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Abstract

We consider the regularity of measurable solutions χ to the coho-
mological equation

φ = χ ◦ T − χ,

where (T,X, µ) is a dynamical system and φ : X → R is a Ck valued
cocycle in the setting in which T : X → X is a piecewise Ck Gibbs–
Markov map, an affine β-transformation of the unit interval or more
generally a piecewise Ck uniformly expanding map of an interval. We
show that under mild assumptions, bounded solutions χ possess Ck

versions. In particular we show that if (T,X, µ) is a β-transformation
then χ has a Ck version, thus improving a result of Pollicott et al. [23].

1 Introduction

In this note we consider the regularity of solutions χ to the cohomological
equation

φ = χ ◦ T − χ (1)

where (T,X, µ) is a dynamical system and φ : X → R is a Ck valued cocycle.
In particular we are interested in the setting in which T : X → X is a piece-
wise Ck Gibbs–Markov map, an affine β-transformation of the unit interval
or more generally a piecewise Ck uniformly expanding map of an interval.
Rigidity in this context means that a solution χ with a certain degree of
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regularity is forced by the dynamics to have a higher degree of regularity.
Cohomological equations arise frequently in ergodic theory and dynamics
and, for example, determine whether observations φ have positive variance
in the central limit theorem and and have implication for other distribu-
tional limits (for examples see [20, 2]). Related cohomological equations to
Equation (1) decide on stable ergodicity and weak-mixing of compact group
extensions of hyperbolic systems [11, 20, 19] and also play a role in deter-
mining whether two dynamical systems are (Hölder, smoothly) conjugate to
each other.

Livšic [13, 14] gave seminal results on the regularity of measurable so-
lutions to cohomological equations for Abelian group extensions of Anosov
systems with an absolutely continuous invariant measure. Theorems which
establish that a priori measurable solutions to cohomological equations must
have a higher degree of regularity are often called measurable Livšic theorems
in honor of his work.

We say that χ : X → R has a Ck version (with respect to µ) if there exists
a Ck function h : X → R such that h(x) = χ(x) for µ a.e. x ∈ X.

Pollicott and Yuri [23] prove Livšic theorems for Hölder R-extensions of
β-transformations (T : [0, 1) → [0, 1), T (x) = βx (mod 1) where β > 1)
via transfer operator techniques. They show that any essentially bounded
measurable solution χ to Equation (1) is of bounded variation on [0, 1 − ǫ)
for any ǫ > 0. In this paper we improve this result to show that measurable
coboundaries χ for Ck

R-valued cocycles φ over β-transformations have Ck

versions (see Theorem 2).
Jenkinson [10] proves that integrable measurable coboundaries χ for R-

valued smooth cocycles φ (i.e. again solutions to φ = χ ◦ T −χ) over smooth
expanding Markov maps T of S1 have versions which are smooth on each
partition element.

Nicol and Scott [15] have obtained measurable Livšic theorems for cer-
tain discontinuous hyperbolic systems, including β-transformations, Markov
maps, mixing Lasota–Yorke maps, a simple class of toral-linked twist map
and Sinai dispersing billiards. They show that a measurable solution χ to
Equation (1) has a Lipschitz version for β-transformations and a simple class
of toral-linked twist map. For mixing Lasota–Yorke maps and Sinai dispers-
ing billiards they show that such a χ is Lipschitz on an open set. There is
an error in [15, Theorem 1] in the setting of C2 Markov maps — they only
prove measurable solutions χ to Equation (1) are Lipschitz on each element
Tα, α ∈ P, where P is the defining partition for the Markov map, and not
that the solutions are Lipschitz on X, as Theorem 1 erroneously states. The
error arose in the following way: if χ is Lipschitz on α ∈ P it is possible to
extend χ as a Lipschitz function to Tα by defining χ(Tx) = φ(x) + χ(x),
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however extending χ as a Lipschitz function from α to T 2α via the relation
χ(T 2x) = φ(Tx)+χ(Tx) may not be possible, as φ ◦T may have discontinu-
ities on Tα. In this paper we give an example, (see Section 3), which shows
that for Markov maps this result cannot be improved on.

