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Abstract

Modeling seasonal temperature extremes in weather patterns allows for better
forecasting and prediction. Analysis of extreme values over a given time period
is usually done by fitting a generalized extreme value (GEV) distribution to the
maximum values in the data, however lack of sufficient weather recordings due to
missing data or violation of independence assumptions (block maxima should be
over a large time interval) may result in a poor fit for the GEV model. Modeling
over larger, clustered regions may overcome some of these problems and can provide
insight into macroscopic weather and climate changes.

In this paper we analyze temperature recordings in July and August taken from
stations across Texas and New Orleans, Louisiana. We introduce clustering tech-
niques which group stations by temperature trends and mutual information before
performing extreme value analysis on the clusters of time series. This obviates
some of the problems commonly encountered in analyzing single station weather
data. Extreme analysis of the resulting clusters provides compelling evidence of
non-stationarity of the distributional parameters in the GEV model and points to
an increased likelihood from the period roughly 1980 to present of observing higher
extreme temperatures for the months of July and August. We tabulate the proba-
bilities of extreme temperatures in the clusters according to a non-stationary model.
Our techniques can be easily adapted to a wide range of climatological problems.

1 Introduction

Extreme temperature events can make considerable impacts on society, most obviously
on human health and power consumption. In addition there has been a growing inter-
est in examining temperature extremes in relation to climate change [4][3][8][13][15]. In
particular in the last decade the Texas Gulf Coast region has experienced high profile
heat waves, such as the summer of 2011, and momentous summer rainfall and flooding.
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In this paper we address the question of whether the probability of extreme summer
temperatures in this region has increased by using clustering techniques and fitting gen-
eralized extreme value [2] (GEV) models to the data which allow for forecast modeling
of the maxima by estimating the probability of high temperatures. Although the clas-
sical GEV model requires the mean and variance of the maxima to be stationary (not
change in time) it is possible to adapt this probability model to allow for prediction in
nonstationary scenarios[6][1][4], and that is what we do. We find compelling evidence
that the probability of extreme temperatures during summer has increased. We do not
consider rainfall patterns or the interaction between summer temperatures and rainfall
in this paper.

It is necessary to have comprehensive information on extreme weather events to make
reasonable conclusions from the data. Clustering techniques are very useful to allow
enlargement of the time series data to permit better modeling. We apply clustering
techniques to Texas wide weather stations to provide a larger pool of data for GEV
fits of the distribution of maximum temperatures. Our approach is particularly effective
when looking at large scale climate data and global environmental zones [17][16]. We use
a combination of clustering methods, including K-means [7], with mutual information as
a measure of similarity between weather stations. In this way we give a comprehensive
extreme value analysis of summer extreme temperatures throughout Texas.

Recent extreme weather events in Houston, Texas, provide motivation for our sta-
tion choice in this paper. Anecdotally, higher extreme temperature patterns have been
recorded in Houston for the July-August months when compared to past records. The
National Oceanic and Atmospheric Administration (NOAA) reports the longest stretch
of record high temperatures August 1st - August 24th 2011 with the highest temperature
ever recorded in Houston occurring on August 27, 2011. Preliminary results on the tem-
perature vector from the Houston station suggest a significant change in the mean and
variance of temperature maxima after year 1981. Other studies have also recorded more
incidences of higher temperature outliers after 1980. [5][11][10][12] This provides motiva-
tion in the following analysis for breaking the time series into time windows 1941-1981,
1982-2017 and 1941-2017. We test these periods for stationarity and find across clusters
the period 1941-1981 is stationary but this is not the case for the periods 1982-2017 and
1941-2017. Based on these results we fit nonstationary GEV models to estimate the
probability of current temperature extremes in our clusters.

2 Data and Methods

2.1 Data

Each single time series in this analysis is defined as the NOAA hourly temperature
recording vector for the July-August months every year from 1941-2017 for a single
station. The 31st of each month was not considered for 10 day block divisibility. See
2.2.2. Though many stations were listed by the NOAA across Texas the following stations
were chosen for this analysis since they contain complete records aside from possible one
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to two year gaps. New Orleans, Louisiana was included because of its known similarity
to Houston weather. Missing data was excluded from this analysis.

