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Abstract

We establish Erdös-Rényi limit laws for Lipschitz observations

on a class of non-uniformly expanding dynamical systems, including

logistic-like maps. These limit laws give the maximal average of a time

series over a time window of logarithmic length. We also give results

on maximal averages of a time series arising from Hölder observations

on intermittent-type maps over a time window of polynomial length.

We consider the rate of convergence in the limit law for subshifts of

finite type and establish a one-sided rate bound for Gibbs-Markov

maps.
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1 Introduction

The Erdös-Rényi law was first formulated for independent and identically
distributed random variables in 1970 ([11]) as follows:

Theorem 1.1 Let (Xn)n≥1 be an independent identically distributed (iid)
sequence of non-degenerate random variables, and put Sn = X1 + ... + Xn.
Assume that the moment generating function ϕ(t) = E(etX1) exists in some
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interval U containing t = 0. For each α > 0, define ψα(t) = ϕ(t)e−αt.
For those α for which ψα attains its minimum at a point tα ∈ U , set cα =
−1/ logψα(tα). Then

lim
N→∞

max{(Sn+[cα log N ] − Sn)/[cα logN ] : 1 ≤ n ≤ N − [cα logN ]} = α.

To appreciate the significance of the theorem we quote from [11]: Suppose
Xi is an iid sequence taking on the values ±1 with equal probability and
define θ(N,K(N)) by

θ(N,K(N)) := max
0≤n≤N−K(N)

Sn+K(N) − Sn

K(N)
.

θ(N,K(N)) may be interpreted as the maximal average gain over a time
window of length K(N) up to time N . A straightforward calculation us-

ing the strong law of large numbers shows that if limN→∞
K(N)
log N

= ∞ then

limN→∞ θ(N,K(N)) = 0, P a.s. However if K(N) ≤ c log2N with 0 <
c < 1 then in the limit of large N with probability one there is at least
one n < N − K(N) such that Xn+1 = Xn+2 = . . . = Xn+K(N) = 1 so that
limN→∞ θ(N,K(N)) = 1 P a.s.

Thus in this setting of a fair game the Erdös-Rényi law gives information
on the maximal average gain of a player in a fair game precisely in the case
where the length of the time window ensures limN→∞ θ(N,K(N)) has a non-
degenerate limit. As another application, Erdös and Rényi take Xi to be iid
with the standard normal distribution N(0, 1) and give a simple proof of a
remarkable result of Lévy [14]: if B(t) is canonical Brownian motion then

lim
t→0

P (|B(t+h)−B(t)| < λ

√

2h log
1

h
for 0 ≤ t ≤ 1 − h ) =

{

1 if λ > 1;
0 if λ < 1.

In this note we establish Erdös-Rényi limit laws for certain non-uniformly
expanding maps. We also discuss stronger versions which give rates of con-
vergence. In the dynamical systems context such a result has first been
obtained by Grigull [13] in 1993, later by Chazottes and Collet [5] for uni-
formly expanding maps of the interval, and for Gibbs-Markov dynamics by
Denker and Kabluchko [8]. The results of Chazottes and Collet [5] also give
a convergence rate (as do Deheuvels et al [9] for the independent case). The
convergence rates we give may not be optimal.
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2 Erdös-Rényi law

Suppose that (T,X, µ) is a probability preserving transformation and ϕ :
X → R is a mean-zero integrable function i.e. E(ϕ) :=

∫

X
ϕ dµ = 0. Let

Sn(ϕ) := ϕ+ ϕ ◦ T + . . .+ ϕ ◦ T n−1.

Definition 2.1 A mean-zero integrable function ϕ : X → R is said to satisfy
a large deviation principle with rate function I(α), if there exists a neighbor-
hood U of 0 and a strictly convex function I : U → R, non-negative and
vanishing only at α = 0, such that

lim
n→∞

1

n
log µ(Sn(ϕ) ≥ nα) = −I(α) (1)

for all α > 0 in U and

lim
n→∞

1

n
log µ(Sn(ϕ) ≤ nα) = −I(α) (2)

for all α < 0 in U .

The rate function I(α) is also called the information function. Through-
out this paper we will concentrate on the case α > 0 as the case α < 0 is
identical with the obvious modifications of statements.

The first result is well known and may be established by an adapted proof
from Erdös and Rényi [11] (see also Grigull [13] or Denker and Kabluchko [8]
where this method has been used). We give the proof for completeness. We
let the Gauss bracket [.] denote the integer part of a number.

