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Abstract

We establish extreme value statistics for functions with multiple maxima

and some degree of regularity on certain non-uniformly expanding dynamical

systems. We also establish extreme value statistics for time-series of observa-

tions on discrete and continuous suspensions of certain non-uniformly expand-

ing dynamical systems via a general lifting theorem. The main result is that

a broad class of observations on these systems exhibit the same extreme value

statistics as i.i.d processes with the same distribution function.
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1 Introduction and background

If {Xi} is a stochastic process we may define the process of successive maxima {Mn}
by Mn := max{X1, . . . , Xn}. Analogously, if {Xt} is a continuous time stochastic
process we define MT := sup0≤t≤T{Xt}. In order to simplify the discussion we will
focus in this section on the discrete-time case.

Extreme value theory is concerned with the limiting distribution of {Mn} under
linear scalings an(Mn − bn) defined by constants an > 0, bn ∈ R. The theory is well-
understood in the case that {Xi} are i.i.d [17, 11, 24] and certain progress has been
made for stationary dependent random variables under mixing conditions [18, 17] and
even for non-stationary stochastic processes [17]. In the i.i.d case it is known that
there are only three possible non-degenerate limit distributions under linear scaling
i.e. if {Xi} is i.i.d, an > 0, bn ∈ R are scaling constants and G(x) is a non-degenerate
distribution defined by

lim
n→∞

P (an(Mn − bn) ≤ x) = G(x)

then G(x) has one of three possible forms (up to scale and location changes), which
we call extreme type distributions:

Type I
G(x) = e−e

−x

, −∞ < x <∞.

Type II

G(x) =

{
0 if x ≤ 0;

e−x
−α

for some α > 0 if x > 0.
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Type III

G(x) =

{
e−(−x)α

for some α > 0 if x ≤ 0;
1 if x > 0.

The extremal type distributions are defined only up to scale and location: if G(x)
is Type I then so is G(ax + b) for any constants a > 0, b, and similarly for Type II
and Type III.

We make the elementary remark:

Lemma 1.1 Assume a function x 7→ g(x) has a minimum value of zero (we have in
mind the function g(x) = d(x, x0)).

The following are equivalent, where α > 0:

1. A Type I law for x 7→ − log g(x) with an = 1 and bn = logn;

2. A Type II law for x 7→ g(x)−α with an = n−α and bn = 0;

3. A Type III law for x 7→ C − g(x)α with an = nα and bn = C;

(and similarly for other choices of bn in the first case).

Recent work on extreme value theory in the setting of deterministic dynamics
includes [2, 3, 4, 6, 8, 9, 10, 12]. These works establish the extreme value laws for
observables with a unique maximum in a variety of non-uniformly hyperbolic [2, 3, 8,
9, 10] and partially hyperbolic [6, 12] settings. There is also a closely related literature
on return time statistics [3, 15, 13, 14, 16, 21].

2 Statement of the main results

In this section we state two main theorems. The first is a result on the existence of
extreme value distributions for a wide class of non-uniformly expanding dynamical
systems where the observations on the system have multiple maxima. The second
result is a theorem which gives conditions under which extreme value distributions lift
from a base transformation f : X → X to a discrete- or continuous-time suspension.
Their proofs are given in Section 4. We also list in this section applications of these
theorems, with details provided in Section 3.

2.1 Extreme value theory for observations with multiple
maxima

We prove that under certain conditions on a dynamical system, for a family of ob-
servations with multiple maxima the extreme value distribution obtained is the same
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as that of a corresponding i.i.d. stochastic process. The conditions we impose on
the xk’s (the location of the maxima) are that they are density points and do not
recur too fast, conditions which are satisfied for Lebesgue a.e. r-tuple (x1, . . . , xr) for
certain classes of non-uniformly expanding maps. As far as we know these are the
first extreme value statistic results for observations with multiple maxima. Our result
is based on the maximal function argument of Collet [4] and the estimates developed
there.

Suppose f : X → X has an ergodic SRB measure µ with density ρ. We refer to
x0 as a density point of µ if

lim
r→0+

µ(Br(x0))

m(Br(x0))
= ρ(x0) <∞.

Our standing assumption is that if a function is maximized at a point then that point
is a density point.

We use the notation ϕ(x) ≈ ψ(x) near x0 to mean that

ϕ(x) = ψ(x) + e(x)

and limx→x0

e(x)
ψ(x)

= 0. We have in mind that the function ψ has a unique local

maximum at x0, and e(x) is a negligible perturbation. For ease of exposition we
introduce the following definitions.

Definition 2.1 Consider a function ψ : X → R and points xk ∈ X, 1 ≤ k ≤ r. We
assume given a distance d on X.

1. We say that ψ has logarithmic singularities at the points xk if:

(A) each xk has a neighbourhood where ψ(x) = −Ck log d(x, xk) + gk(x) with
Ck > 0, where gk is bounded and has a finite limit as x → xk;

(B) away from these r points ψ is bounded (meaning that ψ is a.e. uniformly
bounded outside the neighborhoods given above).

2. We say that ψ has power singularities at the points xk if ψ(x) ≈ Ckd(x, xk)
sk

near xk with sk < 0, Ck > 0 and condition (B) above holds.

3. We say that ψ has power function maxima at the points xk if ψ(x) ≈ C −
Ckd(x, xk)

sk near xk with sk > 0, Ck > 0 and condition (B) is strengthed to say
that the bound of ψ outside the neighborhoods of the xk’s is less than C.
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Theorem 2.2 Assume f : X → X is an ergodic map of an interval X with an
absolutely continuous invariant probability measure µ having density ρ ∈ L1+δ(m),
δ > 0. Suppose that for all Lipschitz ϕ1, ϕ2 ∈ L∞:

|
∫
ϕ1 · ϕ2 ◦ fndµ−

∫
ϕ1dµ

∫
ϕ2dµ| ≤ Θ1(n)‖ϕ2‖L∞‖ϕ1‖Lip,

Assume that:

(a) There exist functions g̃(n) and g(n) (increasing to ∞ as n→ ∞) such that for
all v > 0 there exists N(v) > 0 with

g(n) ≤ g̃
( n

3v

)
for n > N(v) (2.1)

and for some 0 < β < 1 and α1 > 0

lim
n→∞

g(n)

nβ
= 0 (2.2)

g̃(n) ≤ Cn1−α1 . (2.3)

(b) For some ε > 0,

Θ1(g(n)) ≤ Cn−(1+β)(1+ 1+δ
δ

)−ε. (2.4)

(c) Defining

En := {x ∈ X : d(x, f jx) ≤ 2

n
for some j ≤ g̃(n)},

there is α > β such that

µ(En) ≤
C

nα
for all n. (2.5)

Then, for each r ≥ 1 there is a set Xr ⊂ Xr of full Lebesgue measure with the
following property: if (x1, . . . , xr) in Xr then, with the notations of Definition 2.1:

(I) if ψ : X → R has only logarithmic singularities at the points x1, . . . , xr then ψ
satisfies a Type I extreme value law. More precisely

µ(max{ψ, ψ ◦ f, . . . , ψ ◦ fn} ≤ v + C log n) → exp


−2e−v/C

∑

{k|Ck=C}

ρ(xk)e
ℓk




where C = maxk Ck and ℓk = limx→xk
[ψ(x) + Ck log d(x, xk)].
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(II) if ψ is unbounded with both logarithmic and power singularities then ψ satisfies
a Type II extreme value law. Define s := maxsk<0{|sk|}. Then, for v > 0,

µ(max{ψ, ψ ◦ f, . . . , ψ ◦ fn} ≤ nsv}) → exp


−2

∑

{k|−sk=s}

(
Ck
v

)1/s

ρ(xk)




(III) if ψ is bounded (there are only power function maxima i.e. all sk ≥ 0) then
ψ satisfies a Type III extreme value law. Define s := max{sk}. Then, for v ≤ 0,

µ(max{ψ, ψ ◦ f, . . . , ψ ◦ fn} ≤ v

ns
+ C) → exp


−2

∑

{k|sk=s}

(−v
Ck

)1/s

ρ(xk)




In Section 3 we show that Theorem 2.2 applies to various classes of dynamical
systems. We summarize this in the following corollary. The precise description of the
maps is given before each of the theorems listed below. We note that for observations
with a unique maximum for certain of these dynamical systems our results are not
new.

Corollary 2.3 The hypotheses of Theorem 2.2 are satisfied by:

(a) non-uniformly expanding maps of the interval which are modeled by Young Tow-
ers with exponential tails (see Theorem 3.1);

(b) Gibbs-Markov maps (see Theorem 3.3);

(c) certain non-uniformly expanding maps with singularities (see Theorem 3.8).

(d) intermittent type maps with absolutely continuous invariant measures (such as
the Manneville-Pomeau type and the Liverani-Saussol Vaienti map) of form
x 7→ x + ax1+ω near the indifferent fixed point, for small values of ω > 0 (see
Theorem 3.8 and Remarks 3.9, 3.11).

Therefore, extreme value laws hold for observations with multiple maxima over
these systems, as described in Theorem 2.2.

