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1. Glossary.

• A transformation T of a measure space (X,B, µ) is measure-preserving if
µ(T−1A) = µ(A) for all measurable A ∈ B.

• A measure-preserving transformation (X,B, µ, T ) is ergodic if T−1(A) = A
(mod µ) implies µ(A) = 0 or µ(Ac) = 0 for each measurable set A ∈ B.

• A measure-preserving transformation (X,B, µ, T ) of a probability space is

weak-mixing if limn→∞
1
n

∑n−1
i=0 |µ(T−iA ∩ B) − µ(A)µ(B)| = 0 for all measurable

sets A,B ∈ B.

• A measure-preserving transformation (X,B, µ, T ) of a probability space is
strong-mixing if limn→∞ µ(T−nA∩B) = µ(A)µ(B) for all measurable sets A,B ∈ B.

• A continuous transformation T of a compact metric spaceX is uniquely ergodic
if there is only one T -invariant Borel probability measure on X .

• Suppose (X,B, µ) is a probability space. A finite partition P of X is a fi-
nite collection of disjoint (mod µ, i.e., up to sets of measure 0) measurable sets
{P1, . . . , Pn} such that X = ∪Pi (mod µ). The entropy of P with respect to µ is
H(P) = −∑

i µ(Pi) lnµ(Pi) (other bases are sometimes used for the logarithm).

• The metric (or measure-theoretic) entropy of T with respect to P is hµ(T,P) =
limn→∞

1
nH(P ∨ . . . ∨ T−n+1(P)), where P ∨ . . . ∨ T−n+1(P) is the partition of X

into sets of points with the same coding with respect to P under T i, i = 0, . . . , n−1.
That is x, y are in the same set of the partition P ∨ . . . ∨ T−n+1(P) if and only if
T i(x) and T i(y) lie in the same set of the partition P for i = 0, . . . , n− 1.

• The metric entropy hµ(T ) of (X,B, µ, T ) is the supremum of hµ(T,P) over all
finite measurable partitions P .

• If T is a continuous transformation of a compact metric space X , then the
topological entropy of T is the supremum of the metric entropies hµ(T ), where the
supremum is taken over all T -invariant Borel probability measures.

• A system (X,B, µ, T ) is loosely Bernoulli if it is isomorphic to the first-return
system to a subset of positive measure of an irrational rotation or a (positive or
infinite entropy) Bernoulli system.

• Two systems are spectrally isomorphic if the unitary operators that they induce
on their L2 spaces are unitarily equivalent.

• A smooth dynamical system consists of a differentiable manifold M and a
differentiable map f : M →M . The degree of differentiablity may be specified.

• Two submanifolds S1, S2 of a manifold M intersect transversely at p ∈ M if
Tp(S1) + Tp(S2) = Tp(M).
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• An (ǫ-) small Cr perturbation of a Cr map f of a manifold M is a map g
such that dCr(f, g) < ǫ i.e. the distance between f and g is less than ǫ in the Cr

topology.

• A map T of an interval I = [a, b] is piecewise smooth (Ck for k ≥ 1) if there is
a finite set of points a = x1 < x2 < . . . < xn = b such that T |(xi, xi+1) is Ck for
each i. The degree of differentiability may be specified.

• A measure µ on a measure space (X,B) is absolutely continuous with respect
to a measure ν on (X,B) if ν(A) = 0 implies µ(A) = 0 for all measurable A ∈ B.

• A Borel measure µ on a Riemannian manifold M is absolutely continuous if it
is absolutely continuous with respect to the Riemannian volume on M .

• A measure µ on a measure space (X,B) is equivalent to a measure ν on (X,B)
if µ is absolutely continuous with respect to ν and ν is absolutely continuous with
respect to µ.

2. Definition of the Subject and its Importance.

Measure-preserving systems are a common model of processes which evolve in
time and for which the rules governing the time evolution don’t change. For exam-
ple, in Newtonian mechanics the planets in a solar system undergo motion according
to Newton’s laws of motion: the planets move but the underlying rule governing the
planets’ motion remains constant. The model adopted here is to consider the time-
evolution as a transformation (either a map in discrete time or a flow in continuous
time) on a probability space or more generally a measure space. This is the setting
of the subject called ergodic theory. Applications of this point of view include the
areas of statistical physics, classical mechanics, number theory, population dynam-
ics, statistics, information theory and economics. The purpose of this chapter is
to present a flavor of the diverse range of examples of measure-preserving trans-
formations which have played a role in the development and application of ergodic
theory and smooth dynamical systems theory. We also present common construc-
tions involving measure-preserving systems. Such constructions may be considered
a way of putting ‘building-block’ dynamical systems together to construct examples
or decomposing a complicated system into simple ‘building-blocks’ to understand
it better.

3. Introduction.

In this chapter we collect a brief list of some important examples of measure-
preserving dynamical systems, which we denote typically by (X,B, µ, T ) or (T,X,B, µ)
or slight variations. These examples have played a formative role in the develop-
ment of dynamical systems theory, either because they occur often in applications
in one guise or another or because they have been useful simple models to un-
derstand certain features of dynamical systems. There is a fundamental difference
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in the dynamical properties of those systems which display hyperbolicity: roughly
speaking there is some exponential divergence of nearby orbits under iteration of
the transformation. In differentiable systems this is associated with the deriva-
tive of the transformation possessing eigenvalues of modulus greater than one on
a ‘dynamically significant’ subset of phase space. Hyperbolicity leads to complex
dynamical behavior such as positive topological entropy, exponential divergence of
nearby orbits (“sensitivity to initial conditions”) often coexisting with a dense set
of periodic orbits. If φ, ψ are sufficiently regular functions on the phase space X of
a hyperbolic measure-preserving transformation (T,X, µ), then typically we have
fast decay of correlations in the sense that

|
∫

X

φ(T nx)ψ(x)dµ −
∫

φdµ

∫

ψdµ| ≤ Ca(n)

where a(n) → 0. If a(n) → 0 at an exponential rate we say that the system
has exponential decay of correlations. A theme in dynamical systems is that the
time series formed by sufficiently regular observations on systems with some degree
of hyperbolicity often behave statistically like independent identically distributed
random variables.

At this point it is appropriate to point out two pervasive differences between
the usual probabilistic setting of a stationary stochastic process {Xn} and the
(smooth) dynamical systems setting of a time series of observations on a measure-
preserving system {φ ◦ T n}. The most crucial is that for deterministic dynamical
systems the time series is usually not an independent process, which is a common
assumption in the strictly probabilistic setting. Even if some weak-mixing is as-
sumed in the probabilistic setting it is usually a mixing condition on the σ-algebras
Fn = σ(X1, . . . , Xn) generated by successive random variables, a condition which
is not natural (and usually very difficult to check) for dynamical systems. Mixing
conditions on dynamical systems are given more naturally in terms of the mixing of
the sets of the σ-algebra B of the probability space (X,B, µ) under the action of T
and not by mixing properties of the σ-algebras generated by the random variables
{φ ◦ T n}. The other difference is that in the probabilistic setting, although {Xn}
satisfy moment conditions, usually no regularity properties, such as the Hölder
property or smoothness, are assumed. In contrast in dynamical systems theory the
transformation T is often a smooth or piecewise smooth transformation of a Rie-
mannian manifold X and the observation φ : X → R is often assumed continuous
or Hölder. The regularity of the observation φ turns out to play a crucial role in
proving properties such as rates of decay of correlation, central limit theorems and
so on.

An example of a hyperbolic transformation is an expanding map of the unit
interval T (x) = (2x) (where (x) is x modulo the integers). Here the derivative has
modulus 2 at all points in phase space. This map preserves Lebesgue measure, has
positive topological entropy, Lebesgue almost every point x has a dense orbit and
periodic points for the map are dense in [0, 1).

Non-hyperbolic systems are of course also an important class of examples, and
in contrast to hyperbolic systems they tend to model systems of ‘low complexity’,
for example systems displaying quasiperiodic behavior. The simplest non-trivial
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example is perhaps an irrational rotation of the unit interval [0, 1) given by a map
T (x) = (x+α), α ∈ R \Q. T preserves Lebesgue measure, every point has a dense
orbit (there are no periodic orbits), yet the topological entropy is zero and nearby
points stay the same distance from each other under iteration under T .

There is a natural notion of equivalence for measure-preserving systems. We
say that measure-preserving systems (T,X,B, µ) and (S, Y, C, ν) are isomorphic if
(possibly after deleting sets of measure 0 from X and Y ) there is a one-to-one onto
measurable map φ : X → Y with measurable inverse φ−1 such that φ ◦ T = S ◦ φ
µ a.e. and µ(φ−1(A)) = ν(A) for all A ∈ C. If X,Y are compact topological spaces
we say that T is topologically conjugate to S if there exists a homeomorphism
φ : X → Y such that φ ◦ T = S ◦ φ. In this case we call φ a conjugacy. If φ is
Cr for some r ≥ 1 we will call φ a Cr-conjugacy and similarly for other degrees of
regularity.

We will consider X = [0, 1) (mod 1) as a representation of the unit circle
S1 = {z ∈ C : |z| = 1} (under the map x → e2πix) and similarly represent the
k-dimensional torus T k = S1 × . . . × S1 (k-times). If the σ-algebra is clear from
the context we will write (T,X, µ) instead of (T,X,B, µ) when denoting a measure-
preserving system.

4. Examples.

4.1. Rigid rotation of a compact group. If G is a compact group equipped
with Haar measure and a ∈ G, then the transformation T (x) = ax preserves Haar
measure and is called a rigid rotation of G. If G is abelian and the transformation
is ergodic (in this setting transitivity implies ergodicity), then the transformation
is uniquely ergodic. Such systems always have zero topological entropy.

The simplest example of such a system is a circle rotation. TakeX = [0, 1) (mod 1),
with

T (x) = (x+ α) where α ∈ R.

Then T preserves Lebesgue (Haar) measure and is ergodic (in fact uniquely ergodic)
if and only if α is irrational. Similarly, the map

T (x1, . . . , xk) = (x1 + α1, . . . , xk + αk) , where α1, . . . , αk ∈ R,

preserves k-dimensional Lebesgue (Haar) measure and is ergodic (uniquely ergodic)
if and only if there are no integers m1, . . . ,mk, not all 0, which satisfy m1α1 + . . .+
mkαk ∈ Z.

4.2. Adding machines. Let {ki}i∈N be a sequence of integers with ki ≥ 2. Equip
each cyclic group Zki

with the discrete topology and form the product space Σ =
∏∞

i=1 Zki
equipped with the product topology. An adding machine corresponding

to the sequence {ki}i∈N is the topological space Σ =
∏∞

i=1 Zki
together with the

map

σ : Σ → Σ
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defined by

σ(k1 − 1, k2 − 1, . . .) = (0, 0, . . .) if each entry in the Zki
component is ki − 1,

while

σ(k1 − 1, k2 − 1, . . . , kn − 1, x1, x2, . . .) = (0,

n times
︷ ︸︸ ︷

0, . . . , 0, x1 + 1, x2, x3, . . .)

when x1 6= kn+1 − 1.

The map σ may be thought of as “add one and carry” and also as mapping each
point to its successor in a certain order. See Section 5.7 for generalizations. If each
ki = 2 then the system is called the dyadic (or von Neumann-Kakutani) adding
machine or 2-odometer. Adding machines give examples of naturally occurring
minimal systems of low orbit complexity in the sense that the topological entropy
of an adding machine is zero. In fact if f is a continuous map of an interval with
zero topological entropy and S is a closed, topologically transitive invariant set
without periodic orbits, then the restriction of f to S is topologically conjugate to
the dyadic adding machine [47, Theorem 11.3.13].

