
RECURRENCE STATISTICS FOR THE SPACE OF

INTERVAL EXCHANGE MAPS AND THE TEICHMÜLLER
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Abstract. In this note we show that the transfer operator of a Rauzy-
Veech-Zorich renormalization map acting on a space of quasi-Hölder
functions is quasicompact and derive certain statistical recurrence prop-
erties for this map and its associated Teichmüller flow. We establish
Borel-Cantelli lemmas, Extreme Value statistics and return time statis-
tics for the map and flow. Previous results have established quasicom-
pactness in Hölder or analytic function spaces, for example the work of
M. Pollicott and T. Morita. The quasi-Hölder function space is partic-
ularly useful for investigating return time statistics. In particular we
establish the shrinking target property for nested balls in the setting of
Teichmüller flow. Our point of view, approach and terminology derive
from the work of M. Pollicott augmented by that of M. Viana.
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1. Background and notation

1.1. Dynamical Borel-Cantelli Lemmas and other limit laws. Let
T : X → X be a measure-preserving transformation of a probability space
(X,µ). We assume X is also a metric space equipped with a metric d.
Dynamical Borel-Cantelli lemmas concern the following set of questions:
suppose (An) is a sequence of sets such that

∑
n µ(An) =∞, does Tn(x) ∈

An for infinitely many values of n for µ a.e. x ∈ X? One special example
of this is the case where (An) is a nested sequence of balls about a point, a
setting which is often called the shrinking target problem.
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We let Sn =
∑n−1

j=0 1Aj ◦T j and En =
∫
X Sn dµ =

∑n−1
j=0 µ(Aj). The property

limn→∞
Sn(x)
En

= 1 for µ a.e. x ∈ X is often called the Strong Borel–Cantelli

(SBC) property in contrast to the Borel–Cantelli (BC) property that Sn(x)
is unbounded for µ a.e. x ∈ X.

In the setting of uniformly hyperbolic systems pioneering work has been
done by W. Philipp [Ph], Kleinbock and Margulis [KM], Chernov and Klein-
bock [CK] and Dolgopyat [Do] (for uniformly partially hyperbolic systems).

More recently dynamical Borel-Cantelli results have been proved for certain
non-uniformly hyperbolic systems by example by Kim [Ki], Gouëzel [Go],
Gupta et al [GNO] and Haydn et al [HNPV]. These works have also
yielded some interesting counterexamples. In the context of flows, Mau-
courant [Mau] has proved the analogous Borel Cantelli property for nested
balls in the setting of geodesic flows. Athreya [A] gives large deviation and
quantitative recurrence results for the Teichmüller geodesic flow.

Related to Borel-Cantelli lemmas are logarithmic laws for the shrinking tar-
get problem. These results concern the asymptotic scaling behavior given
by the limit

lim
r→0

τr(x, y)

µ(Br(y))
,

where τr(x, y) = min{n : d(Tnx, y) < r} and Br(y) is a ball of radius r
about y ∈ X.

Of relevance to our setting is work of Masur [M2], who proved a logarithm
type law for Teichmüller geodesic flow on the moduli space of quadratic
differentials and work of Galatolo and Kim [GK] who obtain Borel-Cantelli
like results for generic interval exchange transformations.

Statistical properties of the Teichmüller flow and the Rauzy-Veech-Zorich
map have been investigated thoroughly in recent years. Avila, Gouëzel and
Yoccoz [AGY] have shown that the decay of correlations for the flow is
exponentially fast for Hölder observables. The corresponding problem for
the Rauzy-Veech-Zorich map has been studied by Bufetov and Avila in [B]
and [AB], where the decay was proven to be exponential as well. The main
ingredient of the proof of the latter result was the construction of a Young
Tower [Y] with an exponential tail of return times. Building upon this fact
and work of Melbourne and Nicol [MN05], Pollicott [Po] proved the almost
sure invariance principle for Hölder observables, both for the flow and the
map. The almost sure invariance principle is a strong reinforcement of the
central limit theorem, which was previously established by Bufetov [B], and
has several consequences, such as the law of iterated logarithm and the
arcsine law. The large deviations principle for Hölder observables follows
also directly from the existence of an exponential Young tower and results
of Melbourne and Nicol [MN08].
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We also establish recurrence statistics such as Poisson limit laws and Ex-
treme Value Laws (EVLs) for Teichmüller flow, but we leave the detailed
description of these properties and results to Section 3.

1.2. Interval Exchange Transformations. In this section we synthesize
the basic model described by Viana in [Vi] with the framework developed
by Pollicott [Po] (see also [Mo2]). Pollicott’s short paper [Po] is a very clear
account of the Rauzy-Veech-Zorich induction and renormalization from the
viewpoint of hyperbolic dynamics. We begin by defining our dynamical
systems. This starts with interval exchange transformations, in particu-
lar focussing on the formalism described by Viana. We then move to the
Rauzy-Veech induction and renormalisation; the Zorich induction and renor-
malisation; and finally the Morita-Pollicott renormalisation. We will point
out the minor differences with Pollicott’s framework as we go along, but
broadly speaking, the difference here is that our induced maps are first re-
turns. We relate these dynamical systems to the Teichmüller flow on the
space of translation surfaces later on.

Following [Vi, Chaper 1], let I ⊂ R be an interval and {Ia : a ∈ A} a
partition of I into intervals indexed by a finite alphabet A with d > 2
symbols. An interval exchange transformation (IET) is a bijective map
f = f(π,λ) : I → I which is a translation of each subinterval Ia, preserves
Lebesgue measure and is determined by the following combinatorial and
metric data:

(a) A pair π = (π0, π1) of bijections πε : A → {1, . . . , d} which describe the
ordering of the subintervals Ia before and after the action of f :(

a0
1 a0

2 . . . a0
d

a1
1 a1

2 . . . a1
d

)
where aεj = π−1

ε (j) for ε ∈ {0, 1} and j ∈ {1, 2, . . . , d}.
(b) A vector λ = (λa)a∈A of non-negative entries which represent the lengths

of the subintervals (Ia)a∈A.

We have a more detailed description of the intervals Ia above which will be
useful later: for ε ∈ {0, 1}, let Iπεa be the interval of length λπε(a) in position
πε(a) in the interval [0,

∑
a λa], where ‘position’ means starting at zero and

counting to the right.

The transformation p := π1 ◦ π−1
0 is called the monodromy invariant of the

pair π = (π0, π1). As Viana points out, we can always change our pair
π = (π0, π1) and rearrange the ordering of our lengths so that the resulting
data π′ = (π′0, π

′
1) and λ′ = (λ′a)a∈A represents the same IET as the one

above, but with π0 = id. Indeed, this is what is described in Pollicott’s
notes: moreover he always assumes that

∑
a λa = 1. However, the setup
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described here gives a slightly more complicated, but more flexible way for
us to describe later dynamics.

The IET can now be described more explicitly as a translation. For a ∈ A,
define

wa :=
∑

{b:π1(b)<π1(a)}

λb −
∑

{b:π0(b)<π0(a)}

λb.

Then
f(π,λ)(x) = x+

∑
a

wa · 1Ia(x).

Later it will be useful to think of the translation vector wa as
∑

b∈AMabλb
where the (a, b) entry of the matrix M is defined by

Mab =


+1 if π1(b) < π1(a) and π0(b) > π0(a),

−1 if π1(b) < π1(a) and π0(b) < π0(a),

0 otherwise.

1.3. Rauzy-Veech induction and renormalisation. As is common for
families of dynamical systems with parabolic-type behaviour, one way to
proceed is to define a good renormalization scheme on the space of param-
eters. In this setting this was pioneered by Masur and Veech. Given a
representative (π, λ) of an IET, for ε ∈ {0, 1}, let a(ε) denote the last sym-
bol in the expression for πε, i.e., a(ε) = π−1

ε (d) = aεd. Assuming the generic
situation where Ia(0) and Ia(1) have different lengths, we say that

(π, λ) has

{
type 0 if λa(0) > λa(1),

type 1 if λa(0) < λa(1).

Now set

J =

{
I \ f(π,λ)(Ia(1)) if (π, λ) has type 0,

I \ Ia(0) if (π, λ) has type 1.

(We ‘cut off the loser between Ia(0) and Ia(1)’.) Then the Rauzy-Veech in-

duction T̂0 is defined as the first return by f(π,λ) to J . Another way of
describing this, from which the fact that we obtain an new IET of the form
we started with (although with shorter total length of our intervals), is that

T̂0(π, λ) = (π′, λ′) where, if (π, λ) is type 0 then(
π′0
π′1

)
=

(
a0

1 . . . a0
k−1 a0

k a0
k+1 . . . . . . a(0)

a1
1 . . . a1

k−1 a(0) a(1) a1
k+1 . . . a1

d−1

)
and λ′ = (λ′a)a∈A for

λ′a = λa for a 6= a(0), and λ′a(0) = λa(0) − λa(1).

Similarly, if (π, λ) is type 1 then(
π′0
π′1

)
=

(
a0

1 . . . a0
k−1 a(1) a(0) a0

k+1 . . . a0
d−1

a1
1 . . . a1

k−1 a0
k a0

k+1 . . . . . . a(1)

)
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and λ′ = (λ′a)a∈A for

λ′a = λa for a 6= a(1), and λ′a(1) = λa(1) − λa(0).

Remark 1.1. This transformation on the set of lengths in RA+ can be ex-
pressed in terms of a matrix Θ given in (1.9) and (1.10) of [Vi] and which
consists only of 0s and 1s: in fact λ′ = Θ−1∗(λ) where ∗ denotes the trans-
pose. Θ−1 is a non-negative matrix.