Remark 2.4 Because the measure µ in Theorem 2.2 is absolutely continuous, it
follows that µ(B1/n(y0)) = O(1/n) for Lebesgue-a.e. y0. Hence (2.3) implies:

for m-a.e. y0 we have g̃(n)µ(B1/n(y0)) ≤
Cy0
nα1

. (2.6)

This observation is used in the proof of Theorem 2.2 (see Lemma 4.3).
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2.2 Extreme value theory for suspension flows

The results we present here apply to both discrete suspensions (maps) or continuous
suspensions (flows). We will use the same language for both. As far as we know
these are the first results on extreme value statistics for non-uniformly hyperbolic
flows. Statistical limit laws on suspension flows are derived in [20] for normalized
ergodic sums. Here as in [20], a result of Eagleson [7] is used to conclude that the
convergence in distribution is mixing [22]. The main part of the argument is to relate
a random index (the lap number) to a deterministic one. The methods needed here
differ from those of [20]. Combined with distributional mixing this allows us to lift
the convergence in distribution from an observation on the base of the suspension to
its pull-pack to the suspension. Our results are also an extension of [17, Theorem
13.3.2] and related results in [17, Chapter 13] where a discrete sampling at constant
times is considered.

Assume that f : X → X preserves the probability measure µ. We suppose that
h ∈ L1(µ) is a positive roof function. Consider the suspension space

Xh = {(x, u) ∈ X × R | 0 ≤ u ≤ h(x)}/ ∼, (x, h(x)) ∼ (f(x), 0)

(u ∈ Z and h : X → Z+ for the discrete case). We denote the suspension (semi) flow
by fs : Xh → Xh, fs(x, u) = (x, u+ s)/ ∼.

We introduce the projection map πh : Xh → X by πh(x, u) = x for (x, u) ∈ Xh,

0 ≤ u < h(x). If ψ : X → R, we will often use the notation ψ̂ for ψ ◦ πh : Xh → R.
On Xh introduce the flow-invariant probability measure µh given by dµ × dm/h

(where for the discrete case dm will denote counting measure) and h =
∫
X
hdµ. We

will use du to mean either the Lebesgue or the counting measure.
Consider a (measurable) observation ϕ : Xh → R and define Φ : X → R by

Φ(x) := max{ϕ(fs(x)) | 0 ≤ s < h(x)}. (2.7)

Denote

ϕt(p) := max{ϕ(fs(p)) | 0 ≤ s < t}
ΦN (x) := max{Φ(fk(x)) | 0 ≤ k < N}.

(2.8)

Our main theorem in the flow case is:

Theorem 2.5 (discrete or continuous suspensions) Assume that T : (X,µ) →
(X,µ) is ergodic and h ∈ L1(µ). Suppose also that the normalizing constants an > 0
and bn satisfy:

lim
ε→0

lim sup
n→∞

an|b[n+εn] − bn| = 0, (2.9)

lim
ε→0

lim sup
n→∞

∣∣∣∣1 − a[n+εn]

an

∣∣∣∣ = 0. (2.10)
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Then, with the notations described above in (2.7) and (2.8):

aN (ΦN − bN ) →d G =⇒ a⌊T/h⌋(ϕT − b⌊T/h⌋) →d G. (2.11)

If in addition h−1 ∈ L1(µ) then

aN(ΦN − bN ) →d G ⇐⇒ a⌊T/h⌋(ϕT − b⌊T/h⌋) →d G. (2.12)

Remark 2.6 Whether (2.9) and (2.10) are satisfied depends on the precise choice
of observation. For example, one can apply Theorem 2.5 in the Type I case where
bn = log n and an = 1, in the Type II and Type III scenarios when an is regularly
varying and bn is constant. Thus the assumptions on an,bn hold for logarithmic
singularities, power singularities and power function maxima.

Remark 2.7 In the flow case (unlike the discrete setting) the constants an,bn are
not determined by the requirement µh(ϕ > v

an
+ bn) = O( 1

n
).

Remark 2.8 We are mainly interested in lifting extreme value laws given by The-
orem 2.2. In the setting an = 1 and bn = logn the proof of Theorem 2.5 becomes
much simpler.

2.3 Corollaries of the main results.

We show here that by combining Theorems 2.2 and 2.5 the extreme value theory
for observations with multiple maxima on a broad class of non-uniformly hyperbolic
flows is obtained. For simplicity of exposition we look at observations that depend
on distance only.

We consider two situations. In the first we define a (local) metric on the suspension
Xh starting from a metric dX on X. In the second we start with a manifold M
endowed with a metric dM and view it as a suspension.

Suspension flows. Consider a suspension flow on Xh. Let dX be a metric on X
and define a (local) metric dXh on Xh by

dXh((x, u), (y, v)) =
√
dX(x, y)2 + |u− v|2. (2.13)

Flows on manifolds. Let M be a compact Riemannian manifold, and ft : M →
M a C1-flow. Assume that X ⊂ M is a transverse cross-section of the flow which
is a C1-submanifold with boundary (not necessarily connected). Let h : X → R be
the first return time of the flow to X and assume that h is essentially bounded. We
model the flow ft : M → M in the standard way by the suspension flow ft : Xh → Xh

(with abuse of notation). Recall that the Riemannian metric on M is denoted by dM
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and denote the metric induced on X by dX . There is a projection πM : Xh → M ,
(x, t) 7→ ft(x), which is a local C1 diffeomorphism. Let µ be an invariant probability
measure for the first return map f : X → X. This induces (in the standard way)
an invariant measure µh on the suspension Xh, which then determines a ft-invariant
measure µM on M by µM(A) = µh(π−1

M A) for measurable sets A.

For these situations we have the following consequence of Theorems 2.2 and 2.5:

Theorem 2.9 Assume that the measure µ on X is non-atomic and ergodic for f ,
and the roof function h : X → R is in L1(µ) and lower semi-continuous µ-a.e.

If statement (I), (II) or (III) of Theorem 2.2 holds for (f, µ) for observations
Φ : X → R having r maxima of logarithmic singularity, power singularity or power
function type with respect to dX at µ-a.e. r-tuple (x1, . . . , xr) ∈ Xr, then an extreme
value law of the same type with the same scaling constants holds:

(a) over the flow ({ft}, µh) for observations ϕ : Xh → R that have maxima of the
same type with respect to dXh at µh-a.e. r-tuple (p1, . . . , pr) ∈ (Xh)r where
pi = (xi, ui), ui < h(xi).

(b) over the flow ({ft}, µM) for observations ϕ : M → R that have maxima of
the same type with respect to dM at µM-a.e. r-tuple (p1, . . . , pr) ∈ (M)r where
pi = (xi, ui), ui < h(xi).

In particular, these results hold for suspensions with lower semi-continuous roof
function over transformations for which Theorem 2.2 applies, for example those listed
in Corollary 2.3. Note that if a point pk = (xk, uk) is in the r-tuple so is (xk, u) for
all u < h(xk) so whole fibers are included.

Proof: Apply Lemmas 2.10 and 2.11 below, which relate the singularities of Φ to
those of ϕ. The conclusion then follows from Theorem 2.5.

For the local metric introduced on a suspension we have the following:

Lemma 2.10 Consider on a suspension Xh the local metric defined by (2.13). Let
ϕ : Xh → R be an observation that has logarithmic singularities, power singularities
or power function maxima with respect to dXh at the points pk = (xk, uk) ∈ Xh, where
0 < uk < h(xk) and the xk’s are distinct, 1 ≤ k ≤ r.

Then if h is lower semi-continuous at the points xk, Φ defined by (2.7) has the same
type of maxima (with the same exponents sk for power singularities and exponents sk
and constant C for power function maxima) with respect to the metric dX at the
corresponding points xk, 1 ≤ k ≤ r.
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Proof: We prove the case of a logarithmic singularity in detail. The proofs for
power singularities and power function maxima are similar and straightforward.

By hypothesis, there is a neighborhood Uk ⊂ {(x, u) | 0 < u < h(x)} ⊂ Xh

of pk = (xk, uk) on which ϕ(p) = − log dXh(p, pk) + gk(p) with gk bounded and
with limp→pk

g(p) = ℓk; we take Ck = 1 to simplify the notation. We restrict these
neighborhoods for the different pk’s so that their projections Vk to X are distinct. By
the semi-continuity of h, we can assume that (x, uk) ∈ Uk if x ∈ Vk.

Since the observation ϕ is uniformly bounded outside the union of the Uk’s, its
supremum on each fiber, Φ(x) := sup{ϕ(x, u) : 0 ≤ u < h(x)}, is uniformly bounded
outside the union of the Vk’s. If x is close to xk, then the supremum is attained for
(x, u) ∈ Uk.

Therefore, for x 6= xk, x ∈ Vk close enough to xk,

Φ(x) = − log dX(x, xk) + sup
(x,u)∈Uk

{
− log

√
dX(x, xk)2 + |u− uk|2

dX(x, xk)
+ gk(x, u)

}

Denote, for x 6= xk,

γk(x) := sup
(x,u)∈Uk

{
− log

√
dX(x, xk)2 + |u− uk|2

dX(x, xk)
+ gk(x, u)

}
. (2.14)

Then γk is bounded near xk because

γk(x) ≤ sup
(x,u)∈Uk

(
− log

√
dX(x, xk)2 + |u− uk|2

dX(x, xk)

)
+ sup

(x,u)∈Uk

gk(x, u) ≤ sup
(x,u)∈Uk

gk(x, u)

where the last inequality follows by taking u = uk. To check that limx→xk
γk(x) = ℓk

note that for ε small, if dX(x, xk) < ε and |u − uk| > ε1/2 then the logarithmic term
in (2.14) is at most (log ε)/2; hence the supremum is attained for |u−uk| ≤ ε1/2, and
the conclusion follows.

