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Abstract. In this paper we establish extreme value statistics for observations on a class of hy-
perbolic systems: planar dispersing billiard maps and flows, Lozi maps and Lorenz-like maps. In
particular we show that for time series arising from Hölder observations on these systems the suc-
cessive maxima of the time series are distributed according to the corresponding extreme value
distributions for independent identically distributed processes. These results imply an exponential
law for the hitting and return time statistics of these dynamical systems.

1. Introduction

Suppose {Xn} is a stationary stochastic process and define {Mn}, the sequence of successive max-
ima by Mn := max{X1, . . . , Xn}. Extreme value theory is concerned with the limiting distribution
of the sequence of normalized maxima an(Mn−bn). There is a well developed theory [22, 16, 30] as-
suming {Xn} are independent for the limiting distribution of {Mn} under linear scaling an(Mn−bn)
defined by constants an > 0, bn ∈ R. It is known that there are only three non-degenerate distri-
butions G(x) such that limn→∞ P (an(Mn − bn) ≤ x) = G(x) (up to location G(x)→ G(x+ b) and
scale G(x) → G(ax), a > 0, changes). These distributions are called extreme type distributions,
Type I, II or III [22]. We say a stationary process {Xn} satisfies the law of types if, when under
linear scaling, the successive maxima {Mn} converge to a non-degenerate distribution, then the
distribution is a Type I, II or III distribution. We recall the form of these extremal distributions:
Type I

G(x) = e−e
−x
, −∞ < x <∞.

Type II

G(x) =

{
0 if x ≤ 0;

e−x
−α

for some α > 0 if x > 0.

Type III

G(x) =

{
e−(−x)α for some α > 0 if x ≤ 0;
1 if x > 0.

If {Xn} is a stationary sequence we let {X̂n} denote the associated stationary, independent

sequence, that is {X̂n} is independent and X̂1 has the same distribution as X1. We denote the

corresponding derived sequence of maxima for {X̂n} by {M̂n}. For v ∈ R and sequences an, bn we
define un(v) = v

an
+ bn so that P (Mn ≤ un(v)) = P (an(Mn − bn) ≤ v). For fixed v we will often

drop the dependence upon v and write simply the sequence un. Leadbetter [22] gives two conditions
called D(un) and D′(un) for suitable sequences un which imply that P (Mn ≤ un(v)) → G(v) is
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equivalent to P (M̂n ≤ un(v))→ G(v). If {Xn} satisfies condition D(un) then the stochastic process
satisfies the law of types. Moreover it is known that

nP (X0 > un)→ τ

is equivalent to P (Mn ≤ un) → e−τ when D(un) and D′(un) hold, and hence we have a strategy
for determining the extreme type distribution for dependent sequences.

There are, however, no general techniques for proving conditions D(un) and D′(un) and the
latter is usually hard. Collet [8] in an elegant paper used the rate of decay of correlation of
Hölder observations to establish D(un) for certain one-dimensional non-uniformly expanding maps.
Freitas et al [12], based on Collet’s work, in turn gave a condition D2(un) which has the full force
of D(un) in that together with D′(un) it ensures the equivalence of P (Mn ≤ un(v)) → G(v) and

P (M̂n ≤ un(v)) → G(v). Condition D2(un) is easier to establish in the dynamical setting by
estimating the rate of decay of correlations of Hölder continuous observables or those of bounded
variation.

We establish condition D2(un) in this paper for the time-series of certain observations on maps
modeled by Young towers with exponential return time tails satisfying Assumption A (described
in Section 1.1), which bounds the measure of the outer shell or annulus of a ball. In particular
we extend Collet’s approach to handle dynamical systems with stable foliations. We also establish
condition D

′
(un) for planar dispersing billiard maps and flows, a class of Lozi-maps and a class of

Lorenz-like maps and show that from the point of view of extreme value theory they behave as i.i.d.
processes. Our results on billiard flows are immediate consequences of the results in [20] which show
in essence that suspension flows inherit the extreme value behavior of their base transformations.
As in Collet [8] will consider the observation φ(x) = − log d(x, x0) on the metric space (M,d).
Knowledge of the extreme value statistics for this observation determines the extreme value statistics
of a wide class of observations which are functions of d(x, x0) and maximized (or minimized) at the
point x0 [20].

Let B(x, r) denote the ball of radius r > 0 about x ∈M . For a measure preserving transformation
T : (M,µ)→ (M,µ) define, if it exists,

d(x) = lim
r→0

logµ(B(x, r))

log(r)

Ledrappier [23] showed that if µ is an SRB-measure for a C1+α diffeomorphism then the limit d(x)
exists and has the same value for µ almost every x [3]. We assume the existence of a scaling sequence
un such that nµ(B(x0, e

−un))→ e−v for µ a.e. x0 and prove our results with respect to this sequence
un. Planar dispersing billards possess an absolutely continuous invariant measure, with density

ρ(x) := dµ
dm(x) . By the Lebesgue differentiation theorem for any a > 0, nµB(x0,

√
a√
n

) → ρ(x0)a

for µ a.e. x0. Similarly the class of Lorenz-like maps we consider possess an absolutely continuous
invariant measure with density of bounded variation.

Lozi maps have an SRB measure µ with absolutely continuous conditional measures on local
unstable manifolds. In fact the conditional measure on a local unstable manifold is one-dimensional
Lebesgue measure. Hence the µ measure of an annulus about a generic point x0 of inner radius r
and width ε is bounded by C

√
ε and hence for µ a.e. x0, the function r → µ(B(x0, r) is continuous

and strictly increasing. Thus we may choose a sequence un satisfying nµ(B(x0, e
−un)) → e−v for

µ a.e. x0 in this setting also. An immediate corollary of the existence of the dimension d is that
dun ≈ v + log n (in a sense made precise in Lemma 3.2).

The relation dun ≈ v + log n does not imply that limn→∞ µ(Mn ≤ un(v)) = limn→∞ µ(Mn ≤
(log n + v)/d) but rather that for all ε > 0, limn→∞ µ(Mn ≤ (1 − ε)(log n + v)/d)) ≤ G(v) ≤
limn→∞ µ(Mn ≤ (1 + ε)(log n + v)/d)). In the case of the Lozi map this is the best we can do.
For Sinai dispersing billiards, as the invariant measure is absolutely continuous, we are able to
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obtain the scaling constants un explicitly. We prove that for µ a.e. x0, if φ(x) = − log d(x, x0) then

limn→∞ µ(Mn ≤ (log n+ v + log(ρ(x0)))/2) = e−v where ρ(x0) := dµ
dm(x0).

We now state conditions D2(un) and D
′
(un). If {Xn} is a stochastic process define

Mj,l := max{Xj , Xj+1, . . . , Xj+l}.

We will often write M0,n as Mn.
Condition D2(un) [12] We say condition D2(un) holds for the sequence X0, X1, . . . , if for any
integers l,t and n

|µ(X0 > un,Mt,l ≤ un)− µ(X0 > un)µ(Ml ≤ un)| ≤ γ(n, t)

where γ(n, t) is non-increasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some sequence
tn = o(n), tn →∞.

Condition D
′
(un) [22] We say condition D

′
(un) holds for the sequence X0, X1, . . . , if

(1) lim
k→∞

lim sup
n

n

[n/k]∑
j=1

µ(X0 > un, Xj > un) = 0.

Condition D
′
(un) as stated is not particularly illuminating but is standard in the literature. We

will show more precisely the way the condition is used in our proofs.
Collet [8] demonstrated a technique involving maximal functions for establishing D′(un) for one

dimensional non-uniformly expanding maps modeled by a Young tower. His argument relies on
the absence of a stable direction and the boundedness of the derivative and these are obstacles to
generalizing his argument. The one-dimensional feature can be generalized to expanding maps in
higher dimension [14].

We consider a class of maps of Riemannian manifolds, perhaps with singularities, modeled by a
Young tower [35] with SRB measure µ and exponential return time tails. Lozi-like maps and Sinai
dispersing billiards fit into this scheme. As a further application we also consider one-dimensional
Lorenz-like maps [17, 10]. We establish D2(un) for the process Xn(x) = − log(d(x0, T

nx)). The
proof of D2(un) requires only sufficiently high polynomial decay of correlations but as our applica-
tions all have exponential decay of correlations to simplify exposition we assume exponential tails.
Furthermore if D′(un) can be verified for these systems, then the process has the same extreme
value statistics as its associated i.i.d. process, even for more general observations [20]. We verify

D
′
(un) for the systems we mentioned but we do not have a general method to establish D′(un)

for all systems modeled by a Young Tower. Our method of proof for D′(un) in these cases is an
extension of the argument in Collet [8].

We note that Poisson-limit laws for return-time statistics in the Axiom-A setting have been
established by Hirata [19] and in the uniformly partially hyperbolic setting by Dolgopyat [11]. For
recent related work on extreme value theory for deterministic dynamical systems see [13, 12, 14, 20].

Remark 1.0.1. Our results also have implications for hitting time statistics and return time
statistics of billiard maps, Lozi maps and Lorenz-like maps. For a map T : M →M with invariant
ergodic probability measure µ, we may define hitting and return time statistics as follows. For
a set A ⊂ M , let RA(x) denote the first time j ≥ 1 such that T j(x) ∈ A. Given a sequence of
sets {Un}n∈N, with µ(Un)→ 0 then we say that the system has hitting time statistics (HTS) with
distribution G(t) for {Un} if for all t ≥ 0

(2) lim
n→∞

µ(R|(X>un) ≥
t

µ(Un)
) = G(t).