Proposition 2.2 (a) Suppose that ϕ satisfies a large deviation principle with
rate function I defined on the open set U . Let α > 0 and set

ln = ln(α) =

[

log n

I(α)

]

n ∈ N.

Then the upper Erdös-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max{Sln(ϕ) ◦ T j(x)/ln : 0 ≤ j ≤ n− ln} ≤ α.

(b) Moreover, if for some constant C > 0 and integer τ ≥ 0 for each
interval A

µ(
n−ln
⋂

m=0

{Sln(ϕ) ◦ Tm ∈ A}) ≤ C[µ(Sln ∈ A)]n/(ln)τ

(3)
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then the lower Erdös-Rényi law holds as well, that is, for µ a.e. x ∈ X

lim inf
n→∞

max{Sln(ϕ) ◦ T j/ln : 0 ≤ j ≤ n− ln} ≥ α.

Remark 2.3 Assumptions (a) and (b) of Proposition 2.2 together imply that

lim
n→∞

max
0≤m≤n−ln

Sln ◦ Tm

ln
= α.

Proof. Let α ∈ U and ln be as above. We consider the case α > 0. To
simplify notation we write Sn(ϕ) as Sn.

Choose ǫ > 0 such that α+ ǫ ∈ U , and define

An(ǫ) = {x ∈ X : max
0≤m≤n−ln

Sln ◦ Tm ≥ (α + ǫ)ln}.

If 0 < 2δ < I(α + ǫ) − I(α) (I is strictly convex), then there exists N ∈ N

such that for n > N

µ(An(ǫ)) ≤ nµ(Sln ≥ (α + ǫ)ln)

≤ ne−ln(I(α+ǫ)−δ)

≤ ne−ln(I(α)+δ)

≤ n− δ
I(α) .

Apply this estimate for n = kp where p > I(α)
δ

is an integer to obtain via the
Borel-Cantelli lemma that for µ a.e. x ∈ X

lim sup
k→∞

max
0≤m≤kd−l

kd

Sl
kd

◦ Tm/lkd ≤ α + ǫ.

Replacing ln by l′n = ln − 1 yields

lim sup
k→∞

max
0≤m≤kd−l′

kd

Sl
kd

◦ Tm/lkd ≤ α + ǫ.

Now take any n ∈ N. Choose k such that (k − 1)d < n ≤ kd. Then, for k
large, l(k−1)d and lkd differ by at most one. Hence ln = lkd or ln = l′kd and
therefore

Sln ◦ Tm = Sl
kd

or Sln ◦ Tm = Sl′
kd

◦ Tm

for 0 ≤ m ≤ n. This shows that for µ a.e. x ∈ X

lim sup
n→∞

max
0≤m≤n−ln

Sln ◦ Tm/ln ≤ α + ǫ.
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Letting ǫ→ 0 proves the first part of the proposition.

For the converse inequality, let α > 0 and choose ǫ > 0 such that α−ǫ > 0.
Define

Bn(ǫ) = { max
0≤m≤n−ln

Sln ◦ Tm ≤ ln(α− ǫ)}.

Define also
Cm(ǫ) = {Sln ◦ Tm ≤ ln(α− ǫ)}.

Then Bn(ǫ) =
⋂n−ln

m=0 Cm(ǫ) and by assumption

µ(Bn(ǫ)) ≤ Cµ(Sln ≤ ln(α− ǫ))n/(ln)τ

.

Using the large deviation property for C0(ǫ)
c := X \ C0(ǫ), for any δ1 > 0

for large n one obtains µ(C0(ǫ)
c) ≥ e−ln(I(α−ǫ)+δ1) ≥ e−(

I(α−ǫ)
I(α)

log neδ1
log n
I(α) . For

large n (note δ1 may be taken to approach 0 as n→ ∞) one obtains

1 − µ(C0(ǫ)) ≥ e−(1−δ) log n

for some 0 < δ < 1. Therefore

µ(Bn(ǫ)) ≤ C
[

1 − e−(1−δ) log n
]n/(ln)τ

= O(exp−nδ
′

)

where δ
′

is any 0 < δ
′

< δ. The lower bound follows from the Borel-Cantelli
lemma.