We say a non-empty set Λ is an attractor for a map T if there is an open set U
containing Λ such that Λ = ∩n≥0T

n(U) (other definitions are found in the liter-
ature). The dyadic adding machine is topologically conjugate to the Feigenbaum
attractor at the limit point of period doubling bifurcations (see Section 4.13.1).
Furthermore, attractors for continuous unimodal maps of the interval are either
periodic orbits, transitive cycles of intervals, or Cantor sets on which the dynamics
is topologically conjugate to an adding machine [33].

4.3. Interval Exchange Maps. A map T : [0, 1] → [0, 1] is an interval exchange
transformation if it is defined in the following way. Suppose that π is a permutation
of {1, . . . , n} and li > 0, i = 1, . . . , n, is a sequence of subintervals of I (open or
closed) with

∑

i li = 1. Define ti by li = ti − ti−1 with t0 = 0. Suppose also that σ
is an n-vector with entries ±1. T is defined by sending the interval ti−1 ≤ x < ti−1

of length li to the interval

∑

π(j)<π(i)

lπ(j) ≤ x <
∑

π(j)>π(i)

lπ(j)

with orientation preserved if the i’th entry of σ is +1 and orientation reversed if the
i’th entry of σ is −1. Thus on each interval li, T has the form T (x) = σix+ai, where
σi is ±1. If σi = 1 for each i, the transformation is called orientation preserving.

The transformation T has finitely many discontinuities (at the endpoints of each
li), and modulo this set of discontinuities is smooth. T is also invertible (neglecting
the finite set of discontinuities) and preserves Lebesgue measure. These maps have
zero topological entropy and arise naturally in studies of polygonal billiards and
more generally area-preserving flows. There are examples of minimal but non-
ergodic interval exchange maps [58, 72].
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4.4. Full shifts and shifts of finite type. Given a finite set (or alphabet) A =
{0, . . . , d−1}, take X = Ω+(A) = AN (or X = AZ) the sets of one-sided (two-sided)
sequences, respectively, with entries from A. For example sequences in AN have the
form x = ·x0x1 . . . xn . . .. A cylinder set C(yn1

, . . . , ynk
), yni

∈ A, of length k is a
subset of X defined by fixing k entries; for example,

C(yn1
, . . . , ynk

) = {x : xn1
= yn1

, . . . , xnk
= ynk

}.

We define the set Ak to consist of all cylinders C(y1, . . . , yk) determined by fixing
the first k entries, i.e. an element of Ak is specified by fixing the first k entries of
a sequence ·x0 . . . xk by requiring xi = yi, i = 0, . . . , k.

Let p = (p0, . . . , pd−1) be a probability vector: all pi ≥ 0 and
∑d−1

i=0 pi = 1. For

any cylinder B = C(b1, . . . , bk) ∈ Ak, define

(4.1) gk(B) = pb1 . . . pbk
.

It can be shown that these functions on Ak extend to a shift-invariant measure
µp on AN (or AZ) called product measure. (See the article on Measure-Preserving
Systems.) The space AN or AZ may be given a metric by defining

d(x, y) =

{
1 if x0 6= y0;

1
2|n| if xn 6= yn and xi = yi for |i| < n.

The shift σ(.x0x1 . . . xn . . .) = .x1x2 . . . xn . . . is ergodic with respect to µp. The
measure-preserving system (Ω,B, µ, σ) (with B the σ-algebra of Borel subsets of
Ω(A), or its completion), is denoted by B(p) and is called the Bernoulli shift de-
termined by p. This system models an infinite number of independent repetitions
of an experiment with finitely many outcomes, the i’th of which has probability pi

on each trial.

These systems are mixing of all orders (i.e. σn is mixing for all n ≥ 1) and have
countable Lebesgue spectrum (hence are all spectrally isomorphic). Kolmogorov
and Sinai showed that two of them cannot be isomorphic unless they have the
same entropy; Ornstein [82] showed the converse. B(1/2, 1/2) is isomorphic to the
Lebesgue-measure-preserving transformation x → 2x mod 1 on [0, 1]; similarly,
B(1/3, 1/3, 1/3) is isomorphic to x → 3x mod 1. Furstenberg asked whether the
only nonatomic measure invariant for both x → 2x mod 1 and x → 3x mod 1 on
[0, 1] is Lebesgue measure. Lyons [69] showed that if one of the actions is K, then
the measure must be Lebesgue, and Rudolph [101] showed the same thing under
the weaker hypothesis that one of the actions has positive entropy. For further
work on this question, see [51, 88].

This construction can be generalized to model one-step finite-state Markov sto-
chastic processes as dynamical systems. Again let A = {0, . . . , d − 1}, and let
p = (p0, . . . , pd−1) be a probability vector. Let P be a d× d stochastic matrix with
rows and columns indexed by A. This means that all entries of P are nonnegative,
and the sum of the entries in each row is 1. We regard P as giving the transi-
tion probabilities between pairs of elements of A. Now we define for any cylinder
B = C(b1, . . . , bk) ∈ Ak

(4.2) µp,P (B) = pb1Pb1b2Pb2b3 . . . Pbk−1bk
.
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It can be shown that µp,P extends to a measure on the Borel σ-algebra of Ω+(A),
and its completion. (See the article on Measure-Preserving Systems.) The resulting
stochastic process is a (one-step, finite-state) Markov process. If p and P also satisfy

(4.3) pP = p,

then the Markov process is stationary. In this case we call the (one or two-sided)
measure-preserving system the Markov shift determined by p and P .

Aperiodic and irreducible Markov chains (those for which a power of the transi-
tion matrix P has all entries positive) are strongly mixing, in fact are isomorphic to
Bernoulli shifts (usually by means of a complicated measure-preserving recoding).

More generally we say a set Λ ⊂ AZ is a subshift if it is compact and invariant
under σ. A subshift Λ is said to be of finite type (SFT) if there exists an d ×
d matrix M = (aij) such that all entries are 0 or 1 and x ∈ Λ if and only if
axixi+1

= 1 for all i ∈ Z. Shifts of finite type are also called topological Markov
chains. There are many invariant measures for a non-trivial shift of finite type. For
example the orbit of each periodic point is the support of an invariant measure.
An important role in the theory, derived from motivations of statistical mechanics,
is played by equilibrium measures (or equilibrium states) for continuous functions
φ : Λ → R, i.e. those measures µ which maximize {hσ(µ) +

∫

Λ
φdµ} over all shift-

invariant probability measures, where hσ(µ) is the measure-theoretic entropy of σ
with respect to µ. The study of full shifts or shifts of finite type has played a
prominent role in the development of the hyperbolic theory of dynamical systems
as physical systems with ‘chaotic’ dynamics ‘typically’ possess an invariant set with
induced dynamics topologically conjugate to a shift of finite type (see the discussion
by Smale in [110, p. 147]). Dynamical systems in which there are transverse
homoclinic connections are a common example [45, Theorem 5.3.5]. Furthermore
in certain settings positive metric entropy implies the existence of shifts of finite
type. One result along these lines is a theorem of Katok [54]. Let htop(f) denote
the topological entropy of a map f and hµ(f) denote metric entropy with respect
to an invariant measure µ.

Theorem 4.1 (Katok). Suppose T : M →M is a C1+ǫ diffeomorphism of a closed
manifold and µ is an invariant measure with positive metric entropy (i.e. hµ(T ) >
0). Then for any 0 < ǫ < hµ(T ) there exists an invariant set Λ topologically
conjugate to a transitive shift of finite type with htop(T |Λ) > hµ(T ) − ǫ.

4.5. More examples of subshifts. We consider some further examples of systems
that are given by the shift transformation on a subset of the set of (usually doubly-
infinite) sequences on a finite alphabet, usually {0, 1}.Associated with each subshift
is its language, the set of all finite blocks seen in all sequences in the subshift. These
languages are extractive (or factorial ) (every subword of a word in the language
is also in the language) and insertive (or extendable) (every word in the language
extends on both sides to longer words in the language). In fact these two properties
characterize the languages (subsets of the set of finite-length words on an alphabet)
associated with subshifts.



BASIC CONSTRUCTIONS AND EXAMPLES 11

4.5.1. Prouhet-Thue-Morse. An interesting (and often rediscovered) element of {0, 1}Z+

is produced as follows. Start with 0 and at each stage write down the opposite
(0′ = 1, 1′ = 0) or mirror image of what is available so far. Or, repeatedly apply
the substitution 0 → 01, 1 → 10.

0
0 1
0 1 10
0 1 10 0110
...
The n’th entry is the sum, mod 2, of the digits in the dyadic expansion of n.
Using Keane’s block multiplication [57] according to which if B is a block, B × 0 =
B,B × 1 = B′, and B × (ω1 . . . ωn) = (B × ω1) . . . (B × ωn), we may also obtain
this sequence as

0 × 01 × 01 × 01 × . . . .

The orbit closure of this sequence is uniquely ergodic (there is a unique shift-
invariant Borel probability measure, which is then necessarily ergodic). It is iso-
morphic to a skew product (see Section 5.3) over the von Neumann-Kakutani adding
machine, or odometer (see Section 4.2). Generalized Morse systems, that is, orbit
closures of sequences like 0 × 001 × 001 × 001 × . . . , are also isomorphic to skew
products over compact group rotations.

4.5.2. Chacon system. This is the orbit closure of the sequence generated by the
substitution 0 → 0010, 1 → 1. It is uniquely ergodic and is one of the first systems
shown to be weakly mixing but not strongly mixing. It is prime (has no nontrivial
factors) [31], and in fact has minimal self joinings [32]. It also has a nice description
by means of cutting up the unit interval and stacking the pieces, using spacers (see
Section 5.6). This system has singular spectrum. It is not known whether or not
its Cartesian square is loosely Bernoulli (see [22]).

4.5.3. Sturmian systems. Take the orbit closure of the sequence ωn = χ[1−α,1)(nα),
where α is irrational. This is a uniquely ergodic system that is isomorphic to
rotation by α on the unit interval. These systems have minimal complexity in the
sense that the number of n-blocks grows as slowly as possible (n+ 1) [29].

4.5.4. Toeplitz systems. A bi-infinite sequence (xi) is a Toeplitz sequence if the set
of integers can be decomposed into arithmetic progressions such that each xi is
constant on each arithmetic progression. A shift space X is a Toeplitz shift if it is
the closure of the orbit of a Toeplitz sequence. It is possible to construct Toeplitz
shifts which are uniquely ergodic and isomorphic to a rotation on a compact abelian
group. [34]

4.5.5. Sofic systems. These are images of SFT’s under continuous factor maps (fi-
nite codes, or block maps). They correspond to regular languages—languages whose
words are recognizable by finite automata. These are the same as the languages
defined by regular expressions—finite expressions built up from ∅ (empty set), ǫ
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(empty word), + (union of two languages), · (all concatenations of words from
two languages), and ∗ (all finite concatenations of elements). They also have the
characteristic property that the family of all follower sets of all blocks seen in the
system is a finite family; similarly for predecessor sets. These are also generated
by phase-structure grammars which are linear, in the sense that every production
is either of the form A → Bw or A → w, where A and B are variables and w is a
string of terminals (symbols in the alphabet of the language).

[A phase-structure grammar consists of alphabets V of variables and A of termi-
nals, a set of productions, which is finite set of pairs of words (α,w), usually written
α→ w, of words on V ∪A, and a start symbol S. The associated language consists
of all words on the alphabet A of terminals which can be made by starting with S
and applying a finite sequence of productions.]

Sofic systems typically support many invariant measures (for example they have
many periodic points) but topologically transistive ones (those with a dense orbit)
have a unique measures of maximal entropy. See [67].

4.5.6. Context-free systems. These are generated by phase-structure grammars in
which all productions are of the form A → w, where A is a variable and w is a
string of variables and terminals.

4.5.7. Coded systems. These are systems all of whose blocks are concatenations
of some (finite or infinite) list of blocks. These are the same as the closures of
increasing sequences of SFT’s [62]. Alternatively, they are the closures of the images
under finite edge-labelings of irreducible countable-state topological Markov chains.
They need not be context-free. Squarefree languages are not coded, in fact do not
contain any coded systems of positive entropy. See [13–15].

