to this example
and so no almost sure growth rate exists.
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The paper is organised as follows: in Section 3.2 we will prove the main results, and along
the way, we outline a general approach for gaining almost sure growth rates for other observable
types. The main approach of proof uses the theory of dynamical Borel Cantelli Lemmas in
shrinking target problems, see for example [16, 20]. In Section 3.2 we give the key propositions
that allow us to deduce almost sure bounds on Mn. In Section 4, we verify that our assumptions
(A1) and (A2) hold for a wide class of hyperbolic systems, including the Hénon system, and the
(2-dimensional) geometric Lorenz map. In Section 5 we consider refinements on the bounds for
Mn given extra information on the quantitative recurrence statistics and/or regularity of the
invariant measure.

2.1 Almost sure growth of Mn for i.i.d random variables

Suppose that (Xi) are a sequence of i.i.d random variables with probability distribution function
F (x) = P (X ≤ x), and (as before) let Mn = max(X1, . . . , Xn). In the case of i.i.d random
variables, almost sure growth rates of Mn are fully understood, see [10, 13], and it is worth
contrasting these results with those established here in dynamical system setting.

Let F (u) = 1 − P (X < u), so that F (u) → 0 as u approaches the upper end point of the
distribution (usually taken to be ∞). In the following discussion we will assume that the range
of X is the set [0,∞). In the case of finite upper end-point for X, similar results hold. In the
i.i.d case, almost sure behaviour of Mn is characterised in terms of three sets of sequences (un),
(vn), and (wn). In [13] the following results are established:

1. (Upper bounds). Suppose that un is such that
∑

n F (un) <∞, then P (Mn ≥ un, i.o) =
0, and so P (Mn < un, ev) = 1.

2. (Lower bounds). Suppose that vn is such that:∑
n

F (vn) =∞, and
∑
n

F (vn)e−nF (vn) <∞,

then P (Mn ≤ vn, i.o) = 0 and so P (Mn > vn, ev) = 1,

3. (Intermediate bounds). Suppose that wn is an increasing sequence such that:∑
n

F (wn) =∞, and
∑
n

F (wn)e−nF (wn) =∞,

then P (Mn < wn, i.o) = 1 = P (Mn > wn, i.o).

So we have the bands of fluctuation vn ≤ wn ≤ un, but it is also possible that vn ∼ wn ∼ un
(necessary to have limiting behavior). Clearly P (vn ≤ Mn ≤ un, ev) = 1. The relative sizes of
these sequences un and vn depend on the tail behaviour of the distribution function F (u).

For example, we may take un so that F (un) < 1/(n(log n)δ) for any δ > 1, and take vn so
that F (vn) > δn−1(log log n) for any δ > 1. The sequence wn would satisfy (for example):

log logn

n
> F (wn) >

1

n log n
.

If we are to get almost sure growth rates of Mn, then we must be able to choose un and vn
(above) with the property that un/vn → 1. This is not always possible.

Consider the following examples. Suppose that Xi are i.i.d exponential random variables,
and F (x) = 1 − e−x, for x ∈ [0,∞). The observable − log d(x, x̃) has a similar distribution
function in the deterministic setting.
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If un = log n+ δ log log n for any δ > 1, then P (Mn ≤ un, ev) = 1. If vn = log n− δ′ log logn
then for any δ′ > 1 P (Mn ≥ vn ev) = 1. In this case:

lim
n→∞

Mn

log n
= 1, a.s.

If we take the sequence wn = log n, then P (Mn > wn i.o) = 1 = P (Mn < wn i.o). These
results are consistent with what we observe in the dynamical system setting under the assumption
that φ(x) = − log dist(x, x̃), for example Theorems 2.2 and 2.4. In the i.i.d case we get improved
bounds on Mn (as we might expect) since our knowledge of i.i.d. Borel-Cantelli lemmas is
stronger than in the deterministic setting. For example our theorems as stated do not capture
all the sequences wn with the properties above. Such sequences are harder to determine, since
they are prescribed in terms of fine asymptotic bounds on the tails F (wn).

As a second example, consider the case where Xi are i.i.d and governed by a probability
distribution F (x) with F (x) ∼ 1/x for x → ∞. The observable φ(x) = dist(x, x̃)−α, α > 0 has
a similar distribution function in the deterministic setting. For any sequence un and t > 0, the
sums

∑
n F (un),and

∑
n F (tun) either both converge or both diverge. Hence

P (lim sup
n→∞

Mn/un =∞) = 1, or P (lim sup
n→∞

Mn/un = 0) = 1.

This result is consistent with the result stated in Theorem 2.7 given the observable φ(x) =
dist(x, x̃)−α, α > 0. See also [13, Theorem 4.4.4] which gives further characterization on the
distribution functions for which there is no almost sure growth rate.

Finally, there are probability distributions which have the property that:

P
(

lim
n→∞

(Mn − an) = 0
)

= 1, for some sequence an →∞.

An example is the Gaussian distribution, with an =
√

2 log n. Such an ‘additive’ almost sure
law for Mn will be achieved if un = vn + o(1). For certain dynamical systems, an observable of
the form φ(x) =

√
| log dist(x, x̃)| would give rise to an additive law. We do not explore this in

detail, but the relevant sequence an (when it exists) can be derived from Proposition 3.4.

3 Almost sure growth rates via Borel Cantelli sequences

In this section we discuss almost sure growth rate results for certain hyperbolic and non-
uniformly hyperbolic dynamical systems, and prove the main theorems. Our arguments depend
upon the interplay between the distribution function of an observable and dynamical Borel-
Cantelli lemmas, which give almost sure rates of approach to a distinguished point x̃.

3.1 Borel Cantelli sequences

We begin by recalling the classical Borel-Cantelli Lemmas for a probability space (X ,B, ν),
where B is the σ-algebra.

1. If (An)n≥0 is a sequence of measurable events in X , and
∑∞

n=0 ν(An) <∞, then ν(An, i.o.) =
0.

2. If (An)n≥1 is a sequence of independent events in X , and
∑∞

n=0 ν(An) =∞, then ν(An, i.o.) =
1. Moreover for ν-a.e. x ∈ X we have

lim
n→∞

Sn(x)

En
= 1,

where Sn(x) =
∑n−1

j=0 1Aj (x) and En =
∑n−1

j=0 ν(Aj)
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In general (for dependent processes), we say that a sequence Aj is a strong Borel Cantelli (SBC)
sequence if En →∞ and Sn(x)/En → 1 for ν-a.e. x ∈ X . If En →∞, we say that Aj is a Borel
Cantelli (BC) sequence if Sn(x) → ∞ for ν-a.e. x ∈ X . To study almost sure growth rates of
Mn, we will use refined estimates on the relative growth of Sn(x) and En. In particular we have
the following:

Proposition 3.1. Suppose that (f,X , ν) is a measure preserving system with ergodic SRB mea-
sure ν, that (A2) holds for x̃ ∈ X and the local dimension dν exists at x̃.