We are interested in the set of (π, λ) such that T̂0 is defined for all time.
This occurs if and only if (π, λ) satisfies the Keane condition, which assumes
that

fn(π,λ)(∂Ia) 6= ∂Ib for all n > 1 and a, b ∈ A with π0(b) 6= 1,

where ∂Ia is the left endpoint of the subinterval Ia. Moreover, if (π, λ)
satisfies the Keane condition then f(π,λ) is minimal (every f(π,λ)-orbit is
dense). A pair π = (π0, π1) is called reducible if there exists k ∈ {1, . . . , d−1}
such that π1 ◦ π−1

0 ({1, . . . , k}) = {1, . . . , k}. In this case, f(π,λ) splits into
two IETs with simpler combinatorics. If π is not reducible, we say it is
irreducible. It can be shown that if λ is rationally independent and π is
irreducible then (π, λ) satisfies the Keane condition. Keane conjectured
that for fixed irreducible π, the map f(π,λ) was uniquely ergodic for almost-
every λ. This conjecture was proved independently by Masur [M1] and
Veech [Ve1]. The method of proof of Veech was based on a renormalization
scheme.

Given a fixed d, as above, we define the Rauzy class R = R(π) of a pair
π as the set of all pairs π′ for which there exist n > 0, λ and λ′ with
T̂ n0 (π, λ) = (π′, λ′). They form a partition of the set of all pairs π. Thus we

think of T̂0 acting on sets R × RA+. For d = 2 and d = 3 there is a unique
Rauzy class, but for d > 4 there is more than one. Again we refer the reader
to [Vi, Chapter 1] for a nice description of these.

The Rauzy-Veech renormalization map T0 is simply the transformation T̂0

renormalised so that the total length of the resulting interval is 1: thus the
multiplying factor is

1

1− λa(1−ε)
when (π, λ) is type ε.

That is T0(π, λ) = (π′, λ′′) where λ′′ = λ′

1−λa(1−ε)
. Thus T0 acts on the (d−1)

dimensional simplex

∆ = ∆A := {λ = (λ1, . . . , λd) : λi > 0, λ1 + . . .+ λd = 1}.
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We define |λ| =
∑d

j=1 λj , then T0 has the form

T0(π, λ) =

(
π′,

Aλ

|Aλ|

)
where A is a matrix with entries from the set {−1, 0, 1}.

Setting

∆π,ε :=
{
λ ∈ ∆A : λa(ε) > λa(1−ε)

}
for ε ∈ {0, 1}, (1)

T0 : {π}×∆π,ε 7→ {π′}×∆ is a bijection: a nice Markov property. This also
implies that Θ is constant on each {π} ×∆π,ε.

As in work of Veech [Ve1] (see also Masur [M1]), T0 has an absolutely con-
tinuous and invariant ergodic measure (acim) µ0, which is infinite. T0 is not
uniformly hyperbolic.

1.4. Zorich induction and renormalisation. Zorich produced acceler-
ated versions of the Rauzy-Veech maps discussed above in order to improve
the expansion properties of the system and ultimately to find absolutely con-
tinuous invariant probability measures. For this subsection we fix a Rauzy
class R. Now take π = (π0, π1) in this class and λ ∈ RA+ satisfying the Keane

condition. Then for each k > 1 write (πk, λk) = T̂ k0 (π, λ) and let εk denote
the type of (πk, λk) and ε denote the type of (π, λ). Then n1 = n1(π, λ)
is defined as the smallest k such that εk 6= ε and the Zorich induction is
defined by

T̂1(π, λ) = T̂ n1
0 (π, λ).

Similarly, the Zorich renormalisation T1 : R × ∆ → R × ∆ is defined as
T1 = T n1

0 . This map has a Markov partition into countably many domains.
Indeed, let

∆π,ε,n := {λ ∈ ∆π,ε : ε1 = · · · = εn−1 = ε 6= εn}.

Then for each π ∈ R, T1 : {π} × ∆π,ε,n 7→ {πn} × ∆πn,1−ε is a bijection.
Moreover,

λn = cnΘ−n∗(λ),

where cn > 0 and Θ−n∗ depends only on π, ε, n. Let also ∆ε = ∪π∈R∆π,ε

and ∆1−ε = ∪π∈R∆π,1−ε.

Theorem 1.2 (Zorich). For a given Rauzy class R, T1 has an absolutely
continuous invariant probability measure µ1. Moreover, for ε ∈ {0, 1},

T 2
1 : ∆ε → ∆ε

is mixing with respect to the restriction to ∆ε of the measure 2µ1. Similarly

T 2
1 : ∆1−ε → ∆1−ε

is mixing with respect to 2µ1 restricted to ∆1−ε.
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As already noted above, T1(∆ε) = ∆1−ε, so the absolutely continuous invari-
ant probability measure (acip) µ1 is not mixing, but has two cyclic classes.

1.5. Morita-Pollicott renormalisation. Pollicott [Po] (following Morita [Mo2])
considers a map T2 derived from T1 further by inducing by first return times
on an element of a dynamical partition. T2 has the advantage that it is a
multidimensional piecewise expanding map. The setup in Pollicott [Po] is
slightly different to that outlined here, but for most practical purposes, it is
identical.

Recalling the definition of ∆π,0,∆π,1 from (1), let

P = {{π} ×∆π,0, {π} ×∆π,1 : π ∈ R}
be the usual finite partition of R×∆ and define for n > 1

Pn :=
n−1∨
k=0

T −k1 P.

Pollicott’s approach is to choose an nB > 1 and a partition element B ∈ PnB
such that B is the image of an inverse branch of T nB1 which is a strict
contraction (see also [Vi, Corollary 1.21]). Define n2(π, λ) to be the first
return time of (π, λ) ∈ B to B under T1, i.e.

n2(π, λ) = inf{k > 0 : T k1 (π, λ) ∈ B}.
Then T2 : B → B is defined as the induced first return time map under T1,

T2(π, λ) = T τ(λ,π)
1 (π, λ).

Remark 1.3. Note that for each element (π, λ) ∈ R×∆, with λ satisfying
the Keane condition, we can find such a B containing (π, λ).

The set B has a natural countable partition Q = {Bi}i∈I into sets on which
n2(π, λ) is constant. The map T2 : Bi → B is a diffeomorphism for each
i ∈ I [Mo2, Lemma 3.1]. B has a naturally defined T2-invariant measure,

namely µ2 := µ1|B
µ1(B) . The density hB of µ2 with respect to Lebesgue measure

on B is strictly positive [Po, Lemma 2.3] and analytic [Po, Corollary 5.1.1].

Let Qn :=
∨n−1
k=0 T

−k
2 Q.

We have the following expansion and distortion properties.

Proposition 1.4. [Po, Lemma 2.2] There exist C > 1 , θ > 1 and D1, D2

such that for any n > 1 and any x, y in the same element of Qn:

(1) d(T n2 x, T n2 y) > Cθnd(x, y);

(2)
∣∣∣log

(
Jac(T n2 )(x)
Jac(T n2 )(y)

)∣∣∣ 6 D1d(T n2 x, T n2 y);

(3) 1
D2
6 µ2(A)|Jac(T n2 )(x)| 6 D2 for all x ∈ A ∈ Qn.
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Remark 1.5. Since there exists c > 0 such that c−1 6 hB 6 c, we can also
state the above point (3) using Lebesgue measure m instead of µ2. (or more
accurately, the product of the counting measure on R and Lebesgue measure
on ∆, even though we will always refer to this measure as Lebesgue)

1.6. Gibbs-Markov maps and their transfer operators. The previous
subsection motivates a more in depth study of the following class of maps.

Let (Y, d) be a compact metric space endowed with a probability measure
m with full support. Let T : Y → Y be a nonsingular measurable map.

We will say that T is a Gibbs-Markov map if there exists a countable measur-
able partition Q = {Yi}i∈I of Y such that, if we denote by Qn =

∨n−1
k=0 T

−kQ
the dynamical partition of Tn and by Jac(Tn) the jacobian of Tn with re-
spect to m ( i.e. m(TnA) =

∫
A Jac(T

n) dm for every subset A ⊂ Y on which
Tn is injective), we have

(1) Tn : Q→ Y is a bimeasurable bijection;
(2) d(Tnx, Tny) > Cθnd(x, y);

(3)
∣∣∣log Jac(Tn)(x)

Jac(Tn)(y)

∣∣∣ 6 Dd(Tnx, Tny);

for all n > 1, all Q ∈ Qn and all x, y ∈ Q, where C,D > 0 and θ > 1 depend
only on the map T .

It is well known such maps admit a spectral gap for their transfer opera-
tors on the space of Hölder functions. We will study spectral properties on
a larger space which contains discontinuous functions, namely the Quasi-
Hölder space, introduced by Keller [Kel] and Saussol [S]. We recall the rel-
evant definitions and properties, and refer to the aforementioned references
for more details.

Let ε0 > 0, 0 < α < 1 and f : Y → R lie in L1
m(Y ). We define the oscillation

of f on a Borel subset S ⊂ Y by

osc(f, S) = ess supSf − ess infSf.

We define

|f |α := sup
0<ε6ε0

ε−α
∫
Y

osc(f,Bε(x))dm(x)

and let Vα(Y ) := {f ∈ L1
m(Y,R) : |f |α < ∞}. This space is strictly larger

than the space of Hölder functions of exponent α on Y and in particular
contains characteristic functions of some measurable sets. If we define the
norm ‖ · ‖α := | · |α + ‖ · ‖L1

m
then Vα(Y ) is a Banach space. Since Y is

compact, the space Vα(Y ) is compactly embedded in L1
m(Y ). Furthermore,

Vα(Y ) embeds continuously into L∞m (Y ) and is a Banach algebra satisfying
|fg|α 6 |f |α‖g‖∞ + ‖f‖∞|g|α for all f, g ∈ Vα(Y ).
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Note also that while ‖ ·‖α depends on the choice of ε0, the space Vα(Y ) does
not, and two different ε0 give rise to two equivalent norms on Vα.