Station ID Location Type

1 690190 Abilene, TX Airport

2 722310 New Orleans, LA Airport

3 722436 Houston, TX Airport

4 722505 Harlingen, TX Airport

5 722517 Alice, TX Airport

6 722530 San Antonio, TX Airport

7 722533 Hondo, TX Airport

8 722535 San Antonio, TX Lackland AFB

9 722536 San Antonio, TX Randolph AFB

10 722560 Waco, TX Airport

11 722580 Dallas, TX Airport

12 722595 Fort Worth, TX Naval Air Station

13 722615 Del Rio, TX Laughlin AFB

14 722640 Marfa, TX Airport

15 722660 Abilene, TX Airport

16 722700 El Paso, TX Airport

17 723510 Wichita, Falls, TX Sheppard AFB

18 723630 Amarillo, TX Airport

 105° W  100° W   95° W   90° W

 25° N  

 30° N  

 35° N  

Figure 1: map of all listed stations.

2.2 Methods

2.2.1 Clustering Methods

2.2.1.1 Mutual Information and Data Compression

Mutual information between two time series is given as a function of the entropy and
joint entropy and is used in analysis as a measurement of the similarity between two
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time series. Suppose Z1 and Z2 are two time series then the mutual information is given
by,

I(Z1, Z2) = H(Z1) +H(Z2)−H(Z1, Z2)

where H(Z1) is the calculated entropy given by,

H(Z1) = −
m∑
i=1

p(z1i ) log p(z1i )

and the joint entropy is given by,

H(Z1, Z2) = −
m∑
i=1

n∑
j=1

p(z1i , z
2
j ) log p(z1i , z

2
j )

where p(z1i ) = P (Z1 = z1i ) is the probability of the time series equal to z1i ∈ {v1, v2...vm}
and p(z1i , z

2
j ) = P (Z1 = z1i , Z

2 = z2j ) is the joint probability of the time series equal to

z1i ∈ {v1, v2...vm} and z2j ∈ {u1, u2...un}. In this analysis mutual information between
two time series was only calculated over non-missing years for both time series.

Given the data processing inequality,

I(T (X), R(Y )) ≤ I(T (X), Y ) ≤ I(X,Y )

with equality only when T (·) and R(·) are invertible our goal is to find transformations
(though not invertible by definition) which compress the continuous time series while
preserving the maximum possible mutual information between each pair of time series.

We seek values a1,2,3,4max such that the mutual information between two centered time
series X1 = (x11, x

1
2...x

1
l ) and X2 = (x21, x

2
2...x

2
p) is maxmized where compression is given

by,

If x1k > a2 then z1k = 1

If a1 < x1k < a2 then z1k = 0

If x1k < a1 then z1k = −1

and,

If x2k > a4 then z2k = 1

If a3 < x12 < a4 then z2k = 0

If x2k < a3 then z2k = −1

Since entropy is maximized when the time series is uniformly distributed, it is rea-
sonble to choose starting points of gradient ascent a10, a

3
0 at the 1/3 quantile of their

respective time series (similarly for a20, a
4
0 at the 2/3 quantile.) The gradient value of

mutual information (now as a function of the interval endpoint) was estimated as,

∆It =
I(at)− I(at−1)

at − at−1
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where at is the lefthand (righthand) value of the interval with fixed righthand (lefthand)
at the current time step and our updated at+1 is given by

at+1 = at + γ∆It

where γ = 0.1 is the specified step size multiplier and a1 = a0 + 1. Gradient ascent was
performed individually for each endpoint1 starting at a1 and finishing at a4. Fixed values
for all other endpoints corresponded to the initial value a1,2,3,40 or, if previously calculated,

the output value from maximization a1,2,3,4max of the mutual information. To deal with local
maximum, if the mutual information reached a steady state a perturbation of 0.1 was
added to at. The algorithm was stopped when the steady state with perturbation on
a1,2,3,4t remained for 100 time steps.

The number of values zk in the kth state of our newly compressed time series can
be seen as binomally distribution with E(zk) = Npk and variance V (zk) = Npk(1− pk)
where the true probability of being in the kth state is given by pk and N is the length
of the time series. Then the error ε̃k on the estimated proportion p̂k = zk/N has normal
distribution with E(ε̃k) = 0 and V (ε̃k) = p̂(1 − p̂)/N for large enough N . The relative
error size εk on p̂k log p̂k is taken as

εk =
∑
k

δ(p̂k log p̂k)

δp̂k
ε̃k

but E(εk) = 0 so,

V (εk) =
∑
k

(1 + log p̂k)
2 p̂k(1− p̂k)

N

Note that by choosing threshold values resulting in a uniform distribution for zk, we
have that the V (εk) ≈ 0 (entropy is maximized) for each time series so that we take the
relative error to be the V (εk) taken over the approximate joint entropy. The relative
error on the mutual information caluculated for each pair of time series is of order 10−5

so that the total error over all pairs of time series is of order 10−3. See figure A.1 for
histogram of maximized mutual information and A.2 for the error on the maximized
mutual information located in the appendix.