In the case of power singularities we note if sk < 0 then sup(x,u)∈Uk
(dX(x, xk)

2 +

|u− uk|2)sk/2 = dX(x, xk)
sk and similarly the exponent sk > 0 is preserved for power

function maxima. The constant C is also preserved in the case of power function
maxima as is the global maximum.

Next we prove the corresponding result for a C1-flow on a manifold.

Lemma 2.11 Let the C1-flow ft : M →M be modeled by the suspension Xh with X
a C1 cross-section and h essentially bounded.

Assume that ϕ : M → R has logarithmic singularities, power singularities or
power function maxima with respect to dM at the points pk ∈ M \ X, 1 ≤ k ≤ r
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with pk ∼= (xk, uk) ∈ Xh, xk distinct and not on the boundary ∂X of X. Then Φ
defined by (2.7) has the same type of maxima (with the same exponents sk for power
singularities and same exponents sk and constant C for power function maxima) with
respect to dX at the corresponding points xk, 1 ≤ k ≤ r.

Proof: The only difference to be noted from the proof of Lemma 2.10 is that the C1

diffeomorphism π−1
M : M → Xh is not an isometry but in a neighborhood of diameter

1/n about p0 is given by an invertible linear transformation as n→ ∞. This implies
that logarithmic singularities are preserved and the exponents sk are preserved in the
case of power singularities and power function maxima. The constant C is preserved
in the case of power function maxima as is the global maximum.

3 Applications

In this section we apply our results to specific dynamical systems. We consider
applications of our result on multiple maxima, namely Theorem 2.2. We also explain
how these yield, by Theorem 2.5, similar results for suspension flows over these maps.

In a given application we adopt a strategy of checking conditions (a), (b) and (c)
of Theorem 2.2. For the applications we consider one can take g(n) = C(log n)κ or
g(n) = Cnκ, κ > 0 and then define g̃(n) := g(n)1+ε for some small ε > 0. Thus, in
condition (a) of Theorem 2.2 one only has to check (2.2).

Therefore, from the hypotheses of Theorem 2.2 we only have to check that the
system has an absolutely continuous probability measure with density in L1+δ, con-
dition (2.2) from (a), the mixing condition (b), and the estimate (c) of µ(En). The
interplay of the constants is non-trivial, but if the system has density in Lp, p > 1, and
fast enough decay of correlations (which includes fast polynomial decay), and power
law recurrence statistics in the sense of (2.5) then the conclusions of Theorem 2.2
hold. In applications, much work has to be done to check (2.5) since this condition
depends on short range dependence statistics and topology of the dynamics in the
vicinity of the observable maxima. Analysis of long range dependence statistics can
be controlled by the asymptotics of the correlation function.

3.1 Non-uniformly hyperbolic flows

Recall that Theorem 2.5 together with Theorem 2.9 gives conditions under which
extreme value laws can be lifted to a suspension. In particular, extreme value laws
for observations that are functions of distance can be lifted to suspensions over maps
that satisfy the assumptions of Theorem 2.2. Thus Theorem 2.9 gives the extreme
value theory for observations with multiple maxima for suspension flows with base

11



maps the classes of maps discussed in this section. Hence we obtain extreme value
laws for observations with multiple maxima on such non-uniformly hyperbolic flows.

3.2 One dimensional maps with Young towers

We refer to Young’s papers [27, 28] and Baladi’s book [1] for details of the construction
and properties of Young Towers. In this section we describe the structure that we use.
We use the notation of [27]. The existence of a Young tower for a map f : X → X
gives an SBR measure µ and allows the study of statistical properties of f with respect
to µ. Below, we give hypotheses for (f,X) which allow the system to be modeled by
such a tower.

Let X ⊂ R and suppose f : X → X is locally C1+γ and |f ′(x)| ≤ K for all x ∈ X.
Suppose f : X → X is modeled by a Young tower. Let m denote Lebesgue measure.
Suppose Λ0 is the base of the tower and R : Λ0 → N is the return time function.
Then we have the following result:

Theorem 3.1 (based on Collet, Theorem 1.1 [4]) Suppose that m{R > n} =
O(θn) for some θ < 1. Then the hypotheses of Theorem 2.2 are satisfied.

Proof: We recall key facts from [4] that allow us to verify (a), (b) and (c) in
Theorem 2.2. It is shown using exponential tails of m{R > n} that the density ρ
must lie in L1+δ(m) for some δ > 0 and m(En) ≤ n−α for some α > 0. The mixing is

also exponential, Θ1(n) ≤ Cθ̃n for some θ̃ < 1.
Hence condition (c) follows. Set g(n) = (log n)κ and g̃(n) = (logn)κ(1+ε) for ε

small. Then condition (a) follows automatically while condition (b) requires

θ̃(log n)κ ≤ Cn−(1+β)(1+ 1+δ
δ

)−ε.

Provided κ > 1 this relation holds (asymptotically) for any β > 0.

Remark 3.2 The hypotheses stated on f above are not strong enough to prove the
corresponding extreme value laws when m{R > n} decays sub-exponentially. The
crucial estimate that needs to be checked is that on m(En). We check this estimate
for certains kinds of intermittency maps in Section 3.4.

3.3 Gibbs-Markov maps

Let (Λ, m) be a Lebesgue space with a countable measurable partition α. Without
loss, we suppose that all partition elements a ∈ α have m(a) > 0. Recall that a
measure-preserving transformation f : Λ → Λ is a Markov map if f(a) is a union of
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elements of α and f |a is injective for all a ∈ α. Define α′ to be the coarsest partition
of Λ such that fa is a union of atoms in α′ for all a ∈ α. If a0, . . . , an−1 ∈ α, we define
the n-cylinder [a0, . . . , an−1] = ∩n−1

i=0 f
−iai. It is assumed that f and α separate points

in Λ (if x, y ∈ Λ and x 6= y, then for n large enough there exist distinct n-cylinders
that contain x and y).

Let 0 < β < 1. We define a metric dβ on Λ by dβ(x, y) = βs(x,y) where s(x, y)
is the greatest integer n ≥ 0 such that x, y lie in the same n-cylinder. Define g =
Jf−1 = dm

d(m◦f)
and set gk = g g ◦ f · · · g ◦ fk−1.

The map f : Λ → Λ is a Gibbs-Markov map if it satisfies the additional properties:

(i) Big images property: There exists c > 0 such that m(fa) ≥ c for all a ∈ α.

(ii) Distortion: log g|a is Lipschitz with respect to dβ for all a ∈ α′.

It follows from assumptions (i) and (ii) that there exists a constant D ≥ 1 such that
for all x, y lying in a common k-cylinder [a0, . . . , ak−1],

∣∣∣gk(x)
gk(y)

− 1
∣∣∣ ≤ Ddβ(f

kx, fky) and D−1 ≤ m[a0, . . . , ak−1]

gk(x)
≤ D. (3.15)

For the Gibbs-Markov map there is an invariant measure µ with density ρ and log ρ|a
is Lipschitz with respect to dβ for all a ∈ α′.

Theorem 3.3 Suppose that f : Λ → Λ is a Gibbs-Markov map. Then the hypotheses
of Theorem 2.2 are satisfied.

Proof: We check conditions (a), (b) and (c) in Theorem 2.2.
By [27] Gibbs-Markov maps have exponential decay of correlations and the in-

variant density lies in L1+δ for some δ > 0. As in the proof of Theorem 3.1 we let
g(n) = (logn)κ and g̃(n) = (log n)κ(1+ε) for ε small. Conditions (a) and (b) easily
follow.

For condition (c) we use Lemma 3.4 below. It implies that m(En) =
O((logn)κ(1+ε)/n) and so condition (c) of Theorem 2.2 holds.

Lemma 3.4 Denote by En(ε) := {x ∈ Λ : |fn(x) − x| ≤ ε}. Then m(En(ε)) ≤ Cε
for some fixed constant C.

Proof: Let Pn =
∨n−1
k=0 f

−kα and consider one partition element α0 ∈ Pn. We
estimate m(En(ε) ∩ α0) using bounded distortion and uniform expansion of the map
(or at least some iterate). Note that the proof of this result does not immediately
follow from the results of Collet [4] we used to prove Theorem 3.1 since |f ′| is not
uniformly bounded above.
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Since |(fn |α0)
′| ≥ Cλn then there is a unique solution to fn(x±) = x± ± ε with

x± ∈ α0 (provided such a solution exists). Moreover for all x 6∈ [x−, x+]∩ α0 we have
x 6∈ En(ε) since |(fn |α0)

′| > 1 and there is no sign change of (fn)′ on α0 We now
estimate m([x−, x+]) = m(En(ε) ∩ α0). We have

fn(x+) − fn(x−) = (x+ − x−) + 2ε,

By the mean value theorem

|fn(x+) − fn(x−)| = |(fn)′(c)||x+ − x−|, some c ∈ α0.