Let P denote the transfer operator of T with respect to m. This is the L1

adjoint of T with respect to L∞, i.e.
∫
Y Pφψ dm =

∫
Y φψ ◦ T dm for all

φ ∈ L1
m(Y ) and ψ ∈ L∞m (Y ).

The operator P has the form

Pφ(x) =
∑
i∈I

φ(xi)

Jac(T )(xi)
,

where xi ∈ Yi satisfies Txi = x.

The next technical lemma will also prove useful later. In order to state it,
we need some more notations. For Q ∈ Qn, denote In,Q : Y → Q the inverse
branch of the restriction of Tn to Q. The transfer operator Pn of Tn has
the form

Pnφ(x) =
∑
Q∈Qn

gn(In,Qx)φ(In,Qx),

where gn = 1
Jac(Tn) .

Denote by Mn,Q the operator defined on L1
m(Y ) by

Mn,Qφ(x) = gn(In,Qx)φ(In,Qx).

Lemma 1.6. There exists C > 0 such that for any n > 1, Q ∈ Qn and
φ ∈ Vα(Y ), we have ‖Mn,Qφ‖L1

m
=
∫
Q |φ|dm and∫

Y
osc(Mn,Qφ,Bε(x))dm(x) 6 C

∫
Q

osc(φ,Bcn,Qε(x))dm(x) + Cε

∫
Q
|φ|dm,

where cn,Q is the Lipschitz constant of In,Q : Y → Q.

Proof. The relation
∫
Y |Mn,Qφ|dm =

∫
Q |φ|dm follows from a change of vari-

ables.

Observe that osc(Mn,Qφ,Bε(x)) = osc(gnφ, In,QBε(x)). Using [S, Proposi-
tion 3.2 (iii)], we have for all x ∈ Y ,

osc(Mn,Qφ,Bε(x)) 6 osc(φ, In,QBε(x)) sup
In,QBε(x)

gn+osc(gn, In,QBε(x)) ess inf
In,QBε(x)

|φ|.

By the distortion control of assumption 3, we have ess sup
In,QBε(x)

gn 6 Cgn(In,Qx)

and osc(gn, In,QBε(x)) 6 Cgn(In,Qx)ε for some constant C > 0. We also
have osc(φ, In,QBε(x)) 6 osc(φ,Bcn,Qε(In,Qx)) and ess inf

In,QBε(x)
|φ| 6 |φ(In,Qx)|
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for almost every x ∈ Y . Putting together all the above estimates, we get for
almost every x,

osc(Mn,Qφ,Bε(x)) 6 Cosc(φ,Bcn,Qε(In,Qx))gn(In,Qx)+Cε|φ(In,Qx)|gn(In,Qx).

After integration over Y , a change of variables finishes the proof. �

With this lemma, we can prove a Lasota-Yorke type inequality for T :

Lemma 1.7. If ε0 is sufficiently small then there exist 0 < η < 1 and
C,D > 0 such that if φ ∈ Vα(Y ) then for all n > 0

‖Pnφ‖α 6 Cηn‖φ‖α +D

∫
Y
|φ|dm.

Proof. Since Pn is a contraction on L1
m(Y ), it is sufficient to estimate |Pnφ|α.

We will next apply Lemma 1.6 to this operator, first noting that by assump-
tion 2, cn,Q 6 Cθ−n 6 C, where θ > 1. Writing Pn =

∑
Q∈QnMn,Q and

summing all the relations from Lemma 1.6, [S, Proposition 3.2 (i)] then
implies that∫
Y

osc(Pnφ,Bε(x))dm(x) 6 C
∫
Y

osc(φ,BCθ−nε(x))dm(x) + Cε‖φ‖L1
m

6 Cεα
(
θ−αn|φ|α + ε1−α0 ‖φ‖L1

m

)
,

for all 0 < ε 6 ε0
C = ε1, so that Cθ−nε 6 ε0 and the bound∫

Y
osc(φ,BCθ−nε(x))dm(x) 6 Cεαθ−αn|φ|α

holds.

This shows ‖Pnφ‖α,ε1 6 Cθ−αn‖φ‖α,ε0 + C‖φ‖L1
m

, where we put the sub-
script ε0 or ε1 in the notation for the Quasi-Hölder norm to emphasize the
fact it was defined using either ε0 or ε1, and concludes the proof since the
two norms ‖.‖α,ε0 and ‖.‖α,ε1 are equivalent. �

Classical arguments then allow us to prove exponential decay of correlations
in the Quasi-Hölder norm:

Proposition 1.8. There exists an unique absolutely continuous probability
measure µ which is T -invariant, and its density h belongs to Vα(Y ). Fur-
thermore, we have

(a)
∥∥Pnφ− (∫Y φdm)h∥∥α 6 Cθn‖φ‖α;

(b)
∣∣∫
Y φψ ◦ T

n dµ−
∫
Y φdµ

∫
Y ψ dµ

∣∣ 6 Cθn‖φ‖α‖ψ‖L1
µ
,

for all n > 1, for all φ ∈ Vα and ψ ∈ L1(µ), for some constants C > 0 and
θ < 1 which depend only on the map T .
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Proof. Lemma 1.7 implies by Hennion’s theorem [Hen] that P is quasi-
compact and has an essential spectral radius strictly less than 1 when acting
on the space Vα(Y ). To prove (a), it is then sufficient to prove that 1 is a
simple eigenvalue of P , and that there is no other eigenvalue on the unit
circle. Let then φ ∈ Vα be an eigenvector of P for the eigenvalue λ ∈ C
with |λ| = 1. From standard results, see for instance Aaronson [Aa], we
know that P has an essential spectral radius strictly less than 1 when acting
on the space of Lipschitz functions. This shows that φ is itself Lipschitz
continuous, and then φ is a multiple of h and λ = 1.

We now prove point (b):∫
Y
φψ ◦ Tndµ−

∫
Y
φdµ

∫
Y
ψ dµ =

∫
Y
φhψ ◦ Tn dm−

∫
Y
φdµ

∫
Y
ψ dµ

=

∫
Y

(
Pn(φh)−

∫
Y
φh dm)h

)
ψ dm.

Then,
∣∣∫
Y φψ ◦ T

n dµ−
∫
Y φdµ

∫
Y ψ dµ

∣∣ 6 ∥∥Pn(φh)− (
∫
Y φh dm)h

∥∥
L∞m
‖ψ‖L1

m
.

By (a), we have that
∥∥Pn(φh)− (

∫
Y φh dm)h

∥∥
L∞m
6 Cθn‖φ‖α since Vα(Y )

embeds into L∞m and is a Banach algebra. On the other hand, ‖ψ‖L1
m
6

c−1‖ψ‖L1
µ

where c = inf h is strictly positive by Lemma 4.4.1 in [Aa]. This

proves (b). �

2. Borel-Cantelli Lemmas

2.1. Borel-Cantelli lemmas for Gibbs-Markov maps. We first inves-
tigate Borel-Cantelli lemmas for the map T2. From Lemma 1.4, we know T2

is a Gibbs-Markov map, so we will present general results for this class of
maps.

Our result for Gibbs-Markov maps is a a fairly straightforward consequence
of earlier work (see for example [Ki, Theorem 2.1 ], [GNO, Proposition
2.6]) and the description of their transfer operators we give in the previous
subsection.

Proposition 2.1. Let T be a Gibbs-Markov map on the compact metric
space (Y, d), as in the previous subsection, with absolutely continuous in-
variant measure µ. Let {φn} be a sequence of positive functions on Y
such that there exists a constant K > 0 with ‖φn‖α 6 K for all n. Let
En =

∑n
j=1 µ(φj) and suppose En is unbounded. Then

lim
n→∞

1

En

n∑
j=1

φj ◦ T j(x)→ 1

for µ a.e. x ∈ Y .
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The proof of this proposition, given below, is an easy consequence of a Gal-
Koksma type law. We formulate this law as a proposition of W. Schmidt [W1,
W2] as stated by Sprindzuk [Sp]:

Proposition 2.2. Let (Ω,B, µ) be a probability space and let fk(ω), (k =
1, 2, . . .) be a sequence of non-negative µ measurable functions and gk, hk
be sequences of real numbers such that 0 6 gk 6 hk 6 1, (k = 1, 2, . . . , ).
Suppose there exists C > 0 such that∫  ∑

m<k6n

(fk(ω)− gk)

2

dµ 6 C
∑

m<k6n

hk (∗)

for arbitrary integers m < n. Then for any ε > 0∑
16k6n

fk(ω) =
∑

16k6n

gk +O(θ1/2(n) log3/2+ε θ(n))

for µ a.e. ω ∈ Ω, where θ(n) =
∑

16k6n hk.

Proof of Proposition 2.1. In Proposition 2.2 take fk = φk ◦ T k, gk = hk =
µ(φk) and calculate∣∣∣∣∣

n∑
i=m

n∑
j=i+1

∫
φj ◦ T jφi◦T idµ− µ(φj)µ(φi)

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=m

n∑
j=i+1

∫
φj ◦ T j−iφi − µ(φj)µ(φi)

∣∣∣∣∣∣
6

n∑
i=m

n∑
j=i+1

C1θ
j−i‖φj‖α‖φi‖L1

µ

6 C2

n∑
i=m

‖φi‖L1
µ
.

The result follows immediately from Proposition 2.2. �

Remark 2.3. For any measurable set A ⊂ Y , we have ‖1A‖α 6 m(A) +

sup0<ε6ε0
m(Bε(∂A))

εα . Hence, any sequence of sets (An) such that for some
0 < α 6 1,

sup
n

sup
0<ε6ε0

m(Bε(∂An))

εα
<∞

and
∑

n µ(An) = ∞ will satisfy the strong Borel-Cantelli property. In par-
ticular, the sequence does not need to be decreasing.

