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Abstract. We consider cocycles with negative Lyapunov exponents defined over a
hyperbolic dynamical system. It is well known that such systems possess invariant graphs
and that under spectral assumptions these graphs have some degree of Hölder regularity.
When the invariant graph has a slightly higher Hölder exponent than the a priori lower
bound on an open set (even on just a set of positive measure for certain systems), we show
that the graph must be Lipschitz or (in the Anosov case) as smooth as the cocycle.

1. Introduction
In this paper we consider the regularity of dynamically invariant graphs of skew-product
systems with uniformly hyperbolic base dynamics and uniform or non-uniform contraction
in the fibre.

Our work is related to that of Hirsch et al [2], Stark [8, 9] and Kaplan et al [4], who have
investigated the existence and regularity properties of invariant graphs in skew-product
systems. Similar results have been proved in the setting of group-valued cocycle equations
[5, 6].

Suppose f : M → M is a C1 diffeomorphism of a C∞ compact Riemannian manifold
M and suppose that � is a locally maximal hyperbolic set and f |� is an Axiom A
diffeomorphism which has an invariant equilibrium measure m corresponding to a Hölder
continuous function. Often we shall assume that � = M , so that f is Anosov.

There exist constants C > 0, µs,max ≥ µs > 0 and µu,max ≥ µu > 0 such that on local
stable manifolds {Ws

loc(x)},
Ce−nµs,maxd(x, y) ≤ d(f nx, f ny) ≤ Ce−nµs d(x, y)
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for y ∈ Ws
loc(x) and

Ce−nµu,maxd(x, y) ≤ d(f−nx, f−ny) ≤ Ce−nµud(x, y)

for y ∈ Wu
loc(x), the local unstable manifold. Thus µs,max and µs correspond to

the maximum and minimum rates of contraction along stable manifolds, respectively.
We denote the conditional measures of m along the stable ({Ws

loc(x)}) and unstable
({Wu

loc(x)}) foliations by ms(x) and mu(x) respectively. We will write ms , mu when the
point x is clear by context.

Let Y be a complete separable metric space and suppose that g : � × Y → Y is a
continuous mapping which is α-Hölder in the first component; that is, for each compact
W ⊂ Y there exists a KW such that

d(g(x, y), g(x ′, y)) ≤ KWd(x, x ′)α

for each y ∈ W . We shall often assume that g is Ck; in this case, we implicitly require Y

to have a smooth Riemannian structure.
We form the skew-product

F(x, y) = (f (x), g(x, y)). (1.1)

To simplify notation we write g(x, y) = g(x)y and consider g : � → C(Y, Y )

as a family of continuous mappings of Y . If for each x, g(x) is assumed invertible
(as we will for most of this paper) we denote g(x)−1 by h(x). We define gn(x)

by Fn(x, y) = (f n(x), gn(x)y) and similarly define (where appropriate) hn(x) by
F−n(x, y) = (f−n(x), hn(x)y). For heuristic reasons we also write gn(x)y as
g(f n−1x)g(f n−2x) · · ·g(x)y, i.e. as a composition of operators acting on Y .

We say that g is uniformly contracting if there exists λu < 0 and c > 0 such that

d(gn(x)y, gn(x)y ′) ≤ cenλud(y, y ′) (1.2)

for all x ∈ X. Take any continuous function v : � → Y . Then it is easy to check that
gn(f−nx)v(f−nx) converges uniformly to a continuous function φ. Moreover, the graph
of φ is invariant under the skew product F ; equivalently φ solves the functional equation

φ(f x) = g(x)φ(x). (1.3)

Moreover, φ is unique.
Under the additional assumption that g is α-Hölder for some 0 < α ≤ 1 then the

following result provides a degree of regularity for φ.

PROPOSITION 1.1. [2, 8, 9] Suppose g is α-Hölder in the first coordinate. Then φ is
uniformly Hölder on � with exponent γ , for any 0 < γ ≤ α, such that γ < −λu/µs,max.
In particular if λu < −µs,max and α = 1, then φ is Lipschitz.

Remark 1.2. Proposition 1.1 does not need the hyperbolicity assumption on f ; we merely
need to know the maximum amount of expansion by f−1.

Assume that λs ∈ (−∞, λu) is the maximum rate of contraction for g, i.e. there exists
C > 0 such that for all n ∈ N

Cenλs d(y, y ′) ≤ d(gn(x)y, gn(x)y ′). (1.4)
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(Note that this implies g(x) is invertible for each x.) The map F is said to be partially
hyperbolic if

−µs < λs ≤ λu < µu.

We will assume from now on that our skew-product is partially hyperbolic. In the case of
uniform contraction the system satisfies

−µs < λs ≤ λu < 0 < µu.