2.2.1.2 Dimensionality Reduction

An undirected graph was created where nodes correspond to stations and an edge repre-
sents a strictly positive mutual information between stations. If the mutual information
between two stations was less than 0.1 it was assumed to be zero. The goal of this
section is to remove a set of edges from the chosen connected component which carry
the lowest amount of information.

We begin by calculating the normalized laplacian for the connected component given
by L = I −D−1/2SD−1/2 where D is the diagonal matrix with entries Di,i =

∑h
j=1 Si,j

1Our decision to fix all other end points and performing gradient ascent on the one-dimensional
mutual information comes from the degree of uncertainty found in the data.
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and S = Si,j is the symmetric matrix of mutual information between time series. Eigen-
values λ1, ..., λh and eigenvectors V1, ..., Vh were calculated for L then sorted in ascend-
ing order of eigenvalues. The sum of the eigenvalues s(k) =

∑k
i=1 λk and the ratio

R(k) = s(k)
s(h) were calculated and plotted for each similarity matrix and each interval. A

cut off point k = J was chosen such that R(J −1) < 0.15 ≤ R(J). The number of nodes
before this point are approximated 0.15 ∗ h where h is the total number of nodes in the
connected component.Vector projections for each node in the chosen connected compo-
nent W1, ...,Wh onto the J dimensional subspace spanned by V1, ..., VJ were calculated
by noting that W1, ...,Wh are the corresponding row vectors in the h×J matrix [V1...VJ ]
(a special property of the normalized laplacian). These J-dimensional vector projections
W1, ...,Wh served as the inputs to the k-means clustering algorithm. See figure A.3 in
appendix for eigenvalues and ratios.

2.2.1.3 k-Means Clustering

The k-means clustering algorithm seeks to minimize cost by performing the following
until a steady state is reached:

min

N∑
k=1

M∑
l=1

||n(l)− C(k)||RJ

where M is the number of nodes n in the cluster k, C(k) is the centroid of cluster k
and N is the number of clusters. The built-in MATLAB k-means algorithm was run
1,000 times on our J-dimensional vectors W1, ...,Wh and k = 4 clusters. Determining
the ”accuracy” of resulting clusters is a wide topic of dicussion in unsupervised learning.
In our analysis we consider a good cluster one which has (1) a low dispersion of points
and (2) a large separation between centroids.
The davies-bouldin index, given by

1

N

N∑
1

max
MSEj +MSEk
||C(j)− C(k)||

where j, k = 1, ..., N , N is the number of clusters andMSEj = 1
M

∑
n(l)∈C(j) d(n(l), C(j))2

is often used to determine how separated a cluster is. We note that small values of the
davies-bouldin index indicate larger separation of clusters. This value was calculated
for each run of the k-means algorithm. The set of clusters associated to the minimum
davies-bouldin index was used in the following extreme value analysis.

2.2.2 Extreme Value Methods

In this paper we define an extreme value or maxima by the maximum temperature over
10 day time blocks where each block is a disjoint series of hourly temperature records ∼
240 data points long.
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2.2.2.1 Extreme Value Distribution

We seek to fit the of from each cluster of time series (that is, ∼ 456 block maxima taken
from each station so that our distribution represents the combined block maxima of all
the time series in the cluster ∼ 456 times the number of time series in the cluster) to a
generalized extreme value distribution given by,

f(x|k, µ, σ) =
1

σ
exp(−(1 + k

x− µ
σ

)
1
k )(1 + k

x− µ
σ

)−1−
1
k

for,

1 + k
x− µ
σ

> 0

with location parameter µ, scale parameter σ and shape parameter k 6= 0. k > 0
corresponds to the Type II case, while k < 0 corresponds to the Type III case. When
k = 0 (Type I), the density is,

f(x|0, µ, σ) =
1

σ
exp(− exp(−x− µ

σ
)− x− µ

σ
)