Gouëzel [7] has obtained similar results to Nicol and Scott [15] for cocy-
cles into Abelian groups over one-dimensional Gibbs–Markov systems. In the
setting of Gibbs–Markov system with countable partition he proves any mea-
surable solution χ to Equation (1) is Lipschitz on each element Tα, α ∈ P,
where P is the defining partition for the Gibbs–Markov map.

In related work, Aaronson and Denker [1, Corollary 2.3] have shown that if
(T,X, µ,P) is a mixing Gibbs–Markov map with countable Markov partition
P preserving a probability measure µ and φ : X → R

d is Lipschitz (with
respect to a metric ρ on X derived from the symbolic dynamics) then any
measurable solution χ : X → R

d to φ = χ ◦ T − χ has a version χ̃ which
is Lipschitz continuous, i.e. there exists C > 0 such that d(χ̃(x), χ̃(y)) ≤
Cρ(x, y) for all x, y ∈ T (α) and each α ∈ P.

Bruin et al. [4] prove measurable Livšic theorems for dynamical systems
modelled by Young towers and Hofbauer towers. Their regularity results ap-
ply to solutions of cohomological equations posed on Hénon-like mappings
and a wide variety of non-uniformly hyperbolic systems. We note that Corol-
lary 1 of [4, Theorem 1] is not correct — the solution is Hölder only on Mk

and TMk rather than T jMk for j > 1 as stated for reasons similar to those
given above for the result in Nicol et al. [15].

2 Main results

We first describe one-dimensional Gibbs–Markov maps. Let I ⊂ R be a
bounded interval, and P a countable partition of I into intervals. We let m
denote Lebesgue measure. Let T : I → I be a piecewise Ck, k ≥ 2, expanding
map such that T is Ck on the interior of each element of P with |T ′| > λ > 1,
and for each α ∈ P, Tα is a union of elements in P. Let Pn :=

∨n

j=0 T
−jP

and JT := d(m◦T )
dm

. We assume:

(i) (Big images property) There exists C1 > 0 such that m(Tα) > C1 for
all α ∈ P.

(ii) There exists 0 < γ1 < 1 such that m(β) < γn1 for all β ∈ Pn.

(iii) (Bounded distortion) There exists 0 < γ2 < 1 and C2 > 0 such that

|1 − JT (x)
JT (y)

| < C2γ
n
2 for all x, y ∈ β if β ∈ Pn.
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Under these assumptions T has an invariant absolutely continuous prob-
ability measure µ and the density of µ, h = dµ

dm
is bounded above and below

by a constant 0 < C−1 ≤ h(x) ≤ C for m a.e. x ∈ I.
Note that a Markov map satisfies (i), (ii) and (iii) for finite partition P.
It is proved in [15] for the Markov case (finite P), and in [7] for the

Gibbs–Markov case (countable P) that if φ : I → R is Hölder continuous
or Lipschitz continuous, and φ = χ ◦ T − χ for some measurable function
χ : I → R, then there exists a function χ0 : I → R that is Hölder or Lipschitz
on each of the elements of P respectively, and χ0 = χ holds µ (or m) a.e. A
related result to [7] is given in [4, Theorem 7] where T is the base map of a
Young Tower, which has a Gibbs–Markov structure.

Fried [6] has shown that the transfer operator of a graph directed Markov
system with Ck,α-contractions, acting on a space of Ck,α-functions, has a
spectral gap. If we apply his result to our setting, letting the contractions
be the inverse branches of a Gibbs–Markov map we can conclude that the
transfer operator of a Gibbs–Markov map acting on Ck-functions has a spec-
tral gap. As in Jenkinson’s paper [10] and with the same proof, this gives
us immediately the following proposition, which is implied by the results of
Fried and Jenkinson:

Proposition 1. Let T : T → I be a mixing Gibbs–Markov map such that T
is Ck on each partition element and T−1 : T (α) → α is Ck on each partition
element α ∈ P. Let φ : I → R be uniformly Ck on each of the partition
elements α ∈ P. Suppose χ : I → R is a measurable function such that
φ = χ ◦ T − χ. Then there exists a function χ0 : I → R such that χ0 is
uniformly Ck on Tα for each partition element of α ∈ P, and χ0 = χ almost
everywhere.

3 A counterexample

We remark that in general, if φ = χ ◦ T − χ, one cannot expect χ to be
continuous on I if φ is Ck on I. We give an example of a Markov map T
with Markov partition P, a function φ that is Ck on I, and a function χ that
is Ck on each element α of P such that φ = χ ◦ T − χ, yet χ has no version
that is continuous on I.