The main result of this paper states that in our set-up Proposition 1.1 is generically
optimal. To be more precise we introduce some useful definitions.

We say that φ restricted to a set S, φ|S , is Hölder of exponent α if there exists a constant
C > 0 such that d(φ(x), φ(y)) ≤ Cd(x, y)α for all x, y ∈ S.

A map f : M → M is said to be conformal if there exists a scalar function a(x) such
that dsxf = a(x)Isom(x) where Isom(x) is an isometry.

The hyperbolic map f is said to be s-conformal if the derivative dsf of f in the stable
direction is conformal. We are now ready to state our main results in the case of uniform
contraction. We assume that F(x, y) = (f (x), g(x)y) is a partially hyperbolic system
as previously described. We say that a function ψ is Ck− if it is Ck−1 and the (k − 1)st

derivative is Cγ for any γ ∈ (0, 1) (with the conventions that C1− = C1 andC∞− = C∞).

THEOREM 1.3. Let f : M → M be a Ck Anosov diffeomorphism of a C∞ compact
Riemannian manifold M . Suppose that the Ck map (x, y) �→ g(x, y) is uniformly
contracting and F(x, y) = (f (x), g(x)y) : M × Y �→ M × Y is partially hyperbolic.
Suppose that φ determines the invariant graph, i.e. φ is the continuous solution to the
functional equation

g(x)φ(x) = φ(f x).

Then for any 0 < γ ≤ 1 such that γ > −λs/µs either:
(i) φ is not Cγ on any open set S; or
(ii) φ is Ck−.
If f is s-conformal then:
(a) φ|S is not Cγ on any set S of positive measure; or
(b) φ is Ck−.
Moreover, generically (in the space of Ck partially hyperbolic uniformly contracting
cocycles g), (i), (a) occur.

Remark 1.4. Under the conditions of the theorem, the graph of φ when restricted to local
unstable manifolds is always Ck . Note also that φ is γ ′-Hölder for any γ ′ satisfying
γ ′ < −λu/µs,max.

Remark 1.5. A similar result is proved in [1]. They consider the regularity of the sub-
bundles Es,Eu in the Anosov splitting of the tangent bundle of M . These sub-bundles are
always Hölder and, generically, this degree of regularity is nowhere exceeded.

Remark 1.6. A similar result holds if we assume only that f is Axiom A. Specifically, if
F is partially hyperbolic and, for each x ∈ �, g(x) is bi-Lipschitz then the analogue of
Theorem 1.3 holds if property (ii) states that φ is Lipschitz.
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Remark 1.7. The dichotomy between (i) and (ii) of Theorem 1.3 holds under the
hypotheses that φ is continuous and the cocycle g is partially hyperbolic. The uniform
contraction assumption is only required to ensure that the graph φ is continuous.

Remark 1.8. The s-conformal hypothesis is a technical assumption used to avoid a lengthy
digression in the proofs.

We remark that Kaplan et al [4] consider a family of skew-products over hyperbolic
toral automorphisms with affine cocycles and have results on the regularity and box-
counting dimension dimB(graph(φ)) of the invariant graph. Specifically, they study the
skew-product F : T k × R → T k × R : (x, y) �→ (Ax, p(x) + λy) where T k denotes
the k-dimensional torus, A : T k → T k is a linear hyperbolic toral automorphism, λ ∈ R

and p : T k → R is a sufficiently smooth function of period 1 in each coordinate. When
k = 2, A has eigenvalues µ,µ−1 with |µ| < 1. Provided that µ < λ < 1, the system
is uniformly contracting and partially hyperbolic so that the attracting invariant graph is
continuous, indeed Hölder. The following dichotomy holds.

PROPOSITION 1.9. [4] Let A be a hyperbolic automorphism of T 2 with eigenvalues
µ,µ−1, |µ| < 1. Let p : T 2 → R be C3 and suppose that λ ∈ (µ, 1). Then either:
(i) φ is nowhere differentiable and dimB(graph(φ)) = 3 − (logλ/logµ); or
(ii) φ is smooth (in which case dimB(graph(φ)) = 2).

Dimension estimates in our set-up will appear in a forthcoming paper [10].

1.1. Non-uniform contraction. We now discuss our results in the context in which g

contracts non-uniformly. We still assume that there exist constants C, c > 0, λs ≤ λu, such
that for all n ∈ N equations (1.2) and (1.4) hold but λu > 0 is allowed. In this setting we are
not guaranteed the existence of a continuous invariant graph (or indeed an invariant graph
at all) and so we will consider the regularity properties of invariant measurable graphs.

One context in which there always exists a measurable attracting invariant graph is that
of ‘contraction on average’.