In applications often the sequence Un is a nested sequence of balls B(x0, δn) of radius δn about a
point x0.
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We say that the system has HTS G(t) to balls at x0 if for any sequence δn ⊂ R+, with δn → 0
as n→∞ we have HTS G(t) for Un = B(x0, δn).

Analogously we say that return time statistics (RTS) with distribution G(t) holds for {Un} if we

can replace the measure µ by the conditional measure µ in equation (2), where µA = µ|A
µ(A) . RTS to

balls is defined analogously to HTS to balls.
Haydn et al [18] show that given a sequence of sets {Un} with µ(Un) → 0, the distribution

function of the normalized hitting times to Un converges weakly to a subprobability distribution
F if and only if the distribution function of the normalized return time converges weakly to some
distribution function F̃ and that if convergent

F (t) =

∫ t

0

(
1− F̃ (s)

)
ds.

This in particular shows that the asymptotics for return times is exponential (G(t) = e−t) if and
only if the one for hitting times is also.

Freitas et al [14, Theorem 2] an equivalence between extreme value laws and hitting time statistics
(and hence return time statistics via [18]) was obtained for dynamical systems (M,T, µ) admitting
an absolutely continuous invariant probability measure µ. Our results Theorem 4.1 and Theorem 4.3
show if φ is maximized at a generic Lebesgue density point then {Mn} behaves from the point of

view of extreme value theory as the corresponding i.i.d. sequence {M̃n}. By Freitas et al our results
imply HTS and RTS with an exponential law i.e. G(t) = e−t for nested balls about µ a.e. x0 for
planar dispersing billiards and Lozi-like maps.

In subsequent work Freitas et al [15] extend [14, Theorem 2] to invariant measures which
are not absolutely continuous with respect to volume. In particular they consider observations
φ(x) = g(rx0(x)) which are functions of rx0(x) = µ(B(x0, d(x, x0)) for a distinguished point x0 and
determine an equivalence between HTS (as well as RTS) and extreme value statistics for observa-
tions g(rx0(x)). In the setting of Lozi maps the function rx0(x) is continuous as a function of x for
µ a.e. x0. The proof of Theorem 4.2 extends immediately to the observation φ(x) = − log rx0(x)
with scaling constants un = log n+ v. Thus Theorem [15, Theorem 4] combined with Theorem 4.2
implies exponential hitting and return time statistics for balls centered on x0 for µ a.e. x0 in the
setting of Lozi maps. We gave our extreme value results Theorem 4.2 for observations which are
functions of d(x, x0) as these occur more naturally in applications.

1.1. Statement of results. Let M be a Riemannian manifold with Lebesgue measure m and let
T : M →M be a (local) diffeomorphism modeled by a Young Tower. The Young Tower assumption
implies that there exists a subset Λ ⊂M such that Λ has a hyperbolic product structure and that
(P1)-(P4) of [35] hold. We refer the reader to Young’s paper [35] and the book by Baladi [1]
for details. A similar axiomatic construction of a tower is given by Chernov [6] which is a good
reference for background on dispersing billiard maps and flows.

By taking T to be a local diffeomorphism we allow the map T or its derivative to have disconti-
nuities or singularities.

We assume,
Assumption A : For µ a.e. x0 ∈ M there exists d̃ := d̃(x0) > 0 such that if Ar,ε(x0) = {y ∈ M :
r ≤ d(x0, y) ≤ r + ε} is a shell of inner radius r and outer radius r + ε about the point x0 and if r

sufficiently small, 0 < ε� r < 1, then µ(Ar,ε(x0)) ≤ εd̃.
For systems modeled by a Young tower with exponential return time tails satisfying Assumption

A we will verify condition D2(un). Planar dispersing billiards with finite horizon, Lozi-like maps and
Lorenz-like maps satisfy Assumption A and may be modeled by a Young Tower with exponential
return time tails. For planar dispersing billiards with infinite horizon we will use the results of [6].
For these systems we also verify condition D′(un). Our method of proof uses ideas from Collet [8]
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but the arguments need to be modified due to the stable foliation, unbounded derivative and, in
the case of Lozi maps, the dissipative nature of the SRB measure.

1.2. Framework of the proof. Suppose we have a Young Tower with exponential return time
tails for a local diffeomorphism T : M →M of a Riemannian manifold M equipped with Lebesgue
measure m.

We assume that there is a set Λ with a hyperbolic product structure as in Young [35]. Define
∆0 := Λ. Let Λ0,i be a countable partition of ∆0. Let R : ∆0 → N be an L1(m) return time
function with the property that

R|Λ0,i := Ri.

Define the Young Tower by

∆ = ∪i,l≤Ri−1{(x, l) : x ∈ Λ0,i}
and the tower map F : ∆→ ∆ by

F (x, l) =

{
(x, l + 1) if x ∈ Λ0,i, l < Ri − 1

(TRix, 0) if x ∈ Λ0,i, l = Ri − 1
.

For convenience, we will refer to ∆0 := ∪i(Λ0,i, 0) as the base of the tower ∆ and denote Λi := Λ0,i.
We define ∆l = {(x, l) : l < R(x)}, the lth level of the tower. Define the map f = TR : ∆0 → ∆0

i.e. f(x) = TR(x)(x). We may form a quotiented tower (see [35] for details) by introducing an
equivalence relation for points on the same stable manifold. Much of the analysis for the statistical
properties of the tower in [35] (but not in this paper) is performed on the quotiented tower, we will
merely list the features of the Tower that we will use.

There exists an invariant measure m0 for f : ∆0 → ∆0 which has absolutely continuous con-
ditional measures on local unstable manifolds in ∆0, with density bounded uniformly from above
and below.

The tower structure allows us to construct an invariant measure ν for F on ∆ by defining for a

measurable set B ⊂ Λl, ν(B) = m0(F−lB)∫
Λ0Rdm0

and extending the definition to disjoint unions of such

sets in the obvious way. We define a projection π : ∆ → M by π(x, l) = T l(x). We note that
π ◦ F = T ◦ π. The invariant measure µ, which is an SRB measure for T : M → M , is given by
µ = π∗ν. W

s
loc(x) will denote the local stable manifold through x i.e there exists ε(x) > 0 and C > 0,

0 < α < 1 such that W s
loc = {y : d(x, y) < ε} and d(Tny, Tnx) < Cαn for all n ≥ 0. We use the

notation W s
loc rather than W s

ε (x) in contexts where the length of the local stable manifold is not
important. We analogously define W u

loc(x)) and let B(x, r) denote the ball of radius r centered at the

point x. We lift a function φ : M → R to ∆ by defining, with abuse of notation, φ(x, l) = φ(T lx).
Henceforth, we will fix a reference point x0 in the support of µ and define a stochastic process

Xn given by Xn(x) = − log d(Tnx, x0). This observation determines the extreme value distribution
of more general functions with unique maximum at the point x0 [20, 14]. We are interested in the
distribution of the maximum of Xn, denoted by

Mn = max{X0, X1, . . . , Xn}.

We will prove the condition D2(un) [12] for a sequence un for which nµ(B(x0, e
−un(v)))→ e−v for

some v ∈ R. We define κ(n) to be the rate of decay of correlations of Lipschitz functions with
respect to the SRB measure µ on the manifold: so that

|
∫
M
φψ ◦ Tndµ−

∫
M
φdµ

∫
M
ψdµ| ≤ κ(n)‖φ‖Lip‖ψ‖Lip

for all Lipschitz φ, ψ : M → R. In fact we may use the L∞ norm of ψ in the estimate above as ψ is
defined on the quotiented tower (see [35, Section 4]) and in general a faster decay rate than κ(n).
We assume in this paper that there exists θ ∈ (0, 1) such that κ(n) ≤ θn.
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We define

Br,k(x0) =
{
x : T k(W s

η (x)) ∩ ∂B(x0, r) 6= ∅
}

where B(x0, r) is the ball of radius r > 0 about x0.
An immediate consequence of Assumption A is the following:

Proposition 1.1. Under Assumption A there exist constants C > 0 and 0 < τ1 < 1 such that for
any r, k

µ(Br,k(x0)) ≤ Cτk1 .

Proof. As a consequence of [35, (P2)], there exist α ∈ (0, 1) and C > 0 such that d(Tn(x), Tn(y)) ≤
Cαn for all y ∈W s

η (x). In particular, this implies that |T k(W s
η (x))| ≤ Cαk where | . . . | denotes the

length with respect to the Lebesgue measure. Therefore, T k(Br,k(x0)) lies in an annulus of width

2Cαk around the boundary of the ball of radius r centered at the point x0. By Assumption A and
invariance of µ the result follows. �

2. Condition D2(un)

In this section, we establish condition D2(un) for maps modeled by a Young Tower with expo-
nential tails satisfying Assumption A. Our main theorem for this section is:

Theorem 2.1. Let T : (M,µ)→ (M,µ) be a dynamical system modeled by a Young Tower with ex-
ponential tails satisfying Assumption A. Then the stochastic process Xn := − log d(Tnx, x0) satisfies
the condition D2(un), namely, for any integers j, l and n,

(3) |µ ({X0 > un} ∩ {Mj,l ≤ un})− µ ({X0 > un})µ ({M0,l ≤ un})| ≤ γ(n, j)

where γ(n, j) is non-increasing in j for each n and nγ(n, tn) → 0 as n → ∞ for some sequence
tn = o(n), tn →∞.

We now show how D2(un) is used, along with a version of D
′
(un) to obtain extreme laws. This

uses a blocking argument of Collet [8] based on extreme value statistics (Collet attributes this
approach to Galambos [16]).