By equation (3.15) it follows that

m(α0)|(fn)′(c)| ∈ [D−1, D]

and hence assuming D diam(Pn) < 1 (which is true for n sufficiently large) we have

|x+ − x−| ≤ 2εm(α0)

1 −Dm(α0)
. (3.16)

We note that a similar estimate holds for small values of n (since we have uniform
estimates over a finite number of iterates). The only concern that we have bypassed
is that there may be no solution to fn(x±) = x± ± ε. However the estimate in (3.16)
is actually improved if α0 only partially crosses En(ε) (or does not intersect at all).
Putting these estimate together and summing over all partiton elements we have:

m(En(ε)) ≤
∑

α0

2εm(α0)

1 −Dm(α0)
≤ Cε

and so the result follows.

Examples:

For illustration we consider two explicit examples which are Gibbs-Markov.

Example 3.5 (Piecewise affine Markov maps) Suppose that {ak} is a mono-
tonic infinite sequence with a0 = 1 and lim ak = 0. Consider a piecewise affine
expanding map f : [0, 1] → [0, 1] defined as follows: let Jk = [ak+1, ak] and suppose
that f on (ak+1, ak) is given by

f(x) =
1

ak − ak+1
(x− ak+1).

It is easy to see that f is full branch on each Jk and diam(Jk) → 0 as k → ∞. Hence
f is Gibbs-Markov with respect to the partition {Jk}.
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Example 3.6 (The Gauss Map) Consider the Gauss map S : (0, 1] → [0, 1] given
by S(x) = 1

x
− ⌊ 1

x
⌋. This is Gibbs-Markov with respect to the parition {Λj} with

Λj = [(j + 1)−1, j−1] and it has an ergodic invariant density ρ(x) = {log 2(1 + x)}−1.

3.4 Non-uniformly expanding maps and intermittent maps

We discuss here applications to maps with neutral fixed points, such as the Pommeau-
Manneville maps, and other families of Markov maps which are not necessarily Gibbs-
Markov. We stress that the novelty of these results is that they apply to observations
with multiple maxima. We consider first a class of non-uniformly expanding convex
maps.

More precisely, we consider an interval map f : I → I satisfying the following
conditions

(M1) There is a finite Markov decomposition I = ∪jIj such that each f(Ij) is a union

of I ′js. Let P := {Ij} and Pk :=
∨k−1
i=0 T

−jP. Assume that limk diam(Pk) = 0
and f is topologically mixing.

(M2) For each x ∈ int(Ij) we have f ′(x) ≥ 1 with equality at a finite number of
points. In addition f is convex on each Ij.

(M3) For each Ij ∈ P, f is differentiable on int(Ij) and satisfies the regularity condi-
tions: let Ij = [cj, dj] then f(x) is either uniformly expanding on Ij or for some
γ > 1 we have f(x) = f(cj) + (x− cj) +O((x− cj)

γ) as x→ c+j . In addition as

x→ d−j , f(x) = f(dj) + O(|x− dj |eγ) for some γ̃ ∈ [0, 1].

Remark 3.7 If f ′(x) ≥ 1 with equality holding at a finite number of points then it
follows by convexity that equality can only hold at the lower boundary of each Ij ∈ P.
In (M3) we allow for singularities in the derivative of f at the upper boundaries of
the Ij ’s. The map f need not be Gibbs-Markov since we do not require bounded
distortion on the partition elements of Pk.

Theorem 3.8 Suppose that f : I → I is a non-uniformly expanding interval map
satisfying (M1), (M2) and (M3). Assume further that f has an ergodic measure µ
with density ρ ∈ L1+δ. Then there is a value α̃0 = α̃0(δ, γ) > 0 that does not depend
on the map f such that the hypotheses of Theorem 2.2 are satisfied if f has rate of
decay of correlations O(n−eα) with α̃ ≥ α̃0.

Remark 3.9 Examples of Markov maps that satisfy (M1), (M2) and (M3) are inter-
mittent maps such as the Liverani-Saussol-Vaienti family, see equation (3.22) ahead,

15



and certain convex Lorenz-like maps, i.e. non-uniformly expanding maps with singu-
larities in the derivative. These latter families are described in [5] where the corre-
lations decay exponentially fast, and in [2] where intermittent Lorenz maps exhibit
subexponential decay of correlations.

The proof of Theorem 3.8 has two steps. First we estimate the measure of the
set En(ε) := {x ∈ [0, 1] : |T n(x) − x| ≤ ε} and obtain an estimate in the form
(2.5). Second, we rely on fast enough decay of correlations and use the fact that
ρ ∈ L1+δ(m). We begin with the following estimate, which is based on an argument
that we learned from Henk Bruin.

Lemma 3.10 Suppose that f : I → I satisfies (M1), (M2) and (M3). Denote by
En(ε) := {x ∈ [0, 1] : |fn(x) − x| ≤ ε}. Then there is some fixed constant C such
that m(En(ε)) ≤ C min{ε1/2, ε1/γ} for all n ≥ 1.

Proof: For each branch αn ∈ Pn it follows that fn(αn) contains a union of intervals
from P and fn |αn is a convex map.

Consider the k-th branch, fn : Jk → ∪jIj , where Jk := [ak, bk] and each
fn(ak), f

n(bk) is an end point of some Ij ∈ P. Suppose that there are points
x±k ∈ (ak, bk) such that fn(x±k ) = x±k ± ε. If these points exist then they are unique,
and in particular En(ε) ∩ Jk = [x−k , x

+
k ].

Let x ≥ x−k in Jk. Since (fn)′ is increasing on Jk,

(fn)′(x) ≥ (fn)′(x−k ) ≥
∫
[ak,x

−

k
]
(fn)(t)′ dt

x−k − ak
=
x−k − ε− fn(ak)

x−k − ak
,

hence

(fn)′(x) − 1 ≥ x−k − ε− fn(ak)

x−k − ak
− 1 =

ak − ε− fn(ak)

x−k − ak
≥ ak − fn(ak) − ε

m(Jk)
.

This implies that

2ε =

∫

[x−
k
,x+

k
]

[
(fk)′(t) − 1

]
dt ≥ (x+

k − x−k )
(ak − ε− fn(ak))

m(Jk)

and thus

m(En(ε) ∩ Jk) ≤
2ε

(ak − fn(ak) − ε)
m(Jk). (3.17)

This estimate is useful provided (ak − fn(ak) − ε) is not small. Let W η = ∪{ak :
|ak − fn(ak)| < η + ε} and let Zη = ∪ak∈W ηJk. Then

m(En(ε)) = m(En(ε) ∩ Zη) +m(En(ε) ∩ (Zη)c) ≤ m(Zη) +
2ε

η
m((Zη)c).
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We estimate these sets in two different ways depending on whether n is large or small.
Assume ε < η and now suppose that n is large enough with diam(Pn) < ε. Then for
all Jk ⊂ Zη we have diam(Jk) < ε. Since ∪k{fn(ak)} is a finite set it follows that

m(En(ε)) ≤ Cη +
2ε|I|
η

for some C > 0. The constant C depends on the cardinality of ∪k{fn(ak)} and
moreover is independent of n if diam(Pn) < ε. Optimizing over η ∈ (0, 1) we find
that η = O(

√
ε) is the best choice and gives m(En(ε)) ≤

√
ε. Note that the analysis

above assumes that we can always solve for such a x±. If we cannot, then the estimates
are acutally improved in the sense that either En(ε) ∩ Jk = ∅ or Jk partially crosses
En(ε) and the required measure would be smaller than that computed in equation
(3.17).

In the case that n is small we cannot ensure m(Zη) is small in η since for each
ak ∈W η it does not follow that the sets [ak, bk] are small in diameter. We still assume
ε < η. By convexity it suffices to consider the Jk corresponding to the largest (or
smallest) ak in W η. Let Jk′ denote the set corresponding to the largest such ak. We
again solve fn(x±k ) = x±k ±ε and consider a worst case scenario: namely ak′ = fn(ak′)
and (fn)′(ak) = 1 so that ak′ is a neutral periodic point. In this case there is no
x− solution and we just solve for x+. Let x̃ = x+ − ak′. The length of the interval
[ak′, x

+] is x̃. By (M2) and (M3):

ε = fn(x+) − x+ = fn(ak′ + x̃) − (ak′ + x̃)

≥ f(ak′ + x̃) − (ak′ + x̃) = f(ak′) − ak′ + O(x̃γ).

Since f(ak′) > ak′ and assuming a solution exists for x+ we must have x̃ = O(ε1/γ).
Hence the conclusion of the Lemma follows.

Proof of Theorem 3.8. We check conditions (a), (b) and (c) of Theorem 2.2.
It suffices to take γ < 1/2 so that m(En(ε)) ≤ ε1/γ . We begin by setting g(n) =
nκ, g̃(n) = nκ(1+ζ) and compute inequality relations between δ, γ and α̃. We show
that conditions (a), (b) and (c) are satisfied provided α̃ is sufficiently large.

We first of all have m(En) = O(g̃(n)/n1/γ), and so µ(En) =
(
n(κ(1+ζ)−1/γ)

)δ/(1+δ)
.