As a direct consequence, we get for the Morita-Pollicott renormalization
map T2 : B → B the strong Borel-Cantelli for any sequence of positive
functions (fn) on B bounded in the space Vα(B) for some 0 < α 6 1,
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with
∑

n

∫
fn dµ2 = ∞. Indeed, by Lemma 1.4, this map is Gibbs-Markov

with respect to the partition Q = {Bi}i∈I . This applies in particular to any
sequences of balls (Brn(pn)) with

∑
n µ2(Brn(pn)) =∞, since such sequences

satisfy the condition of Remark 2.3 for α = 1.

2.2. Borel-Cantelli lemmas for a class of non-uniformly expanding
maps. We now turn to investigate Borel-Cantelli lemmas for the Rauzy-
Veech-Zorich renormalization map T1.

Remark 2.4. Note that by Haydn et al [HNPV, Theorem 6.1] if {Un} is a
sequence of balls in ∆π,ε, ε ∈ {0, 1}, satisfying µ1(Un) > C

n then T 2n
1 (p) ∈ Un

i.o. for µ1 a.e. p ∈ ∆π,ε since (T 2
1 ,R × ∆, µ1) has exponential decay of

correlations for Lipschitz functions [AB]. We are interested in obtaining
quantitative rates for this almost sure result.

We first proceed to identify a class of maps containing T1 for which such
results hold.

Let (X, d) be a bounded, locally compact and separable metric space, with
a Borel finite positive measure m. Let T : X → X be a non-singular
transformation for which m is ergodic.

Suppose there exists a compact subset Y ⊂ X with m(Y ) > 0 (without
loss of generality, we can assume m(Y ) = 1) and a countable measurable
partition Q = {Yi}i∈I of Y such that the first return time

r(y) = inf{n > 1 : Tny ∈ Y }

of T to Y is constant on each Yi, and the first return map T̂ = T r : Y → Y
is Gibbs-Markov with respect to the partition Q. We also assume the first
return time is integrable with respect to m:

∫
Y r dm <∞.

We will refer to such systems as non-uniformly expanding maps, even though
more general definitions exist in the literature.

Under these assumptions, there exists an unique absolutely continuous with
respect to m probability measure µ which is T -invariant, and the system
(X,T, µ) is ergodic. The existence follows directly from the existence of

such a measure for the first return map T̂ and the integrability of r, while
the uniqueness is ensured by [Aa, Theorem 1.5.6].

We will deduce a strong Borel-Cantelli property for decreasing sequences of
functions supported in Y from our result for Gibbs-Markov maps and the
following result of Kim [Ki, Theorem 3.1]:

Theorem 2.5. Let (X,T, µ) be an ergodic measure-preserving transforma-
tion, and let TE : E → E be the first return map to a set E of positive
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µ-measure. Let (fn) be a decreasing sequence of nonnegative functions sup-
ported in E such that

∑
n

∫
fndµ = ∞. If every subsequence (fnk) with∑

k

∫
fnkdµ = ∞ is strong Borel-Cantelli with respect to TE, then (fn) is

strong Borel-Cantelli with respect to T .

As an immediate corollary of Proposition 2.1 and Theorem 2.5, we get:

Theorem 2.6. Let (X,T, µ) be a non-uniformly expanding system as de-
scribed above, with induced set Y . Then any sequence (fn) of positive
functions, supported in Y , bounded in Vα(Y ) for some 0 < α 6 1, with∑

n

∫
Y fn dµ =∞, satisfies the strong Borel-Cantelli property.

As seen in subsection 1.5, the Rauzy-Veech-Zorich renormalization map is a
non-uniformly expanding map, with induced set B. Since by Remark 1.3, for
any p∗ = (π, λ) satisfying the Keane condition, we can find a good induced
set B that contains p, we obtain:

Theorem 2.7. Let Un ⊂ R ×∆ be a decreasing sequence of balls, shrink-
ing to a point p∗ which satisfies the Keane condition, such that En :=∑n

j=1 µ1(Uj) diverges. Then, for µ1 almost every p ∈ R×∆

1

En

n∑
j=1

1Uj ◦ T
j

1 (p)→ 1.

Proof. Set fn = 1Un . By the discussion above, for n large enough, fn will
be supported in some fixed good induced set B. Since, as in Remark 2.3,
(fn) is bounded in Vα(B), it follows from Theorem 2.6 that (fn) is strong
Borel-Cantelli with respect to T1. �

Remark 2.8. This result remains true for any decreasing sequence of sets
Un shrinking to a point p∗ as soon as the boundaries of these sets are suffi-
ciently regular to ensure the condition of Remark 2.3 is satisfied.

We now consider more general, non necessarily decreasing, sequences of
functions supported in the induced set Y . We will require additional prop-
erties for the non-uniformly expanding system, and we will see later they
are satisfied by the Rauzy-Veech-Zorich map.

Firstly, we assume the system (X,T, µ) is mixing. This is the case if and
only if gcd{r

∣∣
Yi

: i ∈ I} = 1, see e.g. [Y2].

We set Cn = {r = n} ⊂ Y . This set is a disjoint union of elements of Q:
we have Cn = ∪i∈InYi, where In = {i ∈ I : r

∣∣
Yi
≡ n}. We will require

there exists C > 0 and γ < 1 such that m(r > n) 6 Cγn and ci 6 Cγn

for all n > 1 and all i ∈ In, where ci = c1,Yi is the Lipschitz constant of

Ii = I1,Yi : Y → Yi, the inverse branch of T̂ restricted to Yi.
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Under these assumptions, we have the following result for the decay of cor-
relations of (X,T, µ) for observables supported in Y :

Theorem 2.9. There exist 0 < κ < 1 and C > 0 such that for all φ ∈ Vα(Y )
and all ψ ∈ L1(µ) supported in Y ,

∣∣∣∣∫
X
φψ ◦ Tn dµ−

∫
X
φdµ

∫
X
ψ dµ

∣∣∣∣ 6 Cκn‖φ‖α‖ψ‖L1
µ
.

This theorem has the following corollary:

Corollary 2.10. Suppose {φn} is a sequence of positive functions with sup-
port in Y bounded in Vα(Y ) with En :=

∑n
j=1 µ(φj) divergent. Then

1

En

n∑
j=1

φj ◦ T j(x)→ 1

for µ a.e. x ∈ X.

Proof. We will use Proposition 2.2. Take fk = φk ◦T k and hk = gk = µ(φk).
A rearrangement of terms shows that it suffices to show

n∑
i=m

n∑
j=i+1

µ(φj ◦ T j−iφi)− µ1(φj)µ(φi) 6 C
n∑

i=m

µ(φi).

But |µ(φj ◦ T j−iφi)− µ(φj)µ(φi)| 6 Cκj−i‖φi‖L1
µ

which yields the result as∑
j>i κ

j−i is summable. �

To prove Theorem 2.9, we will use operator renewal theory, in the spirit
of Sarig [Sa] and Gouëzel [Go], even though in our situation of exponential
tails for the return time, the proof will be easier.

Proposition 2.11. Let Q be a Banach space and suppose (Rn)n>1 is a
sequence of bounded operators on Q. Assume that ‖Rn‖ = O(θn) for some
0 < θ < 1. Hence R(z) =

∑
Rnz

n and R′(z) =
∑
nRnz

n−1 are well-defined
operators on Q for z in the unit complex disc D̄. Assume 1 is a simple
isolated eigenvalue of R(1) and the eigenprojector Π satisfies ΠR′(1)Π = γΠ
for some γ 6= 1 and that I − R(z) is invertible for all z ∈ D̄ \ {1}. Let
Vn =

∑∞
l=1

∑
k1+...+kl=n

Rkl ◦ . . .◦Rk1. Then Vn is a bounded linear operator

on Q and ‖Vn − 1
γΠ‖ = O(κn) for some 0 < κ < 1.

Proof. Since ‖Rn‖ decays to 0 exponentially fast, the function R(z) =∑
nRnz

n is well defined and analytic on a disc centered at 0 and of radius
r > 1. Since R(1) has 1 as a simple isolated eigenvalue, for all z in a small
neighborhood of 1, R(z) has a dominating isolated eigenvalue λ(z), with
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associated spectral eigenprojector Π(z), where λ(z) and Π(z) depend ana-

lytically on z. Define S(z) = I−R(z)
1−z . We wish to prove that S(z)−1 admits

an analytic extension on a disc of center 0 and radius r′ > 1. Since I−R(z)
is invertible for any z ∈ D̄ \ {1}, the only problem is the extention around
1. Recall that the set of invertible operators on a Banach space is open, and
the inversion is an analytic map. By assumption, for any z ∈ D̄ \ {1}, S(z)
is invertible and we can write for z close enough to 1

S(z)−1 =
1− z

1− λ(z)
Π(z) + (1− z)(I −R(z)Q(z))−1Q(z),

where Q(z) = I −Π(z). Since λ(z) is analytic and not identically constant,
this implies there exists a disc D(1, ε) such that λ(z) 6= 1 for all z ∈ D(1, ε)\
{1}. Hence, the first term of the sum admits an analytic extension to a
punctured disc around 1. On the other hand, I −R(1)Q(1) is invertible, so
(I − R(z)Q(z))−1 is well defined and depends analytically on z in D(1, ε),
with a possibly smaller ε. This shows that the second term of the sum admits
also an analytic extension to D(1, ε). By the step 9 of the proof of lemma
3.1 in [Go] , S(z)−1 can be extended continuously, and then analytically
to the disc D(1, ε), with S(1)−1 = 1

γΠ. Since I − R(z) is invertible for all

z ∈ D̄\{1} and the set D̄\D(1, ε) is compact, we obtain that S(z)−1 admits
an analytic extension on a whole disc centered at zero with a radius r′ > 1.