4.6. Smooth expanding interval maps. Take X = [0, 1) (mod 1), m ∈ N,
m > 1 and

T (x) = (mx).

Then T preserves Lebesgue measure µ (recall that T preserves µ if µ(T−1A) = µ(A)
for all A ∈ B). Furthermore it can be shown that T is ergodic.

This simple map exemplifies many of the characteristics of systems with some
degree of hyperbolicity. It is isomorphic to a Bernoulli shift. The map has positive
topological entropy and exponential divergence of nearby orbits, and Hölder func-
tions have exponential decay of correlations and satisfy the central limit theorem
and other strong statistical properties [20].

If m = 2 the system is isomorphic to a model of tossing a fair coin, which is a
common example of randomness. To see this let P = {P0 = [0, 1/2), P1 = [1/2, 1]}
be a partition of [0, 1] into two subintervals. We code the orbit under T of any point
x ∈ [0, 1) by 0’s and 1’s by letting xk = i if T kx ∈ Pi, k = 0, 1, 2, . . . . The map
φ : X → {0, 1}N which associates a point x to its itinerary in this way is a measure-
preserving map from (X,µ) to {0, 1}N equipped with the Bernoulli measure from
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p0 = p1 = 1
2 . The map φ satisfies φ ◦ T = σ ◦ φ, µ a.e. and is invertible a.e., hence

is an isomorphism. Furthermore, reading the binary expansion of x is equivalent
to following the orbit of x under T and noting which element of the partition P is
entered at each time. Borel’s theorem on normal numbers (base m) may be seen
as a special case of the Birkhofff Ergodic Theorem in this setting.

4.6.1. Piecewise C2 expanding maps. The main statistical features of the examples
in Section 4.6 generalize to a broader class of expanding maps of the interval. For
example:

Let X = [0, 1] and let P = {I1, . . . , In} (n ≥ 2) be a partition of X into intervals
(closed, half-open or open) such that Ii ∩ Ij = ∅ if i 6= j. Let Io

i denote the interior
of Ii. Suppose T : X → X satisfies:

(a) For each i = 1, . . . , n, T |Ii has a C2 extension to the closure Īi of Ii and

|T ′

(x)| ≥ α > 1 for all x ∈ Io
i .

(b) T (Ij) = ∪i∈Pj
Ii Lebesgue a.e. for some non-empty subset Pj ⊂ {1, . . . , n}.

(c) For each Ij there exists nj such that T nj(Ij) = [0, 1] Lebesgue a.e.

Then T has an invariant measure µ which is absolutely continuous with respect to
Lebesgue measure m, and there exists C > 0 such that 1

C ≤ dµ
dm ≤ C. Furthermore

T is ergodic with respect to µ and displays the same statistical properties listed
above for the C2 expanding maps [20]. (See the “Folklore Theorem” in the article
on Measure-Preserving Systems.)

4.7. More interval maps.

4.7.1. Continued fraction map. This is the map T : [0, 1] → [0, 1] given by Tx = 1/x
mod 1, and it corresponds to the shift [0; a1, a2, . . .] → [0; a2, a3, . . .] on the con-
tinued fraction expansions of points in the unit interval (a map on NN). It pre-
serves a unique finite measure equivalent to Lebesgue measure, the Gauss measure
dx/(log 2)(1 + x). It is Bernoulli with entropy π2/6 log 2 (in fact the natural par-
tition into intervals is a weak Bernoulli generator, for the definition and details
see [92]). By using the Ergodic Theorem, Khintchine and Lévy showed that

(a1 . . . an)1/n →
∞∏

k=1

[

1 +
1

k2 + 2k

]log k/log 2

a.e. as n→ ∞;

if [0; a1, . . . , an] =
pn

qn
, then

1

n
log qn → π2

12 log 2
a.e.;

1

n
log

∣
∣
∣
∣
x− pn(x)

qn(x)

∣
∣
∣
∣
→ π2

6 log 2
a.e.;

and if m is Lebesgue measure (or any equivalent measure) and µ is Gauss measure,
then for each interval I, m(T−nI) → µ(I), in fact exponentially fast, with a best
constant 0.30366 . . . See [10, 76].
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4.7.2. The Farey map. This is the map U : [0, 1] → [0, 1] given by Ux = x/(1 − x)
if 0 ≤ x ≤ 1/2, Ux = (1 − x)/x if 1/2 ≤ x ≤ 1. It is ergodic for the σ-finite infinite
measure dx/x (Rényi and Parry). It is also ergodic for the Minkowski measure
d, which is a measure of maximal entropy. This map corresponds to the shift on
the Farey tree of rational numbers which provide the intermediate convergents (best
one-sided) as well as the continued fraction (best two-sided) rational approximations
to irrational numbers. See [63, 64].

4.7.3. f -expansions. Generalizing the continued fraction map, let f : [0, 1] → [0, 1]
and let {In} be a finite or infinite partition of [0, 1] into subintervals. We study the
map f by coding itineraries with respect to the partition {In}. For many examples,
absolutely continuous (with respect to Lebesgue measure) invariant measures can
be found and their dynamical properties determined. See [106].

4.7.4. β-shifts. This is the special case of f -expansions when f(x) = βx mod 1 for
some fixed β > 1. This map of the interval is called the β-transformation. With a
proper choice of partition, it is represented by the shift on a certain subshift of the
set of all sequences on the alphabet D = {0, 1, . . . , ⌊β⌋}., called the β-shift. A point
x is expanded as an infinite series in negative powers of β with coefficients from
this set; dβ(x)n = ⌊βfn(x)⌋. (By convention terminating expansions are replaced
by eventually periodic ones.) A one-sided sequence on the alphabet D is in the
β-shift if and only if all of its shifts are lexicographically less than or equal to the
expansion dβ(1) of 1 base β. A one-sided sequence on the alphabet D is the valid
expansion of 1 for some β is and only if it lexicographically dominates all its shifts.
These were first studied by Bissinger [11], Everett [35], Rényi [95] and Parry [85,86];
there are good summaries by Bertrand-Mathis [9] and Blanchard [12].

For β = 1+
√

5
2 , dβ(1) = 10101010 . . . .

For β = 3
2 , dβ(1) = 101000001 . . . (not eventually periodic).

Every β-shift is coded.

The topological entropy of a β-shift is log β. There is a unique measure of max-
imal entropy log β.

A β-shift is a shift of finite type if and only if the β-expansion of 1 is finite.
It is sofic if and only if the expansion of 1 is eventually periodic. If β is a Pisot-
Vijayaragavhan number (algebraic integer all of whose conjugates have modulus
less than 1), then the β-shift is sofic. If the β-shift is sofic, then β is a Perron
number (algebraic integer of maximum modulus among its conjugates).

Theorem 4.2 Parry [87]. Every strongly transitive (for every nonempty open set
U , ∪n>0T

nU = X) piecewise monotonic map on [0, 1] is topologically conjugate to
a β-transformation.
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4.8. Gaussian systems. Consider a real-valued stationary process {fk : −∞ <
k <∞} on a probability space (Ω,F , P ). The process (and the associated measure-
preserving system consisting of the shift and a shift-invariant measure on RZ) is
called Gaussian if for each d ≥ 1, any d of the fk form an Rd-valued Gaussian
random variable on Ω : this means that with E(fk) = m for all k and

Aij =

∫

Ω

(fki
−m)(fkj

−m)dP = C(ki − kj) for i, j = 1, . . . , d,

where C(·) is a function, for each Borel set B ⊂ R,

P{ω : (fk1
(ω), . . . , fkd

(ω)) ∈ B} =

1

2πd/2
√

detA

∫

B

exp

[

−1

2
(x− (m, . . . ,m))trA−1(x − (m, . . . ,m))

]

dx1 . . . dxd.

where A is a matrix with entries (Aij). The function C(k) is positive semidefinite
and hence has an associated measure σ on [0, 2π) such that

C(k) =

∫ 2π

0

eiktdσ(t).

Theorem 4.3. The Gaussian system is ergodic if and only if the “spectral measure”
σ is continuous (i.e., nonatomic), in which case it is also weakly mixing. It is
mixing if and only if C(k) → 0 as |k| → ∞. If σ is singular with respect to Lebesgue
measure, then the entropy is 0; otherwise the entropy is infinite [30].

For more details see [28].

4.9. Hamiltonian systems. (This paragraph is from the article on Measure-
Preserving Systems.) Many systems that model physical situations can be studied
by means of Hamilton’s equations. The state of the entire system at any time is
specified by a vector (q, p) ∈ R2n, the phase space, with q listing the coordinates of
the positions of all of the particles, and p listing the coordinates of their momenta.
We assume there is a time-independent Hamiltonian function H(q, p) such that the
time development of the system satisfies Hamilton’s equations:

(4.4)
dqi
dt

=
∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, i = 1, . . . , n.

Often in applications the Hamiltonian function is the sum of kinetic and potential
energy:

(4.5) H(q, p) = K(p) + U(q).

Solving these equations with initial state (q, p) for the system produces a flow
(q, p) → Tt(q, p) in phase space which moves (q, p) to its position Tt(q, p) t units of
time later. According to Liouville’s fomula [72, Theorem 3.2], this flow preserves
Lebesgue measure on R2n. Calculating dH/dt by means of the Chain Rule

dH

dt
=

∑

i

(
∂H

∂pi

dpi

dt
+
∂H

∂qi

dqi
dt

)

and using Hamilton’s equations shows that H is constant on orbits of the flow, and
thus each set of constant energy X(H0) = {(q, p) : H(q, p) = H0} is an invariant
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set. There is a natural invariant measure on a constant energy set X(H0) for the
restricted flow, namely the measure given by rescaling the volume element dS on
X(H0) by the factor 1/||▽H ||.

4.9.1. Billiard Systems. These form an important class of examples in ergodic the-
ory and dynamical systems, motivated by natural questions in physics, particularly
the behavior of gas models. Consider the motion of a particle inside a bounded
region D in Rd with piecewise smooth (C1 at least) boundaries. In the case of
planar billiards we have d = 2. The particle moves in a straight line with constant
speed until it hits the boundary, at which point it undergoes a perfectly elastic
collision with the angle of incidence equal to the angle of reflection and continues
in a straight line until it next hits the boundary. It is usual to normalize and con-
sider unit speed, as we do in this discussion for convenience. We take coordinates
(x, v) given by the Euclidean coordinates in x ∈ D together with a direction vector
v ∈ Sd−1. A flow φt is defined with respect to Lebesgue almost every (x, v) by
translating x a distance t defined by the direction vector v, taking account of re-
flections at boundaries. φt preserves a measure absolutely continuous with respect
to Riemannian volume on (x, v) coordinates. The flow we have described is called
a billiard flow. The corresponding billiard map is formed by taking the Poincaré
map corresponding to the cross-section given by the boundary ∂D. We will de-
scribe the planar billiard map; the higher dimensional generalization is clear. The
billiard map is a map T : ∂D → ∂D, where ∂D is coordinatized by (s, θ), s ∈ [0, L),
where L is the length of ∂D and θ ∈ (0, π) measures the angle that inward pointing
vectors make with the tangent line to ∂D at s. Given a point (s, θ), the angle θ
defines an oriented line l(s, θ) which intersects ∂D in two points s and s′. Reflect-
ing l in the tangent line to ∂D at the point s′ gives another oriented line passing
through s′ with angle θ′ (measured with respect to the angular coordinate system
based at s′). The billiard map is the map T (s, θ) = (s′, θ′). T preserves a measure
µ = sin θds × dθ. The billiard flow may be modeled as a suspension flow over the
billiard map (see Section 5.5).