1. If (A1) holds with Θ(n) = O(n−ζ) for some ζ > 0, and Bn = B(x̃, rn) is a sequence of
decreasing balls about x̃ with ν(Bn) = n−β for some β ∈ (0, 1) then for ν-a.e. x ∈ X :

Sn(x) = En +O(Eβ
′

n ), for any β′ >
2δ−1 + β + ζ(1− β)

2ζ(1− β)
, (13)

where Sn(x) =
∑

k≤n 1Bk(fk(x)) and En =
∑

k≤n ν(Bk)

2. If (A1) holds with Θ(n) = O(θn0 ) for some θ0 < 1 and Bn = B(x̃, rn) is a sequence of
decreasing balls about x̃ with ν(Bn) = (log n)β/n then for ν-a.e. x ∈ X :

Sn(x) = En +O(Eβ
′

n ), for any β′ >
2 + β

2(1 + β)
. (14)

Remark 3.2. For the error term O(Eβ
′

n ) to be useful, we require β′ < 1. In Case 1 we require
β, δ and ζ to satisfy

2δ−1 < ζ − ζβ − β.

If ζ > 2δ−1, then the ball radii must be chosen so that ν(Bn) = n−β, with β < (ζ−2δ−1)/(ζ+1).
In Case 2 we just require β > 0. For systems with superpolynomial decay of correlations we can
take β arbitrarily close to 1. It is clear that if β′ < 1 we have Sn(x)/En → 1 as n → ∞ for ν
a.e. x ∈ X .

Remark 3.3. The error estimates in Proposition 3.1 cannot be usefully applied to balls Bn with
ν(Bn) = O(1/n). In Section 5, we extend these estimates to more general nested balls under
assumptions on the quantitative recurrence statistics.

3.2 Almost sure growth rates for Mn: the general approach

Using Proposition 3.1 we deduce almost sure bounds on the growth of Mn. We consider first the
case of having exponential decay of correlations and having an absolutely continuous invariant
measure. We obtain the strongest bound in this case, see Proposition 3.4. We then focus on
particular observables, Proposition 3.5, and then consider the case of having polynomial decay of
correlations: Proposition 3.6. In Section 3.2.4 we treat the case of having general SRB measures
and conclude the proof of the main theorems as stated in Section 2.

3.2.1 Almost sure growth of Mn for systems with exponential decay of correlations

We discuss a general approach to finding upper and lower bounds on the growth rate of Mn

under the assumption that φ(x) = ψ(dist(x, x̃)), where ψ : R+ → R is a monotonically decreasing
function with ψ(y) → ∞ as y → 0. In the following we consider the case for dimension d = 1.
The arguments generalize easily to higher dimensions.
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Proposition 3.4. Suppose that (f,X , ν) is a measure preserving system with an absolutely
continuous ergodic invariant measure ν. Consider the observable φ(x) = ψ(dist(x, x̃)). Suppose
that Condition (A1) holds with Θ(n) = O(θn0 ), and condition (A2) holds for x̃. Then for ν-a.e.
x ∈ X , and all δ1 > 1:

ν

(
ψ

(
(log n)3

n

)
≤Mn ≤ ψ

(
1

n(log n)δ1

)
, ev

)
= 1. (15)

Proof. In light of Proposition 3.1 it suffices to consider a sequence of balls Bn satisfying ν(Bn) =
n−1(log n)β for some β > 0. This implies that their radii scale as rn ∼ Cn−1(log n)β for some
C > 0. Here, the constant C depends on the density of ν at x̃. In dimension d we would choose

balls of radii r
1/d
n but for the sake of exposition we take d = 1 from now on.

Given x ∈ X and n ≥ 1, define nl(x) := max(k ≤ n : fk(x) ∈ Bk). Recalling that Sn(x) =∑
k≤n 1Bk ◦ fk(x), Snl(x) = Sn(x), and Mn(x) ≥Mnl(x).

By Proposition 3.1 we have for any β′ > 2+β
2(1+β) and for ν-a.e. x ∈ X :

En − Enl ≤ O((En)β
′
), (16)

Since ν(Bn) = n−1(log n)β we have the asymptotic: En = Cβ(log n)1+β + o(1). Hence equation
(16) implies that

(log nl)
1+β ≥ (log n)1+β −O((log n)β

′(1+β)),

Inverting for nl gives:

nl ≥ exp

(
(log n)

(
1− c(log n)(β′−1)(β+1)

) 1
β+1

)
,

for some c > 0. An asymptotic expansion, implies we can write nl ≥ exp(log n − `(n)), where
`(n) > 0, and

`(n) = O
(

(log n)(β′−1)(β+1)+1
)
.

For small values of β, we have `(n) = O((log n)σ) for some σ > 0 and in this case `(n)→∞. If
β′ < 1 and β > β′/(1 − β′), then `(n) = o(1), and nl ∼ n as n → ∞. For this choice of β we
have for all ε > 0:

Mn(x) ≥Mnl(x) ≥ ψ(rnl) ∼ ψ
(
C

(log nl)
β

nl

)
≥ ψ

(
(log n)β+ε

n

)
.

We now find a lower bound on the value of β. We require the following to hold simultaneously:
β > β′/(1−β′), and 1 > β′ > 2+β

2(1+β) . For any β > 5/2, then these inequalities are simultaneously

satisfied (with β′ chosen accordingly).
To get an upper bound on the growth of Mn, we choose a sequence Bk such that

∑
k ν(Bk) <

∞. Since ν is absolutely continuous with respect to Lebesgue measure, for δ1 > 1 a sequence
of balls of radius rn ∼ 1

n(logn)δ1
will do. Putting these estimates together we achieve for any

δ1 > 1:

ν

(
ψ

(
(log n)3

n

)
≤Mn ≤ ψ

(
1

n(log n)δ1

)
, eventually

)
= 1. (17)
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3.2.2 Almost sure growth of Mn for specific observables

The bounds on Mn depend on the functional form of ψ(y). If ψ(y) is a power law function of
the form ψ(y) = y−α for α > 0, then we achieve almost sure bounds on the growth of Mn, but
do not establish an almost sure growth rate. The following proposition deals with exponential
decay of correlations and an absolutely continuous invariant measure.

Proposition 3.5. Suppose that (f,X , ν) is a measure preserving system with an absolutely
continuous ergodic invariant measure ν. Suppose that Condition (A1) holds with Θ(n) = O(θn0 ),
and condition (A2) holds for x̃. Then:

1. if φ(x) = − log dist(x, x̃) we have

lim
n→∞

Mn(x)

log n
=

1

d
. a.s.

2. if φ(x) = dist(x, x̃)−α for some α > 0, for any δ > 0 we have

ν(x ∈ X : n
α
d (log n)−

3α
d ≤Mn(x) ≤ n

α
d (log n)

αδ
d , eventually) = 1.

Proposition 3.5 gives an indication on how the upper and lower bounds on the growth rate of
Mn depend on the form of the observable. In Case 2, we cannot deduce an almost sure growth
rate for Mn.