2.1. The Blocking Argument. We will divide successive observations {X0, . . . , Xn−1} of length n
into q blocks of length p+t. The gap t will be large enough that successive p blocks are approximately
independent but small enough so that µ(Mn ≤ un) is approximately equal to µ(Mq(p+t) ≤ un). For

the purposes of our applications, which have exponential decay of correlations, we may take p ≈
√
n

and t = tn = (log n)5 but the method is quite flexible. Using approximate independence of p blocks
we show µ(Mn ≤ un) ≈ µ(Mp ≤ un)q and µ(Mn ≤ un) ≈ 1− pµ(Mp ≥ un). More precisely Collet,
using general set inclusions and probabilistic arguments shows

|µ(Mn ≤ un)− (1− pµ(X0 > un))q| ≤ qΓn
where

Γn = pγ(n, t) + tµ(X0 > un) + 2p

p−1∑
j=1

µ({X0 > un} ∩ {Xj > un}).

By assumption
lim
n→∞

nµ(X0 > un) = e−v

so
lim
n→∞

µ(Mn ≤ un) = e−e
−v

provided qΓn → 0. The term pqγ(n, tn) → 0 from D2(un) while qtµ(X0 > un) → 0 as nµ(X0 >

un)→ e−v and t = o(n). Finally we need to check n
∑p−1

j=1 µ({X0 > un}∩ {Xj > un})→ 0. This is

condition D
′
(un). In applications p is prescribed as a function of n (for example p =

√
n). In our
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applications we will give more details in our proofs on the interplay of non-recurrence and decay of
correlations needed to ensure n

∑p−1
j=1 µ({X0 > un} ∩ {Xj > un})→ 0.

3. Proof of Theorem 2.1.

We now turn to the proof of Theorem 2.1. The constant τ1 below is from Assumption A 1.1.

Lemma 3.1. Suppose Φ : M → R is Lipschitz and Ψa,b is the indicator function

Ψa,b := 1{Xa≤un,Xa+1≤un,...,Xa+b≤un}

Then for all j ≥ 0

(4)

∣∣∣∣∫ ΦΨ0,l ◦ T jdµ−
∫

Φdµ

∫
Ψ0,ldµ

∣∣∣∣ ≤ O(1)
(
‖Φ‖∞τ bj/2c1 + ‖Φ‖Lipθbj/2c

)
Proof. Define the function Φ̃ : ∆ → R by Φ̃(x, r) = Φ(T r(x)) and the function Ψ̃a,b(x, r) =
Ψa,b(T

r(x)). We choose a reference unstable manifold γ̃u ⊂ ∆0 and by the hyperbolic product
structure each local stable manifold W s

η (x) will intersect γ̃u in a unique point x̂. Here x denotes a
point in the base of the tower ∆0 and we therefore have x ∈W s

η (x̂).

We define the function Ψa,b(x, r) := Ψa,b(x̂, r). We note that Ψa,b is constant along stable

manifolds in ∆ and the set of points where Ψa,b 6= Ψ̃a,b is, by definition, the set of (x, r) which
project to points T r(x) for which there exist x1, x2 on the same local stable manifold as T r(x) for
which

x1 ∈ {Xa ≤ un, . . . , Xa+b ≤ un}
but

x2 /∈ {Xa ≤ un, . . . , Xa+b ≤ un}
This set is contained inside ∪a+b

k=aT
−kBun,k. If we let a = bj/2c and b = l then by Proposition 1.1

we have

ν
{

Ψ̃bj/2c,l 6= Ψbj/2c,l

}
≤

l∑
k=bj/2c

µ(Bun,k) ≤ O(1)τ
bj/2c
1 .

By the decay of correlations as proved in [35] under the assumption of exponential tails, we have∣∣∣∣∫ Φ̃Ψbj/2c,l ◦ F j−bj/2cdν −
∫

Φ̃dν

∫
Ψbj/2,lcdν

∣∣∣∣ ≤ O(1)‖Φ‖Lip‖Ψ‖∞θbj/2c.

Therefore, ∣∣∣∣∫ ΦΨbj/2c ◦ T j−bj/2cdµ−
∫

Φdν

∫
Ψbj/2c,ldµ

∣∣∣∣
=

∣∣∣∣∫ Φ̃Ψ̃bj/2c,l ◦ F j−bj/2cdν −
∫

Φ̃dν

∫
Ψ̃bj/2,lcdν

∣∣∣∣
≤
∣∣∣∣∫ Φ̃

(
Ψ̃bj/2c,l −Ψbj/2c,l

)
◦ F j−bj/2cdν

∣∣∣∣+O(1)‖Φ‖Lipθ
bj/2c

+

∣∣∣∣∫ Φ̃dν

∫ (
Ψbj/2c,l − Ψ̃bj/2c,l

)
◦ F j−bj/2cdν

∣∣∣∣
≤ O(1)

(
‖Φ‖∞ν

{
Ψbj/2c,l 6= Ψ̃bj/2c,l

}
+ ‖Φ‖Lipθ

bj/2c
)

≤ O(1)
(
‖Φ‖∞τ bj/2c1 + ‖Φ‖Lipθ

bj/2c
)
.(5)

We complete the proof by observing that
∫

Ψ0,ldµ =
∫

Ψbj/2c,ldµ by the µ invariance of T and that

Ψbj/2c,l ◦ T j−bj/2c = Ψj,l = Ψ0,l ◦ T j .
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�

To prove condition D2(un), we will approximate the characteristic function of the set {X0 > un}
by a suitable Lipschitz function. This approximation will decrease sharply to zero near the boundary
of the set {X0 > un}. The bound in Lemma 3.1 involves the Lipschitz norm, therefore, we need to
be able to bound the increase in this norm. To this end, we prove our next lemma.

Lemma 3.2. (1) For µ a.e. x0 for every ε > 0 there exists an N ∈ N such that for all n ≥ N
1

d+ ε
(v + log n) ≤ un(v) ≤ 1

d− ε
(v + log n)

(2) Denote by S(n, x0) := A
(e−un−e−u2n , e−u2n )

(x0) the annulus formed by the region between balls

of radius e−un and e−un − e−u2n about x0. There exists a δ(x0) ∈ (0, 1) such that for n large
enough

µ(S(n, x0)) ≤ O(1)(n−2δv−δ logn).

Proof. (1) By the definition of d, for any ε > 0 there exists an N1 such that for all n ≥ N1,

(e−un)(d+ε) ≤ µ(B(x, e−un)) ≤ (e−un)(d−ε). Since we have assumed limn→∞ nµ(B(x, e−un))→ e−v,
we must have lim supn(e−un)d+ε ≤ e−v. Since e−v > 0, this implies given η > 0 there exists N2

such that n(e−un)d+ε ≤ (1 + η)e−v for all n ≥ N2.
For the other direction, since lim inf n(e−un)d−ε ≥ e−v there exists N3 such that for all n ≥ N3,

n(e−un)d−ε ≥ (1− η)e−v. Since η was arbitrary the result follows.

(2) The proof follows from part (1) and Assumption A. There exists a δ ∈ (0, 1) such that

µ(S(n, x0)) ≤ O(1)|S(n, x0)|δ

where | · | denotes the width of the annulus. From part (1),

|S(x0, n)|δ ≤ e−(u2n)δ

≤ exp

(
− δ

(d+ ε)2
(v + log n)2

)
≤ O(1)(n−2δ′v−δ′ logn)

for some δ′ > 0.
�

We note that if the map T preserves an absolutely continuous measure, as in the case of dispersing
billiards, then this estimate can be obtained trivially. We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We approximate the indicator function 1{X0>un} by a Lipschitz continuous

function Φ as follows. The set {X0 > un} corresponds to a ball of radius e−un centered at the point

x0. We define Φ to be 1 inside a ball centered at x0 of radius e−un − e−u2n and decaying to 0 at a
linear rate on S(n, x0) so that on the boundary of {X0 > un}, Φ vanishes. The Lipschitz norm of
Φ is seen to be bounded by exp(u2

n). Since∣∣∣∣∫ 1{X0>un}Ψbj/2c,l ◦ T
j−bj/2cdµ− µ(X0 > un)

∫
Ψbj/2c,ldµ

∣∣∣∣
≤
∣∣∣∣∫ (1{X0>un} − Φ

)
Ψbj/2c,ldµ

∣∣∣∣+O(1)
(
‖Φ‖∞j2τ

bj/4c
1 + ‖Φ‖Lipθ

bj/2c
)

+

∣∣∣∣∫ (1{X0>un} − Φ
)
dµ

∫
Ψbj/2c,ldµ

∣∣∣∣ ,(6)
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and because ‖1{X0>un} − Φ‖1 ≤ µ(S(n, x0), we have

|µ({X0 > un}| ∩ {Mj,l ≤ un})− µ({x0 > un})µ({M0,l ≤ un}) ≤ γ(n, j)

where
γ(n, j) = O(1)

(
n−2δ′v−δ′ logn + n2v+lognθ

bj/2c
1

)
where θ1 = max {τ1, θ} . Let j = tn = (log n)5. Then nγ(n, tn) → 0 as n → ∞. Note that we had
considerable freedom of choice of tn, anticipating our applications we choose tn = (log n)5.

�

4. Applications

In this section we prove condition D
′
(un) for some concrete examples. We consider Lozi maps

and Sinai dispersing billiards. These are (almost) hyperbolic systems that admit invariant cone
fields, but the derivative map DT is discontinuous or singular.