If the region D is a polygon in the plane (or polyhedron in Rd), then ∂D consists
of the faces of the polyhedron. The dynamical behavior of the billiard map or flow
in regions with only flat (non-curved) boundaries is quite different to that of billiard
flows or maps in regions D with strictly convex or strictly concave boundaries. The
topological entropy of a flat polygonal billiard is zero. Research interest focuses
on the existence and density of periodic or transitive orbits. It is known that if
all the angles between sides are rational multiples of π then there are periodic
orbits [16, 42, 75] and they are dense in the phase space [17]. It is also known that
a residual set of polygonal billiards are topologically transitive and ergodic [55,60].

On the other hand, billiard maps in which ∂D has strictly convex components
are physical examples of non-uniformly hyperbolic systems (with singularities). The
meaning of concave or convex varies in the literature. We will consider a billiard
flow inside a circle to be a system with a strictly concave boundary, while a billiard
flow on the torus from which a circle has been excised to be a billiard flow with
strictly convex boundary.
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The class of billiards with some strictly convex boundary components , some-
times called dispersing billiards or Sinai billiards , was introduced by Sinai [107]
who proved many of their fundamental properties. Lazutkin [65] proved that
planar billiards with generic strictly concave boundary are not ergodic. Never-
theless Bunimovich [22, 23] produced a large of billiard systems, Bunimovich bil-
liards, with strictly concave boundary segments (perhaps with some flat bound-
aries as well) which were ergodic and non-uniformly hyperbolic. For more details
see [26, 56, 70, 111]. We will discuss possibly the simplest example of a dispersing
billiard, namely a toral billiard with a single convex obstacle. Take the torus T 2

and consider a single strictly convex subdomain S with C∞ boundary. The domain
of the billiard map is [0, L) × (0, π), where L is the length of ∂S. The measure
sin(θ)ds× dθ is preserved. If the curvature of ∂S is everywhere non-zero, then the
billiard map T has positive topological entropy, periodic points are dense, and in
fact the system is isomorphic to a Bernoulli shift [41].

4.9.2. KAM-systems and stably non-ergodic behavior. A celebrated theorem of Kol-
mogorov, Arnold and Moser (the KAM theorem) implies that the set of ergodic area-
preserving diffeomorphisms of a compact surface without boundary is not dense in
the Cr topology for r ≥ 4. This has important implications, in that there are
natural systems in which ergodicity is not generic. The constraint of perturbing in
the class of area-preserving diffeomorphisms is an appropriate imposition in many
physical models. We will take the version of the KAM theorem as given in [72, The-
orem 5.1] (original references include [61], [3] and [79]). An elliptic fixed point for
an area-preserving diffeomorphism T of a surface M is called a non-degenerate el-
liptic fixed point if there is a local Cr, r ≥ 4, change of coordinates h so that in
polar coordinates

hTh−1(r, θ) = (r, θ + α0 + α1r) + F (r, θ),

where all derivatives of F up to order 3 vanish, α1 6= 0 and α0 6= 0, ±π
2 , π,

±2π
3 . A

map of the form

τ(r, θ) = (r, θ + α0 + α1r),

where α1 6= 0, is called a twist map. Note that a twist map leaves invariant the circle
r = k, for any constant k, and rotates each invariant curve by a rigid rotation α1r,
the magnitude of the rotation depending upon r. With respect to two-dimensional
Lebesgue measure a twist map is certainly not ergodic.

Theorem. Suppose T is a volume-preserving diffeomorphism of class Cr, r ≥ 4,
of a surface M . If x is a non-degenerate elliptic fixed point, then for every ǫ > 0
there exists a neighborhood Uǫ of x and a set U0,ǫ ⊂ Uǫ with the properties:

(a) U0,ǫ is a union of T -invariant simple closed curves of class Cr−1 containing
x in their interior.

(b) The restriction of T to each such invariant curve is topologically conjugate
to an irrational rotation.

(c) m(Uǫ − U0,ǫ) ≤ ǫm(Uǫ), where m is Lebesgue measure on M .
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It is possible to prove the existence of a Cr volume preserving diffeomorphism
(r ≥ 4) with a non-degenerate elliptic fixed point and also show that if T possesses
a non-degenerate elliptic fixed point then there is a neighborhood V of T in the Cr

topology on volume-preserving diffeomorphisms such that each T
′ ∈ V possesses

a non-degenerate elliptic fixed point [72, Chapter II, Section 6]. As a corollary we
have

Corollary. Let M be a compact surface without boundary and Diffr(M) the space
of Cr area-preserving diffeomorphisms with the Cr topology. Then the set of T ∈
Diffr(M) which are ergodic with respect to the probability measure determined by
normalized area is not dense in Diffr(M) for r ≥ 4.

4.10. Smooth uniformly hyperbolic diffeomorphisms and flows. Time se-
ries of measurements on deterministic dynamical systems sometimes display limit
laws exhibited by independent identically distributed random variables, such as
the central limit theorem, and also various mixing properties. The models of hy-
perbolicity we discuss in this section have played a key role in showing how this
phenomenon of ‘chaotic behavior’ arises in deterministic dynamical systems. Hy-
perbolic sets and their associated dynamics have also been pivotal in studies of
structural stability. A smooth system is Cr structurally stable if a small perturba-
tion in the Cr topology gives rise to a system which is topologically conjugate to the
original. When modeling a physical system it is desirable that slight changes in the
modeling parameters do not greatly affect the qualitative or quantitative behavior
of the ensemble of orbits considered as a whole. The orbit of a point may change
drastically under perturbation (especially if the system has sensitive dependence
on initial conditions) but the collection of all orbits should ideally be ‘similar’ to
the original unperturbed system. In the latter case one would hope that statistical
properties also vary only slightly under perturbation. Structural stability is one,
quite strong, notion of stability. The conclusion of a body of work on structural
stability is that a system is C1 structurally stable if and only if it is uniformly hy-
perbolic and satisfies a technical assumption called strong transversality (see below
for details).

Suppose M is a C1 compact Riemannian manifold equipped with metric d and
tangent space TM with norm ‖ ‖. Suppose also that U ⊂M is a non-empty open
subset and T : U → T (U) is a C1 diffeomorphism. A compact T invariant set
Λ ⊂ U is called a hyperbolic set if there is a splitting of the tangent space TpM
at each point p ∈ Λ into two invariant subspaces, TpM = Eu(p) ⊕ Es(p), and a
number 0 < λ < 1 such that for n ≥ 0

‖DpT
nv‖ ≤ Cλn‖v‖ for v ∈ Es(p),

‖DpT
−nv‖ < Cλn‖v‖ for v ∈ Eu(p).

The subspace Eu is called the unstable or expanding subspace and the subspace
Es the stable or contracting subspace. The stable and unstable subspaces may be
integrated to produce stable and unstable manifolds

W s(p) = {y : d(T np, T ny) → 0} as n→ ∞,

Wu(p) = {y : d(T−np, T−ny) → 0} as n→ ∞.
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The stable and unstable manifolds are immersions of Euclidean spaces of the same
dimension as Es(p) and Eu(p), respectively, and are of the same differentiability
as T . Moreover, Tp(W

s(p)) = Es(p) and Tp(W
u(p)) = Eu(p). It is also useful to

define local stable manifolds and local unstable manifolds by

W s
ǫ (p) = {y ∈W s(p) : d(T np, T ny) < ǫ} for all n ≥ 0,

Wu
ǫ (p) = {y ∈Wu(p) : d(T−np, T−ny) < ǫ} for all n ≥ 0.

Finally we discuss the notion of strong transversality. We say a point x is non-
wandering if for each open neighborhood U of x there exists an n > 0 such that
T n(U) ∩U 6= ∅. The NW set of non-wandering points is called the non-wandering
set. We say a dynamical system has the strong transversal property if W s(x) in-
tersects Wu(y) transversely for each pair of points x, y ∈ NW . In the Cr, r ≥ 1
topology Robbin [96], de Melo [78] and Robinson [98, 99] proved that dynamical
systems with the strong transversal property are structurally stable, and Robin-
son [97] in addition showed that strong transversality was also necessary. Mañé [71]
showed that a C1 structurally stable diffeomorphism must be uniformly hyperbolic
and Hayashi [48] extended this to flows. Thus a C1 diffeomorphism or flow on a
compact manifold is structurally stable if and only it is uniformly hyperbolic and
satisfies the strong transversality condition.

4.10.1. Geodesic flow on manifold of negative curvature. The study of the geodesic
flow on manifolds of negative sectional curvature by Hedlund and Hopf was pivotal
to the development of the ergodic theory of hyperbolic systems. Suppose that M
is a geodesically complete Riemannian manifold. Let γp,v(t) be the geodesic with
γp,v(0) = p and γ̇p,v(0) = v, where γ̇p,v denotes the derivative with respect to time t.
The geodesic flow is a flow φt on the tangent bundle TM of M , φt : R×TM → TM ,
defined by

φt(p, v) = (γp,v(t), γ̇p,v(t)).

where (p, v) ∈ TM . Since geodesics have constant speed, if ‖v‖ = 1 then ‖γp,v(t)‖ =
1 for all t, and thus the unit tangent bundle T 1M = {(p, v) ∈ TM : ‖v‖ = 1} is
preserved under the geodesic flow. The geodesic flow and its restriction to the
unit tangent bundle both preserve a volume form, Liouville measure. In 1934 Hed-
lund [49] proved that the geodesic flow on the unit tangent bundle of a surface
of strictly negative constant sectional curvature is ergodic, and in 1939 Hopf [50]
extended this result to manifolds of arbitrary dimension and strictly negative (not
necessarily constant) curvature. Hopf’s technique of proof of ergodicity (Hopf ar-
gument) was extremely influential and used the foliation of the tangent space into
stable and unstable manifolds. For a clear exposition of this technique, and the
property of absolute continuity of the foliations into stable and unstable manifolds,
see [70]. The geodesic flow on manifolds of constant negative sectional curvature is
an Anosov flow (see Section 4.10.4). We remark that for surfaces sectional curva-
ture is the same as Gaussian curvature. Recently the time-one map of the geodesic
flow on the unit tangent bundle of a surface with constant negative curvature,
which is a partially hyperbolic system (see Section 4.11), was shown to be stably
ergodic [46], so the geodesic flow is still playing a major role in the development of
ergodic theory.
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4.10.2. Horocycle flow. All surfaces endowed with a Riemannian metric of constant
negative curvature are quotients of the upper half-plane H+ := {x+iy ∈ C : y > 0}
with the metric ds2 = dx2+dy2

y2 , whose sectional curvature is −1. The orientation-

preserving isometries of this metric are exactly the linear fractional (also known as
Möbius) transformations:

(
a b
c d

)

∈ SL(2,R), [z ∈ H+ 7→ az + b

cz + d
∈ H+].

Since each matrix ±I corresponds to the identity transformation, we consider ma-
trices in PSL(2,R) := SL(2,R)/{±I}.

The unit tangent bundle, SH+, of the upper half-plane can be identified with
PSL(2,R). Then the geodesic flow corresponds to the transformations

t ∈ R 7→
(
et 0
0 e−t

)

seen as acting on PSL(2,R). The unstable foliation of an element A ∈ PSL(2,R) ∼=
SH+ is given by

(
1 t
0 1

)

A, t ∈ R,

and the flow along this foliation, given by

t ∈ R 7→
(

1 t
0 1

)

,

is called the horocycle flow. Similarly for the flow induced on the unit tangent bun-
dle of each quotient of the upper half-plane by a discrete group of linear fractional
transformations.

The geodesic and horocycle flows acting on a (finite-volume) surface of constant
negative curvature form the fundamental example of a transverse pair of actions.
The geodesic flow often has many periodic orbits and many invariant measures,
has positive entropy, and is in fact Bernoulli with respect to the natural measure
[83], while the horocycle flow is often uniquely ergodic [40,74] and of entropy zero,
although mixing of all orders [73]. See [47] for more details.