We estimate the parameter values k, µ and σ for the GEV fit through maximum
likelihood estimation (MLE). Independence assumptions are met by performing a chi-
square test of independence over blocks of 10 days where every 10 day block reflects
independence at the α = 0.05 confidence level. The goal of MLE is the maximize the
log-likelihood function for the GEV of M1, ...,Mn (maxima over n blocks) given by,

logLk,µ,σ = log
n∏
i=1

fk,µ,σ(Mi) =
n∑
i=1

lk,µ,σ(Mi)

lk,µ,σ(x) = −(1 + 1/k) log(1 + k
x− µ
σ

)− (1 + k
x− µ
σ

)−1/k − log σ

or equivalently in element form,

lk,µ,σ(x) = −(1 + 1/k)
n∑
i=1

log(1 + k
xi − µ
σ

)−
n∑
i=1

(1 + k
xi − µ
σ

)−1/k − n log σ

After maximum likelihood estimation of the distributional parameters were calcu-
lated the Anderson-Darling (A-D) goodness of fit test was performed on the binned data
and resulting distributions. Within the 95% confidence intervals associated to each MLE
parameter 10 points were chosen so that a total of 1,000 permutations of 3 parameters
were tested for goodness of fit on the binned data. The histogram of 1,000 p values asso-
ciated to each run of the A-D test for 1941-1981, 1982-2017 and 1941-2017 was plotted
to determine whether a difference in GEV fit exists between each time interval.

Stationarity of the time series is a necessary condition when fitting a GEV distribu-
tion to the maxima. A random process x1, x2, ... is said to be stationary if, given any
set of integers {i1, ..., ik} and any integer m, the joint distributions of (xi1 , ..., xik) and
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(xi1+m, ..., xik+m) are identical. Such a requirement excludes time series with trends,
seasonality and other deterministic cycles. When a poor GEV fit is returned a common
step is to check whether the parameters are time-dependent. In this analysis we perform
non-parametric Mann-Kendall and Theil-Sen and parametric linear regression tests on
the yearly mean and variance of the combined cluster of time series.2

2.2.2.2 Nonstationary Extreme Value Distribution

The goal of this section is to find a model which more accurately represents the combined
generalized extreme value distribution for the block maxima of each cluster of time
series. Trend and regression tests suggest a time dependent quadratic and linear model
for the mean and variance respectively. See 3.2 for results. We will discuss maximum
likelihood estimates with non-stationary parameters for the individual time series and
their relationship to the combined non-stationary GEV distribution for each cluster.

Recall the log-likelihood function for the stationary GEV,

lk,µ,σ(x) = −(1 + 1/k)
n∑
i=1

log(1 + k
xi − µ
σ

)−
n∑
i=1

(1 + k
xi − µ
σ

)−1/k − n log σ

where n is the number of block maxima. Then the log-likelihood function for GEV with
non-stationary, quadratic mean µ(t) = β0+β1t+β2t

2 and linear variance σ(t) = α0+α1t
is given by,

lk,β0,β1,β2,α0,α1(x) = −(1+1/k)

n∑
i=1

log(1+k
xi − (β0 + β1t+ β2t

2)

(α0 + α1t)
)−

n∑
i=1

(1+k
xi − (β0 + β1t+ β2t

2)

(α0 + α1t)
)−1/k

−n log(α0 + α1t)

Parameters were estimated by maximizing the negative log-likelihood function with
time dependent models of mean and variance for the individual time series within each
cluster where t is given as the block maxima index vector.

Recall that for a distribution created from n samples of m distributions we have the
mean of the distribution,

µ =

∑m
i=1 nx̄i
mn

where x̄i is the mean of the sample coming from one of the m distributions and the
variance of the distribution,

σ2 =

∑m
i=1 n(s2i + d2i )

mn

where s2i is the variance of the sample and di = x̄i−µ. Then for the time dependent mean
and variance parameters of the combined GEV distribution created from the clustered
time series we have,

µ(t) =

∑m
i=1 nx̄i(t)

mn
(1)

2The mean and variance of the block maxima is calculated over all time series in the cluster for that
year resulting in a single mean and variance per year.
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and

σ2(t) =

∑m
i=1 n(s2i (t) + d2i (t))

mn
(2)

where x̄i(t) and s2i (t) are the maximum likelihood estimate models from the individual
time series. Under the assumption of a ”perfect” model for µ(t) and σ(t) we should
have each individual time series of block maxima Xi ∼ GEV (k, x̄i(t), si(t)) so that the
normalized time series of block maxima

Zi =
xj − µ(t = j)

σ(t = j)

where j is the index of the block maxima and the combined normalized time series3,
Z = {Zi} ∼ GEV (k̂, 0, 1) as j →∞ which implies that the estimated combined µ̂(t)→ 0
and σ̂(t)→ 1 as t→∞.