Proof. Case 1: to find the upper bound for Mn, we consider a sequence of balls Bn such that∑
n ν(Bn) <∞. Following the approach discussed above, we take balls of radius rn ∼ C 1

n(logn)δ
,

(for δ > 1), so that ν(Bn) = 1
n(logn)δ

. Then

ψ

(
1

n(log n)δ

)
∼ log n+ δ log log n,

and eventually Mn ≤ log n+δ log log n. To get the lower bound, it suffices to consider a sequence
of balls Bn of radius rn ∼ Cn−1(log n)β for some C, β > 0 so that ν(Bn) = n−1(log n)β. From
Proposition 3.4 we obtain for any β ≥ 2.5 and ε > 0:

Mn(x) ≥ ψ
(

(log n)β+ε

n

)
= log n− (β + ε) log log n.

Hence, almost surely we have Mn/ log n→ 1.
Case 2: to find the upper bound for Mn is suffices to take Bn so that

∑
n ν(Bn) <∞. If we

take balls of radius rn ∼ C 1
n(logn)δ

, (δ > 1), we obtain:

Mn ≤ ψ
(

1

n(log n)δ

)
≤ nα(log n)αδ.

To get the lower bound, again consider a sequence of balls Bn of radius rn ∼ Cn−1(log n)β for
some C, β > 0. We obtain for any β ≥ 2.5, and any ε1 > 0:

Mn(x) ≥ ψ
(

(log n)β+ε1

n

)
,

and this give the required lower bound.
If X has dimension d > 1 the following statements may be proved in exactly the same way,

by taking instead balls of radii r
1/d
n .
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3.2.3 Almost sure growth of Mn for systems with polynomial decay of correlations

We now consider the case of polynomial decay of correlations. Again, for simplicity we take
dimension d = 1. We consider the case of having an absolutely continuous invariant measure,
and a general observable φ(x) = ψ(dist(x, x̃)).

Proposition 3.6. Suppose that (f,X , ν) is a measure preserving system with an absolutely
continuous ergodic invariant measure ν, and φ(x) = ψ(dist(x, x̃)). Suppose that Condition (A1)
holds with Θ(n) = O(n−ζ) for some ζ > 0, and Condition (A2) holds for x̃. Then for all δ1 > 0,

ν

(
ψ

(
1

nβ

)
≤Mn ≤ ψ

(
1

n(log n)δ1

)
, ev

)
= 1, for any β <

ζ − 2δ−1

1 + ζ
. (18)

Remark 3.7. In Proposition 3.6 we require β > 0 for the estimate in equation (18) to be useful.
This will hold provided ζ > 2δ−1. For systems with superpolynomial decay of correlations we
can take β arbitrarily close to 1.

Remark 3.8. For the explicit representations ψ(y) = − log y, or ψ(y) = y−α, we can derive
similar statements to those stated in Proposition 3.5 (but with slightly weaker bounds).

Proof. We follow the proof of Proposition 3.4, but instead take a sequence of balls Bn with
ν(Bn) = n−β for some β ∈ (0, 1). As before Snl(x) = Sn(x), and Mn(x) ≥ Mnl(x), (with nl as
defined in Proposition 3.4). By Proposition 3.1 we have

En − Enl ≤ O((En)β
′
), (19)

for any

β′ >
2δ−1 + β + ζ(1− β)

2ζ(1− β)
. (20)

To get a lower bound on the growth rate of Mn, we choose balls Bn with ν(Bn) = n−β for some
β > 0, and hence rn ∼ Cn−β for some C > 0. It follows that En ∼ Cn1−β, and using equation
(19) we obtain

n1−β
l ≥ n1−β −O(nβ

′(1−β)).

If β′ < 1 then nl ≥ n(1 + o(1)) as n→∞. Hence we obtain

Mn(x) ≥Mnl(x) ≥ ψ(rnl) ≥ ψ
(

C

nβ/d

)
,

again for some C > 0. To compute the optimal value of β, we just require β′ < 1. From equation
(20) this will be valid provided:

β <
ζ − 2δ−1

1 + ζ
.

The upper bound for Mn can be achieved by setting rn ∼ C/[n(log n)δ1 ], (for arbitrary δ1 > 1),
and using the first Borel-Cantelli Lemma.

3.2.4 Proof of main results

Using Propositions 3.4, 3.5 and 3.6 we can now complete the proof of the main theorems. The
proof of Theorem 2.7 is more elaborate and hence is proved in Section 3.2.5.
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Proof of Theorem 2.2. To prove this theorem, we follow the proof of Proposition 3.4. In
the case of SRB measures we cannot make precise asymptotic statements on the radii rn of the
balls Bn. This is due to the fluctuation properties of ν on balls Bn when ν(Bn)→ 0. When the
local dimension dν at x̃ exists we have the following: for all ε > 0, there exists N , such that for
all n ≥ N :

rn ∈ [ν(Bn)1/dν+ε, ν(Bn)1/dν−ε].

Given this, we can now prove Case 1 of Theorem 2.2. Following the proof of Proposition 3.5,
it suffices to take the sequence of balls Bn := B(x̃, rn) with ν(Bn) = 1

n(logn)δ
, (δ > 1). Using

local dimension estimates, we obtain for all ε > 0:

Mn ≤ ψ(rn) ≤
(
d−1
ν + ε

)
log n,

where in the above estimate the δ log logn contribution has been subsumed. To get the lower
bound, again consider a sequence of balls B(x̃, rn) with ν(Bn) = n−1(log n)β, and apply Propo-
sition 3.4 for β ≥ 3. Then for all ε > 0:

Mn(x) ≥ ψ(rnl) ≥
(
d−1
ν − ε

)
log n.

(noting that the β log log nl contribution is asymptotically insignificant). As before, nl(x) :=
max(k ≤ n : T k(x) ∈ Bk), and we have nl ∼ n for β ≥ 3. The almost sure bounds on Mn follow
for Case 1.

Now consider Case 2. We repeat the proof of Proposition 3.6. The upper bound on Mn is
identical to that achieved in Case 1 above, and hence almost surely

lim sup
n→∞

Mn(x)

log n
≤ 1

dν
.

For the lower bound, we take balls B(x̃, rn) with ν(Bn) = n−β, and β satisfying

β <
ζ − 2δ−1

1 + ζ
,

so that Proposition 3.4 applies with nl ∼ n. Using the fact that Mn ≥ ψ(rnl), we obtain for all
ε > 0:

lim inf
n→∞

Mn(x)

log n
≥ β

dν
− ε,

and the conclusion follows.

Proof of Theorem 2.4. The proof of this result is straightforward. In Case 1, we just apply
Proposition 3.5, and hence equation (8) follows for β = 3. For Case 2, the result immediately
follows from Proposition 3.6

Proof of Theorem 2.5. The proof of this result is achieved by repeating the method of proof
of Theorem 2.2 to the case of the observable function φ(x) = −dist(x, x̃)−α, and the result
follows.