Suppose that

ρ(x) = lim
n→∞ sup

y,y ′∈Y
1

n
log

d(gn(x)y, gn(x)y ′)
d(y, y ′)

(1.5)

exists for m-a.e. x ∈ �. (This is the maximal Lyapunov exponent in the fibre direction
of the skew product F .) This condition is satisfied if, for example, the functions
log+ ‖g(x)‖, log+ ‖g(x)−1‖ ∈ L1(�,m) where

‖g(x)‖ := sup
y,y ′∈Y

d(g(x)y, g(x)y ′)
d(y, y ′)

(1.6)

(and ‖g(x)−1‖ is defined similarly). In this context we will say that the skew-product
contracts on average if there exists ρ < 0 such that

ρ(x) ≤ ρ < 0 (1.7)

for m-a.e. x ∈ �. As a consequence of contraction on average we have the following result
of Stark [9], which applies in a more general setting.
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PROPOSITION 1.10. [9] Suppose X is a compact metric space, f : X → X a
homeomorphism, m an f -invariant measure, Y a complete metric space and g : X ×
Y → Y is continuous and satisfies (1.7). Then there exists an f -invariant set � ⊂ X such
that m(�) = 1 and a measurable function φ : � → Y such that the graph of φ is invariant
and attracting under (f, g).

Note that in this case the graph φ : � → Y is measurable and satisfies the functional
equation (1.3) for m-a.e. x ∈ X.

Contraction on average implies that for m-a.e. x ∈ �, given ε > 0 there exists a
measurable function c : � → R such that

d(gn(x)y, gn(x)y ′) ≤ c(x)en(ρ+ε)d(y, y ′). (1.8)

Stark has the following regularity results in the contraction on average setting.

PROPOSITION 1.11. [9] Suppose further that f is a C1+α diffeomorphism, ρ < 0,
c(x) ∈ L1(�,m) and for a point y0 ∈ Y there exist constants β,K1,K2 such that

d(g(x)y, g(x ′)y) ≤ (K1 + K2d(y, y0)
β)d(x, x ′)α. (1.9)

Then for any 0 < γ ≤ α such that γ < −ρ/µs,max we can construct a nested sequence
�k , k ∈ N of compact sets such that m(�k) → 1 and φ|�k is Hölder of exponent γ .

We now assume that f is a Ck Anosov diffeomorphism, equipped with an ergodic
equilibrium measure m corresponding to a Hölder function and that g(x) is invertible for
each x (denote h(x) = g(x)−1). We will say that g is centre bunched if λu − λs <

min{µs,µu} (cf. [6]).
We will always assume that in the case of non-uniform contraction we are (roughly) in

the setting of Proposition 1.11. More precisely we assume that for a point y0 ∈ Y there
exist constants K1,K2 such that:
(I) d(g(x)y, g(x ′)y) ≤ (K1 + K2d(y, y0))d(x, x

′); and
(II) d(h(x)y, h(x ′)y) ≤ (K1 + K2d(y, y0))d(x, x

′)
(we have taken α = β = 1 in Proposition 1.11). Suppose that ρ < 0 in addition to (I),
(II). Let φ be the unique measurable invariant graph for the partially hyperbolic map F

which satisfies (I), (II) and ρ < 0. Under the assumption of (I), (II) and ρ < 0 we have the
following generalization of Theorem 1.3 in the non-uniform case.

THEOREM 1.12. Suppose that the Ck map g is centre bunched, non-uniformly contracting
(ρ < 0) and satisfies (I), (II). Then for any 0 < γ ≤ 1 such that γ > −λs/µs either:
(i) φ|S is not Cγ on any open set S; or
(ii) φ is Ck−.
If f is s-conformal then either:
(a) φ|S is not Cγ on any set S of positive measure; or
(b) φ is Ck−.
Moreover, generically (i), (a) occur.

Remark 1.13. If we assume that f : � → � is Axiom A rather than Anosov, then the
conclusions of Theorem 1.12 hold if properties (ii), (b) state that φ is Lipschitz.
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Remark 1.14. Consider the case when φ is assumed to be an invariant measurable graph
for the partially hyperbolic mapping F satisfying conditions (I) and (II) (i.e. we make no
assumption of contraction on average) and the base is assumed to be an ergodic (with
respect to a Hölder equilibrium measure m) Anosov diffeomorphism. Then we have the
following regularity results.

THEOREM 1.15. Suppose that the Ck map g is centre bunched, satisfies (I), (II) and φ is
measurable. Then for any 0 < γ ≤ 1 such that γ > max{−λs/µs, λu/µu} either:
(i) φ|S is not Cγ on any open set S; or
(ii) φ is Ck−.
Moreover, generically (i) occurs.