Hence S(z)−1−S(1)−1

1−z = (I−R(z))−1− Π
γ

1
1−z is analytic on the same disc. By

the usual Cauchy integral formula, the coefficients of the Taylor expansion
of this function around 0 decay exponentially fast, but these coefficients are
given by Vn − Π

γ , whence the result. �

Let L be the transfer operator associated to the non-uniformly expanding
map T : X → X, defined for φ ∈ L1(m) by

Lφ(x) =
∑
Ty=x

φ(y)

Jac(T )(y)
.

Let P be the transfer operator associated to the first return map T̂ : Y → Y .
By the results of subsection 1.6, this operator admits a spectral gap on the
space Vα(Y ).

Let Rnφ := 1Y L
n(1Cnφ) and Vnφ := 1Y P

n(1Y φ). The linear operator Rn
corresponds to first returns to Y at time n while Vn considers all points
starting in Y which have returned to Y at time n, whether first return or
not. The following renewal equation holds:

Vn =
∞∑
l=1

∑
k1+...+kl=n

Rkl ◦ . . . ◦Rk1 .
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We will show these operators satisfy the three required conditions to apply
Proposition 2.11.

Lemma 2.12. There exists 0 < θ < 1 and C > 0 such that ‖Rn‖ 6 Cθn.

Proof. We have Rnφ =
∑

i∈In
φ(Iix)

Jac(T̂ )(Iix)
, whence Rn =

∑
i∈InM1,Bi . Thus,

by lemma 1.6, we have

‖Rnφ‖L1
m
6
∑
i∈In

‖M1,Biφ‖L1
m

=
∑
i∈In

∫
Bi

|φ| dm =

∫
Cn

|φ| dm

6 m(Cn)‖φ‖L∞m
6 Cm(Cn)‖φ‖α,

and∫
osc(Rnφ,Bε(x))dm(x) 6

∑
i∈In

∫
osc(M1,Biφ,Bε(x))dm(x)

6 C

(∑
i∈In

∫
Bi

osc(φ,Bciε(x))dm(x) + ε
∑
i∈In

∫
Bi

|φ| dm

)

6 C
∫
Cn

osc(φ,Bc(n)ε(x))dm(x) + Cε

∫
Cn

|φ| dm,

where c(n) = supi∈In ci.

We have∫
Cn

osc(φ,Bc(n)ε(x))dm(x) 6
∫
B

osc(φ,Bc(n)ε(x))dm(x) 6 (c(n))αεα|φ|α

6 (c(n))αεα‖φ‖α
and

∫
Cn
|φ| dm 6 m(Cn)‖φ‖L∞m 6 Cm(Cn)‖φ‖α, whence

|Rnφ|α 6 C((c(n))α +m(Bn))‖φ‖α
and similarly for ‖Rnφ‖α. Since c(n) et m(Bn) decay exponentially fast by
assumption, one obtains that ‖Rn‖ = O(θn) for some 0 < θ < 1. �

Lemma 2.13. R(1) admits 1 as a simple isolated eigenvalue, and the cor-
responding eigenprojector is given by

Πφ =

(∫
Y
φdm

)
hY
µ(Y )

,

where hY is the restriction to Y of the density h of the measure µ (and then
hY
µ(Y ) is the density of the absolutely continuous invariant probability for T̂ ).

Furthermore, we have ΠR′(1)Π = Π
µ(Y ) , so that γ in Proposition 2.11 is

equal to 1
µ(Y ) .
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Proof. We note that R(1) = P is the transfer operator of the Gibbs-Markov

map T̂ . Consequently, 1 is a simple isolated eigenvalue, and the correspond-
ing eigenprojector is given by the desired formula.

We have

ΠR′(1)Πφ =

(∫
Y R

′(1)hY dm

µ(Y )

)(∫
Y φdm

µ(Y )

)
hY ,

whence γ =
∫
Y R
′(1)hY dm

µ(Y ) .

But∫
Y
R′(1)hY dm =

∑
n

n

∫
Y
P (1CnhY ) dm =

∑
n

n

∫
Cn

hY dm =
∑
n

nµ(Cn)

=

∫
Y
r dµ

= 1

by Kac’s lemma, and we get γ = 1
µ(Y ) . �

It remains to prove the aperiodicity condition:

Lemma 2.14. For all z ∈ D̄ \ {1}, I −R(z) is invertible on Vα(Y ).

Proof. We first establish a Lasota-Yorke inequality for the operator R(z).
Remark that

R(z)k =
∑

n1,...,nk>1

zn1+...+nkRnk ◦ . . . ◦Rn1 ,

and that

Rnk ◦ . . . ◦Rn1 =
∑

i1∈In1 ,...,ik∈Ink

Mk,QI1,...,Ik
,

where QI1,...,Ik ∈ Qk is defined by QI1,...,Ik = Yi1 ∩ T̂−1Yi2 ∩ . . .∩ T̂−(k−1)Yik .
Then, summing all the relations from Lemma 1.6 and noticing that |z| 6 1
and n1 + . . .+nk > k, we have ‖R(z)kφ‖L1

m
6 C|z|k‖φ‖L1

m
and |R(z)kφ|α 6

C|z|k
(
θ−αk|φ|α + ‖φ‖L1

m

)
, arguing as in the proof of Lemma 1.7.

This shows that the spectral radius of R(z) is less than |z|, while the essential
spectral radius of R(z) is strictly less than 1 if |z| = 1, by Hennion’s theorem
[Hen]. Thus, the problem reduces to prove that the relation R(z)φ = φ, with
|z| = 1 and φ ∈ Vα(Y ) implies that z = 1 or φ = 0.

Let |z| = 1 and φ ∈ Vα(Y ) non-zero satisfying R(z)φ = φ, that is P (zrφ) =

φ. By [Mo1, Proposition 1.1], we deduce that
(
φ
hY

)
◦ T̂ = zr φ

hY
. Since

(X,T, µ) is mixing, and hence weakly mixing, by Proposition 7.3 (see Ap-
pendix), we get that z = 1, concluding the proof. �
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Proof of Theorem 2.9. By lemmas 2.12, 2.13 and 2.14, we can apply Propo-
sition 2.11 and get ‖Vn − µ(Y )Π‖ 6 Cκn, i.e.∥∥∥∥Vnφ− (∫

Y
φdm

)
hY

∥∥∥∥
α

6 Cκn‖φ‖α,

for all φ ∈ Vα(Y ).

Let φ ∈ Vα(Y ) and ψ ∈ L1(µ) supported in Y . We have

∫
X
φψ ◦ Tn dm =

∫
X
1Y L

n(1Y φ)ψ dm =

∫
Y

(Vnφ)ψ dm,

Since∣∣∣∣∫
Y
Vn(φ)ψdm−

∫
Y
φ dm

∫
Y
ψ dµ

∣∣∣∣ =

∣∣∣∣∫
Y

[
Vnφ−

(∫
Y
φdm

)
hY

]
ψ dm

∣∣∣∣
6

∥∥∥∥Vnφ− (∫
Y
φdm

)
hY

∥∥∥∥
α

∫
Y
|ψ| dm

6 Cκn‖φ‖α‖ψ‖L1
m
,

we get ∣∣∣∣∫
X
φψ ◦ Tn dm−

∫
Y
φ dm

∫
Y
ψ dµ

∣∣∣∣ 6 Cκn‖φ‖α‖ψ‖L1
m

6 Cκn‖φ‖α‖ψ‖L1
µ
,

as ‖ψ‖L1
m
6 ‖h−1

Y ‖L∞m |ψ‖L1
µ
6 C‖ψ‖L1

µ
, the density of µ being bounded from

below on Y .

The theorem follows by taking φhY for φ, using the fact that ‖φhY ‖α 6
‖hY ‖α‖φ‖α 6 C‖φ‖α. �

In order to apply Corollary 2.10 to the Rauzy-Veech-Zorich map, we need
mixing, so we will rather consider the map G = T 2

1 restricted to ∆ε, ε = 0, 1,
which admits µ̃1 = 2µ1(.∩∆ε) as an invariant measure. If the good induced
set B is included in ∆ε, then T2 : B → B is the first return map of G to
B, with associated return time ñ2 = n2

2 . It has been shown by Avila and
Bufetov [AB] that the measure of the set {n1 = n} decays exponentially fast
with n. To apply Corollary 2.10, it remains to prove the condition on the
Lipschitz constants:

Lemma 2.15. The Lipschitz constant ci = ci,Bi of Ii : B → Bi decays
exponentially fast with n: there exist 0 < γ < 1 and C > 0 such that
ci 6 Cγn for all n > 1 and all i ∈ In.
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Proof. By Avila-Bufetov [AB], m(Cn) decays exponentially fast. The map
In : B → Yi is a composition of a linear map λ→ Aλ followed byAλ→ Aλ

|Aλ|1 .

A is a non-negative matrix and λi
λj

is bounded for all λ = (λ1, . . . , λd) in B.

Hence 1 > |Aλ|
‖A‖ > C > 0 for all λ ∈ B (this is an observation of Avila

and Bufetov [AB, Page 9]). Furthermore |Aλ
′ |1

|Aλ|1 < C for all λ, λ
′

in B by

Proposition 1.3. Thus the exponential decay of volume implies that at least
one direction contracts exponentially under In by a factor γ1/d and hence

all directions do, this implies Ln 6 C(γ
1
d )n. �

We can then conclude:

Theorem 2.16. Suppose {φn} is a sequence of positive functions with sup-
port in B, bounded in Vα(B) with En :=

∑n
j=1 µ̃1(φj) divergent. Then

1

En

n∑
j=1

φj ◦Gj(x)→ 1

for µ1 a.e. x ∈ ∆ε.