3.2.5 Non-existence of an almost sure growth rate for Mn

In this section we prove Theorem 2.7, and show that for certain observables we have no almost
sure scaling sequence for Mn. We begin with the following lemma.
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Lemma 3.9. Suppose that (f,X , ν) satisfies the assumption of Theorem 2.7, and suppose that
for a given monotone sequence rn → 0 we have

∑
n ν(B(x̃, rn)) = ∞. Consider the observable

function φ(x) = ψ(dist(x, x̃)), with ψ(y) monotonically decreasing, and limy→0 ψ(y) =∞. Then
we have:

ν(Mn ≥ ψ(rn), i.o.) = 1.

Proof. For systems (f,X , ν) that satisfy decay of correlations of BV versus L1 it is shown that
ν(Xn ≥ ψ(rn), i.o.) = 1, where B(x̃, rn) is any sequence of balls satisfying

∑
n ν(Bn) = ∞, see

[20, 24]. From [13, Theorem 4.2.1], it is shown that for any monotone sequence un → ∞ we
have

ν(Mn ≥ un, i.o.) = ν(Xn ≥ un, i.o).

Hence the result follows by taking the sequence un = ψ(rn).

Now consider an arbitrary sequence un → ∞. The event (Xn ≥ un) corresponds to the
event B(x̃, rn) with un = ψ(rn) = r−αn . Hence there is a one-to-one correspondence between the
sequences un →∞ and rn → 0. We consider two cases, namely upper and lower sequences rUn ,
rLn such that

∑
n ν(B(x̃, rUn )) <∞ and

∑
n ν(B(x̃, rLn )) =∞. In the former case, the first Borel

Cantelli lemma implies that ν(Xn ≥ un, i.o) = 0, where un := ψ(rUn ). For any t > 0, consider
now the sequence of balls B(x̃, trUn ). By absolute continuity of ν, we have∑

n

ν(B(x̃, trUn )) ∼
∑
n

ρ(x̃)trUn ∼ t
∑
n

ν(B(x̃, rUn )) <∞,

where ρ(x̃) ∈ (0,∞) is the density of ν at x̃. It follows that for all t > 0:

ν(Xn ≥ t−αψ(rUn ), i.o) = 0 =⇒ ν(Xn ≤ t−αψ(rUn ), eventually) = 1,

Thus if un = ψ(rn) is such that the corresponding measures ν(B(x̃, rn)) are summable, then

ν

(
lim sup
n→∞

Mn(x)

un
= 0

)
= 1.

Now suppose that
∑

n ν(B(x̃, rLn )) =∞ for some sequence rLn . Then by Lemma 3.9 it follows
that ν(Mn ≥ un, i.o) = 1, where un = ψ(rLn ). Again by scaling the radii rLn by a multiplying
factor t > 0, we find that the non-summability properties of ν(Bn) are preserved. Hence for any
t > 0 we have ν(Xn ≥ t−αψ(rLn ), i.o) = 1, and so ν(Mn ≥ t−αψ(rLn ), i.o) = 1. Therefore for all
such sequences un = ψ(rn) with

∑
n ν(Bn) =∞ we have:

ν

(
lim sup
n→∞

Mn(x)

un
=∞

)
= 1.

This completes the proof of Theorem 2.7

Remark 3.10. In the proof of Theorem 2.7 we used the fact that ν was absolutely continuous.
In the proof, the main property required is that we have ν(B(x̃, tr)) ∼ tν(B(x̃, r)) for all t > 0
and for all r sufficiently small. We also require the conclusion of Lemma 3.9 to apply. In Section
5 we will see that the conclusion of Theorem 2.7 applies to a broader class of systems.

4 Application of results: non-uniformly hyperbolic systems

In this section we discuss a range of dynamical systems to which our results apply. These
include diffeomorphisms modelled by Young towers, billiard maps, Lozi maps, geometric Lorenz
maps and intermittent type maps. From a point of view of application of results, this means
checking the assumptions e.g. (A1), (A2) apply to the particular system at hand. Often the
local dimension estimates apply only almost surely, and similarly with respect to assumption
(A2).
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Rank one Young towers

We consider diffeomorphisms modelled by Young towers with exponential tails. See [27] for
details of Young Towers.

Theorem 4.1. Suppose that f : X → X is a C2 diffeomorphism modelled by a Young tower
with SRB measure ν and ν(R > n) = O(θn0 ) for some θ0 < 1. For ν a.e. x̃ ∈ X , if φ(x) =
− log(dist(x, x̃)) then we have

lim
n→∞

Mn(x)

log n
=

1

dν
, a.s. (21)

To prove this result we check (A1), together with a slightly weaker version of (A2) (which
holds for ν a.e. x̃). This is a technical argument and we give the proof in Section 8. A natural
application is the Hénon map

f(x, y) = (1− ax2 + y, bx),

where (a, b) ∈ R2. It is shown that for a positive measure set of these parameters, (f,X , ν)
admits a Young tower with exponential return time asymptotics, see [1].

Lozi maps

Lozi maps are generally given by the equation T (x, y) = (1 + by− a|x|, x). The Lozi map can be
modelled by a Young tower [27] with exponential tails for the return time function R and hence
(A1) applies. However it has discontinuities in its derivative (at x = 0), and hence we can not
immediately apply Theorem 4.1. However it is shown in [20, 16] that (A2) holds, and so Case
1 of Theorem 2.2 applies to this family of maps for ν almost every x̃.

Hyperbolic billiards

For a review of billiard maps and their statistical properties, see [2, 5]. Certain billiard trans-
formations can be modelled by a Young tower with exponential return times, see [27]. However,
such transformations are not captured by Theorem 4.1 due to the presence of singularities in
their derivatives. Strong Borel Cantelli lemmas have been established for such transformations
in [20], and (A1) holds. (A2) holds for all x̃ as the invariant measure is a volume measure. Hence
Case 1 of Theorem 2.2 applies to this family of maps for all x̃ ∈ X .

Lorenz maps

We consider the family of two-dimensional Poincaré return maps associated to the geometric
Lorenz flow, [15]. For such a system (f,X , ν), the set X is a compact planar section in R2

(transverse to the Lorenz flow), and ν is an ergodic SRB measure. The hyperbolic properties of
these maps are described in [18], where it is shown that condition (A1) holds with Θ(n) = O(θn0 )
for some θ0 < 1. In [28] extreme distributional limits are derived, and condition (A2) is shown
to holds for all x̃ ∈ X . Hence Case 1 of Theorem 2.2 applies to the family of Lorenz maps for
all x̃ ∈ X .