Maximum likelihood estimation was used to determine the parameters of the com-
bined normalized GEV distribution. The Anderson-Darling goodness of fit test was
performed on the data with estimated parameters.

3 Results and Discussion

3.1 Clustering Results

The following table reflects the clustered stations associated to the minimum Davies-
Bouldin index. Clusters are stable for each time window. Geographical locations of
clusters are given by (1) Coastal (2) Southern Texas (3) Northern Texas (4) Along the
Central Band.

time window 1941-1981 1982-2017 1941-2017

cluster (1) 2,3,4,5 ” ”

cluster (2) 6,7,8,9,13 ” ”

cluster (3) 1,11,12,15,17,18 ” ”

cluster (4) 10,14,16 ” ”

davies-bouldin index 7.75e-4 8.94e-4 6.34e-4

3Issues of modality are assumed to be negligable since the distribution is unimodal and each mean in
the cluster is within 2 standard deviations of the other.
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(b) AFTER

Figure 2: regional map with clustered stations. colors represent clusters.

3.2 Extreme Value Results

3.2.1 Stationary Extreme Value Distribution

H0: The data follows the theoretical GEV distribution with estimated parameters
HA : The data does not follow the distribution

Anderson-Darling p-values for MLE parameters

years cluster(1) cluster(2) cluster(3) cluster(4)

1941-1981 0.23 0.05 0.06 0.04

1982-2017 0.03 0.01 0.08 0.03

1941-2017 0.03 7.17e-4 0.01 6.21e-4

Results from the Anderson-Darling goodness of fit test suggest a better fit for 1941-1981
and 1982-2017 when compared to 1941-2017 for all clusters. The histogram of p-values
(see figure 3 and section 2.2.2.1) for clusters (1) and (2) show higher likelihoods of being
below the alpha = 0.05 confidence limit (e.g. conclude the data do not come from the
specified distribution) for groups 1982-2017 and 1941-2017. Clusters (3) and (4) show
higher likelihoods of being below alpha = 0.05 confidence limit for 1941-2017.

It is the case for all clusters that the GEV model with maximum likelihood estimates
does not fit for the whole of 1941-2017 where it is reasonable to conclude from the
results that a change in parameters happens between groups 1941-1981 and 1982-2017.
Moreover, a change in parameters continues to be significant enough after 1981 for
clusters (1) and (2) to result in a poor fit for 1982-2017.
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(a) cluster(1) (b) cluster(2)

(c) cluster(3) (d) cluster(4)

Figure 3: histogram of Anderson-Darling p-values obtained by varying the estimated
parameters within the 95% confidence interval of the MLE parameters.

3.3 Mean and Variance Tests for Trend

3.3.0.1 Mean

Non-Parametric Mann-Kendall trend test

H0: There is no monotonic trend in the data.
HA: There exists a monotonic trend in the data.

years cluster(1) cluster(2) cluster(3) cluster(4)

1941-1981 2.20e-3 0.01 0.03 0.29

1982-2017 1.4e-3 0.13 0.32 0.92

1941-2017 6.82e-5 0.55 0.74 3.61e-4
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Non-Parametric Theil-Sen estimator

cluster (1) (2) (3)

years m b m b m b

1941-1981 -0.08 96.73 -0.08 100.11 -0.09 100.78

1982-2017 0.05 96.03 0.05 98.15 0.04 98.71

1941-2017 0.04 94.80 0.01 98.66 -4.3e-3 99.48

(4)

m b

-0.03 99.29

3.3e-3 96.67

-0.04 99.38

Parametric Linear Regression

cluster (1) (2) (3)

years m b r m b r m b r

1941-1981 -0.07 96.50 -0.46 -0.09 100.16 -0.48 -0.07 100.70 -0.35

1982-2017 0.06 96.11 0.44 0.04 98.34 0.24 0.05 98.55 0.26

1941-2017 0.04 94.71 0.45 0.01 98.35 0.10 3.82e-4 99.32 3.9e-3

(4)

m b r

3.9e-3 98.17 0.02

0.01 96.33 0.09

-0.03 98.63 -0.32

Correlation coefficients for the mean for clusters (1) , (2) and (3) stay the same or
decrease for 1941-2017. Moreover, coefficients switch signs from 1941-1981 and 1982-
2017. Results from the non-parametric Mann-Kendall test suggest a monotonic trend
(α = 0.05 significance level) for the mean exists in 1941-1981 for clusters (1), (2) and (3)
and 1941-2017 for clusters (1) and (4), however linear regression outputs suggest that
the phenomenon of observed trend may be the result of cutting the mean vector mid
cycle and motivate fitting the mean to a quadratic model.