4.10.3. Markov partitions and coding. If (X,T,B, µ) is a dynamical system then a
finite partition of X always induces a coding of the orbits and a semi-conjugacy
with a subshift on a symbol space (it may not of course be a full conjugacy).
For hyperbolic systems a special class of partitions, Markov partitions, induce a
conjugacy for the invariant dynamics to a subshift of finite type. A Markov partition
P for an invariant subset Λ of a diffeomorphism T of a compact manifold M is a
finite collection of sets Ri, 1 ≤ i ≤ n called rectangles. The rectangles have the
property, for some ǫ > 0, if x, y ∈ Ri then W s

ǫ (x)∩Wu
ǫ (y) ∈ Ri. This is sometimes

described as being closed under local product structure. We let Wu(x,Ri) denote
Wu

ǫ (x) ∩Ri and W s(x,Ri) denote W s
ǫ (x) ∩Ri. Furthermore we require for all i, j:

(1) Each Ri is the closure of its interior.
(2) Λ ⊂ ∪iRi



BASIC CONSTRUCTIONS AND EXAMPLES 21

(3) Ri ∩Rj = ∂Ri ∩ ∂Rj if i 6= j
(4) if x ∈ Ro

i and T (x) ∈ Ro
j thenWu(T (x), Rj) ⊂ T (Wu(x,Ri)) andW s(x,Ri) ⊂

T−1(Wu(T (x), Rj))

4.10.4. Anosov systems. An Anosov diffeomorphism [2] is a uniformly hyperbolic
system in which the entire manifold is a hyperbolic set. Thus an Anosov diffeo-
morphism is a C1 diffeomorphism T of M with a DT -invariant splitting (which is
a continuous splitting) of the tangent space TM(x) at each point p into a disjoint
sum

TpM = Eu(p) ⊕ Es(p)

and 0 < λ < 1, constant C such that ‖DT nv‖ < Cλn‖v‖ for all v ∈ Es(p) and
‖DT−nw‖ ≤ Cλn‖w‖ for all w ∈ Eu(p).

A similar definition holds for Anosov flows φ : R×M →M . A flow is Anosov if
there is a splitting of the tangent bundle into flow-invariant subspaces Eu, Es, Ec

so DpφtE
s
p = Es

φt(p), DpφtE
u
p = Eu

φt(p) and DpφtE
c
p = Ec

φt(p), and at each point

p ∈M

TpM = Es
p ⊕ Eu

p ⊕ Ec
p

‖(Dpφt)v‖ < Cλt‖v‖ for v ∈ Es(p)

‖(Dpφ−t)v‖ < Cλt‖v‖ for v ∈ Eu(p)

for some 0 < λ < 1. The tangent to the flow direction Ec(p) is a neutral direction:

‖(Dpφt)v‖ = ‖v‖ for v ∈ Ec(p).

Anosov proved that Anosov flows and diffeomorphisms which preserve a volume
form are ergodic [2] and are also structurally stable. Sinai [108] constructed Markov
partitions for Anosov diffeomorphisms and hence coded trajectories via a subshift
of finite type. Using ideas from statistical physics in [109] Sinai constructed Gibbs
measures for Anosov systems. An SRB measure (see Section 4.13) is a type of Gibbs
measure corresponding to the potential − log |det(DT |Eu)| and is characterized by
the property of absolutely continuous conditional measures on unstable manifolds.

The simplest examples of Anosov diffeomorphisms are perhaps the two-dimensional
hyperbolic toral automorphisms (the n > 2 generalization is clear). Suppose A is a
2 × 2 matrix with integer entries

(
a b
c d

)

such that det(A) = 1 and A has no eigenvalues of modulus 1. Then A defines a
transformation of the two-dimensional torus T 2 = S1 × S1 such that if v ∈ T 2,

v =

(
v1
v2

)

,

then

Av =

(
(av1 + bv2)
(cv1 + dv2)

)

.
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A preserves Lebesgue (or Haar) measure and is ergodic. A prominent example of
such a matrix is (

2 1
1 1

)

,

which is sometimes called the Arnold Cat Map. Each point with rational coordi-

nates (p1/q1, p2/q2) is periodic. There are two eigenvalues 1
λ < 1 < λ = 3+

√
5

2 with

orthogonal eigenvectors, and the projections of the eigenspaces from R2 to T 2 are
the stable and unstable subspaces.

4.10.5. Axiom A systems. In the case of Anosov diffeomorphisms the splitting into
contracting and expanding bundles holds on the entire phase space M . A system
T : M → M is an Axiom A system if the non-wandering set NW is a hyperbolic
set and periodic points are dense in the non-wandering set. NW ⊂ M may have
Lebesgue measure zero. A set Λ ⊂ M is locally maximal if there exists an open
set U such that Λ = ∩n∈ZT

n(U). The solenoid and horseshoe discussed below
are examples of locally maximal sets. Bowen [18] constructed Markov partitions
for Axiom A diffeomorphisms . Ruelle imported ideas from statistical physics, in
particular the idea of an equilibrium state and the variational principle, to the
study of Axiom A systems (see [103,104]) This work extended the notion of Gibbs
measure and other ideas from statistical mechanics, introduced by Sinai for Anosov
systems [109], into Axiom A systems.

One achievement of the Axiom A program was the Smale Decomposition Theo-
rem, which breaks the dynamics of Axiom A systems into locally maximal sets and
describes the dynamics on each [18, 19, 110].

Theorem (Spectral Decomposition Theorem). If T is Axiom A then there is a
unique decomposition of the non-wandering set NW of T

NW = Λ1 ∪ . . . ∪ Λk

as a disjoint union of closed, invariant, locally maximal hyperbolic sets Λi such that
T is transitive on each Λi. Furthermore each Λi may be further decomposed into a
disjoint union of closed sets Λj

i , j = 1, . . . , ni such that T ni is topologically mixing

on each Λj
i and T cyclically permutes the Λj

i .

Horseshoe maps.

This type of map was introduced by Steven Smale in the 1960’s and has played
a pivotal role in the development of dynamical systems theory. It is perhaps the
canonical example of an Axiom A system [110] and is conjugate to a full shift on 2
symbols. Let S be a unit square in R2 and let T be a diffeomorphism of S onto its
image such that S∩T (S) consists of two disjoint horizontal strips S0 and S1. Think
of stretching S uniformly in the horizontal direction and contracting uniformly in
the vertical direction to form a long thin rectangle, and then bending the rectangle
into the shape of a horsehoe and laying the straight legs of the horseshoe back on
the unit square S. This transformation may be realized by a diffeomorphism and
we may also require that T restricted to T−1Si, i = 0, 1, acts as a linear map. The
restriction of T to the maximal invariant set H = ∩∞

i=−∞T
iS is a Smale horseshoe
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map. H is a Cantor set, the product of a Cantor set in the horizontal direction and
a Cantor set in the vertical direction. The conjugacy with the shift on two symbols
is realized by mapping x ∈ H to its itinerary with respect to the sets S0 and S1

under powers of T (positive and negative powers).

Solenoids

The solenoid is defined on the solid torus X in R3 which we coordinatize as a
circle of two-dimensional solid disks, so that

X = {(θ, z) : θ ∈ [0, 1) and |z| ≤ 1, z ∈ C}
The transformation T : X → X is given by

T (θ, z) = (2θ (mod 1) ,
1

4
z +

1

2
e2πiθ)

Geometrically the transformation stretches the torus to twice its length, shrinks its
diameter by a factor of 4, then twists it and doubles it over, placing the resultant
object without self-intersection back inside the original solid torus. T (X) intersects
each disk Dc = {(θ, z) : θ = c} in two smaller disks of 1

4 the diameter. The
transformation T contracts volume by a factor of 2 upon each application, yet
there is expansion in the θ direction (θ → 2θ). The solenoid A = ∩n≥0T

n(X) has
zero Lebesgue measure, is T -invariant and is (locally) topologically a line segment
cross a two-dimensional Cantor set (A intersects each disk Dc in a Cantor set). The
set A is an attractor, in that all points inside X limit under iteration by T upon A.
T : A→ A is an Axiom A system.

4.11. Partially hyperbolic dynamical systems. Partially hyperbolic dynami-
cal systems are a generalization of uniformly hyperbolic systems in that an invariant
central direction is allowed but the contraction in the central direction is strictly
weaker than the contraction in the contracting direction and the expansion in the
central direction is weaker than the expansion in the expanding direction. More
precisely, suppose M is a C1 compact (adapted) Riemannian manifold equipped
with metric d and tangent space TM with norm ‖ ‖. A C1 diffeomorphism T of
M is a partially hyperbolic diffeomorphism if there is a nontrivial continuous DT
invariant splitting of the tangent space TpM at each point p into a disjoint sum

TpM = Eu(p) ⊕ Ec(p) ⊕ Es(p)

and continuous positive functions m,M, γ̃, γ such that

• Es is contracted: if vs ∈ Es(x) \ {0} then
‖DpT nvs‖

‖vs‖ ≤ m(p) < 1;

• Eu is expanded: if vu ∈ Eu(x) \ {0} then
‖DpTvu‖

‖vu‖ ≥M(p) > 1;

• Ec is uniformly dominated by Eu and Es: if vc ∈ Ec(x) \ {0} then there

are numbers γ̃(p), γ(p) such that m(p) < γ̃(p) ≤ ‖DpTvc‖
‖vc‖ ≤ γ(p) < M(p) .

The notion of partial hyperbolicity was introduced by Brin and Pesin [21] who
proved existence and properties, including absolute continuity, of invariant foliations
in this setting. There has been intense recent interest in partially hyperbolic systems
primarily because significant progress has been made in establishing that certain
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volume-preserving partially hyperbolic systems are ‘stably ergodic’—that is, they
are ergodic and under small (Cr topology) volume-preserving perturbations remain
ergodic. This phenomenon had hitherto been restricted to uniformly hyperbolic
systems. For recent developments, and precise statements, on stable ergodicity of
partially hyperbolic systems see [24, 94].

4.11.1. Compact group extensions of uniformly hyperbolic systems. A natural ex-
ample of a partially hyperbolic system is given by a compact group extension of
an Anosov diffeomorphism. If the following terms are not familiar see section 5 on
standard constructions. Suppose that (T,M, µ) is an Anosov diffeomorphism, G is
a compact connected Lie group and h : M → G is a differentiable map. The skew
product F : M ×G→M ×G given by

F (x, g) = (Tx, h(x)g)

has a central direction in its tangent space corresponding to the Lie algebra LG
of G (as a group element h acts isometrically on G so there is no expansion or
contraction) and uniformly expanding and contracting bundles corresponding to
those of the tangent space of T : M →M . Thus T (M ×G) = Eu ⊕ LG⊕ Es.

4.11.2. Time-one maps of Anosov flows. Another natural context in which partial
hyperbolicity arises is in time-one maps of uniformly hyperbolic flows. Suppose
φt : R×M → M is an Anosov flow. The diffeomorphism φ1 : M →M is a partially
hyperbolic diffeomorphism with central direction given by the flow direction. There
is no expansion or contraction in the central direction.