Intermittent maps

As an example, one class of intermittent type maps f : [0, 1]→ [0, 1] take the form

f(x) =

{
x(1 + 2αxα) if 0 ≤ x < 1

2 ;

2x− 1 if 1
2 ≤ x ≤ 1,

(22)
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where α ∈ (0, 1). Strong Borel Cantelli results are discussed in [20], and see also [14, 24]. It is

shown that (A1) applies, with Θ(n) = O
(
n1− 1

α

)
, In particular ν is absolutely continuous with

respect to Lebesgue measure with a density in Lp(Leb) for some p > 1, and hence (A2) holds for
some δ > 0. In fact, it is known that the invariant density satisfies ρ(x) ≈ x−α as x → 0, and
ρ(x) is bounded on any compact interval excluding 0. Thus it is possible to obtain quantitative
estimates on the bounds of Mn in terms of the map constant α. We state the following:

Corollary 4.2. Suppose (f, ν,X ) is given in equation (22), and suppose that φ(x) = − log dist(x, x̃).
Then for all x̃ ∈ [0, 1] we have:

lim sup
n→∞

Mn(x)

log n
≤ 1, a.s.

and if α < 1/3 then 1− 3α ≤ lim inf
n→∞

Mn(x)

log n
a.s.

Remark 4.3. Note that for x̃ = 0 the bounds on Mn are sharper than those obtained in Theo-
rem 2.2.

Proof. Suppose x̃ 6= 0, then condition (A2) implies that we can take δ = 1 and the almost sure
upper bound for lim supMn/ log n is therefore 1. Using condition (A1), Theorem 2.2 implies
that the lower bound for lim inf Mn/ log n is β/dν , where β > 0 is any value satisfying

β <
ζ − 2δ−1

1 + ζ
= 1− 3α,

and so we should take α < 1/3.
Now consider the case where x̃ = 0. Let Bn = [1

2 ,
1
2 + 1

2n
−β], and An := f(Bn) = [0, n−β].

Using [24, Proposition 4.2] it is shown that for β > 0 we have ν{x : fn(x) ∈ An, i.o.} = 0, and
if β ≤ 1 then ν{x : fn(x) ∈ An, i.o.} = 1. Hence lim supMn/ log n ≤ β for any β > 1, and so
lim supMn/ log n ≤ 1. Let nl = max{k ≤ n − 1 : fk(x) ∈ Bk}. By Proposition 3.6, it follows
that for β < 1 − 3α we have nl = (1 + o(1))n. Thus lim inf Mn/ log n ≥ β for any β < 1 − 3α
and hence lim inf Mn/ log n ≥ (1− 3α).

5 Refined estimates on almost sure growth rates of Mn for non-
uniformly hyperbolic systems.

In the previous sections, we assumed just decay of correlations (A1), and regularity of the
invariant measure (A2). We make the following assumption (A3) concerning so called short
return times to the distinguished point x̃, see for example [20]. This allows us to obtain stronger
Borel-Cantelli results for nested balls based at x̃, and hence we more closely approximate the
i.i.d. case. The short return times assumption has been shown to hold for ν a.e. x̃ ∈ X for a
variety of non-uniformly hyperbolic systems.

(A3) (Lack of Short Return Times to x̃). There exists ε1 > 0 such that if (B(x, rn)) is a
sequence of balls with

∑
n ν(B(x, rn)) =∞ and ν(B(x, rn)) = O(n−1+ε1), then either:

(A3a) There exists α > 0 and γ > 0 such that for ν-a.e. x ∈ X :

ν
(
B(x, un) ∩ f−kB(x, un)

)
≤ ν (B(x, un))1+α for all 1 ≤ k ≤ g(n) (23)

with g(n) = nγ ; or
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(A3b) There exists α > 0 such that equation (23) holds but with g(n) = (log n)γ for some
γ > 1.

Conditions (A3a) and (A3b) (collectively denoted as (A3)) give restrictions on the recurrence
properties of x̃ ∈ X . For a broad class of systems, condition (A3) is shown to hold for ν-
a.e. x̃ ∈ X . The exceptional set of points includes periodic points (for example). However we
believe that the almost sure behavior of Mn will not depend upon the validity of the lack of short
returns, rather it is just an artefact of our method of proof. The following proposition establishes
strong-Borel Cantelli results for general dynamical systems satisfying hypotheses (A1)-(A3).

Proposition 5.1. Suppose that (f,X , ν) is a measure preserving system with ergodic SRB mea-
sure ν, and that the local dimension dν exists at x̃ ∈ X and (A2) holds for x̃. We have the
following cases.

1. Suppose that Θ(n) = O(θn0 ) for some θ, and (A1) holds. Moreover, suppose that Bn =

B(x̃, rn) is a sequence of decreasing balls about x̃ with lim supn ν(Bn)(log n)
σ
ζ <∞ for some

σ > 1, and (A3b) holds at x̃ for γ > 1. If Sn(x) =
∑

k≤n 1Bk(fk(x)), En =
∑

k≤n ν(Bk)
then

Sn(x) = En +O(E1/2
n log3/2+εEn, ), (24)

2. Suppose that Θ(n) = O(n−ζ) and (A1) holds together with (A3a) at x̃, with γ > (2δ−1 +
1)/(ζ − 1). Moreover suppose that Bn = B(x̃, rn) is a sequence of decreasing balls about x̃
with lim supn ν(Bn)nσ/α <∞, for some

σ >
2δ−1 + 1

ζ − 1
.

If En →∞ then
Sn(x) = En +O(E1/2

n log3/2+εEn, ), (25)

Remark 5.2. In Case 2, the estimate is of no use if (2δ−1 + 1)/[α(ζ − 1)] ≥ 1.

Proposition 5.1 has the immediate corollaries:

Corollary 5.3. Suppose that (f,X , ν) satisfies the assumptions of Proposition 5.1, with either
case applying but in Case 2 we require σ

α < 1. Suppose that for some monotone sequence
rn → 0,

∑
n ν(B(x̃, rn)) =∞. Then for any observable function φ(x) = ψ(dist(x, x̃)) with ψ(y)

monotone decreasing at y > 0:
ν(Xn ≥ ψ(rn), i.o.) = 1.

Proof. From Proposition 5.1, the corollary is true for balls Bn with ν(Bn) = O(n−1+ε̃) for
some ε̃ > 0. The existence of ε̃ follows by (A3), and the assumptions placed on ν(Bn) in the
statement of the Proposition. We now extend the Borel-Cantelli property to all sequences rn,
with

∑
n ν(B(x̃, rn)) =∞. Let r̃n be a sequence such that r̃n = rn if ν(B(x̃, rn)) ≤ n(−1+ε1), and

let r̃n be such that ν(B(x̃, r̃n)) = n(−1+ε1) otherwise. The corresponding balls B(x̃, r̃n) satisfy
the (A3) conditions and the SBC property. Furthermore B̃n = B(x̃, r̃n) ⊂ B(x̃, rn), and hence
Sn(x) > S̃n(x), where S̃n(x) =

∑
k≤n 1B̃n(x) diverges to infinity (by the SBC property). Thus

ν(Xn ≥ un, i.o) = 1 for the corresponding sequence un = ψ(rn), and the result follows.

