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Abstract. We consider the extreme value theory of a hyperbolic toral automorphism
T : T2 ! T2 showing that, if a Hölder observation � is a function of a Euclidean-type
distance to a non-periodic point ⇣ and is strictly maximized at ⇣, then the corresponding
time series {� � T i} exhibits extreme value statistics corresponding to an iid sequence
of random variables with the same distribution function as � and with extremal index
one. If, however, � is strictly maximized at a periodic point q, then the corresponding
time-series exhibits extreme value statistics corresponding to an iid sequence of random
variables with the same distribution function as � but with extremal index not equal to
one. We give a formula for the extremal index, which depends upon the metric used and
the period of q. These results imply that return times to small balls centered at non-
periodic points follow a Poisson law, whereas the law is compound Poisson if the balls are
centered at periodic points.

1. Introduction

Suppose we have a time-series {X
i

} of real-valued random variables defined on a probability
space (⌦, P ). Extreme value theory concerns the statistical behavior of the derived time
series of maxima M

n

:= max{X
0

, X
1

, . . . , X
n

}. There is a well-developed theory for iid
random variables [25, 27, 15] and these references also consider the case of dependent
random variables under certain assumptions. In the setting of ergodic maps T : X ! X
of a probability space (X,µ) modeling deterministic physical phenomena we are concerned
with time-series of the form {��T i} where � : X ! R is an observation of some regularity,
usually Hölder. In the literature, as in this paper, it is customary to assume that �
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is a function f of the distance to a distinguished point ⇣ for some metric d, so that
�(x) = f(d(x, ⇣)) for x 2 X. For convenience, the observation �(x) = � log d(x, ⇣) is often
used, but scaling relations translate extreme value results for one functional to another
quite easily [9, 20]. Since the function � � T i

(x) detects the closer T i

(x) is to ⇣, there is a
natural relation between extreme value statistics for the time series {��T i} and return time
statistics to nested balls about ⇣ [4, 10]. In fact, if (X, d) is a Riemannian manifold and
µ is absolutely continuous with respect to the volume measure, then return time statistics
may be deduced from extreme value statistics and vice-versa, so in some sense they are
equivalent though proved with different techniques.
Due to the close relation with return time statistics one expects a difference in the extreme
value theory of observations centered at periodic points to those centered at generic points.
We refer to the early paper of Hirata [19]. What is perhaps surprising is that in many
cases of uniformly expanding smooth one dimensional systems there is a strict dichotomy
between the behavior of observations maximized at periodic points and other non-periodic
points. Suppose � is maximized at a point ⇣ 2 X and define a sequence of constants u

n

by the requirement that
lim

n!1
nµ(� > u

n

) = ⌧

where ⌧ 2 R. It has been shown [7, 10, 23] that, for a variety of smooth one-dimensional
chaotic systems, this implies that

lim

n!1
µ(M

n

 u
n

) = e�#⌧

where 0 < #  1 is called the extremal index and roughly measures the clustering of
exceedances of the maxima (more precisely, #�1 is the expected number of observed ex-
ceedances if one exceedance is observed). It turns out that # = 1 if ⇣ is not periodic
and # < 1 otherwise (a precise expression for # may often be given as a function of the
multiplier derivative of T along the periodic orbit). For higher dimensional smooth chaotic
systems a similar dichotomy is expected (the presence of discontinuities complicates mat-
ters [1]) but so far has not been established. In this paper we prove such a dichotomy
for hyperbolic toral automorphisms, give an expression for the extremal index and find
that its value also depends upon the metric used. This has immediate implications for the
return time statistics. Indeed, we have Poissonian return time statistics to non-periodic
points and a compound Poissonian distribution to periodic points (the form of the com-
pound distribution is related to the extremal index as well). In fact, our results are given
in terms of convergence of point processes of rare events to the standard Poisson process,
in the non-periodic case, and to a compound Poisson process in the periodic case, where
the multiplicity distribution is also seen to depend on the metric used. We remark that
the convergence of the point processes is actually stronger than establishing a Poissonian
distributional limit for the number of visits to shrinking target sets.
We remark that an extremal index equal to 0 may occur in a non-uniformly hyperbolic
setting. For example, in [13], it was shown that for Manneville-Pommeau maps, there exists
an extremal index equal to 0 at the indifferent fixed point, being that, in this case, by using
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a different normalising sequence one can still obtain a non-degenerate limit distribution
(but not with a sequence (u

n

)

n2N as above).
Earlier results for invertible dynamical systems include work by Denker, Gordin and
Sharova [5], who proved that, for toral automorphisms, the number of visits to shrinking
neighborhoods of non-periodic points converge (when properly normalized) to a Poisson
distribution, and work by Dolgopyat [6], who also proved Poissonian return time statis-
tics for non-periodic points in uniformly partially hyperbolic dynamical systems and noted
possible generalizations to the case of periodic points. There have been a variety of re-
cent results on extreme value and return time statistics for invertible dynamical systems,
both uniformly and non-uniformly hyperbolic, but restricted to observations maximized at
generic points [17, 20, 3, 14, 28, 16].

2. The setting

Let L : R2 ! R2 be a 2 ⇥ 2 matrix with integer entries, with determinant equal to 1 and
without eigenvalues of absolute value 1. The eigenvalues of L are irrational numbers � and
1/� satisfying |�| > 1; the corresponding eigenspaces, Es and Eu, are lines with irrational
slope and the family of lines parallel to these subspaces is invariant under L. To simplify
the computations, in what follows we will assume that the eigenspaces of the matrix L
are orthogonal. Moreover, L uniformly contracts vectors in Es and uniformly expands in
Eu. As L(Z2

) = Z2, this linear map induces a smooth diffeomorphism T on the flat torus
T2

= R2/Z2 through the canonical projection. Unless said otherwise, we assume that we
are using the Euclidean metric in R2, which we project to T2 and denote by d(·, ·); more
precisely, if (x, y) denote the local coordinates of the point z 2 T2, then

d(z, 0) =
p

x2

+ y2. (2.1)

The subspaces Es and Eu project on dense curves which intersect densely and are T
invariant. Moreover, at each point of T2 the tangent space has an invariant splitting into
one-dimensional affine spaces parallel to the subspaces Es and Eu. This way, T becomes
an Anosov diffeomorphism and the torus is the homoclinic class of the (unique) fixed point
of T , and a global attractor. The hyperbolic splitting at each point of T2 is obtained
by translating to that point the eigenspaces of the matrix, and this decomposition is
integrable, that is, at each point x 2 T2 we have global stable and unstable manifolds
W s

(x) and W u

(x), respectively. Besides, T is topologically mixing and its periodic points
(all saddles) are dense, though for each q 2 N the set of periodic points with period q is
finite.
As the determinant of L is equal to 1, the Riemannian structure induces a Lebesgue measure
m on T2 which is invariant by T . The probability measure m is Bernoulli and it is also
the unique equilibrium state of the Hölder map x 2 T2 ! 'u

(x) = � log | det DT
E

u

(x)

|,
whose pressure is zero. This means that the metric entropy of m is given by h

m

(T ) =

�
R

'u dm = log (�).
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Given a non-empty set A and a point x, we denote by ¯A the closure of the set A and define
the distance of x to A by dist(x,A) := inf {d(x, y) : y 2 A}.