Remark 1.16. If we assume that f : � → � is Axiom A rather than Anosov and g(x)

is bi-Lipschitz, then the conclusions of Theorem 1.15 hold if property (ii) states that φ is
Lipschitz.

Remark 1.17. We do not know if the centre bunching condition (λu − λs < min{µu,µs})
in the statements of Theorem 1.12 and Theorem 1.15 can be relaxed to merely the partial
hyperbolicity condition −µs < λs < λu < µu of the uniform case (Theorem 1.3).

2. Proof of Theorem 1.3
We discuss the regularity of φ along the stable and unstable manifolds of f independently.

2.1. Regularity on local stable manifolds. Let x ∈ �. For each n > 0, define

γ s,n
x (·) : Ws

loc(x) → Y : t �→ hn(t)φ(f nx).

Then

d(γ s,n+1
x (t), γ s,n

x (t)) = d(hn(t)h(f nt)g(f nx)φ(f nx), hn(t)h(f nt)g(f nt)φ(f nx))

≤ Ce−nλs d(g(f nx)φ(f nx), g(f n(t))φ(f nx)).

As φ is continuous, hence bounded, we have

d(g(f nx)φ(f nx), g(f nt)φ(f nx)) ≤ Kd(f nx, f nt)α

≤ Ke−nαµs d(x, t)α

where α is the Hölder constant of x �→ g(x, ·). Hence

d(γ s,n+1
x (t), γ s,n

x (t)) ≤ Ce−n(λs+αµs)d(x, t)α

for some constant C > 0, independent of x, t and n. Hence if α > −λs/µs , {γ s,n
x (t)} is

Cauchy by the partial hyperbolicity assumption and therefore converges. Denote the limit
by γ s

x (t).

LEMMA 2.1. The graph of γ s
x (·) is F -invariant in the sense that F(t, γ s

x (t)) = (f (t),

γ s
f (x)(f t)).
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Proof. As F(t, γ s
x (t)) = (f (t), g(t)γ s

x (t)) the claim follows from the fact that

g(t)γ s
x (t) = lim

n→∞ g(t)hn(t)gn(x)φ(x)

= lim
n→∞ g(t)h(t)hn−1(f t)gn−1(f x)g(x)φ(x)

= γ s
f x(f t). ✷

The following quantity shall prove useful. For t ∈ Ws
loc(x), define

sj (t) = d(h(t) · · · h(f j−1t)h(f j t)φ(f jx), h(t) · · · h(f j−1t)h(f jx)φ(f j x)).

LEMMA 2.2. The maps t �→ γ s
x (t) : Ws

loc(x) → Y are uniformly Lipschitz.

Proof. Observe that

d(γ s,n
x (t), γ s,n

x (x)) = d(hn(t)φ(f nx), hn(x)φ(f nx))

≤
n−1∑
j=0

d(h(t) · · · h(f j−1t)h(f j t)h(f j+1x) · · ·h(f n−1x)φ(f nx),

h(t) · · · h(f j−1t)h(f jx)h(f j+1x) · · ·h(f n−1x)φ(f nx))

=
n−1∑
j=0

sj (t).

We estimate

sj (t) ≤ Ce−λsj d(h(f j t)φ(f jx), h(f jx)φ(f j x))

≤ Ce−λsj d(f j t, f jx)

≤ Ce−j (λs+µs)d(t, x).

By the partial hyperbolicity assumption, we see that

d(γ s,n
x (t), γ s,n

x (x)) ≤
n−1∑
j=0

sj (t) ≤
∞∑
j=0

sj (t) ≤ Cd(t, x).

Letting n → ∞ gives the result. ✷

For each x ∈ � and t ∈ Ws
loc(x) define

1(x, t) = d(φ(t), γ s
x (t))

1(x) = sup
t∈Ws

loc(x)

1(x, t).

The functions 1(x, t) and 1(x) will act as obstructions to the regularity of φ along the
local stable manifold through x. Note that x �→ 1(x) is continuous.

LEMMA 2.3. If φ is Cγ on an open set S, where γ > −λs/µs , then φ is globally uniformly
Lipschitz on local stable manifolds.
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Proof. By Poincaré recurrence, almost every point of � returns to S infinitely often. Hence
there exists a sequence nj ↑ ∞ such that f nj x, f nj t ∈ S. Then for each nj

d(φ(t), γ s
x (t)) = d(hnj (t)φ(f nj t), hnj (t)φ(f nj x)) (2.10)

≤ Ce−nj (λs+γµs)d(x, t)γ . (2.11)

Letting nj → ∞ yields 1(x) = 0 by partial hyperbolicity and the assumption on γ .
Similarly 1(f nx) = 0 for each n > 0 so that 1(x) = 0 on a dense set; hence 1(x) = 0
everywhere and the lemma follows. ✷

If f is s-conformal then we may improve this lemma in the following way.