So for condition (c) we must have

(γ−1 − κ)(δ/(1 + δ)) > β and so κ <
1

γ
− β(1 + δ)

δ
. (3.18)

Condition (a) of Theorem 2.2 requires g(n) = o(nβ) and so we must take κ < β < 1.
Decay of correlations (condition (b)) requires:

(nκ)−eα ≤ Cn−(1+β)(1+ 1+δ
δ

)−ε and so κ >

(
1 + β

α̃

)(
2 +

1

δ

)
.
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Putting these equations together we have the following relations between δ, γ and α̃
with β freely varying in (0, 1):

α̃ >
1 + β

β

(
2 +

1

δ

)
(3.19)

α̃ >

(
γ−1δ

1 + δ
− β

)−1(
(1 + β)(1 + 2δ)

1 + δ

)
. (3.20)

We can solve these inequalities simultaneously for α̃ to obtain a lower bound in terms
of δ and γ. Let β0 := δ(2γ(1 + δ))−1 so that β0 < 1. Substituting β = β0 into
equations (3.19) and (3.20) we can choose any α̃ > α̃0 where

α̃0 = δ−2 {(2γδ + 2γ + δ)(2δ + 1)} , (3.21)

and this gives a (not necessarily optimal) lower bound on α̃.

Remark 3.11 Consider the Liverani-Saussol-Vaienti map f = fω : [0, 1] → [0, 1]
given by

fω(x) =

{
x(1 + 2ωxω), x ∈ [0, 1

2
)

2x− 1, x ∈ [1
2
, 1]

(3.22)

where ω ∈ (0, 1).
For maps of the form x 7→ x+ x1+ω it is known that the density has form h(x) ∼

x−ω near indifferent fixed points and so lies in L
1
ω
−ε for any ε > 0, see [26]. The mixing

rate for Lipschitz functions is Θ1(n) ≈ n(1− 1
ω

), see [28]. It is then a straightforward
calculation to show there exists ω0 ∈ (0, 1) such that the hypotheses of Theorem 2.2
are satisfied by fω for ω ∈ (0, ω0) where ω0 ≈ 1/13.

We conjecture that the conclusions of Theorem 2.2 are satisfied for all ω which give
an SRB probability measure, as is the case for observations with a single maximum.

4 Proof of the main theorems

4.1 Proof of Theorem 2.2

The proof is based on that of Collet [4, Theorem 1.1] and uses a blocking argument
from extreme value statistics. Here is an outline in the simple case of a single max-
imum. We write n ∼ p(n)q(n) and choose a gap length t(n). In our setting p ∼ nβ ,
q ∼ n1−β and t = g(n). We divide successive observations of length n into q blocks of
length p+ t, where t is large enough that successive p blocks are approximately inde-
pendent yet small enough that µ(Mn ≤ un) ∼ µ(Mq(p+t) ≤ un). Using approximate
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independence of the p blocks we establish |µ(Mq(p+t) ≤ un)−(1−µ(Mp ≥ un))
q| ≤ En

and show (1 − µ(Mp ≥ un))
q ∼ (1 − pµ(ϕ > un))

q. The error En has several terms
but the most significant is of form n

∑p
j=1 µ(ϕ > un, ϕ ◦ f j > un) which must be

controlled by an estimate of the measure of points which recur quickly.
The proof of Theorem 2.2 has two stages. In the first stage we collect a series

of estimates that allow us to measure the set {ψ ◦ f j ≥ un, ψ ≥ un} for j small.
This uses precisely the asymptotics of m(En) together with the maximal function
technique of [4, Section 2], see Lemmas 4.1 and 4.2. However, for observations with
multiple maxima we must then derive a series of estimates which measure the set of
points that move from one maximum to another. These estimates are summarized in
Lemmas 4.3 and 4.4. For j large we can measure the set {ψ ◦ f j ≥ un, ψ ≥ un} using
decay of correlations, and the estimate to use is Proposition 4.6. Similar estimates
are derived in [4, Section 3] but we optimize as far as possible in order to study
applications with subexponential decay of correlations. See Proposition 4.8.

4.1.1 The maximal function technique of Collet

We summarize the method used by Collet [4] and then adapt it to handle multiple
maxima. One main tool is the following:

Lemma 4.1 Assume a sequence of measurable sets En ⊂ R has the property

µ(En) ≤
C

nα
for some α > 0.

Then for 0 < β < α and γ > 1/(α − β) one has: for m-a.e. x0 there is N(x0) such
that

n ≥ N(x0) =⇒ µ({d(x, x0) ≤
1

nγ
} ∩Enγ ) ≤ 2

nγ(1+β)
. (4.23)

Proof: Let χn be the indicator function of En and consider the Hardy-Littlewood
maximal function for ρχn

Ln(x) := sup
ℓ>0

1

2ℓ

∫ x+ℓ

x−ℓ

ρχn(z)dz.

Since, by Hardy-Littlewood [25, Page 138], m(Ln > λ) ≤ C
λ
‖ρχn‖L1 ≤ C

nαλ
, taking

λ = n−β we have

m(Ln > n−β) ≤ C

nα−β

and therefore ∑

n

m(Lnγ > n−βγ) ≤
∑

n

C

nγ(α−β)
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is finite for 0 < β < α and γ(α− β) > 1.
Then m-a.e. x0 belongs to only finitely many sets {Lnγ > n−βγ} hence there is an

N(x0) such that x0 6∈ {Lnγ > n−βγ} for n ≥ N and therefore, taking ℓ = 1/nγ

1

2ℓ

∫ x0+ℓ

x0−ℓ

ρχnγ (z)dz ≤ n−βγ

which is exactly (4.23).

4.1.2 Recurrent points

We want to get a bound for returns up to g(n). Recall that g(n) and g̃(n) are function
such that conditions (2.1), (2.5) and (2.2) are satisfied, where

En := {x | d(x, f jx) ≤ 2

n
for some j ≤ g̃(n)}.

Pick γ > 1/(α−β) and let x0 satisfy the conclusion of Lemma 4.1 for the sets En.
Assume given v > 0. We want to show that

k

g(k)∑

j=1

µ({x | d(x, x0) ≤
v

k
, d(f jx, x0) ≤

v

k
}) → 0 as k → ∞

which follows from (4.24) proved below, in view of (2.2).

Lemma 4.2 For m-a.e. x0 and each v > 0, there is K = K(x0, v) such that for
k ≥ K one has

µ({x | d(x, x0) ≤
v

k
, d(f jx, x0) ≤

v

k
for some j ≤ g(k)}) ≤ Cv

k1+β
. (4.24)

Proof: For k ≥ 1 denote

n =

(
1

3v
k

)1/γ

.

Note that nγ = k
3v

hence v
k
< 1

nγ . Then

A := {x | d(x, x0) ≤
v

k
, d(f jx, x0) ≤

v

k
for some j ≤ g(k)}

⊂ {x | d(x, x0) ≤
1

nγ
, d(f jx, x) ≤ 2

nγ
for some j ≤ g(k)}

⊂ {x | d(x, x0) ≤
1

nγ
, d(f jx, x) ≤ 2

nγ
for some j ≤ g̃(nγ)}
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provided g(k) ≤ g̃(nγ) = g̃(k/3v), which is true for k large enough by (2.1). The last
set above is exactly

{d(x, x0) ≤
1

nγ
} ∩Enγ

and by Lemma 4.1 its µ-measure is at most

2

nγ
1

nγβ
=

Cv
k1+β

for k (and thus n) large enough.

4.1.3 Moving points

We consider here points that move from one maximum to another under f .
We assume that g(n) and g̃(n) satisfy conditions (2.1), (2.2) and (2.6). Denote by

G1 ⊂ X the set of full Lebesgue measure determined by (2.6).
For a fixed y0 ∈ G1, denote

Gn(y0) := {x | d(f jx, y0) ≤
1

n
for some j ≤ g̃(n)}.

Then, by f -invariance of the measure, (2.6) gives

µ(Gn(y0)) ≤ g̃(n)µ(B1/n(y0)) ≤
C

nα1

and therefore one can apply Lemma 4.1 to the sets Gn(y0) for values 0 < β1 < α1

and γ1 > 1/(α1 − β1). We prove:

Lemma 4.3 Given y0 ∈ G1, for m-a.e. x0 and each v > 0 there is K = K(x0, v, y0)
such that for k ≥ K one has

µ({x | d(x, x0) ≤
v

k
, d(f jx, y0) ≤

v

k
for some j ≤ g(k)}) ≤ C ′

v

k1+β1
.

This implies, as in the previous section, that for any v > 0

k

g(k)∑

j=1

µ({x | d(x, x0) ≤
v

k
, d(f jx, y0) ≤

v

k
}) → 0 as k → ∞. (4.25)

Proof of Lemma 4.3. It is essentially the same as the proof of Lemma 4.2.
Let x0 be given by Lemma 4.1 applied for the sets Gn(y0).
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For k ≥ 1 denote

n =

(
1

3v
k

)1/γ1

.

Note that nγ1 = k
3v

hence v
k
< 1

nγ
1
. Then, provided g(k) ≤ g̃(nγ1) = g̃(k/3v) for the

last inclusion below (true for k large enough by (2.1)),

{x | d(x, x0) ≤
v

k
, d(f jx, y0) ≤

v

k
for some j ≤ g(k)}

⊂ {x | d(x, x0) ≤
1

nγ1
, d(f jx, y0) ≤

1

nγ1
for some j ≤ g̃(nγ1)}

= {x | d(x, x0) ≤
1

nγ1
} ∩Gnγ1 (y0)

By Lemma 4.1, for k (and thus n) large enough, its µ-measure is at most

2

nγ1
1

nγ1β1
=

C ′
v

k1+β1
.

4.1.4 Recurrence for multiple maxima

We prove now one of the key estimates in the argument of Collet.