If (A3) holds, then we can strengthen the estimates of Theorem 2.2, especially Case 2.
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Corollary 5.4. Suppose that (f,X , ν) is a measure preserving system with ergodic SRB measure
ν, and that the local dimension dν exists at x̃ ∈ X and (A2) holds for x̃. Suppose that Θ(n) =
O(n−ζ) and (A1) holds together with (A3a) at x̃, with (2δ−1 + 1)/(ζ− 1) < min(α, γ). Consider
the observable φ(x) = − log(dist(x, x̃)). Then

lim
n→∞

Mn(x)

log n
=

1

dν
, a.s. (26)

Proof. From Case 2 of Proposition 5.1, equation (25) applies for a sequence of balls Bn satisfying
ν(Bn) = (log n)β/n, for any β > 0. For this sequence we can repeat the proof of Proposition 3.4
to get the required result.

For systems having quantitative recurrence estimates we can also establish non-existence of
an almost sure growth rate for certain observables. This extends the results of Theorem 2.7. In
particular we do not require the strong assumption of decay of correlations of BV against L1.

Corollary 5.5. Suppose that (f,X , ν) satisfies the assumptions of Proposition 5.1, and in addi-
tion suppose ν is absolutely continuous with respect to Lebesgue measure. Consider the observable
φ(x) = dist(x, x̃)−α for α > 0. Then for any monotone sequence un →∞ we have:

ν

(
lim sup
n→∞

Mn(x)

un
= 0

)
= 1, or ν

(
lim sup
n→∞

Mn(x)

un
=∞

)
= 1. (27)

The proof follows immediately from Corollary 5.3 above, and the method of proof of Theorem
2.7.

As an application, Corollary 5.5 applies to the family of intermittent maps discussed in
Section 4, namely equation (22).

Application: Rank 1 Young towers

The assumption (A3) on lack of short return times allows us to deduce a broader class of
sequences rn for which the corresponding balls Bn form Borel Cantelli sequences. The following
result resolves a question posed in [20, Section 7].

Theorem 5.6. Suppose that f : X → X is a C2 diffeomorphism modelled by a Young tower
with SRB measure ν and having exponential tails. Suppose that

∑
n ν(B(x̃, rn)) =∞, for some

monotone sequence rn → 0, and x̃ ∈ X . Consider the observable function φ(x) = ψ(dist(x, x̃))
with ψ(y) monotone decreasing, and limy→0 ψ(y) =∞. Then for ν-a.e. x̃ ∈ X :

ν(Xn ≥ ψ(rn), i.o.) = 1.

To prove this theorem we check that condition (A3b) holds for ν-a.e. x ∈ X . We then

achieve SBC results for the sequence of balls Bn = B(x̃, rn) with lim supn ν(Bn)(log n)
σ
ζ < ∞

for some σ > 1. We then apply Corollary 5.3 to balls shrinking around such points ν-a.e. x ∈ X .
The verification of (A3b) is a technical argument utilizing results in [3], and is postponed to
Section 8. An immediate example to which this theorem applies is the Hénon map, as discussed
in Section 4.

6 Discussion.

We considered two types of function φ1(x) = − log d(x, x̃) and φ2(x) = d(x, x̃)−α. If Xi is a
sequence of iid random variables with the same distribution function as φ1 then Mn/ log n→ 1
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almost surely, while in the case of iid random variables with the distribution function of φ2 there
is no almost sure limit for Mn/un for any sequence of constants un. Given sufficient control on
dynamical Borel-Cantelli lemmas we were able to show the same phenomena in the deterministic
case. In particular, unlike distributional extreme limits the almost sure behavior of Mn does not
depend (in many cases) on the periodicity or not of x̃. An exceptional case is the intermittent
map discussed in Section 4, but in that case the point x̃ was a non-hyperbolic fixed point. Some
of our results made assumptions on the recurrence properties associated to the point x̃ (such as
assumption (A3)) but these assumptions were to obtain estimates on dynamical Borel Cantelli
lemmas and we believe are an artifact of our method of proof. In other words we have no reason
to believe that if (A3) does not hold at a point x̃ then the almost sure behavior of Mn would
differ from the case in which it does. Modulo the case in which x̃ is a non-hyperbolic periodic
point this is conjecture.

Natural questions include: can we determine corresponding almost sure growth results for
observables other than those which are functions of distance to a distinguished point? or whose
level set geometry is more complex? This problems requires an understanding of BC and SBC
results for more general shrinking targets Bn. Notice that our results in Section 2 required the
checking of (A1) and (A2). However, for general SRB measures, we would need an extended
version of (A2) that is adapted to the geometry of Bn. In general, such a condition would be
difficult to check and perhaps news ideas are needed.

A further question concerns the sharpness of the sequences un, and vn such that ν{vn ≤
Mn ≤ un, ev} = 1. In the i.i.d case these sequences are fully determined, see Section 2.1. In
certain situations we might expect sharper estimates than those achieved in Theorem 2.4, and
indeed this is evident from Corallary 4.2. If the system has exponential decay of correlations,
then the sharpness gain in the best asymptotics for un and vn would be marginal, if for example
we compare the results of Theorem 2.4 to the i.i.d. case.

7 Proof of Propositions 3.1 and 5.1

In this section we prove Propositions 3.1 and 5.1. The main ideas are presented in [20], but in
this case we need refined estimates on the error terms that appear in the strong Borel Cantelli
results. In the following section we recall some key constructions and estimates that will be used
in the proof of the propositions.

7.1 Asymptotic estimates for sequences

To get SBC results together with refined asymptotic estimates the key result we use is the
following:

Proposition 7.1 ([26]). Let (Ω,B, µ) be a probability space and let fk(ω), (k = 1, 2, . . .) be a
sequence of non-negative µ measurable functions and gk, hk be sequences of real numbers such
that 0 ≤ gk ≤ hk ≤ 1, (k = 1, 2, . . . , ). Suppose there exist C > 0 such that

∫  ∑
m<k≤n

(fk(ω)− gk)

2

dν ≤ C
∑

m<k≤n
hk (28)

for arbitrary integers m < n. Then for any ε > 0∑
1≤k≤n

fk(ω) =
∑

1≤k≤n
gk(ω) +O(θ1/2(n) log3/2+ε θ(n))

for ν a.e. ω ∈ Ω, where θ(n) =
∑

1≤k≤n hk.
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Recall that Sn(x) =
∑n−1

j=0 1Bj (x) and En =
∑n−1

j=0 ν(Bj), we will apply the proposition to
the case where fk(x) = 1Bk(x) and gk = ν(Bk), and obtain an estimate for hk in terms of ν(Bk),

In fact we show that there is a constant β1 < 2 such that θ(n) ≤ Eβ1n . It follows that for ν-a.e.
x ∈ X :

Sn(x) = En +O(Eβ
′

n ), (29)

for some β′ < 1. We try to optimize the constant β′ in various cases.

Lipschitz approximation of fk. For the indicator functions fk defined above, we would
like to apply condition (A1) to estimate the expectations E(fifj) (for various i, j ≤ n). Here
E(ϕ) =

∫
ϕdν for any integrable function ϕ ∈ L1(ν).