Let 0 < c < 1
4
. Put d = 2 − 4c. Define T : [0, 1] → [0, 1] by

T (x) =











2x+ 1
2

if 0 ≤ x ≤ 1
4

d(x− 1
2
) + 1

2
if 1

4
< x < 3

4

2x− 3
2

if 3
4
≤ x ≤ 1

.
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Figure 1: The graph of T .

Figure 2: The graph of χ.

Figure 3: The graph of χ ◦ T .

Figure 4: The graph of φ = χ◦T−χ.

If c = 1
8
, then the partition

P =

{

[

0,
1

8

]

,
[1

8
,
1

4

]

,
[1

4
,
1

2
−

1

4d

]

,
[1

2
−

1

4d
,
1

2

]

,

[1

2
,
1

2
+

1

4d

]

,
[1

2
+

1

4d
,
3

4

]

,
[3

4
,
7

8

]

,
[7

8
, 1

]

}

is a Markov partition for T . Define χ such that χ is 0 on [1
2
− 1

4d
, 1

2
] and 1 on

[1
2
, 1

2
+ 1

4d
]. On [0, 1

4
) we define χ so that χ(0) = 1 and limx→ 1

4

χ(x) = 0, and

on (3
4
, 1] we define χ so that χ(1) = 0 and limx→ 3

4

χ(x) = 1. For any natural

number k, this can be done so that χ is Ck except at the point 1
2

where it
has a jump. One easily check that φ defined by φ = χ ◦ T − χ is Ck. This is
illustrated in Figures 1–4.

4 Livšic theorems for piecewise expanding maps

of an interval

Let I = [0, 1) and letm denote Lebesgue measure on I. We consider piecewise
expanding maps T : I → I, satisfying the following assumptions:

(i) There is a number λ > 1, and a finite partition P of I into intervals,
such that the restriction of T to any interval in P can be extended to a
C2-function on the closure, and |T ′| > λ on this interval.

(ii) T has an absolutely continuous invariant measure µ with respect to
which T is mixing.

(iii) T has the property of being weakly covering, as defined by Liverani
in [12], namely that there exists an n0 such that for any element α ∈ P

n0
⋃

j=0

T j(α) = I.

For any n ≥ 0 we define the partition Pn = P ∨ · · · ∨ T−n+1P. The
partition elements of Pn are called n-cylinders, and Pn is called the partition
of I into n-cylinders.

We prove the following two theorems.
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Theorem 1. Let (T, I, µ) be a piecewise expanding map satisfying assump-
tions (i), (ii) and (iii). Let φ : I → R be a Hölder continuous function, such
that φ = χ ◦T −χ for some measurable function χ, with e−χ ∈ L1(m). Then
there exists a function χ0 such that χ0 has bounded variation and χ0 = χ
almost everywhere.

For the next theorem we need some more definitions. Let A be a set,
and denote by intA the interior of the set A. We assume that the open sets
T (intα), where α is an element in P, cover int I.

We will now define a new partition Q. For a point x in the interior of some
element of P, we let Q(x) be the largest open set such that for any x2 ∈ Q(x),
and any m-cylinder Cm, there are points (y1,k)

n
k=1 and (y2,k)

n
k=1, such that

y1,k and y2,k are in the same element of P, T (yi,k+1) = yi,k, T (y1,1) = x,
T (y2,1) = x2, and y1,n, y2,n ∈ Cm. (This forces n ≥ m.)

Note that if Q(x) ∩Q(y) 6= ∅, then for z ∈ Q(x) ∩ Q(y) we have Q(z) =
Q(x)∪Q(y). We let Q be the coarsest collection of connected sets, such that
any element of Q can be represented as a union of sets Q(x).

Theorem 2. Let (T, I, µ) be a piecewise expanding map satisfying assump-
tions (i), (ii) and (iii). If φ : I → R is a continuously differentiable function,
such that φ = χ ◦ T −χ for some function χ with e−χ ∈ L1, then there exists
a function χ0 such that χ0 is continuously differentiable on each element of
Q and χ0 = χ almost everywhere. If T ′ is constant on the elements of P,
then χ0 is piecewise Ck on Q if φ is in Ck. If for each r, 1

(T r)′
is in Ck with

derivatives up to order k uniformly bounded, then χ0 is piecewise Ck on Q if
φ is in Ck.