Lemma 4.4 Let f : X → X be a map for which the invariant measure µ is finite
and absolutely continuous, and Lemmas 4.2 and 4.3 hold. Denote by D the set of
density points of µ.

For each r ≥ 1 there is a set Xr ⊂ Dr of full Lebesgue measure in Xr such that if
(x1, . . . , xr) ∈ Xr and ϕ(x) := −∑r

k=1 log d(x, xk) then

n

g(n)∑

j=1

µ(ϕ > un, ϕ ◦ f j > un) → 0 as n→ ∞ (4.26)

for un = v + log n.

Proof: For simplicity, we discuss the case r = 2, ϕ(x) = − log d(x, x0)− log d(x, y0).
The proof generalizes in a straightforward way to r > 2.

From Lemmas 4.2 and 4.3 we have: there is δ > 0 such that

(a) for m-a.e. x0 ∈ X, for any v > 0, there exists an ℓ(x0, v) > 0 such that

1

n
≤ ℓ(x0, v) =⇒ µ{x ∈ Bv/n(x0) : d(f jx, x0) ≤

v

n
for some j ≤ g(n)} ≤ Cv

n1+δ

Denote this set by G.
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(b) for each y0 ∈ G1, for m-a.e. x0 ∈ X, for any v > 0, there exists a k(x0, v, y0) > 0
such that

1

n
≤ k(x0, v, y0) =⇒ µ{x ∈ Bv/n(x0) : d(f jx, y0) ≤

v

n
for some j ≤ g(n)} ≤ Cv

n1+δ

Denote this set by G(y0).

Therefore, by intersecting the full Lebesgue-measure sets D×D, G×G, ∪y∈G1{y}×
G(y) and ∪y∈G1G(y)×{y} in X×X, we conclude that form-a.e. pair (x0, y0) ∈ X×X,
for each v > 0, there is s(x0, y0, v) > 0 such that if 1

n
≤ s(x0, y0, v) then

µ{x ∈ Bv/n(x0) : f j(x) ∈ Bv/n(y0) for some 1 ≤ j ≤ g(n)} ≤ Cv
n1+δ

,

µ{y ∈ Bv/n(y0) : f j(y) ∈ Bv/n(x0) for some 1 ≤ j ≤ g(n)} ≤ Cv
n1+δ

,

µ{x ∈ Bv/n(x0) : f j(y) ∈ Bv/n(x0) for some 1 ≤ j ≤ g(n)} ≤ Cv
n1+δ

,

µ{x ∈ Bv/n(y0) : f j(y) ∈ Bv/n(y0) for some 1 ≤ j ≤ g(n)} ≤ Cv
n1+δ

.

This gives

n

g(n)∑

j=1

µ(ϕ > un, ϕ ◦ f j > un) → 0 as n→ ∞

for the observation ϕ(x) = − log d(x, x0) − log d(x, y0).

4.1.5 Conclusion of proof of Theorem 2.2

Let ψ(x) have logarithmic singularities at the points xi, with the r-tuple (x1, . . . , xr)
in the full-measure set Xr specified in Lemma 4.4. Assume that Ck = 1 for each
1 ≤ k ≤ r (the general case can be reduced to this, see Lemma 4.12 and the discussion
preceding it). In particular, each xk is a density point of µ and µ(ψ ≥ v + log n) =
O(e−v/n) as n→ ∞.

For the details of the argument we refer to [4, Page 415]. We collect the main
results below.

Remark 4.5 If the density of the invariant measure µ is in L1+δ then, using Hölder’s
inequality, µ(E) ≤ Cm(E)δ/(1+δ). This gives the conclusion of [4, Lemma 2.2] with
θ = δ/(1 + δ).

Assume v ∈ R is fixed and denote un := v + log n. It suffices to prove that qΓn → 0
(see formula on top of Collet’s page 415). Here q(p + t) = n with t = g(n) and p, q
freely chosen with pq ≈ n.
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Proposition 4.6 ([4]) The following results holds for 1 ≤ ℓ ≤ q:

|µ(Mℓ(p+t) < un) − (1 − pµ(ψ > un))µ(M(ℓ−1)(p+t) < un)| ≤ Γn

where

Γn = tµ(X ≥ un) + 2p

p∑

j=1

µ({ψ ≥ un} ∩ {ψ ◦ f j ≥ un})

+pO(1)µ(ψ ≥ un)
−1−ηΘ1(t) + pO(1)µ(ψ ≥ un)

θ(1+η).

Remark 4.7 In this formula η > 0 can be chosen arbitrarily (see [4, Lemma 3.3] and
the proof below), affecting only the constants O(1).

Proof: We first of all have the following estimates, see [4, Proposition 3.2]: for any
integers t, r,m, k, p ≥ 0

0 ≤ µ(Mr < u) − µ(Mr+k < u) ≤ kµ(ψ ≥ u),

and
∣∣∣∣∣µ(Mm+p+t < u) − µ(Mm < u) +

p∑

j=1

E
(
χ{ψ≥u}χ{Mm◦fp+t−j<u}

)
∣∣∣∣∣

≤ 2p

p∑

j=1

E
(
χ{ψ≥u}χ{ψ◦fj<u}

)
+ tµ(ψ > u).

The second estimate we need is that of decay of correlations for piecewise contin-
uous observables (namely characteristic functions). Here we must approximate the
indicator function χ{X>un} by a Lipschitz function.

The required bound is given in [4, Lemma 3.3]: for any η > 0, any integer t > 0,
any interval I, and any measurable set A,

|µ(I ∩ f−t(A)) − µ(I)µ(A)| ≤ m(I)−(1+η)Θ1(t) + O(1)m(I)θ(1+η) (4.27)

where Θ1 is the decay of Lipschitz functions agains the L∞-norm,

|
∫
ϕ · ψ ◦ fndµ−

∫
ϕdµ

∫
ψdµ| ≤ Θ1(n)‖ψ‖L∞‖ϕ‖Lip.

This is obtained by approximating χI with a piecewise-linear function below χI . The
RHS is of the form (δm(I))−1Θ1(t) + O(1)(δm(I))θ for any 0 < δ < 1/2, and (4.27)
follows by taking δ = m(I)η.
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In our case I = {X ≥ un} is a finite union of intervals since X has finitely many
maxima. However, (4.27) remains valid as long as the intervals that form {X ≥ un}
have comparable lengths (i.e., the ratios stay bounded).

Putting this together gives:

∣∣µ(Mn < un) − µ(Mq(p+t) < un)
∣∣ ≤ qtµ(ψ ≥ un),

and for 1 ≤ ℓ ≤ q we have

|µ(Mℓ(p+t) < un) − (1 − pµ(ψ > un))µ(M(ℓ−1)(p+t) < un)|

≤
∣∣∣∣∣pµ(ψ ≥ un)µ(M(ℓ−1)(p+t) < un) −

p∑

j=1

E

(
χ{ψ◦fj≥un}χM(ℓ−1)(p+t)◦fp+t<un

)∣∣∣∣∣

+tµ(ψ ≥ un) + 2p

p∑

j=1

µ
(
{ψ ≥ un} ∩ {ψ ◦ f j ≥ un}

)
.

This latter expression is bounded above by Γn by the estimates above.

Continuing Collet’s argument, we see that if pµ(ψ ≥ un) < 2 then

|µ(Mq(p+t) < un) − (1 − pµ(ψ ≥ un)
q| ≤ qΓn

and so
|µ(Mn < un) − (1 − pµ(ψ ≥ un)

q| ≤ qΓn + qtµ(ψ ≥ un)

by the results above.
Hence if qΓn → 0 and qtµ(ψ < un) → 0 then

µ(max{ψ, . . . , ψ ◦ fn} ≤ un) → exp(− lim
n
nµ(ψ ≥ un)).

With our choice of ψ, since xk are density points of µ,

lim
n
nµ(ψ ≥ un) = lim

n
n

r∑

k=1

µ({x | d(x, xk) ≤ un})

= 2e−v
r∑

k=1

ρ(xk)e
ℓk

(4.28)

where ℓk = limx→xk
[ψ(x) + log d(x, xk)].

Proposition 4.8 If t = g(n), p = nβ and q = n1−β then qtµ(ψ ≥ un) → 0 and
qΓn → 0.
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Proof: That qtµ(ψ ≥ un) → 0 follows from (2.2) since µ(ψ ≥ un) = O(e−v/n).
Given the choice of constants, we verify in Sublemmas 4.10 and 4.11 below that

each term in the formula for qΓn tends to zero.
The summation term that appears in qΓn is considered in Sublemma 4.11, which

uses both the fast decay of correlations and the recurrence statistics.

Remark 4.9 In our setting the choice of sequences for p and q is in fact optimal.
Such an optimization will be important for specific applications where optimization
on the range of constants is useful. If we choose p = nγ, q = n/p, then γ = β is
optimal given our type of assumptions.

Sublemma 4.10 With the choice of t = g(n), p = nβ and q = n1−β the following
estimates hold:

qg(n)µ(ψ ≥ un) → 0, pq m({ψ ≥ un})−(1+η)Θ1(g(n)) → 0, pq m({ψ ≥ un})θ(1+η) → 0.

Proof: By direct computation we have

qg(n)µ(ψ ≥ un) = n1−βg(n)O(e−v/n) → 0.