The proofs in these examples differ due to the particular characteristics of these systems, however,
we identify for the the reader the main steps in the arguments. We start with

Step 1: Control the measure of the set of points which return rapidly to a neighborhood
of themselves. In what follows, the set of points which return to a 1/k neighborhood of
themselves in fewer than (log k)5 steps is denoted by Ek;

Step 2: Use estimates from Step 1 to control the measure of the set of points which return
to a neighborhood of the distinguished point x0 very quickly (for this we resort to a careful
extension of the methods used in the one-dimensional case studied in [8], and in case of
the Lozi maps, we require some quantitative estimates on the distortion of lengths by
holonomies, see Proposition 4.1 and [9]). In what follows, Fk denotes the set of points whose
neighborhoods have large overlaps with the sets Ek. Using the Borel-Cantelli lemma, we
show that almost every point does not belong in Fk infinitely often;

Step 3: Use a decay of correlations to control the measures of exceedences for iterates between
tn := (log n)5 (see equation (1)) and p :=

√
n (see Section 2.1).

4.1. Planar Dispersing Billiard Maps and Flows. Let Γ = {Γi, i = 1 : k} be a family of pair-
wise disjoint, simply connected C3 curves with strictly positive curvature on the two-dimensional
torus T2. The billiard flow Bt is the dynamical system generated by the motion of a point particle
in Q = T2/(∪ki=1( interior Γi) with constant unit velocity inside Q and with elastic reflections at
∂Q = ∪ki=1Γi, where elastic means “angle of incidence equals angle of reflection”. If each Γi is a
circle then this system is called a periodic Lorentz gas, a well-studied model in physics. The billiard
flow is Hamiltonian and preserves a probability measure (which is Liouville measure) µ̃ given by
dµ̃ = CQdq dt where CQ is a normalizing constant and q ∈ Q,t ∈ R are Euclidean coordinates.

We first consider the billiard map T : ∂Q→ ∂Q. Let r be a one-dimensional coordinatization of
Γ corresponding to length and let n(r) be the outward normal to Γ at the point r. For each r ∈ Γ
we consider the tangent space at r consisting of unit vectors v such that (n(r), v) ≥ 0. We identify
each such unit vector v with an angle θ ∈ [−π/2, π/2]. The boundary M is then parametrized by
M := ∂Q = Γ × [−π/2, π/2] so that M consists of the points (r, θ). T : M → M is the Poincaré
map that gives the position and angle T (r, θ) = (r1, θ1) after a point (r, θ) flows under Bt and
collides again with M , according to the rule angle of incidence equals angle of reflection. Thus
if (r, θ) is the time of flight before collision T (r, θ) = Bh(r,θ)(r, θ). The billiard map preserves a
measure dµ = cM cos θdrdθ equivalent to 2-dimensional Lebesgue measure dm = dr dθ with density
ρ(x) where x = (r, θ).

Under the assumption of finite horizon condition, namely, that the time of flight h(r, θ) is bounded
above, Young [35] proved that the billiard map has exponential decay of correlations for Hölder
observations. This settled a long-standing question about the rate of decay of correlations in
such systems. Chernov [6] extended this result to planar dispersing billiards with infinite horizon
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where h(x, r) < ∞ for all but finitely many points (r, θ) but is not essentially bounded. Chernov
also proved exponential decay for dispersing billiards with corner points (a class of billiards we
do not discuss in this paper). A good reference for background results for this section are the
papers [4, 5, 35, 6]. We first establish extreme value statistics for billiard maps and then, in the
next section, deduce corresponding limit laws for billiard flows using the results of Holland et al [20].

We prove,

Theorem 4.1. Let T : M → M be a planar dispersing billiard map. Then for µ a.e. x0 the
stochastic process defined by Xn(x) = − log(d(x0, T

nx)) satisfies a Type I extreme value law in the

sense that limn→∞ µ(Mn ≤ (v + log n+ log(ρ(x0)))/2) = e−e
−v

.

Proof. Assumption A is satisfied by planar dispersing billiards with finite and infinite horizon as
the invariant measure is equivalent to Lebesgue. This is proved in [5, Appendix 2] where it is shown

that d̃ may be taken as 1 in the case of finite horizon and 4/5 in the case of infinite horizon. The
proof of D2(un) is immediate in the case of dispersing billiard maps with finite horizon, as they
are modeled by a Young Tower in [35], have exponential decay of correlations. Chernov [6, Section
5] (see also [5, Section 5]) constructs a Young Tower for billiards with infinite horizon to prove
exponential decay of correlations so that condition D2(un) is satisfied by this class of billiard map

as well. Hence we need only prove condition D
′
(un).

It is known (see [6, Lemma 7.1] for finite horizon and [6, Section 8] for infinite horizon) that dis-

persing billiard maps expand in the unstable direction in the Euclidean metric |.| =
√

(dr)2 + (dφ)2

, in that |DTnu v| ≥ Cλ̃n|v| for some constants C, λ̃ > 1 which is independent of v. In fact

|Ln| ≥ Cλ̃n|L0| where L0 is a segment of unstable manifold (once again in the Euclidean metric)
and Ln is TnL0.

We choose N0 so that λ := Cλ̃N0 > 1 and then TN0 (or DTN0) expands unstable manifolds
(tangent vectors to unstable manifolds) uniformly in the Euclidean metric.

It is common to use the p-metric in proving ergodic properties of billiards. Young uses this
semi-metric in [35]. Recall that for any curve γ, the p-norm of a tangent vector to γ is given as
|v|p = cosφ(r)|dr| where γ is parametrized in the (r, φ) plane as (r, φ(r)). The Euclidean metric in
the (r, φ) plane is given by ds2 = dr2 + dφ2; this implies that |v|p ≤ cosφ(r)ds ≤ ds = |v|. We will
use lp(C) to denote the length of a curve in the p-metric and l(C) to denote length in the Euclidean

metric. If γ is a local unstable manifold or local stable manifold then C1l(γ)p ≤ l(γ) ≤ C2

√
lp(γ).

For planar dispersing billiards there exists an invariant measure µ (which is equivalent to 2-
dimensional Lebesgue measure) and through µ a.e. point x there exists a local stable manifold
W s
loc(x) and a local unstable manifold W u

loc(x). The SRB measure µ has absolutely continuous
(with respect to Lebesgue measure ) conditional measures µx on each W u

loc(x). The expansion by
DT is unbounded however in the p-metric at cos θ = 0 and this may lead to quite different expansion
rates at different points on W u

loc(x). To overcome this effect and obtain uniform estimates on the
densities of conditional SRB measure it is common to definite homogeneous local unstable and local
stable manifolds. This is the approach adopted in [4, 5, 6, 35]. Fix a large k0 and define for k > k0

Ik = {(r, θ) :
π

2
− k−2 < θ <

π

2
− (k + 1)−2}

I−k = {(r, θ) : −π
2

+ (k + 1)−2 < θ < −π
2

+ k−2}

and

Ik0 = {(r, θ) : −π
2

+ k−2
0 < θ <

π

2
− k−2

0 }.

In our setting we call a local unstable (stable) manifold W u
loc(x), (W s

loc(x)) homogeneous if for all
n ≥ 0 TnW u

loc(x) (T−nW s
loc(x)) does not intersect any of the line segments in ∪k>k0(Ik ∪ I−k)∪ Ik0 .

Homogeneous W u
loc(x) have almost constant conditional SRB densities dµx

dmx
in the sense that there
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exists C > 0 such that 1
C ≤

dµx(z1)
dmx

/dµx(z2)
dmx

≤ C for all z1, z2 ∈ W u
loc(x) (see [6, Section 2] and the

remarks following Theorem 3.1).
From this point on all the local unstable (stable) manifolds that we consider will be homogeneous.

Bunimovith et al [5, Appendix 2, Equation A2.1] give quantitative estimates on the length of homo-
geneous W u

loc(x). They show there exists C, τ > 0 such that µ{x : l(W s
loc(x)) < ε or l(W u

loc(x)) <
ε} ≤ Cετ where l(C) denotes 1-dimensional Lebesgue measure or length of a rectifiable curve C.
In our setting τ could be taken to be 2

9 , its exact value will play no role but for simplicity in the

forthcoming estimates we assume 0 < τ < 1
2 .

The natural measure µ has absolutely continuous conditional measures µx on local unstable
manifolds W u

loc(x) which have almost uniform densities with respect to Lebesgue measure on W u
loc(x)

by [6, Equation 2.4].

4.1.1. Controlling the measure of the set of rapidly returning points. Let A√ε = {x : |W u
loc(x)| >

√
ε} then µ(Ac√

ε
) < Cετ/2. Let x ∈ A√ε and consider W u

loc(x). Since |T−kW u
loc(x)| < λ−1|W u

loc(x)|
for k > N0 the optimal way for points T−k(y) in T−kW u

loc(x) to be close to their preimages

y ∈ W u
loc(x) is for T−kW u

loc(x) to overlay W u
loc(x), in which case it has a fixed point and it is

easy to see l{y ∈ W u
loc(x) : d(y, T−ky) < ε} ≤ l{y ∈ R : d(y, yλ) < ε} ≤ (1 − λ−1)ε. Accordingly

l{y ∈W u
loc(x) : d(y, T−ky) < ε} ≤ C

√
εl{y ∈W u

loc(x)}. Recalling that the density of the conditional
SRB-measure µx is bounded above and below with respect to one-dimensional Lebesgue measure
we obtain µx(Ac√

ε
) < C

√
ε. Integrating over all unstable manifolds in A√ε (throwing away the set

µ(Ac√
ε
)) we have µ{x : d(T−kx, x) < ε) < Cετ/2. Since µ is T -invariant µ{x : d(T kx, x) < ε} <

Cετ/2 for k > N0. Hence for any iterate T k, k > N0

Ek(ε) := µ{x : d(T kx, x) < ε} < Cετ/2.

Recall that the scaling constant un(v) is chosen so that nµ(B(x0, e
−un(v)) → e−v, for hyperbolic

billiards we take un(v) = 1
2(v + log n+ log(ρ(x0))) and shrinking balls of radius roughly 1√

n
about

points. This leads to the use of 1√
k

in the next definition. Define

Ek := {x : d(T jx, x) ≤ 2√
k

for some 1 ≤ j ≤ (log k)5}.