Decay of correlations as stated in condition (A1), requires the observable class to be Lipschitz.
The function fk, as chosen when applying Proposition 7.1 will be an indicator functions on Bk.
Thus we will need to work with a Lipschitz approximation f̃k of fk in order to use (A1). The
measure of the set of points where f̃k(x) 6= fk(x) will need to be controlled, as this will use
condition (A2). Formally, for each k let f̃k be a Lipschitz function such that f̃k(x) = 1Bk(x) if
x ∈ Bk, f̃k(x) = 0 if d(Bk, x) > (k(log k)2)−1/δ, 0 ≤ f̃k ≤ 1 and ‖f̃k‖Lip ≤ (k(log k)2)1/δ. Clearly
we may construct such functions by linear interpolation of 1Bk and 0 on a region r ≤ d(pk, x) ≤
r + (k(log k)2)−1/δ.

In Proposition 7.1 we will take fk = f̃k ◦ T k(x), and gk = E(f̃k). The constants hk will be
chosen later.

Note that for ν a.e. x ∈ Ω, fi(x) = 1Bi(T
ix) except for finitely many i by the Borel–Cantelli

lemma as ν(x : fi(x) 6= 1Bi(T
ix)) = ν(x : r < d(T ix, pi) < r + (i(log i)2)−1/γ) < (i(log i)2)−1 by

assumption (A2). Furthermore
∑

k ν(Bk) =
∑

k gk +O(1).

General estimates for sequences. The following result, which is proved in [20, Lemma 3.1]
will be of use in quantifying the asymptotics of sums of various weighted sequences. For strictly
positive sequences, we write an ≺ bn if limn→∞ an/bn = 0

Lemma 7.2. (I) Let β ∈ (0, 1) and aj ≥ cj−β be a sequence of real numbers. Then for any

σ > 0 and 0 < η < 1−β
1−β+σ we have:  n∑

j=1

jσaj

η

≺
n∑
j=1

aj . (30)

(II) Let aj ≥ c (log j)β

j , (c > 0), be a sequence of real numbers, where β > 0. Then for any σ > 0,

and 0 < η < 1+β
1+β+σ we have for all n ≥ 1: n∑

j=1

aj(log j)σ

η

≺
n∑
j=1

aj . (31)

7.2 Proof of Proposition 3.1

We first treat the case where condition (A2) holds, Θ(n) = O(n−ζ) and ν(Bk) ≥ k−β for some
β < 1. The proof follows [20] and it suffices to give the key steps that lead us to an estimate on
the constant β′ as specified in Proposition 3.1. A rearrangement of terms in (28) means that it
suffices to show that there exists a C > 0 such that

n∑
i=m

n∑
j=i+1

E(fifj)− E(fi)E(fj) ≤ C
n∑

i=m

hi
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for arbitrary integers n > m (where hi will be chosen later). We split each sum
∑n

j=i+1E(fifj)−
E(fi)E(fj) into the terms

Ii(n) :=
i+∆∑
j=i+1

E(fifj)− E(fi)E(fj), and, IIi(n) :=
n∑

j=i+∆+1

E(fifj)− E(fi)E(fj).

We shall put ∆ = [iσ] (where [·] denotes integer part), and specify 0 < σ < 1 later in the proof.
For IIi(n), we can bound this by a function hIIi (n) with

hIIi (n) =
∞∑

j=i+[iσ ]

E(fifj)− E(fi)E(fj)

≤
∞∑

j=i+[iσ ]

‖f̃i‖Lip‖f̃j‖LipΘ(j − i)

≤
∞∑
k=0

O(1)
[
(i+ [iσ] + k)(log2(i+ [iσ] + k))

] 1
δ
[
i log2 i

] 1
δ ([iσ] + k)−ζ

≤ O(1)i
2
δ
−σζ+σ+ε,

where ε > 0 is arbitrary. We set θ2(n) =
∑n

i=1 h
II
i and note that θ2(n) ≺ Eκn with

κ =
2δ−1 − σζ + σ + ε+ 1

(1− β)
. (32)

To bound Ii(n) set

hIj =

j−1∑
i=[j−jσ ]

E(fifj)− E(fi)E(fj).

A rearrangement of terms shows that

n∑
i=1

Ii(n) ≤
n∑
j=1

hIj ≤
n∑
j=1

jσ
(
ν(Bj) +

1

j log2 j

)
≤ E

1
η
n + E

σ
1−β
n ,

where η is specified from Lemma 7.2, and in fact can be chosen so that 0 < η < 1−β
1−β+σ . If we

set θ1(n) =
∑n

i=1 h
I
i , then we can apply Proposition 7.1 with θ(n) = θ1(n) + θ2(n). To get the

best bound on β′ in Proposition 3.1 we choose σ = ζ−1(2δ−1 + ε+ β) to minimize max(κ, 1/η).
For this value, Proposition 7.1 implies that

Sn(x) = En +O(Eβ
′

n .),

where β′ is the constant stated in Proposition 3.1. This completes the proof of Case 1.

Consider now Case 2 of Proposition 3.1 with Θ(n) = O(θn0 ). We argue along a similar lines,
and for some σ > 0 put ∆ = [(log n)σ] in the definitions of Ii(n) and IIi(n). As before we can
bound IIi(n) by hIIi (n), where

hIIi (n) =

∞∑
j=i+[(log i)σ ]

E(fifj)− E(fi)E(fj)

≤
∞∑

j=i+[(log i)σ ]

‖f̃i‖Lip‖f̃j‖LipΘ(j − i)

≤ O(1)i
2
δ

+εθ
(log i)σ

0 .
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The latter estimate follows by taking Θ(n) = O(θn0 ) in (A1). If we set θ2(n) =
∑n

i=1 h
II
i , then

we see that θ2(n) ≤ C for some uniform constant C > 0. We now turn to Ii(n), and set

hIj =

j−1∑
i=[j−(log j)σ ]

E(fifj)− E(fi)E(fj).

A rearrangement of terms implies that

n∑
i=1

Ii(n) ≤
n∑
j=1

hIj ≤
n∑
j=1

(log j)σ
(
ν(Bj) +

1

j log2 j

)
≤ E

1
η
n + E

σ−1
1−β
n ,

where η satisfies 0 < η < 1+β
1+β+σ . Given β > 0, we choose σ so that 1 < σ < 1 + β, and

simultaneously minimize the error term E
1
η
n . If we set θ1(n) =

∑n
i=1 h

I
i , then we can apply

Proposition 7.1 with θ(n) = θ1(n) + θ2(n), and obtain:

Sn(x) = En +O(Eβ
′

n ), ,

valid for any β′ > 2+β
2(1+β) . This completes the proof of Proposition 3.1

7.3 Proof of Proposition 5.1

In the case of having the short return time conditions (A3) we follow the approach used in
proving Proposition 3.1, where in this case some steps simplify. We take functions fk(x) and
sequences gk as before. The only difference is that we apply the condition (A3) to estimate hk.
Define Ii(n) and IIi(n) as before. We consider first Case 1 of Proposition 5.1. In the definitions
of Ii(n) and IIi(n) we set ∆ = [(log i)σ] for some σ > 1. The estimate hIIi for IIi(n) is the same
as before, and in fact leads to a constant bound for θ2(n) =

∑n
i=1 h

II
i . For |j− i| < ∆, condition

(A3b) leads us to the estimate:

E(fifj)− E(fi)E(fj) < E(fifj) < Cν(Bi)
1+α. (33)

For γ defined in (A3b), take σ < γ. Then we have:

n∑
i=1

Ii(n) ≤
n∑
j=1

hIj ≤
n∑
j=1

(log j)σν(Bj)
1+α (34)

This sum is bounded by En if for given σ > 1 we have ν(Bj) ≤ (log j)−
σ
α . It follows that

θ2(n) =
∑n

i=1 h
I
i ≤ En. Hence we can apply Proposition 7.1 with θ(n) = θ1(n) + θ2(n), and

obtain for arbitrary ε > 0:

Sn(x) = En +O(E
1
2 (logEn)

3
2

+ε).