4.12. Non-uniformly hyperbolic systems. The assumption of uniform hyper-
bolicity is quite restrictive and few ‘chaotic systems’ found in applications are likely
to exhibit uniform hyperbolicity. A natural weakening of this assumption, and one
that is non-trivial and greatly extends the applicability of the theory, is to require
the hyperbolic splitting (no longer uniform) to hold only at almost every point of
phase space. A systematic theory was built by Pesin [90, 91] on the assumption
that the system has non-zero Lyapunov exponents µ almost everywhere, where µ
is Lebesgue equivalent invariant probability measure . Recall that a number λ is
a Lyapunov exponent for p ∈ M if ‖DpT

nv‖ ∼ eλn for some unit vector v ∈ TpM .
Oseledet’s theorem [84] (see also [114, p. 232]), which is also called the Multiplica-
tive Ergodic Theorem, implies that if T is a C1 diffeomorphism of M then for any
T -invariant ergodic measure µ almost every point has well-defined Lyapunov expo-
nents. One of the highlights of Pesin theory is the following structure theorem: If
T : M → M is a C1+ǫ diffeomorphism with a T -invariant Lebesgue equivalent Borel
measure µ such that T has non-zero Lyapunov exponents with respect to µ then
T has at most a countable number of ergodic components {Ci} on each of which
the restriction of T is either Bernoulli or Bernoulli times a rotation (by which we
mean the support of µi = µ|Ci

consists of a finite number ni of sets {Si
1, . . . S

i
ni
}

cyclically permuted and T ni is Bernoulli when restricted to each Si
j) [91,117]. This

structure theorem has been generalized to SRB measures with non-zero Lyapunov
exponents [66, 91].
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4.13. Physically relevant measures and strange attractors. (This paragraph
is from the article on Measure-Preserving Systems.) For Hamiltonian systems and
other volume-preserving systems it is natural to consider ergodicity (and other
statistical properties) of the system with respect to Lebesgue measure. In dissipa-
tive systems a measure equivalent to Lebesgue may not be invariant (for example
the solenoid). Nevertheless Lebesgue measure has a distinguished role since sam-
pling by experimenters is done with respect to Lebesgue measure. The idea of a
physically relevant measure µ is that it determines the statistical behavior of a
positive Lebesgue measure set of orbits, even though the support of µ may have
zero Lebesgue measure. An example of such a situation in the uniformly hyperbolic
setting is the solenoid Λ, where the attracting set Λ has Lebesgue measure zero and
is (locally) topologically the product of a two-dimensional Cantor set and a line
segment. Nevertheless Λ determines the behavior of all points in a solid torus in
R3. More generally, suppose that T : M → M is a diffeomorphism on a compact
Riemannian manifold and that m is a version of Lebesgue measure on M , given by
a smooth volume form. Although Lebesgue measure m is a distinguished physically
relevant measure, m may not be invariant under T , and the system may even be
volume contracting in the sense that m(T nA) → 0 for all measurable sets A. Never-
theless an experimenter might observe long-term “chaotic” behavior whenever the
state of the system gets close to some compact invariant set X which attracts a
positive m-measure of orbits in the sense that these orbits limit on X . Possibly
m(X) = 0, so that X is effectively invisible to the observer except through its
effects on orbits not contained in X . The dynamics of T restricted to X can in fact
be quite complicated—maybe a full shift, or a shift of finite type, or some other
complicated topological dynamical system. Suppose there is a T -invariant measure
µ supported on X such that for all continuous functions φ : M → R

(4.6)
1

n

n−1∑

k=0

φ ◦ T k(x) →
∫

X

φdµ,

for a positive m-measure of points x ∈ M . Then the long-term equilibrium dy-
namics of an observable set of points x ∈ M (i.e. a set of points of positive m
measure) is described by (X,T, µ). In this situation µ is described as a physical
measure. There has been a great deal of research on the properties of systems with
attractors supporting physical measures.

In the dissipative non-uniformly hyperbolic setting the theory of ‘physically rel-
evant’ measures is best developed in the theory of SRB (for Sinai, Ruelle and
Bowen) measures. These dynamically invariant measures may be supported on a
set of Lebesgue measure zero yet determine the asymptotic behavior of points in a
set of positive Lebesgue measure.

If T is a diffeomorphism of M and µ is a T -invariant Borel probability measure
with positive Lyapunov exponents which may be integrated to unstable manifolds,
then we call µ an SRB measure if the conditional measure µ induces on the un-
stable manifolds is absolutely continuous with respect to the Riemannian volume
element on these manifolds. The reason for this definition is technical but is moti-
vated by the following observations. Suppose that the diffeomorphism has no zero
Lyapunov exponents with respect to µ. Since T is a diffeomorphism, this implies
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T has negative Lyapunov exponents as well as positive Lyapunov exponents and
corresponding local stable manifolds as well as local unstable manifolds. Suppose
that a T -invariant set A consists of a union of unstable manifolds and is the support
of an ergodic SRB measure µ and that φ : M → R is a continuous function. Since µ
has absolutely continuous conditional measures on unstable manifolds with respect
to conditional Lebesgue measure on the unstable manifolds, almost every point x
in the union of unstable manifolds U satisfies

(4.7) lim
n→∞

1

n

n−1∑

j=0

φ ◦ T j(x) =

∫

φdµ

If y ∈ W s
ǫ (x) for such an x ∈ U then d(T nx, T ny) → ∞ and hence (4.7) implies

lim
n→∞

1

n

n−1∑

j=0

φ ◦ T j(y) =

∫

φdµ

Furthermore, if the holonomy between unstable manifolds defined by sliding along
stable manifolds is absolutely continuous (takes sets of zero Lebesgue measure on
Wu to sets of zero Lebesgue measure on Wu), there is a positive Lebesgue measure
of points (namely an unstable manifold and the union of stable manifolds through
it) satisfying (4.7). Thus an SRB measure with absolutely continuous holonomy
maps along stable manifolds is a physically relevant measure. If the stable foliation
possesses this property it is called absolutely continuous. An Axiom A attractor
for a C2 diffeomorphism is an example of an SRB attractor [19, 103,104,109]. The
examples we have given of SRB measures and attractors and measures have been
uniformly hyperbolic.

Recently much progress has been made in understanding the statistical properties
of non-uniformly hyperbolic systems by using a tower (see Section 5.4) to construct
SRB measures. We refer to Young’s original papers [115,116], the book by Baladi [4]
and to [117] for a recent survey on SRB measures in the non-uniformly setting.

4.13.1. Unimodal maps. Maps of an interval to itself are simple examples of non-
uniformly hyperbolic systems that have played an important role in the development
of dynamical systems theory. Suppose I ⊂ R is an interval; for simplicity we take
I = [0, 1]. A unimodal map is a map T : [0, 1] → [0, 1] such that there exists a point
0 < c < 1 and

• T is C2;
• T ′(x) > 0 for x < c, T ′(x) < 0 for x > c;
• T ′(c) = 0.

Such a map is clearly not uniformly expanding, as |T ′(x)| < 1 for points in a
neighborhood of c. The family of maps Tµ(x) = µx(1 − x), 0 < µ ≤ 4, is a family
of unimodal maps with c = 1/2 and T2(1/2) = 1/2, T4(1/2) = 1.

We could have taken the interval I to be [−1, 1] or indeed any interval with an
obvious modification of the definition above. A well-studied family of unimodal
maps in this setting is the logistic family fa : [−1, 1] → [−1, 1], fa(x) = 1−ax2, a ∈
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(0, 2]. The families are equivalent under a smooth coordinate change, so statements
about one family may be translated into statements about the other.

Unimodal maps are studied because of the insights they offer into transitions
from regular or periodic to chaotic behavior as a parameter (e.g. µ or a) is varied,
the existence of absolutely continuous measures, and rates of decay of correlations
of regular observations for non-uniformly hyperbolic systems.

A result of Jakobson [53] and Benedicks and Carleson [6] implies that in the
case of the logistic family there is a positive Lebesgue measure set of a such that
fa has an absolutely continuous ergodic invariant measure µa. It has been shown
by Young [116] and Keller and Nowicki [59] that if fa is mixing with respect to µa

then the decay of correlations for Lipshitz observations on I is exponential. It is
also known that the set of a such that fa is mixing with respect to µa has positive
Lebesgue measure. There is a well-developed theory concerning the bifurcations the
maps Tµ undergo as µ varies [27]. We briefly describe the period-doubling route
to chaos in the family Tλ(x) = λx(1 − x). For a nice account see [47]. We let cλ
denote the fixed point λ−1

λ . For 3 < λ ≤ 1 +
√

6, all points in [0, 1] except for
0, cλ and their preimages are attracted to a unique periodic orbit O(pλ) of period
2. There is a monotone sequence of parameter values λn ( λ1 = 3) such that for
λn < λ ≤ λn+1, Tλ has a unique attracting periodic orbit O(λn) of period 2n and
for each k = 1, 2, . . . , n − 1 a unique repelling orbit of period 2k. All points in
the interval [0, 1] except for the repelling periodic orbits and their preimages are
attracted to the attracting periodic orbit of period 2n. At λ = λn the periodic
orbit O(λn) undergoes a period-doubling bifurcation. Feigenbaum [36] found that

the limit δ = λn−λn−1

λn+1−λn
∼ 4.699 . . . exists and that in a wide class of unimodal

maps this period-doubling cascade occurs and the differences between successive
bifurcation parameters give the same limiting ratio, an example of universality. At
the end of the period-doubling cascade at a parameter λ∞ ∼ 3.569 . . ., Tλ∞ has an
invariant Cantor set C (the Feigenbaum attractor) which is topologically conjugate
to the dyadic adding machine coexisting with isolated repelling orbits of period
2n, n = 0, 1, 2, . . .. There is a unique repelling orbit of period 2n for n ≥ 1 along
with two fixed points. The Cantor set is the ω-limit set for all points that are
not periodic or preimages of periodic orbits. C is the set of accumulation points of
periodic orbits. Despite this picture of incredible complexity the topological entropy
is zero for λ ≤ λ∞. For λ > λ∞ the map Tλ has positive topological entropy and
infinitely many periodic orbits whose periods are not powers of 2. For each λ ≥ λ∞,
Tλ possesses an invariant Cantor set which is repelling for λ > λ∞. We say that Tλ

is hyperbolic if there is only one attracting periodic orbit and the only recurrent sets
are the attracting periodic orbit, repelling periodic orbits and possibly a repelling
invariant Cantor set. It is known that the set of λ ∈ [0, 4] for which Tλ is hyperbolic
is open and dense [44]. Remarkably, by Jakobson’s result [53] there is also a positive
Lebesgue measure set of parameters λ for which Tλ has an absolutely continuous
invariant measure µλ with a positive Lyapunov exponent.

4.13.2. Intermittent maps. Maps of the unit interval T : [0, 1] → [0, 1] which are
expanding except at the point x = 0, where they are locally x ∼ x + x1+α, α > 0,
have been extensively studied both for the insights they give into rates of decay of
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correlations for non-uniformly hyperbolic systems (hyperbolicity is lost at the point
x = 0, where the derivative is 1) and for their use as models of intermittent behavior
in turbulence [93]. A fixed point where the derivative is 1 is sometimes called an
indifferent fixed point. It is a model of intermittency in the sense that orbits close
to 1 will stay close for many iterates (since the expansion is very weak there) and
hence a time series of observations will be quite uniform for long periods of time
before displaying chaotic type behavior after moving away from the indifferent fixed
into that part of the domain where the map is uniformly expanding.

A particularly simple model [68] is provided by

T (x) =

{
x(1 + 2αxα) if x ∈ [0, 1/2);
2x− 1 if x ∈ [1/2, 1].

For α = 0 the map is uniformly expanding and Lebesgue measure is invariant. In
this case the rate of decay of correlations for Hölder observations is exponential. For
0 < α < 1 the map has an SRB measure µα with support the unit interval. For α ≥
1 there are no absolutely continuous invariant probability measures though there
are σ-finite absolutely continuous measures. Upper and lower polynomial bounds
on the rate of decay of observations on such maps have been given as a function of
0 < α < 1 and the regularity of the observable. For details see [52, 68, 105].

4.13.3. Hénon diffeomorphisms. The Henón family of diffeomorphisms was intro-
duced and studied as Poincaré maps for the Lorenz system of equations. It is a
two-parameter two-dimensional family which shares many characteristics with the
logistic family and for small b > 0 may be considered a two-dimensional ‘perturba-
tion’ of the logistic family. The parametrized mapping is defined as

Ta,b(x, y) = (1 − ax2 + y, bx),

so Ta,b : R2 → R2 with 0 < a < 2 and b > 0. Benedicks and Carleson [7] showed that
for a positive-measure set of parameters (a, b), Ta,b has a topologically transitive
attractor Λa,b. Benedicks and Young [8] later proved that for a positive-measure
set of parameters (a, b), Ta,b has a topologically transitive SRB attractor Λa,b with
SRB measure µa,b and that (Ta,b,Λa,b, µa,b) is isomorphic to a Bernoulli shift.