This is exactly condition (2.2), because µ(ψ ≥ un) = O(e−v/n) since the xk’s are
density points.

pq m({ψ ≥ un})−(1+η)Θ1(g(n)) = n2+ηΘ1(g(n)) → 0

This follows from (4.30). Finally we have

pq m({ψ ≥ un})θ(1+η) = nθ(1+η)−1 → 0

since θ(1 + η) > 1.

Sublemma 4.11 With the choice of t = g(n), p = nβ and q = n1−β we have

pq

p∑

j=1

µ({X ≥ un} ∩ {X ◦ f j ≥ un}) → 0 (4.29)

Proof: We split the summation as
∑p

j=1 =
∑

j≤g(n) +
∑

j≥g(n) . For the part
∑

j≥g(n)

we use mixing. We have:

µ({ψ ≥ un} ∩ {ψ ◦ f j ≥ un})
≤ m({ψ ≥ un})−(1+η)Θ1(j) + O(1)m({ψ ≥ un})θ(1+η) + µ({ψ ≥ un})2

≤ n1+ηΘ1(g(n)) +
1

nθ(1+η)
+

1

n2
,
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and hence we can bound pq
∑p

j=g(n) by

n2+β+ηΘ1(g(n)) +
O(1)

nθ(1+η)−1−2β
+

O(1)

n1−β
.

This requires
n2+β+ηΘ1(g(n)) → 0, θ(1 + η) > 1 + β. (4.30)

By Remark 4.5, θ = δ/(1 + δ). Then, by condition (2.4), there is an η > 0 for which
(4.30) holds.

The bound of pq
∑

j≤g(n) follows from (4.26), which relies on the the maximal
function argument.

We now conclude the proof of Theorem 2.2 by proving case (I) without the as-
sumption Ck ≡ 1, and cases (II) and (III). We do this in detail only for case (II) via
the next simple lemma. The proof of the other cases is the same mutatis mutandis.

Lemma 4.12 Suppose that ψ is a function with maxima at points (x1, . . . , xr) ∈ Xr

and at each xk ψ has a logarithmic singularity or ψ(x) ≈ Ckd(x, xk)
sk with sk < 0.

Let {Ik} be a collection of disjoint neighborhoods of the points xk, k = 1, . . . , r. Let

s = max |sk| and G be the set of xk’s such that |sk| = s. Let ψ̃ be a function
which equals ψ on Ii if xi ∈ G, and which outside ∪xi∈GIi is bounded and satisfies

ψ̃ ≤ ψ. Let un = nsv, Mn = max1≤j≤n ψ ◦ f j and M̃n = max1≤j≤n ψ̃ ◦ f j. Suppose

limn µ(M̃n ≤ un) exists. Then

lim
n
µ(Mn ≤ un) = lim

n
µ(M̃n ≤ un)

Proof: For large n, µ(M̃n ≥ un) ≤ µ(Mn ≥ un) ≤ µ(M̃n ≥ un) +
∑

xi 6∈G
nµ(ψ ∈

Ik : ψ > un). By our choice of scaling un, limn

∑
xi 6∈G

nµ(ψ ∈ Ik : ψ > un) = 0.

Thus if limn µ(M̃n ≤ un) exists then limn µ(Mn ≤ un) exists and limn µ(Mn ≤ un) =

limn µ(M̃n ≤ un).

Thus it suffices to consider functions of form ψ̃ i.e. just the local behavior of ϕ at
each xk ∈ G. Finally the corresponding estimate in equation (4.28) yields

lim
n
nµ(ψ ≥ un) = lim

n
n
∑

xk∈G

µ({x | d(x, xk) ≤
1

n

(
Ck
v

)1/s

})

= 2
∑

xk∈G

ρ(xk)(
Ck
v

)1/s
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4.2 Proof of Theorem 2.5

We will use the notations (2.7) and (2.8) throughout this section. In the proof of
Theorem 2.5 first we show that the convergence in distribution is mixing [7]. Next we
derive distributional convergence of ϕT (p) from knowledge of distributional conver-
gence of ΦN (x) with N = N(x, T ) a random function of time (governed by measure
µ). The key result we prove in this derivation is Lemma 4.16 and this estimate is
used when approximating T by N(x, T ). Extra care is needed if h is unbounded, see
Sublemma 4.18. Finally the estimates are collected in Section 4.2.5 where Theorem
2.5 is proved.

4.2.1 Mixing convergence

Recall [22] that a sequence of random variables Sn : X → R on a probability space
(X,µ) converges mixing in distribution to G if for each A ⊂ X with positive measure,
Sn|A →d G with respect to the conditional measure µA(B) := µ(B ∩ A)/µ(A) on A.

Let (X,µ, f) be a m.p.t. on a probability space and Φ : X → R an (a.e. finite)
random variable.

Denote Φn,m(x) := max{Φ ◦ fk(x) | n ≤ k < m}, for n,m ≥ 0. Hence Φn = Φ0,n.

Lemma 4.13 In the above setting, if f is ergodic then:

(a) Φn → ess-sup(Φ) a.e.

(b) an(Φ0,n − Φk,n+ℓ) →p 0 as n→ ∞, for each k ≥ 0 and ℓ.

(c) Therefore, by [7, Thm. 6], if an(Φn−bn) →d G, then the convergence is mixing.
Moreover, for each k ≥ 0 and ℓ, an(Φk,n+ℓ − bn) →d G mixing as well.

(d) Let h ∈ L1(µ) be a roof function and denote Φ̂n := Φn ◦ πh.
Similarly to (c), if an(Φ̂n − bn) →d G on (Xh, µh), then the convergence is
mixing.

Remark 4.14 Note that if an(Φn−bn) →d G, then (b) implies that an(Φn+k−bn) →d

G for any fixed k. Hence, by Khintchine’s Theorem (see, e.g., [17, Theorem 1.2.3]),
an+k/an → 1 and an+k(bn − bn+k) → 0 as n → ∞. Conditions (2.9) and (2.10) are
stronger versions of this.

Proof: Part (a) is a straightforward consequence of the Birkhoff ergodic theorem.
The result in (b) is a consequence of (a), with some extra care needed if

ess-sup(Φ) = ∞ or if Φ is maximized on a non-isolated set of points (this latter
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case does not arise in our applications). We consider the case when ℓ ≥ 0, the other
being similar. Then

Φ0,n − Φ0,n+ℓ ≤ Φ0,n − Φk,n+ℓ ≤ Φ0,n+ℓ − Φk,n+ℓ

and it follows by ergodicity that we get a.e. convergence to zero if ess-sup(Φ) is
finite. For the case in which ess-sup(Φ) = ∞, we show that the left side (which is
non-positive) and right side (which is non-negative) in the above inequalities converge
in probability to zero. Let ε > 0 and pick a < ess-sup(Φ) such that µ(Φ0,k ≥ a) ≤ ε
(this is possible because Φ is a.e. finite and ess-sup(Φ) = ∞). Then

µ(an(Φ0,n+ℓ − Φk,n+ℓ) ≥ ε) = µ(Φ0,k ≥ Φk,n+ℓ + ε/an)

≤ µ(Φ0,k ≥ a) + µ(Φ0,k < a,Φ0,k ≥ Φk,n+ℓ + ε/an)

≤ µ(Φ0,k ≥ a) + µ(Φk,n+ℓ < a− ε/an)

≤ µ(Φ0,k ≥ a) + µ(Φk,n+ℓ < a)

which converges to µ(Φ0,k ≥ a) by (a). The other side is dealt with in a similar
fashion, using the stationarity of the process:

µ(an(Φ0,n+ℓ − Φ0,n) ≥ ε) ≤ µ(Φn,n+ℓ ≥ a) + µ(Φ0,n < a− ε/an)

≤ µ(Φn,n+ℓ ≥ a) + µ(Φ0,n < a).

The first claim of (c) follows from ergodicity, (b), and the following result of
Eagleson [7, Thm. 6]: ifX1, X2, . . . have a trivial invariant σ-field, Tn(X1, . . . , Xn) →d

T for a sequence of statistics Tn, and Tn(X1, . . . , Xn) − Tn(Xk+1, . . . , Xk+n) →p 0 for
each k, then Tn(X1, . . . , Xn) →d T mixing.

The “moreover” part of (c) follows immediately invoking (b) once more: let A ⊂ X
be a set of positive measure; then, in the induced measure µA, an(Φn−bn)|A →d G by
the first claim of (c), and an(Φ0,n−Φk,n+ℓ)|A →p 0 from (b); thus an(Φk,n+ℓ−bn)|A →d

G as well.
The result in (d) follows as the first claim of (c) if we notice that Φ̂1,n+1−Φ̂0,n →p 0

on (Xh, µh) because Φ1,n+1 − Φ0,n →p 0 on (X,µ) and h ∈ L1(µ). Note that the
invariant σ-field of {(Φ◦fk)◦πh}k is the pull-back through πh of the invariant σ-field
on X, hence it is still trivial.

4.2.2 Lifting to Xh

Mixing convergence allows to relate the extreme value laws for observations on X to
observations on Xh. We prove the following lemma:
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Lemma 4.15 Let f : (X,µ) → (X,µ) be ergodic and Xh the suspension space with
a roof function h ∈ L1(µ). Let Φ : X → R be an observation.

Set ΦN(x) = maxk≤N−1 Φ(fk(x)) and define Φ̂N : Xh → R by Φ̂N (x, u) = ΦN ◦
πh(x, u) = ΦN (x).