LEMMA 2.4. If φ|S is Cγ , where γ > −λs/µs andm(S) > 0, then φ is globally uniformly
Lipschitz on local stable manifolds.

Proof. By Lemma A.1 of Appendix A we may assume that there exists a sequence nj ↑ ∞
such that f nj x, f nj t ∈ S and the proof follows as in Lemma 2.3. ✷

We now show that if φ is globally Lipschitz then it is as smooth as g along the local
stable manifold through x ∈ �. Note that by Lemma 2.4, if the graph of φ is Lipschitz then
the graph of φ contains the graphs of the functions γ s

x . To show that φ is Ck along local
stable manifolds, it suffices to prove that the functions γ s

x are Ck . To do this, we show that
the graphs of the functions γ s

x are the local stable manifolds for the partially hyperbolic
(in the sense of [2]) skew product F . The local stable manifolds of F are as smooth as g.
So by [2, Theorem 5.5, p. 61], it is sufficient to show that the rate of convergence of orbits
along the graph of γ s

x is exponential at rate −µs (possibly replacing −µs by −µs + ε for
a suitably small ε > 0).

LEMMA 2.5. There exists a constant C > 0 such that for all x ∈ � and t ∈ Ws
loc(x), we

have

d(Fn(t, γ s
x (t)), F

n(x, φ(x))) ≤ Ce−nµs .

Proof. Note that Fn(t, γ s
x (t)) = (f n(t), gn(t)γ s

x (t)) and Fn(x, φ(x)) = (f n(x),

φ(f n(x))). As d(f n(t), f n(x)) ≤ Ce−nµs d(x, t), it suffices to prove that
d(gn(t)γ s

x (t), φ(f
n(x))) ≤ Ce−nµs d(x, t).

Now

d(gn(t)γ s
x (t), φ(f

nx)) = d(gn(t)hn+m(t)φ(f n+mx), hm(f nx)φ(f n+mx))

= d(hm(f nt)φ(f n+mx), hm(f nx)φ(f n+mx))

≤
n−1∑
j=0

sj (f
nt).

Using similar arguments to those in Lemma 2.2, it is easy to check that

sj (f
nt) ≤ Ce−nµs−j (λs+µs)d(t, x).
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Hence
n−1∑
j=0

sj,n ≤ Ce−nµs

∞∑
j=0

e−j (λs+µs )d(t, x). (2.12)

By partial hyperbolicity, the sum on the right-hand side of (2.12) is finite, and the lemma
follows. ✷

2.2. Regularity along unstable manifolds. We show that φ, when restricted to unstable
manifolds, is always as regular as g. We emphasize that we do not need any partial
hyperbolicity assumption here and we remark that the analogues of the functions 1(x, t)

and 1(x) are always identically equal to zero.

LEMMA 2.6. Let φ be an invariant graph corresponding to a Ck cocycle g. Then φ is
uniformly Ck along each unstable manifold.

Proof. The proof is similar to (but easier than) the previous stable manifold case, so we
merely sketch the arguments.

Define for each x ∈ � and n > 0,

γ u,n
x (·) : Wu

loc(x) → Y : t �→ gn(f−nt)φ(f −nx).

This is easily seen to be Cauchy (and we do not need the partial hyperbolicity assumption
for this to hold). Hence the limit γ u

x (t) = limn→∞ γ
u,n
x (t) exists.

One can again check that the family of graphs defined by γ u
x are Lipschitz and are

invariant in the sense that F−1(t, γ u
x (t)) = (f−1(t), γ u

f−1x
(f−1t)). A similar argument to

that for the local stable manifold case allows us to conclude that γ u
x (t) = φ(t) (without

any partial hyperbolicity assumption). Finally, the convergence under f−1 in the graphs is
exponential at rate e−µu . Hence, by [2], these graphs correspond to the unstable manifolds
of F and are therefore Ck . ✷

Proof of Theorem 1.3 We have seen that if alternative (i) or (b) in Theorem 1.3 fails then
φ is uniformly Ck along local stable and unstable manifolds. By a result of Journé [3], we
can conclude that φ is globally Ck−. ✷

2.3. Generically the graph is nowhere Cγ . We now show that generically either (i) or
(a) occur in Theorem 1.3. If such a set does exist then 1(x, t) �= 0 and in fact the function
1(x, t) is an obstruction to the regularity of φ along stable manifolds. Also, recall that
along unstable manifolds φ is always Ck .

We now show that for a generic set of cocycles 1(x, t) �= 0; hence for this set of
cocycles φ is not Cγ when restricted to a set of positive measure.