3.3.0.2 Variance

Non-Parametric Mann-Kendall trend test

H0: There is no monotonic trend in the data.
HA: There exists a monotonic trend in the data.

years cluster(1) cluster(2) cluster(3) cluster(4)

1941-1981 0.66 0.21 0.55 0.14

1982-2017 0.54 0.15 0.71 0.75

1941-2017 0.02 1.74e-4 0.36 1.26e-6
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Non-Parametric Theil-Sen estimator

cluster (1) (2) (3)

years m b m b m b

1941-1981 0.03 8.38 0.05 6.91 0.06 11.59

1982-2017 -0.04 11.96 0.13 8.78 0.03 12.90

1941-2017 0.06 7.98 0.09 5.81 0.03 11.89

(4)

m b

0.17 9.48

0.04 25.15

0.27 8.67

Parametric Linear Regression

cluster (1) (2) (3)

years m b r m b r m b r

1941-1981 0.01 9.58 0.02 0.06 6.43 0.18 0.09 12.74 0.16

1982-2017 -0.03 13.58 -0.05 0.12 9.42 0.22 0.05 14.18 0.10

1941-2017 0.06 8.92 0.25 0.09 5.85 0.43 0.03 13.77 0.11

(4)

m b r

0.27 10.03 0.32

-0.07 32.78 -0.04

0.34 10.38 0.41

The non-parametric Mann-Kendall test returns no monotonic trend in the variance over
1941-1981 and 1982-2017 for all clusters and a monotonic trend for clusters (1) (2) and
(4) over the time period 1941-2017 at the α = 0.05 confidence level. Though cluster (3)
does not report a monotonic trend for 1941-2017 it does return a lower p-value when
compared to 1941-1981 and 1981-2017. Such a result suggests a significant difference in
variance between 1941-1981 and 1982-2017. Higher correlation coefficients returned by
linear regression for 1941-2017 support conclusions from the Mann-Kendall test. Theil-
Sen and linear regression models have similar values for slopes and intercepts which imply
that the monotonic trend which exists is not the result of extremal outliers. Results from
all three tests provide motivation for fitting the variance parameters for 1941-2017 to a
linear model.4

3.3.1 Nonstationary Extreme Value Distribution

The quadratic and linear models of the time dependent mean and variance parameters for
the individual time series given by maximum likelihood estimation of the nonstationary
GEV model (See 2.2.2.2) and the time-dependent model of the cluster are plotted in

4Regression results for cluster (1) report sign changes between 1941-1981 and 1982-2017 which suggest
a possible quadratic trend exists for the variance. Our justification for keeping a linear model for cluster
(1) comes from the existance of a monotonic trend over 1941-2017 and all other clusters favoring a linear
model, however the final variance model reflects a quadratic trend.
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figures 4 and 5 on page 14. Maximum likelihood estimates, 95% confidence intervals and
A-D goodness of fit p-values before and after nonstationary modeling of the combined
GEV for each cluster are also given. See tables on page 14.
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Figure 4: mean models of block maxima for individual and combined time series.

Confidence intervals from maximum likelihood estimates suggest asymptotic conver-
gence of µ̂ → 0 and σ̂ → 1 as the number of block maxima tend to infinity for clusters
(1), (2) and (3) which provide motivation for retaining our choice of mean and vari-
ance model. Normalized GEV distributions with nonstationary mean (quadratic) and
variance (linear) parameters report significantly better fits from the stationary GEV dis-
tribution for all clusters. Moreover, clusters (1) and (3) conclude the normalized block
maxima come from the GEV distribution with MLE parameters at the α = 0.05 signifi-
cance level over all time intervals.

cluster(1): MLE of normalized GEV

params k σ µ

years value CI value CI value CI

1941-1981 -0.18 -0.23 -0.14 0.87 0.82 0.92 -0.32 -0.39 -0.24

1982-2017 -0.25 -0.28 -0.23 0.10 0.95 1.05 -0.08 -0.15 -5.1e-3

1941-2017 -0.23 -0.25 -0.21 0.95 0.92 0.99 -0.18 -0.23 -0.13

14



1941 1951 1961 1971 1981 1991 2001 20112017

year

2

4

6

8

10

12

14

16

te
m

pe
ra

tu
re

 v
ar

ia
nc

e

plot of MLE functions for linear variance model

station 2
station 3
station 4
station 5
combined est

(a) cluster(1)