(a) If aN(ΦN − bN ) →d G on X, then aN (Φ̂N − bN ) →d G on Xh.

(b) If 1/h ∈ L1(µ) and aN(Φ̂N −nN ) →d G on Xh, then aN(ΦN − bN ) →d G on X.

Proof: By [23], mixing convergence in distribution on (X,µ) implies convergence
in distribution on (X, ν) whenever ν is absolutely continuous with respect to µ.

For (a), take ν to be the probability measure on X give by dν := h/hdµ. Then
∫

X

exp{itaN (ΦN − bN)} h/h dµ→ E(eitG), ∀ t ∈ R

because the convergence aN(ΦN − bN ) →d G is mixing by Lemma 4.13(c). However,
∫

Xh

exp{itaN (Φ̂N − bN )} dµh =
1

h

∫

X

∫ h(x)

0

exp{itaN (Φ̂N − bN )} du dµ

=

∫

X

exp{itaN (ΦN − bN )} h/h dµ.

Hence
∫
Xh exp{itaN (Φ̂N − bN )} dµh → E(eitG), and the result follows.

For (b), note that the probability measure dνh := h/h dµh is an absolutely con-
tinuous probability with respect to dµh. Repeat the argument from above and use
Lemma 4.13(d).

4.2.3 The normalization constants

Lemma 4.16 Assume that gn : X → Z are measurable and such that gn(x)/n → 0
a.e. Let Sn be an increasing sequence of random variables on X. If conditions (2.9)
and (2.10) hold then

an(Sn − bn) →d G ⇐⇒ an(Sn+gn(x)(x) − bn) →d G.

Proof: If we define Xn = an(Sn− bn) and Yn = an(Sn+gn − bn) then the lemma is a
straightforward consequence of the inequality

Xn ≤ Yn ≤ an
an+εn

Xan+εn
+ an(bn+εn − bn) (4.31)

valid on the set | gn

n
| < ε.

We will also need the following consequence of (4.31):
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Remark 4.17 (a) If lim infn→∞ µ(an(Sn+gn(x)(x) − bn) ≤ v) ≥ G(v) at each con-
tinuity point v of G, then lim infm→∞ µ(am(Sm − bm) ≤ v) ≥ G(v) at each
continuity point v of G.

(b) If lim supn→∞ µ(an(Sn+gn(x)(x) − bn) ≤ v) ≤ G(v) at each continuity point v
of G, then lim supm→∞ µ(am(Sm − bm) ≤ v) ≤ G(v) at each continuity point v
of G.

4.2.4 The lap number

Assume that h(x) satisfies the Strong Law of Large Numbers (SLLN), namely

hN = Nh + o(N) a.e. as N → ∞ (4.32)

where hN(x) = h(x) + h(f(x)) + . . .+ h(fN−1(x)).
Given a time T ≥ 0 define the lap number N(x, T ) by

hN(x,T )(x) ≤ T < hN(x,T )+1(x). (4.33)

The SLLN implies that h is a.e. finite, hence

lim
T→∞

N(x, T ) = ∞ a.e. (4.34)

and thus

lim
T→∞

T

N(x, T )
= h a.e. (4.35)

We also need an estimate comparing N(x, T + h(x)) to N(x, T ). These quatities
are not uniformly comparable, especially if inf h = 0 and sup h = ∞. However the
next result confirms that they are comparable almost surely.

Sublemma 4.18 For µ almost all x ∈ X we have

lim
T→∞

N(x, T + h(x))

N(x, T )
= 1

Proof: Let Za = {x ∈ X : h(x) ≤ a}, and given ε > 0 and T > 0 let

Xε,T = {x ∈ X :

∣∣∣∣
N(x, t+ h(x))

N(x, t)
− 1

∣∣∣∣ ≥ ε for some t ≥ T}.

Then we have

µ(Xε,T ) ≤ µ

(
x ∈ X :

∣∣∣∣
N(x, t+ h(x))

N(x, t)
− 1

∣∣∣∣ ≥ ε for some t ≥ T, h(x) ∈ [0, a]

)
+µ(X\Za).
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Now for given a > 0 we have that µ-a.e.

t

N(x, t)
= h+ o(1),

t+ a

N(x, t+ a)
= h + o(1) as t→ ∞,

and therefore N(x, t + a)/N(x, t) → 1 almost surely as t → ∞. Hence by taking a
arbitrarily large and then T → ∞ it follows that µ(Xε,T ) → 0. The result follows.

4.2.5 Conclusion of proof of Theorem 2.5.

Note that the hypotheses about f and h imply all the statements in Section 4.2.4.
The main observation is that for (x, u) ∈ Xh with 0 ≤ u < h(x)

Φ1,N(x,T )(x) ≤ ϕT (x, u) ≤ ΦN(x,T+h(x))+1(x) (4.36)

(recall from Section 4.2.1 that Φn,m(x) := max{Φ ◦ fk(x) | n ≤ k < m}). Indeed,
ΦN(x) = ϕhN (x)(x, 0) for x ∈ X and thus, taking into account the identifications of
Xh:

Φ1,N(x,T )(x) = max{ϕ(x, t) | h(x) ≤ t < hN(x,T )(x)}
ϕT (x, u) = max{ϕ(x, t) | u ≤ t < u+ T}

ΦN(x,T+h(x))+1(x) = max{ϕ(x, t) | 0 ≤ t < hN(x,T+h(x))+1(x)}.

The definition (4.33) of the lap number gives

hN(x,T )(x) ≤ T, u+ T < T + h(x) < hN(x,T+h(x))+1(x),

and (4.36) follows.
We will also use that

N(x, T )

⌊T/h⌋
→ 1,

N(x, T + h(x)) + 1

⌊T/h⌋
→ 1 a.e. on X (and hence on Xh), (4.37)

which follow from (4.35) and Sublemma 4.18.
We first prove the implication

an(Φn − bn) →d G on X =⇒ aT/h(ϕT − bT/h) →d G on Xh. (4.38)

By Lemma 4.15(a), the left hand side of (4.38) implies

a⌊T/h⌋(Φ̂⌊T/h⌋ − b⌊T/h⌋) →d G on Xh, (4.39)

where ⌊r⌋ denotes the largest integer not exceeding r. By Lemma 4.13(b)

a⌊T/h⌋(Φ1,⌊T/h⌋ − Φ⌊T/h⌋) →p 0 on X
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and, because h ∈ L1(µ), this convergence in probability also holds on Xh if we extend

the function Φ1,N to Φ̂1,N := Φ1,N ◦ πh. Together with (4.39) this implies

a⌊T/h⌋(Φ̂1,⌊T/h⌋ − b⌊T/h⌋) →d G on Xh. (4.40)

By Lemma 4.16, (4.37), (4.40) and (4.39) imply

a⌊T/h⌋(Φ̂1,N(x,T )(x, u)−b⌊T/h⌋) →d G, a⌊T/h⌋(Φ̂N(x,T+h(x))+1(x, u)−b⌊T/h⌋) →d G on Xh.

Use (4.36) to obtain
a⌊T/h⌋(ϕT − b⌊T/h⌋) →d G on Xh,

from where the desired conclusion follows.
We prove next the converse implication,

a⌊T/h⌋(ϕT − b⌊T/h⌋) →d G on Xh =⇒ an(Φn − bn) →d G on X. (4.41)

Denote by Ω ⊂ R the continuity points of G.
Since (4.36) implies

µh(a⌊T/h⌋(Φ̂1,N(x,T )(x, u) − b⌊T/h⌋) ≤ v) ≥ µh(a⌊T/h⌋(ϕT (x, u) − b⌊T/h⌋) ≤ v)

µh(a⌊T/h⌋(Φ̂N(x,T+h(x))+1(x, u) − b⌊T/h⌋) ≤ v) ≤ µh(a⌊T/h⌋(ϕT (x, u) − b⌊T/h⌋) ≤ v)

we obtain from the left hand side of (4.41) that

lim inf
T→∞

µh(a⌊T/h⌋(Φ̂1,N(x,T )(x, u) − b⌊T/h⌋) ≤ v) ≥ G(v),

lim sup
T→∞

µh(a⌊T/h⌋(Φ̂N(x,T+h(x))+1(x, u) − b⌊T/h⌋) ≤ v) ≤ G(v), v ∈ Ω.

By Remark 4.17 and (4.37), we conclude that

lim inf
T→∞

µh(a⌊T/h⌋(Φ̂1,⌊T/h⌋ − b⌊T/h⌋) ≤ v) ≥ G(v), (4.42)

lim sup
T→∞

µh(a⌊T/h⌋(Φ̂⌊T/h⌋ − b⌊T/h⌋) ≤ v) ≤ G(v), v ∈ Ω. (4.43)

Use that, by Lemma 4.13(b), a⌊T/h⌋(Φ̂⌊T/h⌋ − Φ̂1,⌊T/h⌋) →p 0 on Xh to deduce from
the first relation above that

lim inf
T→∞

µh(a⌊T/h⌋(Φ̂⌊T/h⌋ − b⌊T/h⌋) ≤ v) ≥ G(v), v ∈ Ω. (4.44)

From (4.43) and (4.44) it follows that

a⌊T/h⌋(Φ̂⌊T/h⌋ − b⌊T/h⌋) →d G on Xh.

and Lemma 4.15(b) completes the proof.
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