Recall that φ is the unique continuous function φ : � → Y satisfying g(x)φ(x) =
φ(f x) for all x ∈ �. Note that for fixed v ∈ Y , φ(x) = limn→∞ g(f −1x) · · ·g(f −nx)v

uniformly in n.
Thus

γ s
x (t) = lim

n→∞ hn(t)φ(f nx)

= lim
n→∞ lim

m→∞ g(t)−1 · · ·g(f n−1t)−1g(f n−1x) · · ·g(x) · · ·g(f−mx)v.
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Now choose a periodic point x and a point t ′ ∈ Ws
loc(x) ∩ Wu

loc(x) homoclinic to x.
There exists a neighbourhood U of t ′ such that U is disjoint from f n(t ′) for n ∈ Z \ {0}
and the orbit of x.

We perturb g within the class of Ck diffeomorphisms (or bi-Lipschitz homeomorphisms
in the Axiom A case). Denote the perturbed cocycle by g̃. By making a sufficiently small
perturbation, we can assume that g̃ satisfies the partial hyperbolicity conditions. We denote
the corresponding perturbed objects by γ̃ s

x , φ̃ and 1̃.
Since g̃(f−mt ′) = g(f−mt ′) for m ≥ 1, we have φ(t ′) = φ̃(t ′). Note that γ̃ s

x (t
′) =

g̃(t ′)−1g(t ′)γ s
x (t

′). Hence

|1̃(x, t ′) − 1(x, t ′)| = |d(g̃(t ′)−1g(t ′)γ s
x (t

′), φ(t ′)) − d(γ s
x (t

′), φ(t ′))|,
from which it is easy to see that for a given t ′, there is an open dense set of perturbations g̃
of g for which the right-hand side is not zero, and the result follows.

3. The case of non-uniform contraction
The proofs of Theorems 1.12 and 1.15 are similar and differ in detail only. We will show
first that under the conditions of Theorem 1.12 if property (i) (or (a) if f is assumed
s-conformal) does not hold, then the graph of φ has a Lipschitz version in the sense that
there is a Lipschitz function φ′ such that φ = φ′ m-a.e. To show this first step we need to
assume λu − λs < min{µu,µs}.

Once we have established this then the proof follows as in the case of uniform
contraction, in fact all estimates proceed exactly as in the uniform contraction case. We will
only sketch this second part of the proof.

After using a standard re-norming technique to assume without loss of generality that
the constants in (1.2), (1.4) are equal to one, it is a straightforward consequence of the
definitions of λs, λu that with

K(y0) := max
x∈X {d(g(x)y0, y0), d(h(x)y0, y0)}

we have
d(g(x)y, y0) ≤ eλud(y, y0) + K(y0) (3.13)

and
d(h(x)y, y0) ≤ e−λs d(y, y0) + K(y0). (3.14)

Similarly

d(g(f x)g(x)y, y0) ≤ d(g(f x)g(x)y, g(f x)y0) + d(g(f x)y0, y0)

≤ eλu(eλud(y, y0) + K(y0)) + K(y0).

By induction

d(g(f kx) · · · g(x)y, y0) ≤ e(k+1)λud(y, y0) + K(y0)

(
e(k+1)λu − 1

eλu − 1

)

and

d(h(f−kx) · · ·h(f−1x)y, y0) ≤ e−(k+1)λsd(y, y0) + K(y0)

(
e−(k+1)λs − 1

e−λs − 1

)
.
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Let X0 = {x ∈ M : φ(x), ρ(x) are defined and ρ(x) ≤ ρ < 0}. Since φ(x) is
measurable we may choose a set L ⊂ M and constant C such that m(L) > 1

2 and for
all x ∈ L, |φ(x)| ≤ C. Denote the characteristic function of L by ξL, then by the ergodic
theorem for every x in a full measure set X1 ⊂ M the partial sums

1

n

n−1∑
j=0

ξL(f
jx) and

1

n

n−1∑
j=0

ξL(f
−j x)

converge to m(L) > 1
2 .

Define X2 := ⋂
n∈Z f n(X0 ∩ X1). Note m(X2) = 1 and X2 is f -invariant. As a

consequence of the local product decomposition of m [7, Theorem 1(d)] for m-a.e. y, we
have that ms-a.e. x ∈ W

u(s)
loc (y) lies in X2.

We will, as in the uniform contraction case, prove regularity along local stable/unstable
manifolds.