This completes the proof for Case 1.

For Case 2, set ∆ = [iσ] for some σ > 0 specified later. We estimate hIIi (n) using polynomial
decay of correlations and obtain an identical estimate as in the proof of Proposition 5.1. If we
set θ2(n) =

∑n
i=1 h

II
i , then θ2(n) is uniformly bounded provided hIIi is summable. This is true

if:

σ >
2δ−1 + 1

ζ − 1
.
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To estimate hIi , we can apply condition (A3a) for σ < γ, and achieve:

n∑
i=1

Ii(n) ≤
n∑
j=1

hIj ≤
n∑
j=1

jσν(Bj)
1+α (35)

This sum is bounded by En if ν(Bj) ≤ j−
σ
α . It then follows that θ2(n) =

∑n
i=1 h

I
i ≤ En. Hence

we can apply Proposition 7.1 with θ(n) = θ1(n) + θ2(n), and obtain for arbitrary ε > 0:

Sn(x) = En +O(E
1
2 (logEn)

3
2

+ε).

This completes the proof for Case 2.

Remark 7.3. In the proof of Proposition 5.1 it is possible to extend the range of σ if we relax the
requirement that θ2(n) is bounded. However, we get a weaker asymptotic estimate in equation
(25)

8 Appendix: regularity of measures and Condition (A3) for
Young towers

In this section we prove Theorems 4.1 and 5.6. The proof of Theorem 4.1 relies on geometrical
properties of the invariant measure for rank one Young towers. The proof of Theorem 4.1
requires the verification of condition (A3b).

Proof of Theorem 4.1

From the Young tower construction [27], it follows that condition (A1) applies for Θ(n) = O(θn0 ),
and θ0 < 1. The following result gives an estimate on how ν scales on shrinking annuli. It is
slightly weaker than condition (A2).

Lemma 8.1. Suppose that (f,X , ν) satisfies the assumption of Theorem 4.1. There exists

δ̂, δ > 0 such that for all x ∈ X and all ε < rδ̂:

ν(B(x, r + ε))− ν(B(x, r)) ≤ O(1)εδ. (36)

The constant O(1) depends on x̃, but can be taken uniform for all r < r0(x), where r0 depends
on x.

Proof. The following estimate is proved in [3, Proposition 4.2]: For ν-a.e. x ∈ X , for all
δ1 > 0, p > 0 and r < r0(x):

ν(B(x, r))− ν(B(x, r − rδ1)) ≤ O(1)
(
rδ1/2r−c1p + p2r−c2+c3p

)
, (37)

where ci are uniform constants. Since δ1 is arbitrary, we set ε = rδ1 . The bounds can be
expressed in terms of a positive exponent of ε if p satisfies δ1

2c1
> p > c3

c2
. This will be true for all

δ1 sufficiently large. Formally, we choose δ0 > 0 such that δ1
2c1

> 3 c3c2 , for all δ1 > δ0. We then
choose p = 2 c3c2 . For this choice, a corresponding (uniform) δ > 0 exists, so that equation 36 is

valid for all ε < rδ1 .

To prove Theorem 4.1, the only modification is in the proof of Proposition 3.1. We must
instead use a finer sequence of Lipschitz approximation functions f̃k to each sequence fk, and
apply Lemma 8.1 to gain an estimate of hIIi . For such a sequence, the asymptotics of the series
for hIIi are overall unaffected, in the sense that θ2(n) remains summable (by exponential decay
of correlations). This completes the proof.
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Proof of Theorem 5.6

The key estimate in proving Corollary 5.6 is the verification of (A3b). We can use the result of
Lemma 8.1 to replace (A2) as already discussed. To prove Theorem 5.6 it suffices to prove the
following result:

Lemma 8.2. Suppose that (f,X , ν) satisfies the conditions of Theorem 5.6. Then there exists
α > 0 and γ > 1 such that condition (A3b) for ν-a.e. x ∈ X .

Proof. From [3, Proposition 4.1], the following estimate is achieved: there exist s1 > 0 and α1 > 0
such that for all γ1 > 1 the following estimate holds on a set X̃ ⊂ X with ν(X \ X̃ ) ≤ Crs1 ,

| log r|γ1∑
`=0

ν(Br(x) ∩ T−`(Br(x))) ≤ O(1)rα1ν(Br(x)). (38)

Using this estimate, we can verify condition (A3b). LetMr = X \X̃ , be such that ν(M) ≤ Crs1 .
Consider first the set Er,s defined by:

Er,s = (x : ν(B2r(x)) > r−sν(Br(x))).

From [3, Lemma A.2], it can be shown by set covering arguments that for all r, s > 0 ν(Er,s) ≤
Crs, with C > 0 uniform.

Consider the sequence an = 1
na for some a > 1, and let r ∈ [an+1, an]. Given s1 as above we

fix the constant a so that
∑

n a
s
n < ∞ for s < s1. Hence going along this sequence, it follows

by the first Borel Cantelli Lemma, that there exists Nx > 0, such that for all n ≥ N , and ν-a.e.
x ∈ X, we have that x 6∈ Man ∪ Ean,s. Hence for r = an, n ≥ N , and p < (log(1/r))γ1 we have
that

ν(Br(x) ∩ T−`(Br(x))) ≤ O(1)ν(Br(x))rα1 . (39)

For this value of x, we now extend this inequality for all r ∈ [an+1, an] and n ≥ N . Since
limn→∞ an+1/an = 1, it follows that there exists r0(x) such that for all r < r0 we have

ν(Br(x) ∩ T−`(Br(x))) ≤ O(1)ν(Ban(x))aα1
n

≤ O(1)(an/2)−sν(Ban/2(x))(2r)α1

≤ O(1)rα1−sν(Br(x)).

(40)

By local dimension estimates, we also have for ν-a.e. x ∈ X, the existence of ε > 0 such that
for all r < rε:

rdν+ε ≤ ν(Br(x)) ≤ rdν−ε.

Hence if we choose s small enough in equation (40) we find that there exists α > 0 and γ > 1
such that for all r < r0:

ν(Br(x) ∩ T−`(Br(x))) ≤ ν(Br(x))1+α, (41)

with ` = 1, . . . | log r|γ . Since r is arbitrary condition (A3b) holds along any sequence rn → 0.
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