Remark 2.4 It is clear from the proof that to obtain the upper Erdös-Rényi
law it suffices to have exponential large deviations given by a rate function,
while for the lower Erdös-Rényi law it suffices to show that for every ǫ > 0
the series

∑

n>0 µ(Bn(ǫ)), where Bn(ǫ) = {max0≤m≤n−ln Sln ◦Tm ≤ ln(α−ǫ)}
is summable.

3 One-dimensional non-uniformly expanding

maps.

We now give some applications of Proposition 2.2. Melbourne and Nicol [19]
have established the existence of a rate function I(.) for a broad class of
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non-uniformly expanding maps and non-uniformly hyperbolic systems (see
also [21] for related results). For these systems the upper Erdös-Rényi law
of Proposition 2.2 immediately holds for processes generated by Lipschitz
functions. In this section we verify the mixing condition (3) of Proposition 2.2
to establish the lower Erdös-Rényi law for Lipschitz functions for a class
of non-uniformly expanding maps. Our results rely on the existence of an
exponential rate function, exponential decay of correlations and a bounded
derivative for T .

Theorem 3.1 Suppose that (T,X, µ) is a C2 non-uniformly expanding map
of the interval X with an absolutely continuous invariant probability measure
µ satisfying exponential decay of correlations of the form: for all ϕ ∈ Lip,
ψ ∈ L∞ we have

|
∫

ϕψ ◦ T j dm−
∫

ϕ dm

∫

ψ dm| ≤ Cθj‖ϕ‖Lip‖ψ‖∞

where 0 < θ < 1 and C is a constant independent of ϕ and ψ.
Then any Lipschitz observation ϕ : X → R has exponential deviations

with a rate function and the upper and lower Erdös-Rényi laws of Proposi-
tion 2.2 hold.

Remark 3.2 (i) Theorem 3.1 applies to the class of logistic maps T (x) =
1−ax2 with a in the set of parameters which lead to an absolutely continuous
invariant measure and exponential decay of correlations.

(ii) Theorem 3.1 also applies to the class of non-uniformly expanding
maps of the interval modeled by what is often called a Young tower (see [3])
with exponential decay of correlations, as considered by Collet [6].

Proof. Melbourne and Nicol [19, Theorem 2.1] have established the existence
of a rate function I(.) for the class of maps in Theorem 3.1. The existence
of a rate function implies that the upper Erdös-Rényi law of Proposition 2.2
holds. We will show that the lower Erös-Rényi law of Proposition 2.2 also
holds by showing that for every ǫ > 0,

∑

n>0 µ(Bn(ǫ)) is summable (see
Remark 2.4). To simplify notation we write Sn for Sn(ϕ).

Since T is C2, |DT | < L for some L > 0. For s > 0 define As
n = {Sln ≤

ln(α − s)}. We fix ǫ > 0 and consider A
ǫ/2
n = {Sln ≤ ln(α − ǫ/2)} and

Aǫ
n = {Sln ≤ ln(α− ǫ)}.
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Let 0 < η < 1. If |x− y| < L−(1+η)m then |Tmx− Tmy| < L−ηm from the
mean-value theorem applied to Tm and the fact that |DTm| < Lm. Thus if

n is large then x ∈ Aǫ
n and |x− y| < L−(1+η)ln implies that y ∈ A

ǫ/2
n .

We may approximate the indicator function 1Aǫ
n

of Aǫ
n by a Lipschitz

function ϕǫ of Lipschitz norm at most L(1+η)ln satisfying 1Aǫ
n
≤ ϕǫ ≤ 1 and

µ(Aǫ
n) <

∫

ϕǫdµ < µ(A
ǫ/2
n ). To do this let F := Aǫ

n and define h1(z) = 0
and h2(z) = 1 − d(z, F )L−(1+η)ln . The fact that h2 is Lipschitz with Lips-
chitz constant L(1+η)ln is straightforward (see for example Stein [22, Section
2.1]). Thus ϕǫ(z) := max{0, (1−d(z, F )L−(1+η)ln} is Lipschitz with Lipschitz

constant bounded by L(1+η)ln and support in A
ǫ/2
n .

Define Cm(ǫ) = {Sln◦Tm ≤ ln(α−ǫ)} and Bn(ǫ) =
⋂n−ln

m=0 Cm(ǫ). We use a
blocking argument to take advantage of decay of correlations and intercalate
by blocks of length (log n)τ , τ > 1. We define

E0
n(ǫ) :=

[(n−(log n)τ )/(log n)τ )]
⋂

m=0

Cm[(log n)τ ](ǫ)

and in general for 0 ≤ j < [ n
(log n)τ ]

Ej
n(ǫ) :=

[(n−(j+1)(log n)τ )/(log n)τ )]
⋂

m=0

Cm[(log n)τ ](ǫ).