3.1. Regularity on local unstable manifolds. Assume x, y ∈ X2 and x ∈ Wu
loc(y). For

all n ≥ 0 define xn and yn by xn = f−nx and yn = f−ny. Then using (1.3) we have

d(φ(x), φ(y)) = d(g(f n−1xn) · · · g(xn)φ(xn), g(f n−1yn) · · · g(yn)φ(yn))

≤ d(g(f n−1xn) · · · g(xn)φ(xn), g(f n−1xn) · · · g(xn)φ(yn)) +
n−1∑
j=0

uj

where

uj = d(g(f n−1xn) · · ·g(f j+1xn)g(f
jxn)g(f

j−1yn) · · · g(yn)φ(yn),
g(f n−1xn) · · · g(f j+1xn)g(f

jyn)g(f
j−1yn) · · · g(yn)φ(yn))

(defined appropriately for u0 and un−1). Let

vj = g(f j−1yn) · · ·g(yn)φ(yn) = h(f−(n−j)y) · · ·h(f−1y)φ(y).

Now by Assumptions (I), (II) we have

uj ≤ (eλu)n−j−1d(g(f jxn)vj , g(f
j yn)vj )

≤ (eλu)n−j−1(K1 + K2d(vj , y0))d(f
jxn, f

jyn).

Hence
uj ≤ Ce(λu−µu)(n−j)(K1 + K2d(vj , y0))d(x, y).

Furthermore,

d(vj , y0) = d(h(f jyn) · · ·h(f n−1yn)φ(y), y0)

≤ e−(n−j+1)λsd(φ(y), y0) + K(y0)

(
e−(n−j+1)λs − 1

e−λs − 1

)
.

Thus

uj ≤ C(K1 + K3K(y0))e
(λu−µu)(n−j)d(x, y)

+ CK4(d(φ(y), y0) + K(y0))e
(−λs+λu−µu)(n−j)d(x, y)
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where C, Ki are fixed constants. Hence, under the assumption λu − λs < min{µu,µs},
n−1∑
j=0

uj ≤
∞∑
j=0

uj ≤ (C′ + C′′d(φ(y), y0))d(x, y)

for some constants C′, C′′ > 0.
We now consider the first term

u∗n := d(g(f n−1xn) · · · g(xn)φ(xn), g(f n−1xn) · · · g(xn)φ(yn)).
Since m(L) > 1

2 there is a positive density of times n such that xn ∈ L and yn ∈ L.
At these times φ(xn), φ(yn) are uniformly bounded by C. Since ρ(x) < ρ by assumption
of contraction on average, limn→∞ u∗n = 0.

Thus for m-a.e. y ∈ M and for a.e. x ∈ Wu
loc(y) with respect to the conditional measure

m induces on Wu
loc(y),

d(φ(x), φ(y)) ≤ (C′ + C′′d(φ(y), y0))d(x, y).

3.2. Regularity on local stable manifolds. The argument along local stable manifolds
proceeds in the same way with the obvious modifications. We define xn = f nx, yn = f ny

and consider the sum

d(φ(x), φ(y)) = d(h(f−nxn) · · · h(f−1xn)φ(xn), h(f
−nyn) · · · h(f−1yn)φ(yn))

≤ d(h(f−nxn) · · · h(f−1xn)φ(xn), h(f
−nxn) · · ·h(f−1xn)φ(yn))

+
n−1∑
j=0

sj

where

sj = d(h(f−nxn) · · · h(f−(j+1)xn)h(f
−j xn)h(f

−(j−1)yn) · · ·h(f−1yn)φ(yn),

h(f−nxn) · · · h(f−(j+1)xn)h(f
−j yn)h(f

−(j−1)yn) · · · h(f−1yn)φ(yn)).

The analysis of all terms except the first term

s∗n := d(h(f−nxn) · · · h(f−1xn)φ(xn), h(f
−nxn) · · · h(f−1xn)φ(yn))

proceeds as before, using the centre bunching hypothesis −λs + λu − µs < 0.
To deal with the first term (under the assumptions of Theorem 1.12(i)) suppose that φ

is Hölder of exponent γ on an open set S.
By Poincaré recurrence, almost every point of � returns to S infinitely often. If y ∈ M

is such a point, then as diam f nWs
loc(y) → 0 as n → ∞, we see that there exists an infinite

sequence of distinct times nk such that f nk (x), f nk (y) ∈ S. If f nk (x), f nk (y) ∈ S then
|s∗nk | ≤ enk(λs−γµs). By the assumption that λs − γµs < 0, limk→∞ |s∗nk | = 0.

Similarly if f is s-conformal and φ|S is Hölder of exponent γ where µ(S) > 0 then by
Lemma A.1 of Appendix A there exists an infinite sequence of distinct times nk such that
f nk (x), f nk (y) ∈ S and hence in this case also limk→∞ |s∗nk | = 0.
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Thus for a full m-measure set of y ∈ M and every x ∈ Ws
loc(y) we have

d(φ(x), φ(y)) ≤ (C′ + C′′d(φ(y), y0))d(x, y).