Remark 2.1. Let A be a set homeomorphic to a ball whose boundary is a piecewise dif-
ferentiable Jordan curve. For " > 0, let D

"

:= {x 2 T2

: dist(x, ¯A)  "}. Then
m(D

"

\ A) = "|@A|+ o("), where | · | denotes the length of the curve @A.

Recall that a continuous function ' : T2 ! R is ↵-Hölder if there are constants C > 0

and ↵ > 0 such that |'(x) � '(y)|  C d(x, y)↵. For ↵ 2 ]0, 1], the space of ↵-Hölder
continuous functions with the norm

k'k
↵

= k'k
C

0
+ sup

x 6=y

⇢

|'(x)� '(y)|
d(x, y)↵

�

is a Banach space. And, given k 2 N and ↵ 2 ]0, 1[, any ↵-Hölder continuous function
' on the torus admits a Lipschitz approximation '

k

such that k' � '
k

k1 = O(k� ↵

1�↵

).
From the computations in [2, Section 1.26] one can deduce that the diffeomorphism T has
exponential decay of correlations with respect to ↵-Hölder functions, for any ↵ 2 ]0, 1].
More precisely, there exist constants C > 0 and 0 < ✓ < 1 such that, for all ↵-Hölder maps
� and  , we have

�

�

�

�

Z

� ( � T n

) dm�
Z

� dm

Z

 dm

�

�

�

�

 C ✓n k�k
↵

k k
↵

. (2.2)

And if  is constant on local stable leaves then
�

�

�

�

Z

� ( � T n

) dm�
Z

� dm

Z

 dm

�

�

�

�

 C ✓n k�k
↵

k k1 (2.3)

where k.k1 stands for the sup norm.
Among C2 Anosov diffeomorphisms the subset of the ones that admit no invariant measure
absolutely continuous with respect to m is open and dense. However, it is known that
any Anosov diffeomorphism of the torus is conjugate to a linear model; see [26]. The
conjugacy H (and its inverse) is Hölder continuous [22] and carries over the measure m
to a probability measure µ = H⇤(m) on T2 which is invariant and mixing by the original
Anosov diffeomorphism. In particular, the exponential decay of correlations (2.2) is still
valid for µ, although corresponding to different values of C, ✓ and ↵. We remark that
the conditions we will analyze in the next section, to ensure the existence of an Extreme
Value Law, are also invariant under a homeomorphism that is both a conjugacy and an
isomorphism of measure preserving transformations.
The starting point of our analysis is a stationary stochastic process X

0

, X
1

, X
2

, . . . arising
from the system described above in the following way. We fix some point ⇣ 2 T2 and let
' : T2 ! R [ {+1} be given by

'(z) = � log(d(z, ⇣)), (2.4)
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where d is as in (2.1). We define X
0

= ' and for all i 2 N
X

i

= ' � T i. (2.5)

Since m is an invariant probability measure on T2, then the stochastic process X
0

, X
1

, X
2

, . . .
just defined is stationary.
Note that U(u) := {X

0

> u} is equal to the ball B
e

�u

(⇣) centered at ⇣ with radius e

�u

in the Euclidean metric. In other words, having an exceedance of an high threshold u, at
time j, means that, at the jth iterate, the orbit enters the ball around ⇣ of radius e

�u.
We remark that we could have used a function different from � log in the definition of '.
In fact, any not too irregular function, achieving a global maximum at 0 and invertible
in a vicinity of 0, would work. See [9, Section 1.1] for conditions on this function. For
definiteness, here we will use � log which puts us on the Type 1 or Gumbel domain of
attraction for the maxima. Our goal is to show the existence of an EVL and for that
purpose the analysis does not change much from one example to another.
In order to obtain a non-degenerate limit for the distribution of M

n

:= max{X
0

, . . . , X
n�1

},
one usually uses normalizing sequences (u

n

)

n2N such that the average number of ex-
ceedances among the first n observations is some constant ⌧ � 0, when n is large enough,
i.e., the sequence (u

n

)

n2N satisfies:

nm(U
n

) ���!
n!1

⌧ � 0. (2.6)

where U
n

:= {X
0

> u
n

}. In the case here considered, if we take u
n

=

1

2

log(⇡n) � 1

2

log ⌧ ,
then condition (2.6) is satisfied.
We are now in condition of stating our first result which asserts a dichotomy regarding
the possible limit distributions for M

n

depending on the periodicity or aperiodicity of the
point ⇣.

Theorem 2.2. Let T : T2 ! T2

be an Anosov linear diffeomorphism. Fix ⇣ 2 T2

and

define the stochastic process X
0

, X
1

, X
2

, . . . as in (2.5). Let (u
n

)

n2N be a sequence satisfying

(2.6) for some ⌧ � 0. Then

(1) if ⇣ is not periodic, we have lim

n!1 m(M
n

 u
n

) = e

�⌧

.

(2) if ⇣ is periodic of prime period q, we have lim

n!1 m(M
n

 u
n

) = e

�#⌧

, where

# =

2

⇡

✓

arcsin

|�|qp
|�|2q+1

� arcsin

1p
|�|2q+1

◆

.

In contrast to the examples of uniformly expanding systems (with no contracting direc-
tions), the metric used plays an important role in the computation of the EI. To illustrate
this, let eu, es denote unit eigenvectors associated to the eigenvalues � and 1/�, respec-
tively; thus {eu, es} forms a normal basis of R2. Let z = (xu, xs

), where (xu, xs

) stands for
the coordinates of z in this basis. Define the metric d⇤ by

d⇤(z, 0) = max{|xu|, |xs|} (2.7)



6 M. CARVALHO, A. C. M. FREITAS, J. M. FREITAS, M. HOLLAND, AND M. NICOL

and then project it to T2.