It is not always clear how big the elements in the partition Q are. The
following lemma gives a lower bound on the diameter of the elements in Q.

Lemma 1. Assume that the sets { T (intα) : α ∈ P } cover (0, 1). Let δ be
the Lebesgue number of the cover. Then the diameter of Q(x) is at least δ/2
for all x.

Proof. Let Cm be a cylinder of generation m. We need to show that for some
n ≥ m there are sequences (y1,k)

n
k=1 and (y2,k)

n
k=1 as in the definition of Q

above.
Take n0 such that µ(T n0(Cm)) = 1. Write Cm as a finite union of cylinders

of generation n0, Cm =
⋃

iDi. Then R := [0, 1] \ T n0(∪i intDi) consists of
finitely many points. Let ε be the smallest distance between two of these
points.

Let Iδ be an open interval of diameter δ. Let n1 be such that δλ−n1 < ε.
Consider the full pre-images of Iδ under T n1. By the definition of δ, there is
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at least one such pre-image, and any such pre-image is of diameter less than
ε. Hence any pre-image contains at most one point from R.

If the pre-image does not contain any point of R, then Iδ is contained in
some element of Q and we are done. Assume that there is a point z in Iδ
corresponding to the point of R in the pre-image of Iδ. Assume that z is in
the right half of Iδ. The case when z is in the left part is treated in a similar
way. Take a new open interval Jδ of length δ, such that the left half of Jδ
coincides with the right half of Iδ.

Arguing in the same way as for Iδ, we find that a pre-image of Jδ contains
at most one point of R. If there is no such point, or the corresponding point
zJ ∈ Jδ is not equal to z, then Iδ ∪ Jδ is contained in an element in Q and
we are done.

It remains to consider the case z = zJ . Let Iδ = (a, b) and Jδ = (c, d).
Then the intervals (a, z) and (z, d) are both of length at least δ/2, and both
are contained in some element of Q. This finishes the proof.

Corollary 1. If β > 1 and T : x 7→ βx (mod 1) is a β-transformation then
clearly T is weakly covering and Q = {(0, 1)}, so in this case Theorem 2 and
Theorem 1 of [15] imply that χ0 is in Ck if φ is in Ck.

Remark 1. If T : x 7→ βx + α (mod 1) is an affine β-transformation, then
Q = {(0, 1)}, and hence if e−χ is in L1(m) then χ has a Ck version.

5 Proof of Theorem 1

We continue to assume that (T, I, µ) is a piecewise expanding map satisfying
assumptions (i), (ii) and (iii). For a function ψ : I → R we define the weighted
transfer operator Lψ by

Lψf(x) =
∑

T (y)=x

eψ(y) 1

|dyT |
f(y).

The proof is based on the following two facts, that can be found in Hof-
bauer and Keller’s papers [8, 9]. The first fact is

There is a function h ≥ 0 of bounded variation such that if
f ∈ L1 with f ≥ 0 and f 6= 0, then Ln0f converges to h

∫

f dm
in L1.

(2)
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The second fact is

Let f ∈ L1 with f ≥ 0 and f 6= 0 be fixed. There is a function
w ≥ 0 with bounded variation, a measure ν, and a number
a > 0, depending on φ, such that

anLnφf → w

∫

f dν,

in L1.

(3)

For f of bounded variation, these facts are proved as follows. Theorem 1
of [8] gives us the desired spectral decomposition for the transfer operator
acting of functions of bounded variation. Proposition 3.6 of Baladi’s book
[3] gives us that there is a unique maximal eigenvalue. This proves the two
facts for f of bounded variation. The case of a general f in L1 follows since
such an f can be approximated by functions of bounded variation.

Using that T is weakly covering, we can conclude by Lemma 4.2 in [12],
that h > γ > 0. The proof of this fact in [12] goes through also for w, and
so we may also conclude that w > γ > 0.