Note that µ(Bn(ǫ)) ≤ µ(E0
n(ǫ)). For each j, let ψj = 1Ej

n(ǫ) denote the

indicator function of Ej
n(ǫ).

By decay of correlations we have

µ(E0
n(ǫ)) ≤

∫

ϕǫ · ψ1 ◦ T [(log n)τ ]dµ

≤ Cθ(log n)τ ‖ϕǫ‖Lip‖ψ1‖∞ +

∫

ϕǫ dµ

∫

ψ1 dµ

≤
∫

ϕǫ dµ

∫

ψ1 dµ+ Cθ(log n)τ

(L(1+η)ln).

Applying a Lipschitz approximation and decay of correlations again to
∫

ψ1 dµ
we iterate and conclude

µ(E0
n(ǫ)) ≤ nCθ(log n)τ

L(1+η)ln + µ(Aǫ/2
n )n/(log n)τ

.
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The term nCθ(log n)τ
L(1+η)ln is clearly summable since τ > 1. The same

argument given in the proof of Proposition 2.2 using large deviations shows

that µ(A
ǫ/2
n )n/(log n)τ

is summable as µ(A
ǫ/2
n ) ≤ 1−elog n[

I(α−ǫ)
I(α)

+δ1] where δ1 → 0

as n → ∞ so that µ(A
ǫ/2
n ) ≤ 1 − e(1−ρ) log n for some 0 < ρ < 1. Since the

right hand side is summable the Borel-Cantelli lemma implies the result by
Remark 2.4.

4 Intermittent maps and polynomial decay of

correlations

In this section we investigate the maximal average over time-windows of
varying length in a class of one-dimensional maps, commonly used as models
of intermittent behavior. For simplicity we consider a well-understood model
of intermittency, the Liverani-Saussol-Vaienti (LSV) map Tγ , though our
results extend to the usual intermittent maps of the interval X = [0, 1] (mod
1) which are expanding, except for an indifferent fixed point at x = 0 and
which have an absolutely continuous invariant probability measure µ, such
as the Manneville-Pomeau map T (x) = x+ x1+γ where 0 < γ < 1.

The LSV (see [15]) map of X = [0, 1] (mod 1) is defined by

Tx =

{

x(1 + 2γxγ) if 0 ≤ x < 1
2
;

2x− 1 if 1
2
≤ x ≤ 1.

For 0 < γ < 1, Tγ has an absolutely continuous invariant probability
measure µ which possesses a density h(x) such that h(x) ∼ x−γ as x → 0.
We will use the fact that if an is the pre-image of T−n(1) which is closest

to 0 then an ∼ n− 1
γ . Accordingly given ǫ > 0, for sufficiently large n if

x ∈ [0, 1
n
] then T j(x) ∈ [0, ǫ] for j = 0, . . . , f(n) iterations where f(n)

nγ → 1
as n → ∞. We will use this observation in the proof of some of our results.
It is known that T has polynomial large deviations of order β := 1

γ
− 1. In

fact Melbourne and Nicol [19] have shown in the case 0 < γ < 1
2

that if
φ : X → R is Lipschitz,

∫

φdµ = 0 then for all δ > 0 there is a constant
C1(δ) > 0 such that

µ({x ∈ X : |Sn| ≥ nǫ}) ≤ C1

nβ−δ
.
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Furthermore if φ(0) > ǫ > 0 then for any δ > 0 there exists a constant
C2(δ) > 0 such that

C2

nβ+δ
≤ (µ{x ∈ X : |Sn| ≥ nǫ}).

Melbourne [18] subsequently extended these results to the case 0 < γ < 1.
Pollicott and Sharp [20] have shown, in the case φ(0) = 0, that there exists
β̄ > 0 satisfying

µ({x ∈ A : |Sn| ≥ nǫ}) = O(e−β̄n).

Theorem 4.1 Suppose φ : X → R is Lipschitz,
∫

X
φ dµ = 0.

(a) If φ(0) > 0 then for any γ
1−γ

< τ1 < 1

lim
n→∞

max
0≤m≤n−nτ1

Snτ1 ◦ Tm/nτ1 = 0.