We have shown that for any δ > 0, for all sufficiently large k, µ(Ek) ≤ k−τ/4+δ. For simplicity we
take µ(Ek) ≤ k−σ where σ < τ/4− δ and omit the constant e−v in the following equations.

4.1.2. Controlling the measure of the set of points whose neighborhoods have large overlaps with the
sets Ek. Define the Hardy-Littlewood maximal function Ml for φ(x) = 1El(x)ρ(x) where ρ(x) =
dµ
dm(x), so that

Ml(x) := sup
a>0

1

m(Ba(x))

∫
Ba(x)

1El(y)ρ(y)dm(y).

A theorem of Hardy and Littlewood [27, Theorem 2.19] implies that

m(|Ml| > C) ≤ ‖1Elρ‖1
C

where ‖, ‖1 is the L1 norm with respect to m. Let

Fk := {x : µ(Bk−γ/2(x) ∩ Ekγ/2) ≥ (k−γβ/2)kγ/2

Then Fk ⊂ {Mkγ/2 > k−γβ/2} and hence

m(Fk) ≤ µ(Ekγ/2)kγβ/2 ≤ Ck−γσkγβ/2.
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If we take 0 < β < σ and γ > σ/2 then for some δ > 0, k−γσkγβ/2 < k−1−δ and hence∑
k

m(Fk) <∞.

Thus for m a.e. (hence µ a.e.) x0 ∈ X there exists N(x0) such that x0 6∈ Fk for all k > N(x0). Thus

along the subsequence nk = k−γ/2, µ(X0 > unk , X0 ◦ T j > unk) ≤ n−1−δ
k for k > N(x0). This is

sufficient to obtain an estimate for all un. Since limk→∞(k+1
k )γ/2 = 1 if kγ/2 ≤ n ≤ (k+ 1)γ/2 then

for sufficiently large n µ(X0 > un, X0 ◦T j > un) ≤ µ(X0 > unk , X0 ◦T j > unk) ≤ n−1−δ
k ≤ 2n−1−δ.

We now control the iterates 1 ≤ j ≤ N0. If x0 is not periodic then min1≤i<j≤N0 d(T ix0, T
jx0) ≥

s(x0) > 0 and hence for large enough n, for all 1 ≤ j ≤ N0, µ(X0 > un, X0 ◦ T j > un) = 0.
Recalling that un was chosen so that nµ(Be−un (x))→ e−v, we get, for any 1 ≤ j ≤ (log n)5,

µ(X0 > un, X0 ◦ T j > un) ≤ 2n−1−δ.

Hence

lim
n→∞

n

(logn)5∑
j=1

µ(X0 > un, X0 ◦ T j > un) = 0.

4.1.3. Accounting for exceedences between (log n)5 and
√
n. We now use exponential decay of cor-

relations to show

lim
n→∞

n

p=
√
n∑

(logn)5

µ(X0 > un, X0 ◦ T j > un) = 0.

We let 1un denote the indicator function of the set {X0 > un}. We approximate the indicator

function 1un by a Lipschitz function φn which is 1 on a neighborhood of x0 of radius e−un − e−u2n
and linearly decaying to 0 on the complement of the ball of radius e−un . φn has Lipschitz norm

bounded by e(un)2 ≈ e(v+logn)2/4.
Note that

|
∫

1un(1un ◦ T j) dµ− (

∫
1un dµ)2| ≤ |

∫
φn(φn ◦ T j) dµ− (

∫
φn dµ)2|

+ |(
∫
φn dµ)2 − (

∫
1un dµ)2|

+ |
∫

1un(1un ◦ T j) dµ−
∫
φn(φn ◦ T j) dµ|.

If (log n)5 ≤ j ≤ p =
√
n then by decay of correlations |

∫
φn(φn ◦ T j) dµ − (

∫
φn dµ)2| ≤

Ce2u2nθj ≤ Ce−2 logn = C
n2 If n is sufficiently large. Furthermore if n is large |(

∫
φndµ)2 −

(
∫

1un dµ)2| < Cn−2(δv−δ logn) < Cn−2.
Finally |

∫
φn(φn ◦ T j) dµ −

∫
1un(1un ◦ T j) dµ| ≤ µ(φn(x) 6= 1{X0>un}) + µ(φn ◦ T j(x) 6=

1{X0◦T j(x)>un}) ≤
C
n2 .

Hence

lim
n→∞

n

p=
√
n∑

j=(logn)5

µ(X0 > un, X0 ◦ T j > un) = 0.

This concludes the proof of Theorem 4.1.
�
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4.1.4. Billiard flows. The billiard flow Bt : Q → Q may be viewed as suspension flow over the
billiard map T : M →M . In Holland et al [20] extreme value laws are derived for suspension flows
as a consequence of extreme value laws for base maps.

Suppose Bt : Q→ Q is the billiard flow preserving the ergodic invariant natural measure µ̃ and h̄
is the average first return time of the billiard flow from the boundary to the boundary with respect
to µ i.e. h̄ = CM

∫
M h(r, φ) cosφdφ dr where h(r, φ) is the time of flow till the point (r, φ) ∈ ∂Q hits

the boundary again ∂Q. As a consequence of [20, Theorem 2.10], we have the following corollary,

Corollary 4.1. for µ̃ a.e. p0 ∈ Q if φ(p) = − log d(p, p0) and Mt := maxs≤t{φ(Bs(p)) then

lim
t→∞

µ̃(Mt ≤ v + log(t/h̄) + log ρ(x0))/2) = e−e
−v
.

4.2. Lozi-like maps. The Lozi mapping T is a homeomorphism of R2 given by

(x, y)→ (1 + y − a|x|, bx)

where a and b are parameters. It has been studied as a model of chaotic dynamics intermediate in
complexity (or difficulty) between Axiom A diffeomorphisms and Henon diffeomorphisms [29, 9, 34].
The derivative is discontinuous on the y-axis and this leads to arbitrarily short smooth local unstable
manifolds. Misuiurewicz [29] proved that there exists an open set G of parameters such that if
(a, b) ∈ G the map T is hyperbolic. If (a, b) ∈ G, then Ta,b has invariant stable and unstable
directions (where the derivative is defined) and the angle between them is bounded below by π/5.
We will restrict our attention to maps with parameters in the set G.

These maps admit a strict cone, and the tangent derivatives, where defined, satisfy uniform
expansion estimates [9] in that there exists λ > 1 such that |DTnv| ≥ λn|v| for all v ∈ Eu

(the unstable direction) and correspondingly for Es (the stable direction). Ta,b has an invariant
ergodic probability measure µ [9] which is absolutely continuous with respect to the one-dimensional
Lebesgue measure along local unstable curves. In fact the conditional invariant measure on local
unstable manifolds is simply 1-dimensional Lebesgue measure [9]. Young [34] established similar
results for a broader class of maps, ‘generalized’ Lozi maps which are piecewise C2 mappings of
the plane. But one reason for restricting to maps Ta,b, (a, b) ∈ G is that for such maps Collet and
Levy have also shown that for µ almost every point on the attractor the Hausdorff dimension of µ
exists and is constant [9].

The existence of a dimension d implies that for almost every x in the attractor, the dimension
constant d(x) in the definition of un is the same. We will use a sequence of scaling constants

un(x0, v) defined for a generic point x0 by the requirement that nµ(B(x0, e
−un(x0,v))→ e−v.

In later work [35, Section 7] Young constructs SRB measures via a Tower construction for a
broader class of piecewise C2 uniformly hyperbolic maps of the plane. The Lozi map Ta,b with
(a, b) ∈ G, b sufficiently small may be modeled by a Young Tower with exponential tails [35].
Hence the Lozi maps we consider satisfy exponential decay of correlations for Hölder continuous
observations.

We now summarize the ergodic properties of the Lozi maps that we will use. T has an invariant
SRB-measure µ and µ a.e. point x has a local stable manifold W s

loc(x) and local unstable manifold
W u
loc(x). In [9, Proposition IV.1] it is shown that the conditional expectations of µ on the local

unstable manifolds are the corresponding 1-d Lebesgue measures. Furthermore µ a.e. point x has
a quadrilateral β(x) with a local product structure, in the sense that y ∈ β(x) implies there exists

a unique z ∈ β(x) such that z = W u
loc(y)∩W s

loc(x) and a unique z
′ ∈ β(x) such that z

′
= W s

loc(y)∩
W u
loc(x) [9, Section 4]. Suppose that W u

loc(x) and W u
loc(x

′
) are local unstable manifolds. Then the

holonomy h : W u
loc(x)→W u

loc(x
′
) is defined on the set D(h) := x ∈W u

loc(x) : W s
loc(x)∩W s

loc(x
′
) 6= ∅.

The holonomy between local unstable manifolds satisfies the following quantitative estimates,
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Proposition 4.1. [9, Proposition II.4] Given W u
loc(x) and W u

loc(x
′
) there is a constant L such that

for any Borel subset A ⊂W u
loc(x) ∩D(h),

(1− L(d(W u
loc(x),W u

loc(x
′
))1/3)l(A) ≤ l(h(A)) ≤ (1 + L(d(W u

loc(x),W u
loc(x

′
))1/3)l(A).

Note that the local unstable manifolds lie in a strict cone and the conditional invariant measure
on local unstable manifolds is 1-dimensional Lebesgue measure. Suppose that x0 ∈ M , Ar,ε(x0) is
an annulus with center x0 and mx is conditional measure on W u

loc(x) with x in the quadrilateral
β(x0). Since mx(Ar,ε) < C

√
ε for all x ∈ β(x0), Assumption A is satisfied. Thus we need only show

condition D
′
(un). We will establish D

′
(un) in this section and prove the following theorem.