Theorem 2.3. Let T : T2 ! T2

be an Anosov linear diffeomorphism. Fix ⇣ 2 T2

and

define the stochastic process X
0

, X
1

, X
2

, . . . as in (2.5) for the observable ' as in (2.4) but

evaluated with the metric d⇤ instead. Let (u
n

)

n2N be a sequence satisfying (2.6) for some

⌧ � 0. Then

(1) if ⇣ is not periodic, we have lim

n!1 m(M
n

 u
n

) = e

�⌧

.

(2) if ⇣ is periodic of prime period q, we have lim

n!1 m(M
n

 u
n

) = e

�#⌧

, where

# = 1� |�|�q

.

3. The approach and dependence conditions

In order to prove the existence of EVLs in a dynamical systems context, there are a couple
of conditions on the dependence structure of the stochastic process that if verified allow
us to obtain such distributional limits. These conditions are motivated by the conditions
D(u

n

) and D0
(u

n

) of Leadbetter but were adapted to the dynamical setting and further
developed both in the absence of clustering, such as in [4, 8, 20], and in the presence of
clustering in [10]. Very recently, in [12], the authors provided some more general conditions,
called Д(u

n

) and Д0
q

(u
n

), which subsumed the previous ones and allowed them to address
both the presence (q � 1) and the absence (q = 0) of clustering. To distinguish these
conditions the authors used a Cyrillic D to denote them. We recall these conditions here.

Given a sequence (u
n

)

n2N of real numbers satisfying (2.6) set A(0)

n

:= U
n

= {X
0

> u
n

} and
for q 2 N,

A(q)

n

:= {X
0

> u
n

, X
1

 u
n

, . . . , X
q

 u
n

}.

For s, ` 2 N and an event B, let

W
s,`

(B) =

s+`�1

\

i=s

T�i

(Bc

). (3.1)

Condition (Д
q

(u
n

)). We say that Д(u
n

) holds for the sequence X
0

, X
1

, . . . if, for every
`, t, n 2 N

�

�P
�

A(q)

n

\ W
t,`

�

A(q)

n

��

� P
�

A(q)

n

�

P
�

W
0,`

�

A(q)

n

��

�

�  �(q, n, t), (3.2)

where �(q, n, t) is decreasing in t and there exists a sequence (t
n

)

n2N such that t
n

= o(n)
and n�(q, n, t

n

) ! 0 when n ! 1.

For some fixed q 2 N
0

, consider the sequence (t
n

)

n2N given by condition Д
q

(u
n

) and let
(k

n

)

n2N be another sequence of integers such that

k
n

! 1 and k
n

t
n

= o(n). (3.3)
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Condition (Д0
q

(u
n

)). We say that Д0
q

(u
n

) holds for the sequence X
0

, X
1

, . . . if there exists
a sequence (k

n

)

n2N satisfying (3.3) and such that

lim

n!1
n

bn/k
n

c
X

j=1

P
�

A(q)

n

\ T�j

�

A(q)

n

��

= 0. (3.4)

We note that, when q = 0, condition Д0
q

(u
n

) corresponds to condition D0
(u

n

) from [24].
Now let

# = lim

n!1
#
n

= lim

n!1

P(A(q)

n

)

P(U
n

)

. (3.5)

From [12, Corollary 2.4], it follows that if the stochastic process X
0

, X
1

, . . . satisfies both
conditions Д

q

(u
n

) and Д0
q

(u
n

), the limit in (3.5) exists and

lim

n!1
P(M

n

 u
n

) = e

�#⌧ .

Hence, the strategy to prove Theorems 2.2 and 2.3 is to show that conditions Д
0

(u
n

) and
Д0

0

(u
n

) hold when ⇣ is a non periodic point, and that conditions Д
q

(u
n

) and Д0
q

(u
n

) hold
when ⇣ is a periodic point of prime period q. In fact, we only check these conditions for
the usual Euclidean metric as in the context of Theorem 2.2, which is technically harder,
leaving the necessary adjustments when dealing with the adapted metric d⇤ for the reader.

4. Checking condition Д
q

(u
n

)

Let D be a set homeomorphic to a ball whose boundary is piecewise smooth, so m(@D) = 0,
and define

H
k

(D) =

�

x 2 D : T k

(W s

1

(x)) \ @D 6= ;
 

.

Proposition 4.1. There exist constants C > 0 and 0 < ⌧
1

< 1 such that, for all k,

m(H
k

(D))  C⌧ k
1

. (4.1)

Proof. As a consequence of the uniform contraction within local stable manifolds, there
exists C

1

> 0 such that dist (T n

(x), T n

(y))  C
1

/|�|n for all y 2 W s

1

(x). In particular, this
implies that |T k

(W s

1

(x))|  C
1

/|�|k. Therefore, for every x 2 H
k

(D), the leaf T k

(W s

1

(x))
lies in an annulus of width 2/|�|k around @D. By Remark 2.1 and the invariance of m, the
result follows with ⌧

1

= 1/|�|. ⇤
Lemma 4.2. Suppose � : M ! R is a Lipschitz map and  is the indicator function

 := 1
W0,`

⇣
A

(q)
n

⌘.

Then for all j � 0

�

�

�

�

Z

� ( � T j

) dm�
Z

�dm

Z

 dm

�

�

�

�

 C
⇣

k�k1 ⌧ bj/2c
1

+ k�kLip ✓
bj/2c

⌘

. (4.2)
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Proof. We choose for reference the fixed point ⇣ of T and its local unstable manifold
�̃u := W u

1

(⇣). By the hyperbolic product structure, each local stable manifold W s

1

(x)
intersects �̃u in a unique point x̂. Therefore, for every map  we define the function
 (x) :=  (x̂). Also, for every i 2 N, let  

i

=  � T i. We note that  
i

is constant along
stable manifolds and that the set of points where  

i

6=  
i

is, by definition, the set of x for
which there exist r 2 N

0

and x
1

, x
2

on the same local stable manifold as T r

(x) such that

x
1

2 W
i,`

�

A(q)

n

�

but
x
2

/2 W
i,`

�

A(q)

n

�

.

Moreover, this set is contained in [i+`�1

k=i

H
k

(A(q)

n

). If we let i � bj/2c then by Proposi-
tion 4.1 we have

m(

�

 

i

6=  
i

 

) 
1
X

k=bj/2c

m(H
k

(A(q)

n

))  C ⌧ bj/2c
1

.

By (2.3), we also get
�

�

�

�

Z

� ( bj/2c � T j�bj/2c
) dm�

Z

�dm

Z

 bj/2cdm

�

�

�

�

 C k�kLip k¯ k1 ✓bj/2c.