(b) If φ(0) > 0 and 0 < τ2 < γ then

lim inf
n→∞

max
0≤m≤n−nτ2

Snτ2 ◦ Tm/nτ2 ≥ φ(0).

Moreover if φ(0) = maxx∈X φ(x) > 0 then equality holds in the form

lim
n→∞

max
0≤m≤n−nτ2

Snτ2 ◦ Tm/nτ2 = φ(0).

(c) If φ(0) = 0 then for any σ > (β̄)−1

lim
n→∞

max
0≤m≤n−(log n)τ

S(log n)τ ◦ Tm/(σ log n) = 0.

Proof.
We prove (a) first. Choose 0 < τ1 < 1 such that τ1β > 1, that is τ1 >

γ
1−γ

.
Let ln = nτ1 and 2δ = τ1β − 1.

Let ǫ > 0 and define

An := {x ∈ X : max
0≤m≤n−ln

|Sln ◦ Tm| ≥ lnǫ}.

Then µ(An) ≤ nµ(Sln ≥ αln) ≤ C1(δ)nn
−τ1β+δ = C1n

−δ.
Choose a p > 1

δ
so that δp > 1. We will consider the subsequence n = kp.

Via the Borel-Cantelli lemma for µ a.e. x ∈ X

lim sup
k→∞

max
0≤m≤kp−lkp

|Slkp ◦ Tm|/lkp ≤ ǫ
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since
∑

k Ck
−pδ < ∞. Note that kp − (k − 1)p = O(kp−1) hence, as φ is

bounded,
Slkp ◦ Tm

lkp

=
Sl(k−1)p

◦ Tm

lkp

+O(
1

k
)

where the implied constant is uniform in x ∈ X. As limk→∞
kp

(k−1)p = 1

lim
k→∞

|Slkp |
lkp

= lim
k→∞

|Sl(k−1)p
|

l(k−1)p

.

Since any n ∈ N satisfies (k − 1)p ≤ n ≤ kp for some k, it follows that

lim sup
n→∞

max
0≤m≤n−ln

|Sln ◦ Tm|/ln ≤ ǫ.

As ǫ was arbitrary this proves (a).
To prove (b) let 0 < τ2 < γ and redefine ln = nτ2 . Let ǫ > 0. Since φ is

Lipschitz with Lipschitz constant K say, there exists a neighborhood of 0 of
length K−1ǫ on which φ > φ(0) − ǫ. It is known by results of Gouëzel [12]
that if (An) is a sequence of intervals in X such that

∑

n Leb(An) = ∞ then
for µ a.e. x ∈ X, T n(x) ∈ An infinitely often (the Borel-Cantelli property).
Accordingly T n(x) ∈ [0, 1

n
) infinitely often for µ a.e. x ∈ X. If n is sufficiently

large then T n(x) ∈ [0, 1
n
) implies that T n+k(x) ∈ [0, K−1ǫ] for 0 < k < nτ2−C

where C is a fixed constant. Hence for µ a.e. x ∈ X

lim inf
n→∞

max
0≤m≤n−ln

Sln ◦ Tm/ln ≥ φ(0) − ǫ.

As ǫ > 0 was arbitrary this proves the first assertion in (b).
Moreover if φ(0) = maxx∈X φ(x) note that Sln ◦ Tm/ln ≤ φ(0). Thus

lim sup
n→∞

max
0≤m≤n−ln

Sln ◦ Tm/ln ≤ φ(0).

This proves (b).
To prove (c) recall that Pollicott and Sharp [20] have shown

µ({x ∈ A : |Sn| ≥ nǫ}) = O(e−β̄n).

Let ln = [σ log(n)] and

An := {x ∈ X : max
0≤m≤n−ln

|Sln ◦ Tm| ≥ lnǫ}.
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Then µ(An) ≤ nµ(Sln ≥ ǫln) ≤ Ce−β̄ln and the Borel-Cantelli lemma implies
that

lim sup
n→∞

max
0≤m≤n−ln

|Sln ◦ Tm|/ln ≤ ǫ.

As ǫ > 0 was arbitrary this concludes the proof of (c).

Remark 4.2 The results here should be compared to those for iid random
variables (Xi)i≥1 with EX1 = 0. Let

Dn(rn) = max
0≤k≤n−rn

k+rn
∑

j=k+1

Xj.