Theorem 4.2. Let Ta,b : M → M be a Lozi map with (a, b) ∈ G with b sufficiently small. Then
for µ a.e. x0 the stochastic process defined by Xn(x) = − log(d(x0, T

nx)) satisfies a Type I extreme

value law in the sense that limn→∞ µ(Mn ≤ un(x0, v)) = e−e
−v

.

Remark 4.2.1. We do not know the precise scaling constants un(x0, v), but for all ε > 0,

limn→∞ µ(Mn ≤ (1 − ε)(log n + v)/d)) ≤ e−e
−v ≤ limn→∞ µ(Mn ≤ (1 + ε)(log n + v)/d)) which

provides an estimate of the correct sequence un.

Proof. We need only establish D
′
(un). We will denote the length of a rectifiable curve C by l(C)

in the usual Euclidean metric. As tangent vectors to local unstable manifolds lie in a strict cone
the projected length onto either the horizontal or vertical axis of a connected component C of
T kW u

loc(x) is bounded below by κl(C) for some κ > 0. This constant will be absorbed into our C’s
below, so that the expansion of a local unstable manifold under T j may be used to estimate the
measure of points which satisfy d(x, T jx) < ε. The projection of W u

loc(x) onto the horizontal axis
expands uniformly for all j > N0 for some N0, but as in the case of billiards this does not affect
our argument if x0 is not a periodic point. For simplicity of exposition we assume N0 = 1.

One would think that as the derivative is bounded and there is uniform expansion in the unstable
direction, which lies within a cone, the proof of D

′
(un) would be immediate but the presence of

discontinuities for the derivative complicates the picture. If W u
loc(x) is a local unstable manifold then

Tn(W u
loc(x)) is either a line segment or a connected broken line segment. Here is what could possibly

go wrong in the latter case. Suppose that the map T (restricted to local unstable manifolds),

expands uniformly and |T ′(x)| > λ > 1. Let L be a segment of unstable manifold and consider
TnL. It expands but may encounter the set of discontinuities/singularities S. Suppose TnL is
partitioned into M smooth components βi with corresponding pre-image intervals αi ⊂ L so that
Tnαi = βi. Suppose the map Tn folds back on itself many times and places each βi atop αi such
that the left endpoint xi of αi very close to the left endpoint Tnxi of βi. If |βi| < ε then each
point in αi lies within ε of its image under Tn. We have to show this cannot happen. We use the
structure of a Young Tower to do this.

4.2.1. Controlling the conditional measure of the set of points which return rapidly to a neighborhood
(in the phase space) of themselves. We first show there exists σ > 0 such that for a generic point z
(generic here means a set of points of full measure) if ε is sufficiently small then mz(y ∈ W u

loc(z) :
d(y, T jy) < ε) < εσl(W u

loc(z)) where mz is conditional measure on W u
loc(z).

Assume that z = π(x, r) for some (x, r) ∈ ∆ i.e. for some i, x ∈ Λi ⊂ Λ0, r < R(x) = Ri
we have T rx = z. We may assume without loss of generality that W u

loc(z) ⊃ T r(W u
loc(x) ∩ Λi),

otherwise we could refine the partition on the Tower by defining a new return time on the base
Rk(y) = R(y) + . . .+ R(fky). By refining in this way we could also require (TR)

′
(x) > 2. This is

equivalent to considering a Tower with return time partition Pk :=
∨k
j=0 f

−jP0 on the base, where

P0 is the original partition into sets {Λi}. For large enough k, W u
loc(z) ⊃ T r(W u

loc(x)∩Λi). Note that
the new Tower will also have exponential return time tails. We identify T r(W u

loc(x)∩Λi)∩W u
loc(z) :=

W u
ρ (x) ⊂M with W u

loc(x, r) on the Tower. The portion of local unstable manifold W u
ρ (z) may not

be symmetrical about z but this will not affect our argument.
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There exists τ > 0 such that if ε > 0 is sufficiently small then except for a set of Λ′is of m0

measure less than ετ , |W u
η (y) ∩Λi| >

√
ε for all y := (y, 0) ∈ Λi. This observation uses exponential

decay of the return time. To see this suppose that Λn has return time Rn. Let γ be the length
of Λ0 in the unstable direction. Since |T ′(x)| < K is bounded we have KRn |Λn| ≈ γ and hence

|Λn| ≥ γe−Rn logK . So if Rn <
− log ε
2 logK then |Λn| > γ

√
ε. Since we have exponential return time

tails, m(x ∈ Λ0 : R(x) > T ) ≤ CθT for some 0 < θ < 1. Hence m0(∪Λn ⊂ Λ0 : |Λn| <
√
ε) < ετ for

some τ ≈ − log θ
2 logK . Choose 0 < σ < 1 so that εσ > ετ +

√
ε for sufficiently small ε > 0.

Now T j(W u
ρ (z)) expands uniformly for j = 1 to Ri− r then makes a full crossing of the base Λ0.

By full crossing we mean that on the quotiented tower T j(W u
ρ (z)) = Λ̃0, where Λ̃0 is Λ0 quotiented

along stable manifolds. By the same argument as in the case of billiards, by uniform expansion, for
sufficiently small ε > 0 for each j < Ri−r , l{x ∈W u

ρ (z) : d(x, T jx) < ε} ≤ C̃ε < Cεl(W u
ρ (z)) where

l is one-dimensional Lebesgue measure. For j = Ri − r, T j(W u
ρ (z)) has made a full crossing and

this partitions W u
ρ (z) into components Ck such that for each Ck, T

Ri−rCk crosses Λk. By bounded
distortion, (except for a set of measure less than ετ l(W u

ρ (z)) corresponding to those Ck such that

TRi−rCk crosses Λk and |Λk| <
√
ε) each Ck satisfies l(TRi−rCk) >

√
ε. If l(TRi−rCk) >

√
ε then

l(y ∈ Ck : d(y, TRi−ry) < ε) ≤
√
εl(Ck). This proves l(y ∈W u

ρ (z) : d(TRi−ry, y) < ε) ≤ εσl(W u
ρ (z))

as εσ >
√
ε+ ετ .

Each set TRi−rCk expands uniformly under T s until s = Rk, so for s < Rk, l(y ∈ Ck :
d(y, T s+Ri−ry) < ε) ≤

√
εl(Ck). When s = Rk, T

sTRi−rCk has made a full crossing and Ck is
partitioned into sets Akj such that T sTRi−rAkj = Λj ∩ T sTRi−rCk. By bounded distortion except

for a set of Akj ’s of measure less than ετ l(Ck), each Akj satisfies l(T sTRi−lAkj ) >
√
ε in which case

l(y ∈ Akj : d(y, T s+Ri−ry) < ε) ≤
√
εl(Akj ). Thus l(y ∈ Ck : d(y, T s+Ri−ry) < ε) ≤ εσl(Ck) for

0 ≤ s ≤ Rk.
Given t we induce a partition of W u

ρ (z) by writing, for each x ∈W u
ρ (z), t = R(x)− r+R(fx) +

. . .+R(fn(x)(x)) +k(x), so that F t(x) has made precisely n returns to the base and moved k levels

up the Tower. This defines a partition of W u
ρ (z) into intervals Ijt such that points in Ijt have not

been separated on the Tower for n− 1 returns to the base (n(x) a random variable), then made a
full crossing and moved up to level k(x). By bounded distortion and the same argument as in the

case of the components Ck, for each Ijr , l(x ∈ Ijr : d(x, T rx) < ε) ≤ εσl(Ijr ). This proves that for all
j, l(y ∈W u

ρ (z) : d(y, T jy) < ε) < εσl(W u
ρ (z)).

Now let x ∈ M be a generic point so that for a (sufficiently small) local unstable manifold
W u
η (x) we have l(y ∈ W u

η (x) : d(y, T jy) < ε) < εσl(W u
η (x)). We consider W u

η (x) as a measure
space equipped with 1-dimensional conditional Lebesgue measure mx.

Let

Ek := {y ∈W u
η (x) : d(T jy, y) ≤ 3√

k
for some 1 ≤ j ≤ (log k)5}.

We have shown that for any δ > 0, for all sufficiently large k, mx(Ek) ≤ k−σ+δ. For simplicity,

we will take mx(Ek) ≤ k−σ/2.

4.2.2. Control the conditional measure on an unstable leaf of the set of points whose neighborhoods
have large overlaps with Ek, and extend these estimates to µ. Define the Hardy-Littlewood maximal
function Ml for φ(y) = 1El(y) so that

Ml(p) := sup
a>0

1

2a

∫
Ia(p)

1El(y)dmx(y)



16 C. GUPTA, M. P. HOLLAND, AND M. NICOL

where Ia(x) = {y ∈ W u
η (x) : d(y, p) ≤ a}. By the Hardy and Littlewood Theorem [27, Theorem

2.19], for any C > 0,

mx(|Ml| > C) ≤ ‖1Elρ‖1
C

where ‖, ‖1 is the L1 norm with respect to mx. Let

Fk := {z ∈W u
η (x) : mx(Ik−γ/2(z) ∩ Ekγ/2) ≥ (k−γβ/2)kγ/2}.

Then Fk ⊂ {Mkγ/2 > k−γβ/2} and hence

mx(Fk) ≤ mx(Ekγ/2)kγβ/2 ≤ Ck−γσ/4kγβ/2.

If we take 0 < β < σ/4 and γ > 8/σ then for some δ > 0 mx(Fk) < k−1−δ. This implies that∑
k

mx(Fk) <∞

and hence by the Borel-Cantelli lemma for mx a.e. x0 there exists N(x0) such that x0 6∈ Fk for all
k > N(x0).