Using the identity
Z

� ( �T )�
Z

�

Z

 =

Z

� ( �T� ¯ �T )+
Z

� ( ¯ �T )�
Z

�

Z

¯ +

Z

�

Z

¯ �
Z

�

Z

 

we obtain
�

�

�

Z

�

�

 bj/2c � T j�bj/2c� dm�
Z

�dm

Z

 bj/2c dm
�

�

�


�

�

�

�

Z

�

�

( bj/2c � bj/2c) � T j�bj/2c� dm

�

�

�

�

+ C k�kLip ✓
bj/2c

+

�

�

�

�

Z

� dm

Z

�

 bj/2c � bj/2c
�

�

�

�

�

dm

 C
�

2 k�k1 m
�

 bj/2c 6=  bj/2c
 

+ k�kLip ✓
bj/2c�

 C
⇣

k�k1 ⌧ bj/2c
1

+ k�kLip ✓
bj/2c

⌘

. (4.3)

We complete the proof by observing that
R

 dm =

R

 bj/2c dm, due to the T -invariance
of m and the fact that  bj/2c � T j�bj/2c

=  

j

=  � T j. ⇤

To prove condition Д(u
n

), we will approximate the characteristic function of the set A(q)

n

by a suitable Lipschitz function. However, this Lipschitz function will decrease sharply to
zero near the boundary of the set A(q)

n

. As the estimate in Lemma 4.2 involves the Lipschitz
norm, we need to bound its increase as we approach @A(q)

n

.
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Let A
n

= A(q)

n

and D
n

:=

n

x 2 A(q)

n

: dist
�

x,Ac

n

�

� n�2

o

, where ¯Ac

n

denotes the closure
of the complement of the set A

n

. Define �
n

: X ! R as

�

n

(x) =

8

>

<

>

:

0 if x /2 A
n

dist(x,Ac

n

)

dist(x,Ac

n

)+dist(x,D
n

)

if x 2 A
n

\D
n

1 if x 2 D
n

. (4.4)

Note that �
n

is Lipschitz continuous with Lipschitz constant given by n2. Moreover, as
observed in Remark 2.1, we have k�

n

� 1
A

n

k
L

1
(m)

 C/n2 for some constant C.
It follows that
�

�

�

Z

1
A

(q)
n

�

 bj/2c � T j�bj/2c� dm�m(A(q)

n

)

Z

 dm
�

�

�


�

�

�

�

Z

⇣

1
A

(q)
n

� �
n

⌘

 bj/2c dm

�

�

�

�

+ C
⇣

k�
n

k1 j2 ⌧ bj/4c
1

+ k�
n

kLip ✓
bj/2c

⌘

+

�

�

�

�

Z

⇣

1
A

(q)
n

� �
n

⌘

dm

Z

 bj/2c dm

�

�

�

�

, (4.5)

and consequently
�

�m
�

A(q)

n

\ W
j,`

(A(q)

n

)

�

�m(A(q)

n

)m
�

W
0,`

(A(q)

n

)

�

�

�  �(n, j)

where

�(n, j) = C
⇣

n�2

+ n2 ✓bj/2c
1

⌘

and

✓
1

= max {⌧
1

, ✓} .

Thus if, for instance, j = t
n

= (log n)5, then n�(n, t
n

) ! 0 as n ! 1. Note that we have
considerable freedom of choice of j in order to ensure that the previous limit is zero; taking
into account the possible applications, we chose t

n

= (log n)5.

5. Checking condition Д0
q

(u
n

)

Before checking the condition Д0
q

(u
n

), we observe that we only need to consider the sum
in (3.4) up to t

n

= (log n)5 since, by the exponential decay of correlations, the sum of the
remaining terms goes to 0. More precisely, we use decay of correlations to show that

lim

n!1
n

bn/k
n

c
X

j=log

5
n

m(A(q)

n

\ T�jA(q)

n

) = 0. (5.1)
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AB

Wu

Ws

Wu

(a) Usual Euclidean metric d

Ws

Wu

(b) Adapted metric d⇤

Figure 1. The sets A(q)

n

for q > 0.

Let �
n

be a suitable Lipschitz approximation of 1
A

(q)
n

, defined as in 4.4. Then
�

�

�

�

�

Z

1

A

(q)
n

(1

A

(q)
n

� T j

) dm�
✓

Z

1

A

(q)
n

dm

◆

2

�

�

�

�

�



�

�

�

�

�

Z

�

n

(�

n

� T j

) dm�
✓

Z

�

n

dm

◆

2

�

�

�

�

�

+

�

�

�

�

�

✓

Z

�

n

dm

◆

2

�
✓

Z

1

A

(q)
n

dm

◆

2

�

�

�

�

�

+

�

�

�

�

Z

1

A

(q)
n

(1

A

(q)
n

� T j

) dm�
Z

�

n

(�

n

� T j

) dm

�

�

�

�

.

If (log n)5  j  bn/k
n

c, then, due to the decay of correlations, the first term is upper
bounded by

�

�

�

�

�

Z

�

n

(�

n

� T j

) dm�
✓

Z

�

n

dm

◆

2

�

�

�

�

�

 C n2 ✓j  C n�2

if n is sufficiently large. Recalling Remark 2.1, for the second term we obtain, for n big
enough,

�

�

�

�

�

✓

Z

�

n

dm

◆

2

�
✓

Z

1

A

(q)
n

dm

◆

2

�

�

�

�

�

 C m(A(q)

n

\D
n

)  C n�2.

Similarly, we estimate the third term as follows
�

�

�

�

Z

�

n

(�

n

� T j

) dm�
Z

1

A

(q)
n

(1

A

(q)
n

� T j

) dm

�

�

�

�

 2m(A(q)

n

\D
n

)  C n�2.

Hence equation (5.1) is satisfied.

5.1. The periodic case: checking Д0
q

(u
n

) for q > 0. Suppose ⇣ is a periodic point
of minimal period q for the map T . If G = T q, then ⇣ is a fixed point for the Anosov
diffeomorphism G, which has eigenvalues 1

�

q

and �q, with 1

|�|q < 1 < |�|q, where 1

�

and �
are the eigenvalues of the original map T .
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Note that A(q)

n

corresponds to the shaded region in Figure 1a, the ball represents the set
{X

0

> u
n

}, while the ellipse is the pre-image T�q

({X
0

> u
n

}). To compute the diameter
of A(q)

n

, we just need to find the distance between the points A and B on the intersection
of the ball with the ellipse. If we use local coordinates x, y for the unstable and stable
local manifolds through ⇣, respectively, then the ball’s equation is x2

+ y2 = s2
n

and the
ellipse’s equation is |�|2qx2

+ |�|�2qy2 = s2
n

, where s2
n

⇠ ⌧/(⇡n). Then the x coordinate
of the points A and B is s

np
|�|2q+1

, while the y coordinates are |�|q s
np

|�|2q+1

and its symmetric

counterpart, respectively. This means that the diameter of A(q)

n

is 2 |�|q s
np

|�|2q+1

.