This theorem applies in particular to sequences of characteristic functions
of balls included in B.

3. Extreme Value Laws for T1 and T2.

By expressing T2 as a multidimensional piecewise expanding map with ex-
ponential decay of correlations with respect to a quasi-Hölder norm versus
L1 we are able to apply results on Extreme Value statistics for such systems.
Let φ : B → R∪{+∞} be a function, strictly maximized at a point p0 ∈ B,
which is sufficiently regular that for large u the set {x ∈ B : φ(x) > u}
corresponds to a topological ball centered at p0. Let

Mn(x) := max{φ(x), φ ◦ T2(x), . . . , φ ◦ T n2 (x)}.
The aim is to show that we have a non-degenerate limit law for Mn, which
we think of as a random variable. Since almost surely Mn converges to φ(p0),
since µ2 is ergodic, for such a law, we need to rescale our variable. To this
end, for each t we define scaling constants un(t) by nµ2(φ > un(t))→ t. For
example, if φ(x) = − log d(x, p0) then un(t) = d−1[logC(d) + log n − log t]
where C(d) is the constant giving the volume of the unit ball in d dimensional
Euclidean space (if d is the dimension of B). In fact we may always write
un(t) in the form

un(t) = uT2n (t) =
g(t)

an
+ bn

for some function g(t) and sequence of constants an, bn. In our example
an = d, g(t) = logC(d) − log t and bn = 1

d log n. where d is the dimension
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of B. We say that we have an Extreme Value Law if the variable Mn

under scaling by un converges to some non-degenerate distribution. For the
classical application of these ideas to i.i.d. processes, see [LLR]. For more
recent applications to dynamical systems, as we have here, see for example
[Co, FFT1, HNT].

There is a close connection between rare events point processes (REPP),
extremes and hitting times. First we describe what we mean by a compound
Poisson process. Let R be the ring of subsets of R+ generated by the semi-
ring of subsets of form [a, b) so that an element of J ∈ R has the form
J = ∪ni=1[ai, bi).

Definition. Let X1, X2, . . ., be an iid sequence of random variables with
common exponential distribution of mean 1

θ . Let D1, D2, . . . be another
iid sequence of random variables, independent of Xi and with distribution
function η. We say that N is a compound Poisson process of intensity θ and
multiplicity distribution function η if for every J ∈ R

N(J) =

∫
1Jd

( ∞∑
i=1

DiδX1+...+Xi

)
,

where δt is the Dirac measure at t. If P (D1 = 1) = 1 then N is the standard
Poisson distribution and for every t > 0 the random variable N([0, t)) has a
Poisson distribution of mean θt.

Remark 3.1. In our applications η will follow a geometric distribution of
parameter θ ∈ (0, 1] and π(k) := P (D1 = k) = θ(1 − θ)k for every integer
k > 0. In this case the random variable follows a Pólya-Aeppli distribution,

P (N([0, t)) = k) = e−θt
k∑
i=1

θi(1− θ)k−i (θt)
i

i!

(
k − 1
i− 1

)
.

Define vT2n (t) := µ2(φ > uT2n )−1 so that vT2n (t) ∼ n
t . If J = ∪ni=1[ai, bi) ∈ R

and γ > 0, define γJ = ∪ni=1[γai, γbi) ∈ R.

We define the rescaled REPP NT2n as

NT2n (J) :=
∑

j∈vT2n J∩N0

1
(φ◦T j2 >u

T2
n )
. (2)

EVLs and limit laws for NT2n for T2 follow directly from [AFV, Proposition
3.3]. We state them here:

Proposition 3.2. Suppose that p0 satisfies the Keane condition. (1) If p0

is not a periodic point for T2 then µ2{Mn 6 un(t)} → e−t and the REPP
NT2n converges in distribution to a standard Poisson process N of intensity
1.
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(2) If p0 is a repelling periodic point of prime period k then µ2{Mn 6
un(t)} → e−θt where θ = 1 − |Jac(DT −k2 )(p0)| and the REPP NT2n con-
verges in distribution to a compound Poisson process N with intensity θ and
multiplicity distribution function η given by η(j) = θ(1− θ)j for all integers
j > 0.

Now define uT1n (t) to be so that nµ1(φ > uT1n )→ t as n→∞. Then setting
vT1n (t) := µ1(φ > uT1n (t))−1, we can define the REPP NT1n by changing all
the appearances of T2 in (2) to T1. We then have the following corollary.

Corollary 3.3. Suppose that p0 satisfies the Keane condition. (1) If p0 is
not a periodic point for T1 then µ1{Mn 6 uT1n (t)} → e−t and the REPP NT1n
converges in distribution to a standard Poisson process N of intensity 1.

(2) If p0 is a repelling periodic point of prime period k then µ1{Mn 6
un(t)} → e−θt where θ = 1 − |Jac(DT −k1 )(p0)| and the REPP NT1n con-
verges in distribution to a compound Poisson process N with intensity θ and
multiplicity distribution function η given by η(j) = θ(1− θ)j for all integers
j > 0.

Observe that p0 as above, that is the point where φ takes its maximum, we
can choose our set B to contain p0, so that the result in Proposition 3.2
applies to the corresponding first return map T2. The proof that we can
always pass from the result on the first return map (i.e., T2 here) to the
original case (i.e., for T1), which is a simple generalisation of the main result
in [HWZ], appears in [FFT3]. Note that the second part was already proved
in [FFT2].

4. Return and hitting time statistics.

In this section we consider a natural notion of recurrence which, as in [FFT1],
is analogous to the EVL perspective in the previous section. Suppose p0 ∈ B
and Un is a sequence of balls nested at p0. Let τU (x) := min{n > 1 : T n2 (x) ∈
U}. We say that T2 has hitting time statistics to {Un} with distribution H(t)
if

lim
n→∞

µ2

(
x ∈ B : τUn(x) 6

t

µ2(Un))

)
= H(t).

We say that T2 has return time statistics to {Un} with distribution H̃(t) if

lim
n→∞

1

µ2(Un)
µ2

(
x ∈ Un : τUn(x) 6

t

µ2(Un))

)
= H(t).

There is a large body of literature on this topic: we refer the reader to
[AG, HLV] and references therein for further information on this notion of
asymptotic recurrence.
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Results of [FFT2, HWZ] show that in our setting if p0 is not periodic then T2

has exponential hitting and return time statistics i.e. H(t) = H̃(t) = 1−e−t.
If however p0 is periodic of period k then we may define θ = 1

|Jacp0T
k
2 |

. In

this scenario by results of [FFT2]

lim
n→∞

µ2

(
x ∈ B : τUn(x) 6

t

µ2(Un))

)
= 1− e−θt,

while

lim
n→∞

1

µ2(Un)
µ2

(
x ∈ Un : τUn(x) 6

t

µ2(Un))

)
= (1− θ) + θ(1− e−θt).

Since T2 is a first return of T1, the same limit laws hold for T1. This was
proved in the case of typical points in [BSTV, Theorem 2.1], for periodic
points in [FFT2, Theorem 5]: it was then elegantly proved for all points in
[HWZ]. Note that we can also extend these results to the point processes
analogous to the REPP in the previous section.

5. The Teichmüller flow on the space of translation surfaces

In this section we relate the dynamical structures we described in Section 1
to the Teichmüller flow on the space of translation surfaces. We do not
present any new results in this section. We will first introduce invertible
versions R0,R1 and R2 of the maps presented in Section 1. The key fact
we use is that these maps are first return maps for the flow to adapted cross
sections, and give a clearer relation to the translation surfaces, which are
represented as points in their phasespace.

5.1. Translation surfaces: the zippered rectangle construction. Given
an irreducible pair π = (π0, π1) and a length vector λ ∈ RA+, let T+

π denote

the subset of vectors τ = (τa)a∈A ∈ RA such that∑
π0(a)6k

τa > 0 and
∑

π1(a)6k

τα < 0

for 1 6 k 6 d − 1. We say that τ has type 0 if the total sum
∑

a∈A τa is
positive and type 1 if the total sum is negative.

Next we will use the matrices M and intervals Iπεa defined in Section 1.2.
Then given π and τ ∈ T+

π we define the height data by h := −Mτ . One
can check that τ ∈ T+

π implies that each element ha for a ∈ A is strictly
positive. Now given (π, λ, τ), for each a ∈ A we can define the rectangles
Rπ0
a = Iπ0

a × [0, ha] ⊂ R2 and Rπ1
a = Iπ1

a × [0,−ha] ⊂ R2. We can then
form the translation surface M = M(π, λ, τ) by identifying the top of each
rectangle Rπ0

a with the bottom of the corresponding rectangle Rπ1
a and then

‘zipping up’ by making a natural identification of pairs of protruding sides
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of the rectangles: for more details see [Vi, Chapter 2.7], [Yoc]. The area
of M(π, λ, τ) can be defined as area(π, λ, τ) := λ · h =

∑
a∈A λaha. The

structure here can be thought of as a Riemann surface with a non-zero
holomorphic 1-form or equivalently, as a flat Riemannian metric on a surface
with finitely many singularities of conical type and a parallel unit vector
field.

Note that the underlying IET here is a first return map of the vertical flow
on the translation surface to the interval [0,

∑
a∈A λa].

Fix R a Rauzy class. Let

Ĥ = Ĥ(R) :=
{

(π, λ, τ) ∈ R× RA+ × T+
π

}
.

We extend the Rauzy-Veech induction map T̂0 to a map R̂0 on Ĥ by
R̂0(π, λ, τ) = (π′, λ′, τ ′), where (π′, λ′) = T̂0(π, λ) and τ ′ = Θ−1∗(τ) (recall
the description of Θ given in Remark 1.1). The height data h′ of (π′, λ′, τ ′)
can be expressed as h′ = Θ(h). Moreover, setting

RAπ,ε := {λ ∈ RA+ : (π, λ) has type ε} and Tπ,ε := {τ ∈ T+
π : τ has type ε},

it can be shown (see eg [Vi, Chapter 2.7]) that:

Proposition 5.1. (a) Θ−1∗ sends T+
π injectively inside T+

π′ .