4.14. Complex dynamics. Complex dynamics is concerned with the behavior of
rational maps

α1z
d + α2z

d−1 + . . . αd+1

β1zd + β2zd−1 + . . . βd+1

of the extended complex plane C̄ to itself, in which the domain is C completed
with the point at infinity (called the Riemann sphere). Recall that a family F of
meromorphic functions is called normal on a domain D if every sequence possesses a
subsequence that converges uniformly (in the spherical metric C̄ ∼ S2) on compact
subsets of D. A family is normal at a point z ∈ C̄ if it is normal on a neighborhood
of z. The Fatou set F (R) ⊂ C̄ of a rational map R : C̄ → C̄ is the set of points
z ∈ C̄ such that the family of forward iterates {Rn}n≥0 is normal at z. The Julia
set J(R) is the complement of the Fatou set F (R). The Fatou set is open and hence
the Julia set is a closed set. Another characterization in the case d > 1 is that J(R)
is the closure of the set of all repelling periodic orbits of R : C̄ → C̄. Both F (R)
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and J(R) are invariant under R. The dynamics of greatest interest is the restriction
R : J(R) → J(R). The Julia set often has a complicated fractal structure. In the
case that Ra(z) = z2 − a, a ∈ C, the Mandelbrot set is defined as the set of a
for which the orbit of the origin 0 is bounded. The topology of the Mandelbrot
set has been the subject of intense research. The study of complex dynamics is
important because of the fascinating and complicated dynamics displayed and also
because techniques and results in complex dynamics have direct implications for
the behavior of one-dimensional maps. For more details see [25].

4.15. Infinite ergodic theory. We may also consider a measure-preserving trans-
formation (T,X, µ) of a measure space such that µ(X) = ∞. For example X could
be the real line equipped with Lebesgue measure. This setting also arises with
compact X in applications. For example, suppose T : [0, 1] → [0, 1] is the simple
model of intermittency given in Section 4.13.2 and γ ∈ (1, 2). Then T possesses an
absolutely continuous invariant measure µ with support [0, 1], but µ([0, 1]) = ∞.
The Radon-Nikodym derivative of µ with respect to Lebesgue measure m exists
but is not in L1(m).

In this setting we say a measurable set A is a wandering set for T if {T−nA}∞n=0

are disjoint. Let D(T ) be the measurable union of the collection of wandering sets
for T . The transformation T is conservative with respect to µ if (X \D(T )) = X
(mod µ) (see the article on Measure-Preserving Systems). It is usually necessary
to assume T conservative with respect to µ to say anything interesting about its
behavior. For example if T (x) = x + α, α > 0, is a translation of the real line
then D(T ) = X . The definition of ergodicity in this setting remains the same: T
is ergodic if A ∈ B and T−1A = A mod µ implies that µ(A) = 0 or µ(Ac) = 0.
However the equivalence of ergodicity of T with respect to µ and the equality of
time and space averages for L1(µ) functions no longer holds. Thus in general µ
ergodic does not imply that

lim
n→∞

1

n

n−1∑

i=0

φ ◦ T j(x) =

∫

X

φdµ µ a.e. x ∈ X

for all φ ∈ L1(µ). In the example of the intermittent map with γ ∈ (1, 2) the orbit
of Lebesgue almost every x ∈ X is dense in X , yet the fraction of time spent near
the indifferent fixed point x = 0 tends to one for Lebesgue almost every x ∈ X . In
fact it may be shown [1, Section 2.4] that when µ(x) = ∞ there are no constants
an > 0 such that

lim
n→∞

1

an

n−1∑

i=0

φ ◦ T j(x) =

∫

X

φdµ µ a.e. x ∈ X

Nevertheless it is sometimes possible to obtain distributional limits, rather than
almost sure limits, of Birkhoff sums under suitable normalization. We refer the
reader to Aaronson’s book [1] for more details.
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5. Constructions.

We give examples of some of the standard constructions in dynamical systems.
Often these constructions appear in modeling situations (for example skew prod-
ucts are often used to model systems which react to inputs from other systems,
continuous time systems are often modeled as suspension flows over discrete-time
dynamics) or to reduce systems to simpler components (often a factor system or
induced system is simpler to study). Unless stated otherwise, in the sequel we
will be discussing measure-preserving transformations on Lebesgue spaces (see the
article on Measure-Preserving Systems).

5.1. Products. Given measure-preserving systems (X,B, µ, T ) and (Y, C, ν, S), their
product consists of their completed product measure space with the transformation
T ×S : X×Y → X ×Y defined by (T ×S)(x, y) = (Tx, Sy) for all (x, y) ∈ X ×Y .
Neither ergodicity nor transitivity is in general preserved by taking products; for
example the product of an irrational rotation on the unit circle with itself is not
ergodic. For a list of which mixing properties are preserved by forming a product
see [114]. Given any countable family of measure-preserving transformations on
probability spaces, their direct product is defined similarly.

5.2. Factors. We say that a measure-preserving system (Y, C, ν, S) is a factor of a
measure-preserving system (X,B, µ, T ) if (possibly after deleting a set of measure
0 from X) there is a measurable onto map φ : X → Y such that

(5.1)

φ−1C ⊂ B,
φT = Sφ, and

µT−1 = ν.

For Lebesgue spaces, there is a correspndence of factors of (X,B, µ, T ) and T -
invariant complete sub-σ-algebras of B. According to Rokhlin’s theory of Lebesgue
spaces [100] factors also correspond to certain partitions of X (see the article on
Measure-Preserving Systems). A factor map φ : X → Y between Lebesgue spaces is
an isomorphism if and only if it has a measurable inverse, or equivalently φ−1C = B
up to sets of measure 0.

5.3. Skew products. If (X,B, µ, T ) is a measure-preserving system, (Y, C, ν) is a
measure-space, and {Sx : x ∈ X} is a family of measure-preserving maps Y → Y
such that the map that takes (x, y) to Sxy is jointly measurable in the two variables
x and y, then we may define a skew product system consisting of the product measure
space of X and Y equipped with product measure µ×ν together with the measure-
preserving map T ⋉ S : X × Y → X × Y defined by

(5.2) (T ⋉ S)(x, y) = (Tx, Sxy).

The space Y is called the fiber of the skew product and the space X the base.
Sometimes in the literature the word skew product has a more general meaning
and refers to the structure (T ⋉ S)(x, y) = (Tx, Sxy) (without any assumption of
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measure-preservation), where the action of the map on the fiber Y is determined
or ‘driven’ by the map T : X → X .

Some common examples of skew products include:

5.3.1. Random dynamical systems. Suppose the X indexes a collection of mappings
Sx : Y → Y . We may have a transformation T : X → X which is a full shift.
Then the sequence of mappings {ST nx} may be considered a (random) choice of a
mapping Y → Y from the set {Sx : x ∈ X}. The projection onto Y of the orbits
of (Tx, Sxy) give the orbits of a point y ∈ Y under a random composition of maps
ST nx ◦ . . . ◦ STx ◦ Sx. More generally we could consider the choice of maps Sx that
are composed to come from any ergodic dynamical system, (T,X, µ) to model the
effect of perturbations by a stationary ergodic ‘noise’ process.

5.3.2. Group extensions of dynamical systems. Suppose Y is a group, ν is a measure
on Y invariant under a left group action, and Sxy := g(x)y is given by a group-
valued function g : X → Y . In this setting g is often called a cocycle, since upon
defining g(n)(x) by (T ⋉ S)(n)(x, y) = (T nx, g(n)(x)y) we have a cocycle relation,
namely g(m+n)(x) = g(m)(T nx)g(n)(x). Group extensions arise often in modeling
systems with symmetry [37]. Common examples are provided by a random compo-
sition of matrices from a group of matrices (or more generally from a set of matrices
which may form a group or not).

5.4. Induced transformations. Since by the Poincaré Recurrence Theorem a
measure-preserving transformation (T,X, µ,B) on a probability space is recurrent,
given any set B of positive measure, the return-time function

(5.3) nB(x) = inf{n ≥ 1 : T nx ∈ B}
is finite µ a.e. We may define the first-return map by

(5.4) TBx = T nB(x)x.

Then (after perhaps discarding as usual a set of measure 0) TB : B → B is a mea-
surable transformation which preserves the probability measure µB = µ/µ(B). The
system (B,B ∩ B,µB, TB) is called an induced, first-return or derived transforma-
tion. If (T,X, µ,B) is ergodic then (B,B ∩ B,µB, TB) is ergodic, but the converse
is not in general true.

The construction of the transformation TB allows us to represent the forward
orbit of points in B via a tower or skyscraper over B. For each n = 1, 2, . . . , let

(5.5) Bn = {x ∈ B : nB(x) = n}.
Then {B1, B2, . . . } form a partition of B, which we think of as the bottom floor
or base of the tower. The next floor is made up of TB2, TB3, . . . , which form a
partition of TB \ B, and so on. All these sets are disjoint. A column is a part of
the tower of the form Bn ∪ TBn ∪ · · · ∪ T n−1Bn for some n = 1, 2, . . . . The action
of T on the entire tower is pictured as mapping each x not at the top of its column
straight up to the point Tx above it on the next level, and mapping each point on
the top level to T nBx ∈ B. An equivalent way to describe the transformation on
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the tower is to write for each n and j < n, T jBn as {(x, j) : x ∈ Bn}, and then the
transformation F on the tower becomes

F (x, l) =

{
(x, l + 1) if l < nB(x) − 1;
(T nB(x)x, 0) if l = nB(x) − 1.

If T preserves a measure µ, then F preserves µ × dl, where l is counting measure
so that the measure µ× dl can be naturally lifted to the tower.

Sometimes the process of inducing yields an induced map which is easier to
analyse (perhaps it has stronger hyperbolicity properties) than the original system.
Sometimes also it is possible to ‘lift’ ergodic or statistical properties from an induced
system to the original system, so the process of inducing plays an important role
in the study of statistical properties of dynamical systems [77].

It is possible to generalize the tower construction and relax the condition that
nB(x) is the first-return time function. We may take a measurable set B ⊂ X
of positive µ measure and define for almost every point x ∈ B a height or ceiling
function R : B → N and take a countable partition {Xn} of B into the sets on which
R is constant. We define the tower as the set ∆ := {(x, l) : x ∈ B, 0 ≤ l < R(x)}
and the tower map F : ∆ → ∆ by

F (x, l) =

{
(x, l + 1) if l < R(x) − 1;
(TR(x)x, 0) if l = R(x) − 1.

In this setting, if
∫

B
R(x)dµ <∞, we may define an F -invariant probability measure

on ∆ as µ
C(R,B) × dl, where dl is counting measure and C(R,B) is the normaliz-

ing constant C(R,B) = µ(B)
∫

B R(x)dµ. This viewpoint is connected with the
construction of systems by cutting and stacking—see Section 5.6.

5.5. Suspension flows. The tower construction has an analogue in which the
height function R takes values in R rather than N. Such towers are commonly used
to model dynamical systems with continuous time parameter. Let (T,X, µ) be a
measure-preserving system and R : X → (0,∞) a measurable “ceiling” function on
X . The set

(5.6) XR = {(x, t) : 0 ≤ R(x) < t},
with measure ν given locally by the product of µ on X with Lebesgue measurem on
R, is a measure space in a natural way. If µ is a finite measure and R is integrable
with respect to µ then ν is a finite measure. We define an action of R on XR by
letting each point x flow at unit speed up the vertical lines {(x, t) : 0 ≤ t < R(x)}
under the graph of R until it hits the ceiling, then jump to Tx, and so on. More
precisely, defining Rn(x) = R(x) + · · · +R(T nx),
(5.7)

Ts(x, t) =







(x, s+ t) if 0 ≤ s+ t < R(x),

(Tx, s+ t− f(x)) if R(x) ≤ s+ t < R(x) +R(Tx)

. . .