1941 1951 1961 1971 1981 1991 2001 20112017

year

10

12

14

16

18

20

22
plot of MLE functions for linear variance model

station 1
station 11
station 12
station 15
station 17
station 18
combined est

(b) cluster(2)

1941 1951 1961 1971 1981 1991 2001 20112017

year

8

10

12

14

16

18

20

22

24

te
m

pe
ra

tu
re

 v
ar

ia
nc

e

plot of MLE functions for linear variance model

station 6
station 7
station 8
station 9
station 13
combined est

(c) cluster(3)

1941 1951 1961 1971 1981 1991 2001 20112017

year

0

20

40

60

80

100

120

te
m

pe
ra

tu
re

 v
ar

ia
nc

e

plot of MLE functions for linear variance model

station 10
station 14
station 16
combined est

(d) cluster(4)

Figure 5: variance models of block maxima for individual and combined time series.

A-D p-values

years before after

1941-1981 0.23 0.52

1982-2017 0.03 0.19

1941-2017 0.03 0.26

cluster(2): MLE of normalized GEV

params k σ µ

years value CI value CI value CI

1941-1981 -0.25 -0.28 -0.22 0.99 0.94 1.04 -0.09 -0.16 -0.02

1982-2017 -0.27 -0.29 -0.24 1.00 0.96 1.04 -0.02 -0.09 0.04

1941-2017 -0.26 -0.28 -0.24 1.00 0.97 1.03 -0.05 -0.10 -2.7e-3

A-D p-values

years before after

1941-1981 0.05 0.14

1982-2017 0.01 0.01

1941-2017 7.16e-4 4.60e-3

cluster(3): MLE of normalized GEV

params k σ µ

years value CI value CI value CI

1941-1981 -0.26 -0.28 -0.24 1.04 1.00 1.09 -0.08 -0.14 -0.01

1982-2017 -0.30 -0.33 -0.27 1.01 0.97 1.06 -0.12 -0.18 -0.06

1941-2017 -0.26 -0.27 -0.24 1.02 0.99 1.05 -0.11 -0.16 -0.07
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A-D p-values

years before after

1941-1981 0.06 0.18

1982-2017 0.08 0.70

1941-2017 0.01 0.17

cluster(4): MLE of normalized GEV

params k σ µ

years value CI value CI value CI

1941-1981 -0.32 -0.35 -0.28 0.59 0.55 0.63 0.27 0.21 0.33

1982-2017 -0.41 -0.43 -0.38 0.80 0.76 0.84 -0.02 -0.08 0.05

1941-2017 -0.37 -0.39 -0.36 0.74 0.71 0.77 0.09 0.04 0.14

A-D p-values

years before after

1941-1981 0.04 0.05

1982-2017 0.034 0.05

1941-2017 6.21e-4 8.68e-4
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Figure 6: Mean maximum likelihood estimates for combined gev model with number of
block maxima contribution per time series. Red line represents theoretical value under
the assumption of a perfect time dependent model.

Cluster (4) returns poor results throughout this analysis. Though the model for the
mean provides similar convergence results to that of the previous clusters the normalized
variance seems to converge to a value less than 1. Station 14 may be contributing to
the deviation of the maximum likelihood estimates and goodness of fit results. The time
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Figure 7: Variance maximum likelihood estimates for combined gev model with number
of block maxima contribution per time series. Red line represents theoretical value under
the assumption of a perfect time dependent model.

dependent variance models from the individual time series for station 14 suggest large
differences from the other stations in the cluster which most likely affected the model
for variance of the cluster. Station 14 was removed from cluster (4) and A-D goodness
of fit and MLE parameter convergence was reevaluated. Convergence of the estimate
σ̂ → 1 as the number of block maxima tends to infinity. Goodness of fit results conclude
the block maxima come from the GEV distribution given by the parameters for MLE at
the α = 0.05 significance level.

cluster(4) without station 14: MLE of normalized GEV

params k σ µ

years value CI value CI value CI

1941-1981 -0.26 -0.31 -0.21 0.95 0.88 1.02 0.01 -0.09 0.11

1982-2017 -0.25 -0.30 -0.20 1.04 0.97 1.13 -0.03 -0.14 -0.09

1941-2017 -0.25 -0.28 -0.22 0.99 0.94 1.04 -0.01 -0.08 0.06

A-D p-values

years before after

1941-1981 0.04 0.34

1982-2017 0.03 0.50

1941-2017 6.21e-4 0.50
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(b) variance models
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Figure 8: Cluster(4) without station 14: (a),(b) mean and variance models of block
maxima for individual and combined time series. (c),(d) mean and variance maximum
likelihood estimates for combined gev model with number of block maxima contribution
per time series. Red line represents theoretical value under the assumption of a perfect
time dependent model.