Since x was arbitrary and the invariant measure is carried on unstable manifolds this im-
plies that for µ a.e. x there exists an N(x0) such that mx0{y ∈ W u

k−γ/2
(x0) : d(f jy, y) <

3√
kγ/2

for any j = 1, . . . , (log kγ/2)5 } < (kγ/2)−1−δ for all k ≥ N(x0). As in the case of billiards,

since limk→∞(k+1
k )γ/2 = 1, we obtain the same estimate for all k sufficiently large, not just along

the subsequence kγ/2.
If d(y, z) < 1√

k
and z ∈W s

η (y) then d(f jz, z) < 1√
k

implies that d(f jy, y) < 3√
k

since d(f jy, y) ≤
d(f jz, z)+d(z, y)+d(f jz, f jy). Thus d(f jy, y) > 3√

k
for all j = 1, . . . , (log k)5 implies that d(f jz, z) >

1√
k

for all j = 1, . . . , (log k)5 for all z ∈W s
1√
k

(y).

Since the holonomy map satisfies the quantitative estimates of Proposition 4.1 on each unstable
manifold W u

η (x) in a neighborhood of x0 of diameter 1√
k

for sufficiently small k,

mx{y ∈W u
1/
√
k
(x) : d(f jy, y) <

1√
k

for any j = 1, . . . , (log k)5 } <
√
k
−1−δ

(1+
√
k
−1/3

) <
√
k
−1−δ′

for some δ
′
> 0. Thus the fractional conditional measure on each unstable manifold in a 1√

k

neighborhood of x0 of points y ∈ W u
η (x) such that d(f jy, y) < 1

k for any j = 1, . . . , (log k)5 is
bounded by

(
√
k
−1−δ

(1 + (
√
k)−1/3))/k−1/2 <

√
k
−δ′

.

Recalling that un was chosen so that nµ(Be−un (x)) → e−v, we obtain that for any 1 ≤ j ≤
(log n)5,

µ(X0 > un, X0 ◦ T j > un) ≤ Cn−1−δ′/2

Hence n
∑(logn)5

j=1 µ(X0 > un, X ◦ T j > un))→ 0.

4.2.3. Account for exceedences between (log n)5 and
√
n. The argument that exponential decay of

correlations implies that n
∑p

(logn)5
µ(X0 > un, X0 ◦ T j > un)→ 0 is the same as that for billiards.

This concludes the proof of Theorem 4.2.
�
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4.3. Lorenz maps. In this section we consider one dimensional Lorenz maps that arise from
geometric Lorenz flows. The Lorenz equations

ẋ = 10(y − x), ẏ = 28x− y − xz, ż = xy − 8

3
z,(7)

were introduced in 1963 by Lorenz [25], as a simplified nonlinear model for the weather. The
mathematical study of these equations began with the geometric Lorenz flows, see [17, 33] which
were shown to possess a strange attractor with sensitive dependence on initial conditions. Statistical
properties of the actual Lorenz equations (7) were established by Tucker [31, 32]. He showed the
existence of an attractor which supports an SRB measure.

The geometrical model can be described as follows. Let 0 be an equilibrium for a smooth (at least
C1+ε) flow Tt on R3. For the corresponding vector field V : R3 → R3 suppose that the eigenvalues
of (DV )0 are real and satisfy

λss < λs < 0 < λu and λu > |λs|.(8)

We choose coordinates (x1, x2, x3) so that (DV )0 = diag{λu, λss, λs} and suppose that the flow Tt is
C1+ε-linearizable in a neighborhood of 0. After rescaling, we may suppose that the flow is linearized
in a neighborhood of the unit cube. Define the cross-sections M = {(x1, x2, 1) : |x1|, |x2| ≤ 1},
M ′ = {(1, x2, x3) : |x2|, |x3| ≤ 1}. The Poincaré map T : M →M (where defined) decomposes into
T = T2 ◦ T1 where T1 : M → M ′ and T2 : M ′ → M . Write T (x) = Th(x)(x) where h : M → R+ is
the first return time to M .

It is shown in [31] that T : M → M has a topologically transitive attractor with a singular
hyperbolic structure. The map T has a stable foliation [31], so that for some ε > 0 there exists
a T -invariant C1+ε foliation into local stable manifolds (including the singular stable manifold
W s(0) ≡ {x1 = 0}), and a constant λ0 ∈ (0, 1) such that for all x, y in the same local unstable
manifold and all n ≥ 1, |Tnx − Tny| ≤ Cλn0 . Taking the quotient along local stable manifolds, a
C1+ε one-dimensional expanding map is f : M →M obtained with a singularity at 0. We identify
M with X = [−1, 1]. The map f is a one-dimensional uniformly expanding map with a singularity
at x = 0. The one dimensional Lorenz map f : X → X satisfies the following conditions:

(L1) There exist C > 0 and λ > 1 such that for all x ∈ I and n > 0, |(fn)′(x)| > Cλn.

(L2) There exist β′, β ∈ (0, 1) such that f ′(x) = |x|β−1g(x) where g ∈ Cβ′(X), g > 0.
(L3) f is locally eventually onto. i.e. for all intervals J ⊂ X, there exists k = k(J) > 0 such

that fk(J) = X.

It is shown in [36] that f has an absolutely continuous invariant measure µ whose density lies in
BV, the space of functions of bounded variation. Moreover from [10], the system (f,X, µ) can be
modelled by a Young tower with exponential tails. Denoting the base of the tower by Λ ⊂ X, we
let P0 = {Λl} denote the canonical partition of Λ into subsets Λl with R | Λl = Rl, and fRlΛl = Λ.
We let P = {Λl,j} denote the partition on the tower, where Λl,j is identified with f j(Λl), (j < Rl).
We assume there exists θ < 1 such that µ({R > n}) = O(θn).

Theorem 4.3. If (f,X, µ) is a Lorenz map then a Type I extreme value law holds for the time
series of observations Xj = − log d(f jx, x0) for µ-a.e. x0 ∈ X.

Let

Ek(ε) = {x ∈ X : d(fkx, x) < ε}
and

Ek = {x ∈ X : d(f jx, x) <
1

k
, for some 1 ≤ j ≤ (log k)5}.

Consider also a partition on the tower that consist of monotonicity subsets under fk. This partition

will be defined as follows. Given P = ∪l,jΛl,j as before, let Pk =
∨k−1
i=0 f

−iP. For each I ∈ Pk we
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have f i(I) ⊂ Λli,ji (for i ≤ k), and in particular fk(I) = Λlk,jk (for some Λlk,jk). For I ∈ Pk we
have bounded distortion of f i | I for i ≤ k.

Proposition 4.2. There exists 0 < a < 1, 0 < θ̃ < 1 such that µ(Ek) < θ̃−(log k)a.

We begin by estimating µ(Ek(ε)) and do this by considering the intersection Ek(ε)∩I with I ∈ Pk.
Given δ > 0, we will estimate µ(Ek(ε) ∩ I) in two separate cases: i) when |fk(I)| ≥ δ, and ii) when
|fk(I)| < δ. In both cases i) and ii) we then take the sum of µ (Ek(ε) ∩ I) over all such I ∈ Pk. By
a suitable choice of δ we show that (for fixed k), µ(Ek(ε)) decays to zero as ε → 0. We will need
precise bounds on this rate of decay.

Big images. Suppose I ∈ Pk and |fk(I)| ≥ δ for some δ > 0. Consider the set I ∩ E(ε) and assume
the scenario where fk(I) fully crosses I. We now estimate the proportion of I that intersects Ek(ε).
Given this scenario, Ek(ε) ∩ I 6= ∅, and so we (try to) solve for values x−, x+ such that

fk(x+) = x+ + ε,

fk(x+) = x+ − ε.

If a solution exists for both x+, x− then we obtain by the mean value theorem:

(fk)′(c)(x+ − x−) = (x+ − x−) + 2ε

for some c ∈ [x+, x−]. Hence we obtain

|x+ − x−| ≤ 2ε

|(fk)′(c)− 1|
and in particular

|fk(I ∩ Ek(ε))|
|fk(I)|

≤ O
( ε
δ

)
, if |(fk)′(c)− 1| ≥ C > 0.

We have made various assumptions, namely that fk(I) fully crosses I and such x+, x− above exist.
If either of these conditions fail then the estimate obtained above for the ratio |fk(I∩Ek(ε)|/|fk(I)|
is still valid. i.e. either Ek(ε) ∩ I = ∅ or fk(I) only partially crosses I thus leading to a smaller
esimate for µ(Ek(ε) ∩ I). So by applying bounded distortion (twice) we obtain,

|(I ∩ E(ε))|
|I|

,
|Λj ∩ f−j(I ∩ E(ε))|
|Λl ∩ f−j(I)|

< C
( ε
δ

)
.

Following [8, Section 2], let µ0 be the invariant measure for the induced map fR then

µ0(Λj ∩ f−j(I ∩ E(ε))) ≤ C
( ε
δ

)
µ0(Λl ∩ f−j(I)).

Since all the intervals I ∈ Pk are disjoint we obtain a contributionO(ε/δ)µ0(Λl) of large intervals I ∈
Pk that are contained in each f j(Λl). Now sum over j ≤ Rl to get a contribution O(ε/δ)Rlµ0(Λl),
and then sum again over Rl to get a total contribution O(ε/δ). This gives the estimate for µ(Ek(ε)∩
{I ∈ Pk : |fk(I)| > δ}).

Small images. Let Λl ⊂ Λ be such that Λl ∈ P0. In the following we let C > 0 and θi < 1
(i = 0, 1, . . .) denote generic constants which do not depend on k (via Pk). They might depend on
the constants appearing in (L1)-(L3).