(b) (Markov) R̂0({π} × RAπ,ε × T+
π ) = {π′} × RA+ × Tπ′,1−ε.

(c) Every (π′, λ′, τ ′) such that
∑

α∈A τ
′
α 6= 0 has a unique preimage by R̂0.

(d) If R̂0(π, λ, τ) = (π′, λ′, τ ′) then the areas of M(π, λ, τ) and M(π′, λ′, τ ′)
are equal.

5.2. Teichmüller flow. The Teichmüller flow on Ĥ is defined as the in-
duced action T = (T t)t∈R : Ĥ → Ĥ of the diagonal subgroup(

et 0
0 e−t

)
for t ∈ R,

given by T t(π, λ, τ) = (π, etλ, e−tτ). For c > 0 we define

Hc := {(π, λ, τ) ∈ Ĥ : |λ| = c}.

The trajectory of a point in Ĥ hits Hc precisely once. We are looking
for transformations from Hc back to itself of the form R̂0 ◦ T t for some
t. Noticing that if (π′, λ′) = R̂0(π, λ) and (π, λ) is of type ε, then |λ′| =

|λ|
(

1− λa(1−ε)
|λ|

)
, we see that the relevant time t is

r0 = r0(π, λ) := − log

(
1−

λa(1−ε)

|λ|

)
where (π, λ) is of type ε.

That is to say, we are interested in the map from Hc to itself given by

R0 = R̂0 ◦ T r0 : (π, λ, τ) 7→ R̂0(π, er0λ, e−r0τ).
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From now on we restrict ourselves to

H = H1.

Then we observe that the map above can actually be interpreted as an
extension of the Rauzy-Veech renormalisation map T0 since R0(π, λ, τ) =
(π′, λ′′, τ ′′) = (T0(π, λ), τ ′′) where

(π′, λ′, τ ′) = R̂0(π, λ, τ), λ′′ =
λ′

1− λa(1−ε)
, τ ′′ = τ ′(1− λa(1−ε)).

The next result is [Vi, Corollary 2.24] and [Vi, Lemma 4.3].

Proposition 5.2. R0 : H → H is an (almost everywhere) invertible Markov
map and preserves the area of the corresponding translation surfaces. The
standard volume form mH = dπdλ1dτ , where dλ1 is the Lebesgue measure
induced on ∆A and dτ is the Lebesgue measure on T+

π , is invariant under
R0.

From now on, we will only consider translation surfaces of area 1, i.e. ele-
ments of the set

Ĥ(1) := {(π, λ, τ) ∈ Ĥ : area(π, λ, τ) = 1}.

This set is invariant under both the Teichmüller flow T = (T t)t∈R and the

invertible Rauzy-Veech induction R̂0. We also set H(1) := Ĥ(1) ∩ H, which
is invariant under the invertible Rauzy-Veech renormalization map R0.

We consider the pre-stratum obtained as the quotient of the fundamental
domain {(π, λ, τ) ∈ Ĥ(1) : 0 6 log |λ| 6 r0(π, λ)} by the equivalence relation

T r0(π,λ)(π, λ, τ) ∼ R0(π, λ, τ) for all (π, λ, τ) ∈ H(1).

Since R0 commutes with the flow, the latter induces a flow T = (T t)t∈R on
the pre-stratum, that we also call Teichmüller flow.

The map R0 : H(1) → H(1) is then naturally identified with the Poincaré re-
turn map of this flow to the cross sectionH(1). The volume form mH induces
a volume form mH(1)

on H(1) which is still invariant under R0. The key fact
is that mH(1)

gives finite mass to H(1), a fact which was demonstrated by

Veech [Ve1].

5.3. Recoded Teichmüller flow and inducing. The moves described
above mean that R0 can now be interpreted as the first return map of
the Teichmüller flow to H(1), and indeed it is convenient for us to redefine

the flow as a suspension flow which is locally defined by T t(π, λ, τ, s) =
(π, λ, τ, t+ s) on the space

Hr0(1) :=
{

(π, λ, τ, s) ∈ H(1) × R : 0 6 s 6 r0(π, λ)
}
/ ∼
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where (π, λ, τ, r0(π, λ)) ∼ (π′, λ′′, τ ′′, 0) and R0(π, λ, τ) = (π′, λ′′, τ ′′). We
refer to r0 as the roof function for this suspension flow.

A key fact in Proposition 5.1(b) is that given (π, λ, τ) ∈ H(1), if (π, λ) is

of type ε, then τ ′ is of type 1 − ε. So if the first k iterates (πj , λj , τ j) for
j = 1, . . . , k of R0 do not change the type of (πj , λj), then the types of
(πj , λj) and τ j are different (ε and 1−ε) for j ∈ {1, . . . , k}. So the first time
k that the types of (πk, λk) and τk are the same is the first time that (πk, λk)
changes type. That is, exactly n1(π, λ). Therefore, setting Z := Z0 ∪ Z1,
where for ε ∈ {0, 1},

Zε :=
{

(π, λ, τ) ∈ H(1) : (π, λ) and τ both have type ε
}
,

we define R1 : Z → Z as the first return map by R0 to Z. (We can do

this with R̂1 on Ĥ too.) This map can be seen as an extension of the
Rauzy-Veech-Zorich renormalisation map for the same reasons as for R0: if
R1(π, λ, τ) = (π′, λ′, τ ′), then T1(π, λ) = (π′, λ′). Thus we can produce a
new description of our Teichmüller flow.

We omit the description of this since we go straight to the description given
by taking an adapted induced set BH(1)

⊂ Z and the first return map R2 to
BH(1)

by T . This map will also be the first return map of R0 to BH(1)
. The

choice of B in Section 1.5 was made in order to ensure uniform expansion
for the first return map. Since we are now dealing with an invertible map,
we will also need uniform contraction in the stable direction. We follow
the construction of [AGY], and choose a good set B, which is the image of
an inverse branch of T0. We refer to [AGY, Section 4.1.3] for the precise
definition of B. This set can be written as B = {π} × { Θ?λ

|Θ?λ| : λ ∈ ∆A},
where Θ is a finite product of the matrices mentionned in Remark 1.1.

We then set BH(1)
= (B × T+

B ) ∩ H(1), where T+
B is defined by the relation

Θ?T+
B = Tπ, and we consider the first return map R2 of R0 to BH(1)

. This
map can be written as a skew product over the first return map T2 of T0

to the set B, i.e. R2(π, λ, τ) = (π′, λ′, τ ′), where (π′, λ′) = T2(π, λ), and τ ′

depends on π, λ and τ .

The mapR2 preserves the renormalised restriction mBH(1)
of mH(1)

to BH(1)
.

By [AGY, Lemma 4.3], this map is a hyperbolic skew product over the uni-
formly expanding Markov map T2, in the sense of [AGY, Definition 2.5], and
henceforth it admits exponential decay of correlations for Lipschitz observ-
ables: there exists C > 0 and 0 < α < 1 such that∣∣∣∣∫ φψ ◦ Rn2dmBH(1)

−
∫
φdmBH(1)

∫
ψ dmBH(1)

∣∣∣∣ 6 Cαn‖φ‖Lip‖ψ‖Lip,

for all φ, ψ ∈ Lip.
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Since R0 is the Poincaré return map of the flow T to the section H(1), the
map R2 is itself the Poincaré return map of T to the section BH(1)

. This
gives a roof function r2 : BH(1)

→ R+ defined almost everywhere. Clearly,

the roof function depends only on (π, λ), so we can reduce it to a roof
function r2 : B → R+. We define the suspension

Br2
H(1)

:=
{

(π, λ, τ, s) ∈ BH(1)
× R : 0 6 s 6 r2(π, λ)

}
/ ∼

where (π, λ, τ, r2(π, λ)) ∼ (π′, λ′′, τ ′′, 0) andR2(π, λ, τ) = (π′, λ′′, τ ′′). Again,
we can redefine the flow T as a suspension flow onBr2

H(1)
given by T t(π, λ, τ, s) =

(π, λ, τ, t + s), which preserves the measure µT =

(mBH(1)
×m)|

B
r2
H(1)

(mBH(1)
×m)(B

r2
H(1)

)
where

m is the Lebesgue measure on R.

We now revert to a form which matches Pollicott’s [Po] notes as well as
corresponds to our sections above. Since the roof function depends only on
(π, λ), we can project into a semi-flow by removing the τ parameter: then
the actual flow can be reconstructed as the natural extension of what we
have produced. Namely, we let

Br2 := {(π, λ, s) ∈ B × R : 0 6 s 6 r2(π, λ)} / ∼

where (π, λ, r2(π, λ)) ∼ (π′, λ′′, 0) and T2(π, λ) = (π′, λ′′). Clearly T2 is still
a first return map to B. Later we will simplify notation further and write
simply x = (π, λ).

The notation we use for the semi-flow is Ft : Br2 → Br2 , defined locally by
Ft(x, u) = (x, u + t), with the relevant identifications i.e. (x, τ, r2(π, λ)) ∼
(T2(x), 0).

The semi-flow F = {Ft}t∈R preserves the acip µF given by

µF =
(µ2 ×m)|Br2

(µ2 ×m)(Br2)
=

(µ2 ×m)|Br2∫
r2 dµ2

,

where µ2 is the acip for T2 and m is the Lebesgue measure on R.

Remark 5.3. Since T2 is a first return map for T0, which in turn is a
first return map for our Teichmüller semi-flow, any small ball in Br2 is
isomorphic to the corresponding ball in Br0. More precisely, this is true if
our ball is contained in a strip {(x, t) : x ∈ Bk, 0 6 t 6 r2(x)} for some k.