3.4 Discussion

Results throughout this analysis reflect a need for non-stationary GEV distribution
modeling for the maxima of temperature values for every cluster of stations. Particularly
interesting are the differences in GEV fit between 1941-1981 and 1982-2017 which suggest
significant differences in the mean and variance parameters. We note that the most
prominent example of monotonic trend in variance occurs in cluster (2) while the most
prominent example of monotonic trend in mean occurs in cluster (1). Such monotonic
trends suggest that the time dependence of the parameters is not the result of standard
temperature cycles for all clusters.

GEV distributions were generated for 1941 and 2017 based on parameter modeling 5.
In general, if variance parameters of the cluster change a significant amount only a small
amount of change is seen in the mean (see clusters (2) and (4)). Conversely, if a small
amount of change is seen in the variance a significant amount of change is seen in the
mean (see clusters (1) and (3)). A comparison of GEV distributional fits for 1941 and
2017 reflect an increase in the probablity for right-hand (higher) temperature extremes
for all clusters particularly for temperature values greater than 100 degrees farenheit. In

5Since the shape parameter of the distributions is assumed to be stationary the shape parameter
estimated by MLE for 1941-2017 was used to generate the GEV pdfs for 1941 and 2017.
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Figure 9: Non-stationary generalized extreme value pdfs. Cluster(4) distributions ex-
clude station 14.

fact, we see that the probability of occurence in 2017 is double6 that of 1941.
In the future it may be interesting to evaluate the data for long-term temperature

extremes such as in [9][14] or look for early prediction modeling by examining the tra-
jectories which result in a temperature extreme. Precipitation and how it relates to
temperature extremes (such as in [12]) across Texas may also be of interest particularly
in the case of unprecendented flooding as seen in Houston, Texas, in August 2017.

values µ σ P (X ≥ 100) P (X ≥ 105) P (X ≥ 110)

cluster 1941 2017 1941 2017 1941 2017 1941 2017 1941 2017

(1) 95.18 96.70 13.76 13.28 0.07 0.09 0.01 0.02 1.00e-4 7.00e-4

(2) 97.58 97.81 10.13 18.13 0.11 0.09 0.02 0.04 0 4.80e-3

(3) 97.98 99.09 18.07 18.84 0.09 0.09 0.04 0.06 5.50e-3 1.13e-2

(4) 97.95 98.45 12.66 13.71 0.10 0.10 0.03 0.04 1.00e-3 2.90e-3

2017/1941 P (X ≥ 100) P (X ≥ 105) P (X ≥ 110)

(1) 1.32 1.89 7.00

(2) 0.80 1.88 -

(3) 0.99 1.30 2.06

(4) 0.99 1.26 2.90

6Where this is seen in the tails depends on the location of the pdf.

19



A Figures

(a) 1941-1981 (b) 1982-2017 (c) 1982-2017

Figure A.1: Calculated maximized mutual information between stations.

(a) 1941-1981 (b) 1982-2017 (c) 1982-2017

Figure A.2: Calculated error on mutual information between stations after maximization.
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Figure A.3: Eigenvalues and ratio cut-off for the normalized laplacian caluclated from
the similarity matrix.

20



References

[1] L. Cheng, A. AghaKouchak, E. Gilleland, R.W., Katz. (2014). Non-stationary Ex-
treme Value Analysis in a Changing Climate, Climatic Change. 2 127.

[2] S. Coles (2001). An Introduction to Statistical Modeling of Extreme Values, Springer.

[3] J. Finkel, J. I. Katz (2017). Changing US extreme temperature statistics, Int. J.
Climatol.,37 4749-4755.

[4] M. Gao, H. Zheng (2018). Nonstationary extreme value analysis of temperature ex-
tremes in China, Stochastic Environmental Research and Risk Assessment. 32 5:
1299-1315.

[5] J. Hansen, M. Sato, R. Ruedy (2012). Perception of climate change, PNAS, 109 37:
E2415-E2423.

[6] H. Hasan, N. Radi, S. Kassim (2012). Modeling of Extreme Temperature Using Gen-
eralized Extreme Value (GEV) Distribution: A Case Study of Penang, Proceedings
of the World Congress on Engineering. 1

[7] T. Hastie, R. Tsibirani, J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference and Prediction 2nd Edition, Springer.
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