Lemma 4.1. There exist θ0, α, δ0 < 1 such that for all δ < δ0

µ{Λl ∈ P0 : |Λl| < δ} ≤ θ(− log δ)α

0 .

We will consider later the corresponding estimate for elements of P and Pk.
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Proof. This proposition can be proved as follows. We divide into two cases: 1) where Rl >
√
− log δ

and 2) where Rl <
√
− log δ.

For case 1) we establish by exponential decay of correlations:

µ({Λl ⊂ Λ : |Λl| < δ, Rl >
√
− log δ}) ≤ µ({Λl ⊂ Λ : Rl >

√
− log δ})

≤ θ(− log δ)α .
(9)

For case 2), we have by assumption |Λl| < δ and Rl <
√
− log δ. Hence by the pigeon hole principal

and bounded distortion there exists i < Rl such that f ′ | f i(Λl) > O[(δ−1)1/
√
− log δ]. Define

A :=

√
− log δ⋃
m=1

f−m{|f ′(x)| ≥ (1/δ)1/
√
− log δ}.

For δ sufficiently small the set {x ∈ X : |f ′(x)| ≥ (1/δ)1/
√
− log δ} is a neighbouhood of x = 0.

Condition (L2), and bounded variation of the density of µ imply that its µ-measure is bounded by

(1/δ1)c/
√
− log δ for some c > 0 (where the constant c depends on β, β′). Invariance of µ implies that

µ(A) ≤
√
− log δ(1/δ1)c/

√
− log δ ≤ θ

√
− log δ

1

for some θ1 < 1. Hence to conclude case 2) we observe that that if Λ ∈ P0 with |Λl| < δ and
Rl <

√
− log δ then Λl ⊂ A and so the result follows. �

Define sets Aδ and Bδ as follows:

Aδ := {Λl,j ∈ P : |Λl,j | < δ}, Bδ := {I ∈ Pk : |fk(I)| < δ}.

We will show that µ(Aδ) < θ̃(− log δ)α (for some θ̃ < 1), and use this to estimate the measure of Bδ.
We state the following.

Lemma 4.2. There exist θ̃0, α, δ0 < 1 such that for all δ < δ0

µ(Bδ) ≤ kθ̃
(− log δ)α

0 .

Proof. Take I ⊂ Pk so that f i(I) ⊂ Λli,ji for some i ≤ k. The sets I result from a sub-partition of
Λl,j into disjoint sets which make a number of returns to the base Λ up to time k. If k + j < Rl
then I = Λl,j , otherwise if Rl < k + j we sub-divide Λl,j into monotonicity sub-intervals I ⊂ Λl,j
such that f i(I) ⊂ Λli,ji up to time k. Such intervals I may make up to a maximum of k returns to
the base Λ (before time k).

Suppose that |Λl,j | < δ, then by uniform expansion estimates it follows that |Λl,0| = |Λl| < δ.
Thus

Aδ ⊂ {∪l,jΛl,j : |Λl| < δ}.
Taking measures and then using Lemma 4.1 we have:

µ(Aδ) ≤ µ{∪l,jΛl,j : |Λl| < δ} ≤
∑
|Λl|<δ

Rlµ0(Λl)

≤
∑
|Λl|<δ

Rl<
√
− log δ

Rlµ0(Λl) +
∑

Rl>
√
− log δ

Rlµ0(Λl)

≤ θ̃
√
− log δ

1

for some θ̃1 < 1. This gives the required estimate for µ(Aδ). Now for each I ⊂ Bδ ∩ Λl,j , we have

that fk(I) ⊂ Aδ. Given Λj,l, either k + j < Rl and Λj,l ⊂ Aδ or else Rl < k + j and we subdivide
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Λl,j into monotonicity subintervals I that eventually enter Aδ for some time m ∈ [1, k]. Thus

Bδ ∩ Λl,j ⊂ Λl,j ∩

(
k⋃

m=0

f−m(Aδ)

)
.

We apply f−j to this set to pull back to Λl and then sum over all such Λl. Taking the resulting
measure of this set gives:

∞∑
Rl=0

Rl−1∑
j=0

k∑
m=0

µ0(Λl ∩ f−j−m(Aδ))

where µ0 is equivalent to Lebesgue (it is the measure on the base Λ0). We split this sum over Rl
into two parts (I), and (II). In (I) we will take Rl > q̃(δ) for some constant q̃ (which is large when
δ is small) and use µ0(Λl ∩ f−j−m(Aδ)) = µ0{Λl}. This measure will be small by integrability of
Rl wrt µ. In (II) we will use µ0(Λl ∩ f−j−m(Aδ)) = µ0(Aδ) and show that this measure is small by
exponential decay of correlations.

So taking Rl > q̃(δ), the sub-sum (I) can be estimated as:

Cµ

∞∑
Rl=q̃

Rl−1∑
j=0

k+Rl∑
m=0

µ(Λl) ≤ Cµ
∞∑

Rl=q̃

Rl(k +Rl)µ(Λl)

≤ Cµ
∞∑

Rl=q̃

Rl(k +Rl)θ
Rl
1 ≤ Ckθ

q̃
2

for θ1, θ2 < 1. Taking Rl < q̃(δ), the sub-sum (II) can be estimated as:

Cµ

q̃∑
Rl=0

Rl−1∑
j=0

k+Rl∑
m=0

µ(Aδ) ≤ Cµ
q̃∑

Rl=0

Rl−1∑
j=0

k+Rl∑
m=0

µ(Aδ)

≤ Cq̃2(k + q̃)µ(Aδ) ≤ Ckq̃3θ
(− log δ)α

3 .

The proof is completed by choosing q̃ =
√
− log δ. �

We now complete the proof of Proposition 4.2, collecting together the estimates for the corre-
sponding cases of either having big images or small images we obtain (for some θ4, α < 1 and
generic C > 0):

µ(Ek(ε)) ≤ Ckθ
(− log δ)α

4 + C
ε

δ
.

Putting δ =
√
ε gives µ(Ek(ε)) ≤ Ckθ

(− log ε)α

5 . Hence

µ(Ek) ≤
(log k)5∑
j=1

µ(Ej(
1

k
)) ≤

(log k)5∑
j=1

Cjθ
(log k)α

5 ≤ Cθ̃(log k)a

for some a > 0, θ̃ < 1 and for some generic constant C > 0. This completes the proof of Proposition
4.2.

Remark 4.3.1. In Proposition 4.2 it can be further shown that a < 1/2 will be sufficient. We take
a = 1

3 .

We use the Maximal function technique of Collet [8] to carry the pointwise result over to neighbor-
hoods. This is equivalent to the methods adopted for the Lozi map, but due to the non-standard
(sub-polynomial) asypmotitics of µ(En), we give the details. In the following Br(x) denotes an
interval of radius r centered at x.
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Let 0 < β ≤ 1
2 and let 0 < ρ < 1 such that ρβ < β/3. Define the set

(10) Fk :=
{
µ(Bexp(−kβ)(x) ∩ Eexp(kβ)) ≥ µ(Bexp(−kβ)(x)) exp(−kβρ)

}
.

If x ∈ Fk then

(11)
µ(Bexp(−kβ) ∩ Eexp(kβ))

µ(Bexp(−kβ))
≥ exp(−kβρ);

if we define

Ml(x) := sup
r>0

1

m(Br(x))

∫
Br(x)

χEl(y)dµ(y)

we see immediately from the definition of Ml(x) and (11) that for every x ∈ Fk,Mek
β (x) ≥ e−k

βρ
.

Hence

(12) Fk ⊂
{
M
ek
β ≥ e−k

βρ
}
.

A theorem of Hardy and Littlewood [27, Theorem 2.19] implies that

m(|Ml| > c) ≤ ‖χEl‖1
c

;

Since dµ
dm is bounded we obtain µ(|Ml| > c) ≤ C µ(El)

c . As µ(El) ≤ O(1)θ̃(log l)1/3 (recall we set
a = 1/3),

µ(Fk) ≤ O(1)µ(E
ek
β )ek

βρ ≤ O(1)(eαk
β/3+kβρ)

where α := − log θ and k is large enough. Since β/3 > βρ,
∑

k>0 µ(Fk) <∞. By the Borel Cantelli
lemma, µ(lim supFk) = 0, and hence for µ almost every x there exists an Nx such that for all
k ≥ Nx, x /∈ Fk.

Let x0 be such a generic point, and let Nx0 be the corresponding index beyond which x0 does not

belong to any Fk. Since limk→∞ e
(k+1)βe−k

β
= 1 the fact that we restricted to a subsequence is of

no consequence and we obtain the following estimate for all n sufficiently large. If 1 ≤ j ≤ (log n)5,
then

µ
(
{X ≥ un} ∩ {X ≥ un} ◦ T j

)
≤ µ(Be−un )e−u

ρ
n

Recalling that un was chosen so that nµ(Be−un (x))→ e−v, we get, for any 1 ≤ j ≤ (log n)5,

nµ
(
{X ≥ un} ∩ {X ≥ un} ◦ T j

)
≤ nµ(Be−un )e−u

ρ
n ≤ O(1)e−u

ρ
n

On summing over 1 ≤ j ≤ (log n)5 and taking limits as n→∞ we obtain the desired result.
Finally, as in the case of Lozi maps we use exponential decay of correlations to show

lim
n→∞

n

p=
√
n∑

(logn)5

µ(X0 > un, X0 ◦ T j > un) = 0.

From [36], this estimate is in fact simpler to check by knowledge of decay of correlations in BV.
We can avoid the step of approximating charactersitic functions by Lipschitz functions.
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