Then we have laws which are independent (or almost independent) of the
distribution, like

(a) If rn = n, then limn→∞
1
n
Dn(n) = 0 a.s. (the law of large numbers).

(b) If rn = n, then lim supn→∞
Dn(n)√

2n log log n
= EX2

1 a.s. (the law of iterated

logarithm).

(c) If n
rn

→ ∞, under appropriate assumptions, the Czörgö-Révész law holds

([7]): lim supn→∞
Dn(rn)

bn
= 1 a.s. where bn =

√

2rn

(

log n
rn

)

+ log log n.

(d) Under appropriate assumptions, limn→infty
Dn(rn)

r
1/p
n

= 1 a.s. where a > 0,

1 < p < 2 and rn =
[

(

2
a2 log n

)p/(2−p)
]

(Bock’s theorem [4]).

and also laws which depend on the distribution, like

(e) If rn = [c logn] then limn→∞
Dn(rn)

rn
= α, where I(α)c = 1 (Erdös-Rényi

law).

(f) If c(n) = log n
rn

→ ∞ there are γ(c(n)) (depending on the distribution)

such that limn→∞
Dn(rn)

rnγ(c(n))
= 1 a.s. (Mason’s law [17]).
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5 Rates of Convergence

In this section we refine our results to consider the rate of convergence in
the Erdös-Rényi limit law. In order to obtain rates in this we need stronger
assumptions, which will be verified for several examples.

In the setting of topologically mixing piecewise C2 expanding maps of the
interval (T, I, µ) Chazottes and Collet [5, Appendix A] have shown:

If ϕ : I → R is of bounded variation then

lim sup
n→∞

max
0≤m≤n−ln

Sln ◦ Tm − lnα

log ln
≤ 1

2I ′(α)
a.e.

and

lim inf
n→∞

max
0≤m≤n−ln

Sln ◦ Tm − lnα

log ln
≥ − 1

2I ′(α)
a.e.

To prove this they use the following result (see [5, Appendix A]), once
again in the setting of topologically mixing piecewise C2 expanding maps of
the interval (T,X, µ). Such maps have exponential large deviations estimates
given by a rate function, I(.) and moreover: there is a compact interval K
of the origin and constants 0 < c1 < c2 such that for any α ∈ K/{0} and
integer n ≥ 1 + I

′

(α)−4,

c1
I ′(α)

√
n
e−nI(α) ≤ µ(Sn ≥ nα) ≤ c2

I ′(α)
√
n
e−nI(α)

The result of Chazottes and Collet is in agreement with the case of i.i.d
random variables [9]. In the general context considered here we can prove a
weaker result, the upper bound being the same, the lower bound depending
on the choice of τ , or more precisely an appropriate Borel-Cantelli argument.
We now state our rate theorem which adds to Proposition 2.2.

Theorem 5.1 Suppose that ϕ satisfies a large deviation principle with a
twice continuously differentiable rate function I defined on the open set U ⊂
(0,∞). Let α ∈ U and set

ln = ln(α) =

[

log n

I(α)

]

n ∈ N.

(a) If there exists a κ such that

lim sup
n→∞

sup
α′∈U

1

log n
([logµ(Sn(ϕ) ≥ nα′)] + nI(α′)) ≤ κ (4)
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then

lim sup
n→∞

max
0≤m≤n−ln

Sln(ϕ) ◦ Tm − lnα

log ln
≤ 1 + κ

I ′(α)
a.e.

(b) If for some constant C > 0 and integer τ ≥ 0 for each interval A

µ(
n−ln
⋂

m=0

{Sln(ϕ) ◦ Tm ∈ A}) ≤ C[µ(Sln ∈ A)]n/(ln)τ

and if there exists a κ such that

lim inf
n→∞

inf
α′∈U

1

log n
([log µ(Sn(ϕ) ≥ nα′)] + nI(α′)) ≥ κ (5)

then

lim inf
n→∞

max
0≤m≤n−ln

Sln(ϕ) ◦ Tm − lnα

log ln
≥ −τ − κ

I ′(α)
a.e.