Observe that, under G�j, the local stable manifolds in a small ball around ⇣ expand
uniformly and the local unstable manifolds contract uniformly. By construction of the sets
A(q)

n

it follows that G�j

(A(q)

n

)\A(q)

n

= ; while the diameter of G�j

(A(q)

n

), which is measured
along the stable direction, is less than 1. Hence, G�j

(A(q)

n

)\A(q)

n

= ; for all j = 1, . . . , g(n),
where

g(n) =

�

log n+ log(|�|2q + 1)� 2 log(2 |�|q(⌧/⇡)1/2)
2q log |�|

⌫

.

Since ⇣ is periodic of period q, for large n we have T�jA(q)

n

\A(q)

n

= ; for j = 1, . . . , qg(n).
Thus,

qg(n)

X

j=1

m(A(q)

n

\ T�j

(A(q)

n

)) = 0. (5.2)

Let x 2 A(q)

n

\W u

⇣

and �
x

:= W s

x

\A(q)

n

. For j > qg(n), the curve T�j

(�
x

) may be sufficiently
long to wrap around the torus. Yet, if this is the case then

|T�j

(�
x

) \ A(q)

n

|  Cp
n
|T�j

(�
x

)|.

Indeed, the length of A(q)

n

in the stable direction is bounded above by C
1

1p
n

, for some
constant C

1

independent of the local stable manifold. As T restricted to local stable
manifolds has bounded distortion (in fact its derivative at any point is even constant,
equal to L), it follows that |{y : y 2 �

x

, T�j

(y) 2 A(q)

n

}|  Cp
n

|�
x

|. Moreover, since the
2-dimensional Lebesgue measure m is invariant by T , we have

m
�

A(q)

n

\ T�j

(A(q)

n

)

�

= m
�

A(q)

n

\ T j

(A(q)

n

)

�

=

Z

A

(q)
n

\Wu

⇣

|�
x

\ T j

(A(q)

n

)| dm
x

 Cp
n

Z

A

(q)
n

\Wu

⇣

|�
x

| dm
x

 Cp
n
m(A(q)

n

).
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This implies that

n
log

5
n

X

j=qg(n)+1

m
�

A(q)

n

\ T�j

(A(q)

n

)

�

= O
�

n(log n)5 n�1/2 m(A(q)

n

)

�

= O(n�1/2

log

5 n) ���!
n!1

0

(5.3)
which, together with (5.1) and (5.2), yields (3.4).

5.2. The non-periodic case: checking Д0
q

(u
n

) for q = 0. Let us consider now a non-
periodic point ⇣. Note that, when q = 0, A(q)

n

= U
n

= {X
0

> u
n

} is a ball centered at ⇣
such that m(U

n

) ⇠ ⌧/n. We split the sum in (3.4) into three parts:

n

bn/k
n

c
X

j=0

m(U
n

\ T�j

(U
n

)) = n

g(n)

X

j=0

m(U
n

\ T�j

(U
n

)) + n
log

5
n

X

j=g(n)+1

m(U
n

\ T�j

(U
n

))

+ n

n/k

n

X

j=log

5
n+1

m(U
n

\ T�j

(U
n

)), (5.4)

where g(n) = b logn�log ⇡

2 log |�| c is such that, for j > g(n), the set T�j

(U
n

) is sufficiently stretched
along the stable direction to start wrapping around the torus. The third summand on the
right of (5.4) goes to 0 on account of (5.1). We proceed considering the other summands,
starting by the first. Contrary to the periodic setting, we now have to deal with the
possibility of U

n

\ T�j

(U
n

) 6= ; for j  g(n). Let R
n

= min{j 2 N : U
n

\ T�j

(U
n

) 6= ;}.
By continuity of T and the fact that \

n

U
n

= {⇣}, we have that R
n

! 1 as n ! 1.
For j  g(n), observe that T�j

(U
n

) is an ellipse centered at T�j

(⇣), stretched along the
stable direction by a factor |�|j and contracted on the unstable direction by 1/|�|j. Also,
notice that, as we are dealing with a projection on the torus of a linear map in R2, the
stable and unstable directions are always lined up regardless of the position of T�j

(⇣).
Now, since the set T�j

(U
n

) is not long enough (on the stable direction) to wrap around the
torus, the diameter of U

n

is 2s
n

, where s
n

⇠
p
⌧/

p
⇡n. The length of T�j

(U
n

) along the
stable direction (which coincides with the diameter of T�j

(U
n

)) is |�|j s
n

; and the length
of T�j

(U
n

) on the unstable direction is |�|�j s
n

. So, by the geometry of the sets, the area
of the intersection U

n

\ T�j

(U
n

) occupies a portion of T�j

(U
n

) corresponding at most to
a constant times |�|�j of its area. That is, there exists some C > 0 independent of j such
that

m(U
n

\ T�j

(U
n

))  C |�|�j m(T�j

(U
n

)) = C |�|�j m(U
n

).

In the case of the Euclidean metric we can take C ⇡ 2/⇡. Then it follows that

n

g(n)

X

j=0

m(U
n

\ T�j

(U
n

)) = n

g(n)

X

j=R

n

|�|�j ⌧/n  C ⌧ |�|�R

n ���!
n!1

0.
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We are left to estimate the second summand of (5.4). Let x 2 U
n

\W u

⇣

and �
x

:= W s

x

\U
n

.
For j > g(n), the curve T�j

(�
x

) may be sufficiently long to wrap around the torus. Set

˜U j

n

:=

[

{x2U

n

\Wu

⇣

: |T�j

(�

x

)|>1/2}
�
x

.

Note that for the usual Euclidean metric we have |W u

⇣

\ U
n

\ ˜U j

n

|  2

p

s2
n

� |�|�2j/16.

Since for x 2 ˜U j

n

, we have |T�j

(�
x

)| > 1/2 and the diameter of U
n

is less than 2s
n

, then
there exists a constant C > 0 such that, for all j > g(n) and all x 2 ˜U j

n

, we have

|T�j

(�
x

) \ U
n

|  C s
n

|T�j

(�
x

)|.