Let us now see how Theorem 1 follows from these facts. The following
argument is analogous to the argument used by Pollicott and Yuri in [23] for
β-expansions. We first observe that φ = χ ◦ f − χ implies that

Lnφ1(x) =
∑

Tn(y)=x

eSnφ(y) 1

|dyT n|
=

∑

Tn(y)=x

eχ(Tny)−χ(y) 1

|dyT n|

= eχ(x)
∑

Tn(y)=x

e−χ(y) 1

|dyT n|
= eχ(x)Ln0e

−χ(x).

Since anLnφ1 → w and e−χLnφ1 = Ln0e
−χ → h

∫

e−χ dm we have that anLnφ1
converges to w in L1 and Lnφ1 converges to heχ

∫

e−χ dm in L1. By taking
a subsequence, we can achieve that the convergences are a.e. Therefore, we
must have a = 1 and

w(x) = eχ(x)h(x)

∫

e−χ dm, a.e.

It follows that

χ(x) = logw(x) − log

∫

e−χ dm− log h(x),

almost everywhere. Since h and w are bounded away from zero, their loga-
rithms are of bounded variation. This proves the theorem.
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6 Proof of Theorem 2

We first note that it is sufficient to prove that χ0 is continuously differentiable
on elements of the form Q(x).

Let x and y satisfy T (y) = x. Then by φ = χ ◦ T − χ we have χ(x) =
φ(y) + χ(y).

Let x1 be a point in an element of Q, and take x2 ∈ Q(x1). We choose pre-
images y1,j and y2,j of x1 and x2 such that T (yi,1) = xi and T (yi,j) = yi,j−1.
We then have

χ(x1) − χ(x2) =

n
∑

j=1

(

φ(y1,j) − φ(y2,j)
)

+ χ(y1,n) − χ(y2,n).

We would like to let n → ∞ and conclude that χ(y1,n) − χ(y2,n) → 0. By
Theorem 1 we know that χ has bounded variation. Assume for contradiction
that no matter how we choose y1,j and y2,j we cannot make |χ(y1,n)−χ(y2,n)|
smaller than some ε > 0. Let m be large and consider the cylinders of
generation m. For any such cylinder Cm, we can choose y1,j and y2,j such
that y1,n and y2,n both are in Cm. Since |χ(y1,n)− χ(y2,n)| ≥ ε, the variation
of χ on Cm is at least ε. Summing over all cylinders of generation m, we
conclude that the variation of χ on I is at least N(m)ε. Since m is arbitrary
and N(m) → ∞ as m → ∞, we get a contradiction to the fact that χ is of
bounded variation.

Hence we can make |χ(y1,n)−χ(y2,n)| smaller that any ε > 0 by choosing
y1,j and y2,j in an appropriate way. We conclude that

χ(x1) − χ(x2) =

∞
∑

j=1

(

φ(y1,j) − φ(y2,j)
)

.

If x1 6= x2 then y1,j 6= y2,j for all j, and we have

χ(x1) − χ(x2)

x1 − x2

=
∞

∑

j=1

φ(y1,j) − φ(y2,j)

y1,j − y2,j

y1,j − y2,j

x1 − x2

.

Clearly, the limit of the right hand side exists as x2 → x1, and is

∞
∑

j=1

φ′(y1,j)
1

(T j)′(y1,j)
.

The series converges since |(T j)′| > λj . This shows that χ′(x1) exists and
satisfies

χ′(x1) =

∞
∑

j=1

φ′(y1,j)
1

(T j)′(y1,j)
. (4)
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If T ′ is constant on the elements of P, then (4) implies that χ is in Ck

provided that φ is in Ck.
Let us now assume that 1

(T r)
′ is in Ck with derivatives up to order k

uniformly bounded in r. We proceed by induction. Let gn = 1
(Tn)′

. Assume
that

χ(m)(x) =
∞

∑

n=1

ψn,m(yn)gn(yn), (5)

where (ψn,m)∞n=1 is in Cn−m with derivatives up to order n − m uniformly
bounded. Then

χ(m+1)(x) =

∞
∑

n=1

(

ψ′

n,m(yn)gn(yn)+ψn,m(yn)g
′

n(yn)
)

gn(yn) =

∞
∑

n=1

ψn,m+1gn(yn).

This proves that there are uniformly bounded functions ψn,m such that (5)
holds for 1 ≤ m ≤ k. The series in (5) converges uniformly since gn decays
with exponential speed. This proves that χ is in Ck.
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[24] A. Scott, Livšic theorems for unimodal maps, In preparation.
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