Proof. (a) Let d > 1+κ
I′(α)

and choose δ > 0 with dI ′(α) − κ − δ > 1 and

B(α, δ) ⊂ U . We have for all n large enough by the large deviation estimate
(4)

µ

(

max
0≤m≤n−ln

Sln ◦ Tm − lnα ≥ d log ln

)

≤ nµ

(

Sln ≥ ln

(

α + d
log ln
ln

))

≤ nlκ+δ
n exp

[

−ln
(

I

(

α + d
log ln
ln

))]

≤ nlκ+δ
n exp

[

−lnI(α) − I ′(α)dlog ln +
1

2
I ′′(ζn)d2 (log ln)2

ln

]

= O
(

l−I′(α)d+κ+δ
n

)

,

where ζn ∈ B(α, δ).
Since I ′(α)d−κ−δ > 1, it follows from the Borel-Cantelli Lemma, applied

to the subsequence qk = [qk] (k ≥ 1) where q > 1, that

lim sup
k→∞

max
0≤m≤qk−lqk

(Slqk
◦ Tm − lqk

α)/ log lqk
≤ d. (6)
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We now proceed as in the proof of Proposition 2.2. Note that lqk+1 − lqk

is bounded by a constant ≤ log q+ 1. Therefore we can use the equation (6)
replacing lqk by lqk − j for j = 0, 1, 2, ..., [1 + log q]. It follows that

lim sup
n→∞

max
0≤m≤n−ln

(Sln ◦ Tm − lnα)/ log ln ≤ d.

(b) Let d > τ−κ
I′(α)

and choose δ > 0 with dI ′(α) > τ−κ+δ and B(α, δ) ⊂ U .
Define

Bn = { max
0≤m≤n−ln

Sln ◦ Tm ≤ lnα− d log ln},

and
Cm = {Sln ◦ Tm ≤ lnα− d log ln} m = 0, ..., n− ln.

Then Bn =
⋂n−ln

m=0 Cm and by assumption

µ(Bn) ≤ C[µ(Sln ≤ lnα− d log ln)]n/(ln)τ

.

By the large deviation rate estimate (5) for all n sufficiently large,

µ(Sln ≥ lnα− d log ln)

≥ lκ−δ
n exp

[

−lnI
(

α− d
log ln
ln

)]

= lκ−δ
n exp

[

−ln
(

I(α) − I ′(α)d
log ln
ln

+
1

2
I ′′(ζn)d2 (log ln)2

l2n

)]

≥ e−[ log n
I(α

)]I(α)lκ−δ
n exp[I ′(α)d log ln − d2

2
I ′′(ζn)

log ln
ln

log ln]

= (1 + o(1))n−1lI
′(α)d+κ−δ

n

where ζn ∈ B(α, δ).
It follows that

µ(Bn) ≤ C
(

1 − (1 + o(1))n−1lI
′(α)d+κ−δ

n

)n/(ln)τ

= O

(

e−l
I′(α)d+κ−τ−δ
n

)

.

Since d > τ+δ−κ

I′ (α)
then

∑

k µ(B[qk]) <∞ where q > 1 and by the Borel Cantelli

lemma we arrive at

lim inf max
0≤m≤n−ln

(Sln ◦ Tm − lnα)/ log ln ≥ −d.

as before.

14



Example 5.2 Let Xn (n ≥ 1) be an independent, identically distributed
sequence of random variables with positive variance. Let U ⊂ R be the in-
terval for which c(t) = logEetX1 < ∞. Let α ∈ R and tα ∈ U such that
I(α) = etαα−c(tα). Theorem 1 in [2] says that

P (X1 + ...+Xn ≥ nα) =
1√
2πn

e−nI(α)bn(1 + o(1))

where 0 < infn bn < supn bn <∞ are non-random constants. This shows that
κ = κ = −1

2
, and we conclude that

lim sup
n→∞

max
0≤m≤n−ln

Xm+1 + ...+Xm+ln − lnα

log ln
≤ 1

2I ′(α)
a.e.

and

lim inf
n→∞

max
0≤m≤n−ln

Xm+1 + ...+Xm+ln − lnα

log ln
≥ − 3

2I ′(α)
a.e.

For the last statement we use the independence of the variables Xi to obtain
trivially τ = 1. Note that [9] improves this and also shows that the bounds
are exact.

We are not able to improve our rate estimate for the general stationary
case. Therefore, this example shows what can be expected in the best case.

Example 5.3 let (T,X, µ) be a Gibbs measure on a subshift of finite type
(Ω, T ). It has been shown by Kesseböhmer (Korollar 5.3 in [16]) that for a
Hölder–continuous function ϕ

µ(Sn(ϕ) ≥ nα) = An
1

n1/2
e−nI(α) (7)

uniformly in α, where the sequence An is bounded away from 0 and ∞. There-
fore, for some neighborhood U of α > 0

lim
n→∞

sup
α′∈U

1

log n
[[µ(Sn(ϕ) ≥ nα′)] + nI(α′)] = −1

2
.