As T restricted to local stable manifolds has bounded distortion (since the derivative is
constant and equal to L), it follows that |{y : y 2 �

x

, T�j

(y) 2 U
n

}|  C s
n

|�
x

|. Moreover,
by the T -invariance of m we have

m(U
n

\ T�j

(

˜U j

n

)) = m(

˜U j

n

\ T j

(U
n

)) =

Z

˜

U

j

n

\Wu

⇣

|�
x

\ T j

(A(q)

n

)| dm
x

 C s
n

Z

˜

U

j

n

\Wu

⇣

|�
x

| dm
x

 C s
n

m(

˜U j

n

). (5.5)

Now, we focus on T�j

(U
n

\ ˜U j

n

) which is made of two connected components with diameter
1/2 along the stable direction and with length |�|�j s

n

⇣

1 �
p

1� |�|�2j/(16s
n

2

)

⌘

. As
before, the geometry dictates that the area of the intersection U

n

\ T�j

(U
n

\ ˜U j

n

) occupies
a portion of T�j

(U
n

\ ˜U j

n

) that corresponds at most to a constant times s
n

of its area.
Indeed, there exists C > 0 such that,

m(U
n

\ T�j

(U
n

\ ˜U j

n

))  C s
n

m(T�j

(U
n

\ ˜U j

n

)) = C s
n

m(U
n

\ ˜U j

n

). (5.6)

Joining (5.5), (5.6) and recalling that s
n

⇠
p
⌧/

p
⇡n, we deduce that

n
log

5
n

X

j=g(n)+1

m(U
n

\ T�j

(U
n

)) = O(n(log n)5n�1/2m(U
n

)) = O(n�1/2

log

5 n) ���!
n!1

0. (5.7)

6. Computing the Extremal Index

We recall that the Extremal Index # is given by the limit in (3.5).
In the case of a non-periodic point ⇣, we have q = 0 and the computation is trivial because
A(q)

n

= U
n

, hence # = 1.
If ⇣ is a periodic point of prime period q, we need to compute the area of the shaded
regions in Figure 1a. Recalling that the second coordinate of the point A of the picture is
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y
A

=

|�|q s
np

|�|2q+1

and using the symmetry of the region, we have

m(A(q)

n

) = 4

Z

y

A

0

p

s2
n

� y2 � |�|�q

p

s2
n

� y2 |�|�2q dy (6.1)

= 2 s2
n

 

arcsin

|�|q
p

|�|2q + 1

� arcsin

1

p

|�|2q + 1

!

.

Thus, in this case,

#
q

=

2

⇡

 

arcsin

|�|q
p

|�|2q + 1

� arcsin

1

p

|�|2q + 1

!

. (6.2)

Remark 6.1. It is interesting to observe that the metric used affects the value of the
Extremal Index. In fact, if we had used the adapted metric, so that its balls would
correspond to squares with sides lined up with the stable and unstable directions (see
Figure 1b), then the EI would be equal to 1� |�|�q, which is unsurprisingly more in tune
with the one-dimensional setting. Notice also that, in both metrics, the extremal index
belongs to ]0, 1[ and approaches the non-periodic value as the period goes to 1, that is,
lim

q!+1 #
q

= 1.

7. Conclusion

For C2 expanding maps of the interval a dichotomy exists between the extremal behavior of
periodic points and non-periodic points [7, 11, 23]. In this paper we demonstrated that the
same dichotomy holds for hyperbolic toral automorphisms. The extreme value statistics
of observations, maximized at generic points, in a variety of non-uniformly hyperbolic
systems is known to be the same as that of a sequence of iid random variables with the
same distribution function [9, 10, 20, 17], but the statistics of functions maximized at
periodic points has not yet been established. We believe that it will be the same as in the
iid case for smooth non-uniformly hyperbolic systems but expect mixed distributions (as
in [1]) for non-uniformly hyperbolic systems with discontinuities.

8. Rare Events Point Processes

In order to make the presentation more tractable we started by stating the dichotomy in
terms of the possible limit distributions for the maxima when the centers are chosen to be
either non-periodic or periodic points. However, we can improve the results without much
extra work by considering the convergence of point processes of exceedances or rare events.
If we regard multiple exceedances we are led to point processes of rare events counting the
number of exceedances in a certain time frame. For every A ⇢ R we define

N
u

(A) :=
X

i2A\N0

1
X

i

>u

.
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In the particular case where A = [a, b) we simply write N b

u,a

:= N
u

([a, b)). Observe that
N n

u,0

counts the number of exceedances amongst the first n observations of the process
X

0

, X
1

, . . . , X
n

or, in other words, the number of entrances in U(u) up to time n. Also,
note that

{N n

u,0

= 0} = {M
n

 u} (8.1)

In order to define a point process that captures the essence of an EVL and HTS through
(8.1), we need to re-scale time using the factor v := 1/P(X

0

> u) given by Kac’s Theorem.
Let S denote the semi-ring of subsets of R+

0

whose elements are intervals of the type [a, b),
for a, b 2 R+

0

. Denote by R the ring generated by S; recall that for every J 2 R there
are k 2 N and k intervals I

1

, . . . , I
k

2 S, say I
j

= [a
j

, b
j

) with a
j

, b
j

2 R+

0

, such that
J = [k

i=1

I
j

. For I = [a, b) 2 S and ↵ 2 R, we set ↵I := [↵a,↵b) and I+↵ := [a+↵, b+↵).
Similarly, for J 2 R, we define ↵J := ↵I

1

[ · · ·[↵I
k

and J +↵ := (I
1

+↵)[ · · ·[ (I
k

+↵).

Definition 1. Given J 2 R and sequences (u
n

)

n2N and (v
n

)

n2N, the rare event point

process (REPP) is defined by counting the number of exceedances (or hits U(u
n

)) during
the (re-scaled) time period v

n

J 2 R. More precisely, for every J 2 R, set

N
n

(J) := N
u

n

(v
n

J) =
X

j2v
n

J\N0

1
X

j

>u

n

. (8.2)

Under dependence conditions similar to the ones previously analyzed, the REPP just de-
fined converges in distribution to a standard Poisson process when no clustering is involved,
and converges in distribution to a compound Poisson process with intensity # and a geo-
metric multiplicity distribution function otherwise. For the sake of completeness, we now
define what we mean by a Poisson and a compound Poisson process. (See [21] for more
details.)