Similarly we can show that there exists a full m-measure set of y ∈ M such that for every
x ∈ Wu

loc(y) we have

d(φ(x), φ(y)) ≤ (C′ + C′′d(φ(y), y0))d(x, y).

The local product structure ensures that a.e. point y has a neighbourhood U(y)

containing a ball of uniform diameter, and a constant K(y) such that

d(φ(x), φ(x ′)) ≤ K(y)d(x, x ′)

for m-a.e. x, x ′ ∈ U(y).
By compactness of M this implies that there is a Lipschitz function φ′(x) such that

φ(x)′ = φ(x) m-a.e.
Once we have established that φ is Lipschitz if property (i) of Theorem 1.12 does not

hold (or property (a) in the case f is s-conformal), the proof that φ is Ck− in Theorem 1.12
proceeds exactly as in the case of uniform contraction. The proof that generically condition
(i) or (a) does hold also proceeds exactly as in the case of the proof of Theorem 1.3.

Theorem 1.15 is proved by using the arguments of §3.2, with obvious modifications,
to prove regularity of φ along local unstable manifolds. This is necessary since we do
not have contraction on average which makes the argument establishing regularity along
local unstable manifolds easier. In the case that we do not have contraction on average we
require the extra condition that γ > λu/µu.

A. Appendix
Let m be the ergodic invariant measure of maximal entropy for the topologically mixing
Axiom A diffeomorphism f : � ⊂ M → � ⊂ M .

Let ms(y) (respectively mu(y)) denote the conditional measure that m induces on
Ws

loc(y) (respectively Wu
loc(y)). As a consequence of [7, Theorem 1(c)], for m-a.e. y if

A ⊂ Ws
loc(y) then

ms(f
ky)(f kA ∩ Ws

loc(f
ky))

ms(f ky)(Ws
loc(f

ky))
= ms(y)(A ∩ Ws

loc(y))

ms(y)(W
s
loc(y))

and similarly

mu(f
−ky)(f−kA ∩ Wu

loc(f
−ky))

mu(f−ky)(Wu
loc(f

−ky))
= mu(y)(A ∩ Wu

loc(y))

mu(y)(W
u
loc(y))

.

LEMMA A.1. Suppose that m(H) > 0, then if f is s-conformal, m-a.e. y has the property
that for ms(y)-a.e. x ∈ Ws

loc(y) there exists an infinite sequence of distinct positive integers
k such that f k(x), f k(y) ∈ H .

Proof. By the local product decomposition of m [7, Theorem 1(d)] it follows that
H ∩ Ws

loc(x) has positive ms(x)-measure for m-a.e. x ∈ H . By [11, Corollary 10.50],
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if H ∩Ws
loc(x) has positive ms(x)-measure then ms(x)-a.e. point of H ∩Ws

loc(x) is a point
of density for H . Thus for m-a.e. z ∈ H ,

lim
ε→0

ms(H ∩ Ws
ε (z))

ms(Ws
ε (z))

= 1.

Let ε1 > 0 and define

Gt
ε1
(y) := {z ∈ Ws

ε1
(y) : f t (y), f t (z) ∈ H }.

Given δ > 0 for each n > 1 there exists a subset Hn ⊂ H , m(Hn) > 0, and 0 < εn < ε1

such that
ms(H ∩ Ws

εn
(z))

ms(Ws
εn
(z))

> 1 − δ

2n

for all z ∈ Hn and 0 < ε ≤ εn. Since Hn has positive measure, for m-a.e. point z,
f k(z) ∈ Hn for infinitely many k. Choose tn so that d(f k(y), f k(z)) ≤ εn for all
z ∈ Ws

ε1
(y), for all k > tn. Choose rn > tn such that f rn(y) ∈ Hn. Since the foliation

into local stable manifolds is invariant, f rnWs
ε1
(y) ⊂ Ws

loc(f
rn(y)). Furthermore, since f

is s-conformal, f rnWs
ε1
(y) is an open ball (this is where we use the assumption that f is

s-conformal).
Thus

ms(f
rn(y))(H ∩ f rnWs

ε1
(y))

ms(f rny)(f rnWs
ε1
(y))

= ms(y)(H ∩ Ws
ε1
(y))

ms(y)(Ws
ε1
(y))

> 1 − δ

2n

and hence ms(y)(G
rn
ε1(y) ∩ Ws

ε1
(y)) > (1 − δ/2n)ms(y)(W

s
ε1
(y)).

Thus ms(y)(∪n(G
rn
ε1(y) ∩ Ws

ε1
(y))) > 1 − 2δ and hence µs(y){z ∈ Wε1(y) : f k(z),

f k(y) ∈ H infinitely often for the same values of k} > 1 − 2δ. Since δ was arbitrary the
lemma is proved. ✷
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