(T nx, s+ t− [R(x) + · · · +R(T n−1x)] if Rn−1(x) ≤ s+ t < Rn(x).

Ergodicity of (T,X, µ) implies the ergodicity of (Ts, X
R, ν).
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5.6. Cutting and stacking. Several of the most interesting examples in ergodic
theory have been constructed by this method; in fact, because of Rokhlin’s Lemma
(see Section 5.8) every ergodic measure-preserving transformation on a Lebesgue
space is isomorphic to one constructed by cutting and stacking. For example, the
von Neumann-Kakutani adding machine (or 2-odometer) (Section 4.2), the Chacon
weakly mixing but not strongly mixing system (Section 4.5.2), Ornstein’s mixing
rank one examples (see e.g. [81, p. 160 ff.]), and many more.

We construct a Lebesgue measure-preserving transformation T on an interval X
(bounded or maybe unbounded) by defining it as a translation on each of a pairwise
disjoint countable collection of subintervals. The construction proceeds by stages,
at each stage defining T on an additional part of X , until eventually T is defined
a.e.

At each stage X is represented as a tower, which is defined to be a disjoint union
of columns. A column is defined to be a finite disjoint union of intervals of equal
length, which are numbered from 0, for the “floor”, to the last one, for the “roof”,
and which we picture as lying each above the preceding-numbered interval. T is
defined on each level of a column (i.e. each interval in the column) except the roof
by mapping it by translation to the next higher interval in the column.

At stage 0, we have just one column, consisting of all of X as the floor, and T is
not defined anywhere. To pass from one stage to the next, the columns are cut and
stacked. This means that each column is divided, by vertical cuts, into a disjoint
union of subcolumns of equal height (but maybe not equal width), and then some
of these subcolumns are stacked above others (of the same width) so as to form
a new tower. This allows the definition of T to be extended to some parts of X
that were previously tops of towers, since they now may have levels above them.
(Sometimes columns of height 1 are thought of as forming a reservoir for “spacers”
to be inserted between subcolumns that are being stacked.) If the measure of the
union of the tops of the columns tends to 0, eventually T becomes defined a.e..
This description in words can be made precise with cumbersome notation, but the
process can also be given a neater graphical description, which we sketch in the
next section.

5.7. Adic transformations. A.M. Vershik has introduced a family of models,
called adic or Bratteli-Vershik transformations, into ergodic theory and dynamical
systems. One begins with a graph which is arranged in levels, finitely many vertices
on each level, with connections only from each level to the adjacent ones. The space
X consists of the set of all infinite paths in this graph; it is a compact metric space
in a natural way. We are given an order on the set of edges into each vertex, and
then X is partially ordered as follows: x and y are comparable if they agree from
some point on, in which case we say that x < y if at the last level n where they
traverse different edges, the edge xn of x is smaller than the edge yn of y. A map T
is defined by letting Tx be the smallest y that is larger than x, if there is one. In
nice situations, T is a homeomorphism after defining it and its inverse on perhaps
countably many maximal and minimal elements. Invariant measures can sometimes
be defined by assigning weights to edges, which are then multiplied to define the
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measure of each cylinder set. This is a nice combinatorial way to present the
cutting and stacking method of constructing m.p.t.’s, allows for more convenient
analysis of questions such as orbit equivalence, and leads to the construction of
many interesting examples, such as those based on the Pascal or Euler graphs
[5, 38, 80]. Odometers and generalizations are natural examples of adic systems.
Vershik showed that in fact every ergodic measure-preserving transformation on a
Lebesgue space is isomorphic to a uniquely ergodic adic transformation. See [113].

5.8. Rokhlin’s Lemma. The following result is the fundamental starting point
for many constructions in ergodic theory, from representing arbitrary systems in
terms of cutting and stacking or adic systems, to constructing useful partitions
and symbolic codings of abstract systems, to connecting convergence theorems in
abstract ergodic theory with those in harmonic analysis. It allows us to picture
arbitrarily long stretches of the action of a measure-preserving transformation as a
translation within the set of integers. In the ergodic nonatomic case the statement
follows readily from the construction of derivative transformations.

Lemma 5.1 (Rokhlin’s Lemma). Let T : X → X be a measure-preserving trans-
formation on a probability space (X,B, µ). Suppose that (X,B, µ) is nonatomic and
T : X → X is ergodic, or, more generally, (T,X,B, µ) is aperiodic: that is to say,
the set {x ∈ X : there is n ∈ N such that T nx = x} of periodic points has measure
0. Then given n ∈ N and ǫ > 0, there is a measurable set B ⊂ X such that the sets
B, TB, . . . , T n−1B are pairwise disjoint and µ(∪n−1

k=0T
kB) > 1 − ǫ.

5.9. Inverse limits. Suppose that for each i = 1, 2, . . . we have a Lebesgue prob-
ability space (Xi,Bi, µi) and a measure-preserving transformation Ti : Xi → Xi.
Suppose also that for each i ≤ j there is a factor map φji : (Tj , Xj,Bj , µj) →
(Ti, Xi,Bi, µi, ), such that each φjj is the identity on Xj and φjiφkj = φki when-
ever k ≥ j ≥ i. Let

(5.8) X = {x ∈ Π∞
i=1Xi : φjixj = xi for all j ≥ i}.

For each j, let πj : X → Xj be the projection defined by πjx = xj .

Let B be the smallest σ-algebra of subsets of X which contains all the π−1
j Bj.

Define µ on each π−1
j Bj by

(5.9) µ(π−1
j B) = µj(B) for all B ∈ Bj.

Because φjiπj = πi for all j ≥ i, the π−1
j Bj are increasing, and so their union is

an algebra. The set function µ can, with some difficulty, be shown to be countably
additive on this algebra: since we are dealing with Lebesgue spaces, by means
of measure-theoretic isomorphisms it is possible to replace the entire situation by
compact metric spaces and continuous maps, then use regularity of the measures
involved–see [89, p. 137 ff.]. Thus by Carathéodory’s Theorem (see the article on
Measure-Preserving Systems) µ extends to all of B.

Define T : X → X by T (xj) = (Tjxj). Then (T,X,B, µ) is a measure-preserving
system such that any system which has all the (Tj , Xj,Bj , µj) as factors, also has
(T,X,B, µ) a factor.
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5.10. Natural extension. The natural extension is a way to produce an invertible
system from a noninvertible system. The original system is a factor of its natural
extension and its orbit structure and ergodic properties are captured by the natural
extension, as will be seen from its construction. Let (T,X,B, µ) be a measure-
preserving transformation of a Lebesgue probability space. Define

Ω: = {(x0, x1, x2, . . .) : xn = T (xn+1), xn ∈ X,n = 0, 1, 2, . . .}

with σ : Ω → Ω defined by σ((x0, x1, x2, . . .)) = (T (x0), x0, x1, . . .). The map σ is
invertible on Ω. Given the invariant measure µ we define the invariant measure for
the natural extension µ̃ on Ω by defining it first on cylinder sets C(A0, A1, . . . , Ak)
by

µ̃(C(A0, A1, . . . , Ak)) = µ(T−k(A0) ∩ T−k+1(A1) . . . ∩ T−k+i(Ai) ∩ . . . ∩Ak)

and then extending it to Ω using Kolmogorov’s extension theorem. We think of
(x0, x1, x2, . . .) as being an inverse branch of x0 ∈ X under the mapping T : X → X .
The maps σ, σ−1 : Ω → Ω are ergodic with respect to µ̃ if (T,X,B, µ) is ergodic [114].
If π : Ω → X is projection onto the first component i.e. π(x0, . . . , xn, . . .) = x0 then
π ◦ σn(x0, . . . , xn, . . .) = T n(x0) for all x0 and thus the natural extension yields all
information about the orbits of X under T .

The natural extension is an inverse limit. Let (X,B, µ) be a Lebesgue probability
space and T : X → X a map such that T−1B ⊂ B and µT−1 = µ. For each
i = 1, 2, . . . let (Ti, Xi,Bi, µi) = (T,X,B, µ), and φji = T j−i for each j > i.

Then the inverse limit (T̂ , X̂, B̂, µ̂) of this system is an invertible measure-preserving
system which is the natural extension of (T,X,B, µ). We have

(5.10) T̂−1(x1, x2, . . . ) = (x2, x3, . . . ).

The original system (T,X,B, µ) is a factor of (T̂ , X̂, B̂, µ̂) (using any πi as the
factor map), and any factor mapping from an invertible system onto (T,X,B, µ)

consists of a factor mapping onto (T̂ , X̂, B̂, µ̂) followed by projection onto the first
coordinate.

5.11. Joinings. Given measure-preserving systems (T,X,B, µ) and (S, Y, C, ν), a
joining of the two systems is a T ×S-invariant measure P on their product measur-
able space that projects to µ and ν, respectively, under the projections of X×Y to
X and Y , respectively. That is, if π1 : X × Y → X is the projection onto the first
component i.e. π1(x, y) = x then P (π−1

1 (A)) = µ(A) for all A ∈ B and similarly
for π2 : X × Y → Y .

This concept is the ergodic-theoretic version of the notion in probability theory
of a coupling. The product measure µ × ν is always a joining of the two systems.
If product measure is the only joining of the two systems, then we say that they
are disjoint and write X ⊥ Y [39]. If D is any family of systems, we write D⊥ for
the family of all measure-preserving systems which are disjoint from every system
in D. Extensive recent accounts of the use of joinings in ergodic theory are in
[43, 102,112].
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6. Future Directions.

The basic examples and constructions presented here are idealized, and many of
the underlying assumptions (such as uniform hyperbolicity) are seldom satisfied in
applications, yet they have given important insights into the behavior of real-world
physical systems. Recent developments have improved our understanding of the
ergodic properties of non-uniformly and partially hyperbolic systems. The ergodic
properties of deterministic systems will continue to be an active research area for
the foreseeable future. The directions will include, among others: establishing
statistical and ergodic properties under weakened dependence assumptions; the
study of systems which display ‘anomalous statistics’; the study of the stability
and typicality of ergodic behavior and mixing in dynamical systems; the ergodic
theory of infinite-dimensional systems; advances in number theory (see the sections
on Szemerédi and Ramsey theory); research into models with non-singular rather
than invariant measures; and infinite-measure systems. Other chapters in this
Encyclopedia discuss in more detail these and other topics.
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maps, Invent. Math. 112 (1993), no. 3, 541–576. MR 1218323 (94e:58074)

[9] Anne Bertrand-Mathis, Développement en base θ; répartition modulo un de la suite
(xθ(X,B, µ)n)

n≥0; langages codés et θ-shift, Bull. Soc. Math. France 114 (1986), no. 3,
271–323 (French, with English summary). MR 878240 (88e:11067)

[10] Patrick Billingsley, Ergodic Theory and Information, Robert E. Krieger Publishing Co.,
Huntington, N.Y., 1978. Reprint of the 1965 original. MR 524567 (80b:28017)

[11] B. H. Bissinger, A generalization of continued fractions, Bull. Amer. Math. Soc. 50 (1944),
868–876. MR 0011338 (6,150h)

[12] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), no. 2,
131–141. MR 1020481 (90j:54039)
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Birkhäuser Boston Inc., Boston, MA, 1997. Invariant measures and dynamical systems in
one dimension. MR 1461536 (99a:58102)

[21] M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR
Ser. Mat. 38 (1974), 170–212 (Russian). MR 0343316 (49 #8058)

[22] L. A. Bunimovič, The ergodic properties of certain billiards, Funkcional. Anal. i Priložen. 8
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MR 1719722 (2001d:37001)

[82] Donald Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math.
4 (1970), 337–352 (1970). MR 0257322 (41 #1973)

[83] Donald S. Ornstein and Benjamin Weiss, Geodesic flows are Bernoullian, Israel J. Math.
14 (1973), 184–198. MR 0325926 (48 #4272)



40 MATTHEW NICOL AND KARL PETERSEN

[84] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of
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