Definition 2. Let Y
1

, Y
2

, . . . be an iid sequence of random variables with common exponen-
tial distribution of mean 1/#. Let Z

1

, Z
2

, . . . be another iid sequence of random variables,
independent of the previous one, and with distribution function ⇤. Given these sequences,
for J 2 R set

N(J) =

Z

1
J

d

 1
X

i=1

Z
i

�
Y1+...+Y

i

!

,

where �
t

denotes the Dirac measure at t > 0. Whenever we are in this setting, we say that
N is a compound Poisson process of intensity # and multiplicity d.f. ⇤.

Remark 8.1. In this paper, the multiplicity will always be integer valued. This means that
⇤ is completely defined by the values ⇤(k) = P(Z

1

= k), for every k 2 N
0

. Note that, if
⇤(1) = 1 and # = 1, then N is the standard Poisson process and, for every t > 0, the
random variable N([0, t)) has a Poisson distribution of mean t.

Remark 8.2. When clustering is involved, typically ⇤ is a geometric distribution of param-
eter # 2 (0, 1], i.e., ⇤(k) = #(1� #)k�1, for every k 2 N

0

. This means that, as in [18], the
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random variable N([0, t)) follows a Pólya-Aeppli distribution

P(N([0, t))) = k = e

�#t

k

X

j=1

#j

(1� #)k�j

(#t)j

j!

✓

k � 1

j � 1

◆

,

for all k 2 N, and that P(N([0, t)) = 0) = e

�#t.

We are now in condition to state the dichotomy in terms of the convergence of REPP.

Theorem 8.3. Let T : T2 ! T2

be an Anosov linear diffeomorphism. Fix ⇣ 2 T2

and

define the stochastic process X
0

, X
1

, X
2

, . . . as in (2.5). Let (u
n

)

n2N be a sequence satisfying

(2.6) for some ⌧ � 0 and (v
n

)

n2N be given by v
n

= 1/P(X
0

> u
n

). Consider the REPP N
n

as in Definition 1. Then

(1) if ⇣ is not periodic, the REPP N
n

converges in distribution to the standard Poisson

process.

(2) if ⇣ is periodic of prime period q, the REPP N
n

converges in distribution to a

compound Poisson process with intensity # given by (6.2) and multiplicity d.f. ⇤

given by (8.6).

As in the computation of the EI, the metric used has an important impact on the multiplic-
ity distribution obtained when we have convergence of the REPP to a compound Poisson
process. Indeed, a similar result for the adapted metric d⇤ given in (2.7) is as follows.

Theorem 8.4. Let T : T2 ! T2

be an Anosov linear diffeomorphism. Fix ⇣ 2 T2

and

define the stochastic process X
0

, X
1

, X
2

, . . . as in (2.5) for the observable ' in (2.4) but

evaluated with the metric d⇤ instead. Let (u
n

)

n2N be a sequence satisfying (2.6) for some ⌧ �
0 and (v

n

)

n2N be given by v
n

= 1/P(X
0

> u
n

). Consider the REPP N
n

as in Definition 1.
Then

(1) if ⇣ is not periodic, the REPP N
n

converges in distribution to the standard Poisson

process.

(2) if ⇣ is periodic of prime period q, the REPP N
n

converges in distribution to a

compound Poisson process with intensity # = 1 � |�|�q

and geometric multiplicity

d.f. ⇤

⇤
given by ⇤

⇤
() = #(1� #)�1

, for all  2 N.

8.1. Absence of clustering. When condition Д0
0

(u
n

) holds, there is no clustering and so
we may benefit from a criterion, proposed by Kallenberg [21, Theorem 4.7], which applies
only to simple point processes without multiple events. Accordingly, we can merely adjust
condition Д

0

(u
n

) to this scenario of multiple exceedances in order to prove that the REPP
converges in distribution to a standard Poisson process. We denote this adapted condition
by:

Condition (D
3

(u
n

)). Let A 2 R and t 2 N. We say that D
3

(u
n

) holds for the sequence
X

0

, X
1

, . . . if
|P ({X

0

> u
n

} \ {N
u

n

(A+ t) = 0})� P({X
0

> u
n

})P(N
u

n

(A) = 0)|  �(n, t),
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where �(n, t) is nonincreasing in t for each n and n�(n, t
n

) ! 0 as n ! 1 for some
sequence t

n

= o(n). (The last equality means that t
n

/n ! 0 as n ! 1).

In [9, Theorem 5] it was proved a strengthening of [8, Theorem 1] which essentially says
that, under conditions D

3

(u
n

) and Д0
0

(u
n

), the REPP N
n

defined in (8.2) converges in
distribution to a standard Poisson process.
The proof of condition D

3

(u
n

) follows, after minor adjustments, the proof of Д
q

(u
n

) in
Section 4. Since condition Д0

0

(u
n

) holds at every non-periodic point ⇣ (see Section 5.2),
then for all such points ⇣ the corresponding REPP N

n

converges in distribution to a
standard Poisson process.

8.2. Presence of clustering. Condition Д0
0

(u
n

) prevents the existence of clusters of
exceedances, which implies that the EVL is standard exponential ¯H(⌧) = e

�⌧ . When
Д0

0

(u
n

) fails, the clustering of exceedances is responsible for the appearance of a parameter
0 < # < 1 in the EVL, called EI, and implies that, in this case, ¯H(⌧) = e

�#⌧ . In [10], the
authors established a connection between the existence of an EI less than 1 and a periodic
behavior. This was later generalized for REPP in [11].
For the convergence of the REPP when there is clustering, one cannot use the aforemen-
tioned criterion of Kallenberg because the point processes are no longer simple and possess
multiple events. This means that a much deeper analysis must be done in order to obtain
convergence of the REPP. This was carried out in [11] and we describe below the main
results and conditions needed.
Let ⇣ be a periodic point of prime period q. Firstly, we consider the sequence

�

U ()

(u
n

)

�

�0

of nested balls centered at ⇣ given by
U (0)

(u
n

) = U(u
n

) = U
n

and U ()

(u
n

) = T�q

(U (�1)

(u
n

)) \ U(u
n

), for all  2 N.
(8.3)

Then, for i,, `, s 2 N [ {0}, we define the following events:

Q

q,i

(u
n

) := T�i

�

U ()

(u
n

)� U (+1)

(u
n

)

�

. (8.4)

Note that Q0

q,0

(u
n

) = A(q)

n

. Besides, U
n

=

S1
=0

Q

q,0

(u
n

), which means that the ball
centered at ⇣ which corresponds to U

n

can be decomposed into a sequence of disjoint strips
where Q0

q,0

(u
n

) are the most outward strips and the inner strips Q+1

q,0

(u
n

) are sent outward
by T p onto the strips Q

q,0

(u
n

), i.e., T q

(Q+1

q,0

(u
n

)) = Q

q,0

(u
n

).