Since τ = 1 for the process ϕ ◦ T k, we obtain that

lim sup
n→∞

max
0≤m≤n−ln

Sln(ϕ) ◦ Tm − lnα

log ln
≤ 1

2I ′(α)
a.s.
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and

lim inf
n→∞

max
0≤m≤n−ln

Sln(ϕ) ◦ Tm − lnα

log ln
≥ − 3

2I ′(α)
a.s.

This example shows in which way large deviation results in dynamics should
be strengthened.

Example 5.4 Let (T,X, µ, γ) be a mixing Gibbs-Markov map as defined
in [1], where γ denotes the generating partition. It is known that any func-
tion φ ∈ C(X) which is constant on some refinement γ ∨T−1γ ∨ ...∨T−p+1γ
(where p ∈ N) viewed as a function on αN generates a ψ-mixing process (see
[8]).

Let ϕ be such a function and assume that
∫

φ dµ = 0. In this setting it
is known that the free energy function

c(t) = lim
n→∞

1

n
logE

(

etSn(ϕ)
)

exists and is twice continuously differentiable on a neighborhood U of 0 and
that the large deviation property holds uniformly in neighborhoods of α for
each α ∈ U , furthermore τ as defined in Proposition 2.2 may be taken as
τ = 1. Moreover, the information function is given by the Legendre-Fenchel
transform

I(α) = sup
t∈R

(tα− c(t)).

We claim here that our theorem shows: If α ∈ U then

lim sup
n→∞

max
0≤m≤n−ln

Sln(ϕ) ◦ Tm − lnα

log ln
≤ 1

I ′(α)
a.e.

We prove this claim.
Let m, r, k, q ∈ N satisfy

m = kr + (k − 1)q, and 0 ≤ ψ(q) < 1,

where ψ(·) denotes the ψ-mixing coefficients. Since γ is a finite partition,
‖ϕ‖∞ <∞ and there are functions mi(t), i = 1, 2, such that

m2(t) ≤ etϕ◦T k(x) ≤ m1(t) ∀x ∈ X.

Then, by ψ-mixing,

m2(t)
(k−1)q(1−ψ(q))k−1(EetSr(ϕ))k ≤ EetSm(ϕ) ≤ m1(t)

(k−1)q(1+ψ(q))k−1(EetSr(ϕ))k
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Since k − 1 = m−r
r+q

it follows that

m2(t)
q(1−r/m)

r+q (1 − ψ(q))
1−r/m

r+q
(

EetSr(ϕ)
)

1−q/m
r+q ≤

(

EetSm(ϕ)
)

1
m

≤ m1(t)
q(1−r/m)

r+q (1 + ψ(q))
1−r/m

r+q
(

EetSr(ϕ)
)

1−q/m
r+q .

Taking the limit as m → ∞ while q and r are fixed, this shows that for any
t ≥ 0

m2(t)
q

r+q (1−ψ(q))
1

r+q
(

EetSr(ϕ)
)

1
r+q ≤ ec(t) ≤ m1(t)

q
r+q (1+ψ(q))

1
r+q

(

EetSr(ϕ)
)

1
r+q .

(8)
The theorem follows from Theorem 5.1 once it is shown that κ = 0.
Note that for α ∈ U and any t > 0 by (8) and setting r = n

µ(Sn(ϕ) ≥ nα)entα−nc(t) ≤ e−ntαEetSn(ϕ)entαe−nc(t)

≤ m2(t)
−q n

n+q (1 − ψ(q))−
n

n+q (EetSn(ϕ))
q

n+q .

Taking the supremum over t > 0 over the left hand side shows that

µ(Sn(ϕ) ≥ nα)enI(α) ≤ m2(tα)−q n
n+q (1 − ψ(q))−

n
n+q

(

EetαSn(ϕ)
)

q
n+q ,

where the supremum is attained at tα and is independent of n. Taking loga-
rithms and dividing by log n we conclude that κ ≤ 0.
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1356.

[4] Bock, S.A.: An extension of the Erdös-Rényi law of large num-
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[14] Lévy, P.: Théorie de l’addition des variables aléatoires
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