We are now ready to state the adapted condition:

Condition (D
q

(u
n

)

⇤). We say that D
q

(u
n

)

⇤ holds for the sequence X
0

, X
1

, X
2

, . . . if for
any integers t,

1

, . . . ,
q

, n and any J = [q

i=2

I
j

2 R with inf{x : x 2 J} � t,
�

�P
�

Q1
q,0

(u
n

) \
�

\q

j=2

N
u

n

(I
j

) = 
j

��

� P
�

Q1
q,0

(u
n

)

�

P
�

\q

j=2

N
u

n

(I
j

) = 
j

�

�

�  �(n, t),

where for each n we have that �(n, t) is nonincreasing in t and n�(n, t
n

) ! 0 as n ! 1,
for some sequence t

n

= o(n).
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Qq,0
0 HunL

Qq,0
1 HunL

E1
E2

E3

Qq,0
2 HunL

Ws

Wu

Figure 2. The sets Q

q,0

(u
n

) for the Euclidean metric.

In [11], for technical reasons only, the authors introduced a slight modification to Д0
q

(u
n

).
This condition was denoted by D0

q

(u
n

)

⇤ and it requires that

lim

n!1
n

[n/k

n

]

X

j=1

P(Q
q,0

(u
n

) \ {X
j

> u
n

}) = 0,

which holds whenever condition Д0
q

(u
n

) does.

From the study developed in [11], it follows that if X
0

, X
1

, . . . satisfies conditions D
q

(u
n

)

⇤,
D0

q

(u
n

)

⇤ and lim

n!1
P

�1

P(U ()

(u
n

)) = 0, where (u
n

)

n2N is such that (2.6) holds, then
the REPP N

n

converges in distribution to a compound Poisson process with intensity #
given by (3.5) and multiplicity d.f. ⇤ given by:

⇤() = lim

n!1

�

P(Q�1

q,0

(u
n

))� P(Q

q,0

(u
n

))

�

P(Q0

q,0

(u
n

))

. (8.5)

8.3. Computing the multiplicity distribution. In order to compute the multiplicity
distribution, we need to calculate m(Q

q,0

). To do so, let E
i

denote one of the four inter-
section points of @T�i q

(U
n

) with @U
n

. Let (x
E

i

, y
E

i

) denote the coordinates of E
i

on the
unstable and stable directions, which correspond to the vertical and horizontal directions,
respectively, in Figure 2. We assume that the choice of the E

i

’s among the possible four
points is made so that x

E

i

, y
E

i

> 0. Hence,

y
E

i

=

s
n

|�|iqp
1 + �2iq

,
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Ws

Wu

Figure 3. The sets Q

q,0

(u
n

) in the adapted metric.

because @T�i q

(U
n

) is described by the equation �2iqx2

+��2iqy2 = s2
n

. Therefore, for  � 1,
we may write

m(Q

q,0

(u
n

)) = 4

Z

y

E

i

0

��2iq

p

s2
n

� ��2iqy2dy + 4

Z

y

E

i+1

y

E

i

p

s2
n

� y2dy

� 4

Z

y

E

i+1

0

��2(i+1)q

q

s2
n

� ��2(i+1)qy2dy

= 2s2
n

✓

arcsin

|�|(i+1)q

p
1 + �2(i+1)q

� arcsin

1p
1 + �2(i+1)q

◆

+ 2s2
n

✓

arcsin

1p
1 + �2iq

� arcsin

|�|iqp
1 + �2iq

◆

Recall that Q0

q,0

(u
n

) = A(q)

n

and its measure has been computed in (6.1). Hence, using
formula (8.5), we obtain

⇤() =

✓

arcsin

1p
1+�

2(�1)q
� arcsin

|�|(�1)qp
1+�

2(�1)q

◆

+

✓

arcsin

1p
1+�

2(+1)q
� arcsin

|�|(+1)qp
1+�

2(+1)q

◆

arcsin

|�|qp
1+�

2q � arcsin

1p
1+�

2q

+

2

⇣

arcsin

|�|qp
1+�

2q � arcsin

1p
1+�

2q

⌘

arcsin

|�|qp
1+�

2q � arcsin

1p
1+�

2q

(8.6)

Remark 8.5. As for the EI (see Remark 6.1), the multiplicity distribution depends on the
metric used. If we were to use the adapted metric d⇤, in which balls correspond to squares
whose sides are lined up with the stable and unstable directions, then we would obtain a
geometric distribution for the multiplicity, i.e., ⇤⇤

() = #⇤
(1� #⇤

)

�1, where

#⇤
= 1� |�|�q

= 1� e�q h

m

(T ).

Observe also that in the Euclidean metric case we do not obtain a geometric distribution,
as one did for repelling periodic points (see [11]) or in the case of the adapted metric
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mentioned in Remark 8.5. However, taking into account that

arcsin

✓

xp
1 + x2

◆

=

⇡

2

� 1

x
+ o(1/x) and arcsin

✓

1p
1 + x2

◆

=

1

x
+ o(1/x),

one deduces that

lim

!1

⇤(+ 1)

⇤()
= |�|�q

=

⇤

⇤
(+ 1)

⇤

⇤
()

,

where ⇤⇤
() is as given in Theorem 8.4. Hence, we obtained a multiplicity distribution

different from the geometric distribution but which is not that far from it.
The proof of condition D

q

(u
n

)

⇤ follows, with some adjustments, from the proof of Д
q

(u
n

)

in Section 4. Since condition Д0
q

(u
n

) holds at every periodic point ⇣, as was shown in
Section 5.2, then condition D0

q

(U
n

)

⇤ from [11] also holds for all such points ⇣. Let C

n

denote
a rectangle, centered at ⇣, with its sides lined up with the stable and unstable direction,
of length s

n

on the stable direction and |�|�qs
n

on the unstable direction. Observe that
U ()

(u
n

) ⇢ C

n

, which implies that

m(U ()

(u
n

))  |�|�qs2
n

and consequently

lim

n!1

X

�1

m(U ()

(u
n

) = lim

n!1

1

1� |�|�q

s2
n

= 0.

So, at every periodic point ⇣ of prime period q, the respective REPP N
n

converges in
distribution to a compound Poisson process with intensity # given by (6.2) and multiplicity
d.f. ⇤ given by (8.6).
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