6. Statistical properties of the Teichmüller flow

In this section we extend our Borel-Cantelli Lemmas and EVLs to the Te-
ichmüller flow.
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6.1. Borel-Cantelli Lemmas for the semi-flow. Here we will use ideas
from the proof of [GNO, Theorem 2], primarily Step 1 of that proof. The
main (obvious) difference is that we are dealing with continuous time.

Given a family of sets U = (Us)s>0 set ψ = (ψs)s>0 where ψs := 1Us and

Et(U) = Et(ψ) =
∫ t

0

(∫
ψsdµF

)
ds. We say that U is a family of shrinking

sets if s1 < s2 implies Us2 ⊂ Us1 . In this section we will prove that if
U = (Us)s>0 is a family of shrinking sets with some monotonicity condition
and limt→∞Et(U) =∞ then

lim
t→∞

1

Et(U)

∫ t

0
1Us ◦ Fs(x, u) ds = 1 for µF -a.e. (x, u) ∈ Br2 .

This result is contained in Theorem 6.3; in particular, the smoothness condi-
tion is given there. We prove in the following subsection that this condition
is indeed satisfied for a natural family of sets, namely nested balls.

Recall that B is partitioned (almost everywhere) into sets {Bk}k. For i ∈ N0,
define

Bi
k :=

{
(x, t) ∈ Bk × R+ : i 6 t < min{i+ 1, r2(x)}

}
.

So we can write B = ∪k ∪i Bi
k almost everywhere. We will restrict our

Borel-Cantelli Lemmas to these sets Bi
k, which will be sufficient to prove

the general case. Indeed, we define the restricted indicator function

ψBik,s
:= 1Us∩Bik

and first study the recurrence properties of the family ψBik
= (ψBik,s

)s>0.

We do this by inducing, for which we need the right time scale. Since µF
is ergodic and

∫
r2 dµ2 < ∞, we immediately obtain the following lemma

where r2 :=
∫
r2 dµ2.

Lemma 6.1. For each ε > 0 there exists T > 0 and a set Xε,T ⊂ Br2 such
that (x, u) ∈ Xε,T and t > T implies∣∣∣∣1t#{s ∈ [0, t) : Fs(x, u) ∈ B} − r2

∣∣∣∣ < ε.

Moreover, µF (Xε,T )→ 1 as T →∞.

Now, for each ε ∈ R, we define the induced function on x ∈ B

ψn,Bik,ε
(x) :=

∫ r2(x)

0

(
1Un(r2+ε)+s

· 1Bik
)
◦ Fs(x, 0) ds, (3)

and denote the family as ψBik,ε
= (ψn,Bik,ε

)n. Note that
∫
ψn,Bik,ε

(x)dµ2 =

r2µF (Un(r2+ε) ∩ Bi
k). We will be able to compare the long-term behaviour

of this function with different values of ε, and compare them all to the long-
term behaviour of the flow. This is necessary as we sample at discrete times,
and the nested balls are shrinking in continuous time.
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We will use the following lemma, which is [GNO, Lemma 4.2].

Lemma 6.2. Suppose that g : R+ → R+ is decreasing and
∑∞

i=0 g(i) =∞.
Then,

(a) For all ε > 0 and all n > 0,∫ (1+ε)n
0 g(t) dt∫ n

0 g(t) dt
6 1 + ε.

(b)

lim
n→∞

∫ n
0 g(t) dt∑n−1
j=0 g(j)

= 1.

Theorem 6.3. Suppose that Bi
k is such that

lim
t→∞

∫ t

0
µF (Us ∩Bi

k) ds =∞,

i.e. limt→∞Et(ψBik
) = ∞. If there exists K > 0 and 0 < α 6 1 such that

‖ψn,Bik,0‖α < K for all n ∈ N0, then

lim
t→∞

1

Et(ψBik
)

∫ t

0
1Us∩Bik

◦ Fs(x, u) ds = 1 for µF -a.e. (x, u) ∈ Br2 .

Proof. We use the idea of Step 1 of the proof of [GNO, Theorem 2]. We will
show

lim
t→∞

1

Et(ψBik
)

∫ t

0
1Us∩Bik

◦ Fs(x, 0) ds = 1 for µ2-a.e. (x, 0) ∈ B,

as then the proof for µF -a.e. (x, u) ∈ Br2 follows.

We already know from Proposition 2.1 that for µ2-a.e. x ∈ B,∑n−1
j=0 ψj,Bik,0

(T j2 x)

En(ψBik,0
)

→ 1 as n→∞.

where En(ψBik,0
) :=

∑n−1
j=0 µ2(ψ̄j,Bik,ε

). Lemma 6.2 controls the effect of this

perturbation in the limit when we switch on the ε parameter in one of the
occurrences of ψn,Bik,ε

above which deals with the shrinking of the balls

during the flow between returns to the base.

Given x ∈ B, define q(n, x) as the integer for which

rq(n,x)(x) 6 n < rq(n,x)+1(x)

where rm(x) = r(x) + r(T2x) + . . . + r(T m−1
2 x). Observe that since, the

difference of the integral of 1Us∩Bik
◦ Fs(x, ·) between times rq(n,x)(x) and n
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is made up by at most one passage through Bi
k which integrates to at most

the length of Bi
k in the vertical direction, i.e., 1, we have

∫ n

0
ψBik,s

◦ Fs(x, 0) ds−
∫ q(n,x)

0
ψBik,s

◦ Fs(x, 0) ds 6 1.

Hence this difference is uniformly bounded independently of x and n. The
only time the integral of ψBik,s

along the Fs-orbit of (x, 0) can be added to is

when that orbit hits Bi
k. Correspondingly, the only time the sum of ψn,Bik,ε

along the (discrete) T2-orbit of (x, 0) can be added to is when the Fs-orbit
above T n2 (x) hits Bi

k ∩ U(n(r2+ε)+s) before reaching its roof. Therefore the
difference between the integral and the sum is essentially a matter of the
scaling of the sets Us ∩Bi

k (i.e., the discrepancy in the time scale s). So by
Lemma 6.1, for all small ε > 0,

(∑n−1
j=0 ψj,Bik,ε

(T j2 x)− ρ(x, ε)

Eq(n,x)(ψBik,ε
)

)(
Eq(n,x)(ψBik,ε

)

Eq(n,x)(ψBik,0
)

)

6

∫ rq(n,x)
2 (x)

0 ψBik,s
◦ Fs(x, 0) ds

Eq(n,x)(ψBik,0
)

6

(∑n−1
j=0 ψj,Bik,−ε

(T j2 x) + ρ(x, ε)

Eq(n,x)(ψBik,−ε
)

)(
Eq(n,x)(ψBik,−ε

)

Eq(n,x)(ψBik,0
)

)

for a small error term ρ(x, ε) independent of n. Then Lemmas 6.1 and 6.2
imply that

lim
n→∞

∫ rq(n,x)
2 (x)

0 ψBik,s
◦ Fs(x, 0) ds

Eq(n,x)(ψBik,0
)

= lim
n→∞

∫ n
0 ψBik,s

◦ Fs(x, 0) ds

Eq(n,x)(ψBik,0
)

= 1.

To complete the proof of the proposition, as in Step 2 of the proof of [GNO,
Theorem 2], we show that

lim
n→∞

En(ψBik
)

Ebn/r2c(ψBik,0
)

= 1.

Notice that this is the one part where our proof is easier than theirs since
the flow is a first return to the base (this also accounts for the fact that Step
3 of that proof is unnecessary here).
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By Lemma 6.1, q(n, x) ∼ b nr2 c. Hence

Ebn/r2c(ψBik,0
) =

b n
r2
c−1∑

j=0

∫
B
ψj,Bik,0

(y) dµ2(y)

=

b n
r2
c−1∑

j=0

∫
B

∫ r2(y)

0
ψBik,jr2+s ◦ Fs(y, 0) ds dµ2(y)

∼
b n
r2
c−1∑

j=0

µF (Uj(r2) ∩Bi
k).

Applying Lemma 6.2 with a speeded up time variable, we obtain
∑b nr2 c−1

j=0 µF (Uj(r2)∩

Bi
k) ∼

∫ n
r2

0 µF (Usr2∩Bi
k)r2 ds, so a change of variables then gives Ebn/r2c(ψBik,0

) ∼
En(ψBik

), thus completing the proof. �

6.2. An application of Theorem 6.3. One of the challenges in proving
Borel-Cantelli lemmas when moving from the discrete system to the flow
is that the induced characteristic functions are not, in general, character-
istic functions. In this subsection we prove that characteristic functions
of balls in the flow space induce observables which are sufficiently regu-
lar that we can apply Theorem 6.3 to them. In fact the averaging in the
flow direction regularizes functions. If (z, u) ∈ Br2 we let Bη(z, u) denote
a ball of radius η about (z, u) in the Euclidean metric d1((z, u), (z′, u′)) =

[(u−u′)2+
∑d

j=1(zj−z
′
j)

2]
1
2 . It is clear from our proof below other Euclidean

metrics may be used, for example d2((z, u), (z′, u′)) = |u−u′|+
∑d

j=1 |zj−z
′
j |.

Theorem 6.4. Let δ(s) be a decreasing sequence. For µF -a.e. (z, u) ∈ Br2

setting Us = Bδ(s)(z, u), if limt→∞Et(U) =∞ then

lim
t→∞

1

Et(U)

∫ t

0
1Us ◦ Fs(x, v) ds = 1, for µF -a.e. (x, v) ∈ Br2

Proof. As before we define

ψBik,s
:= 1Uδ(s)∩Bik

,

where

Bi
k :=

{
(x, t) ∈ Bk × R+ : i 6 t < min{i+ 1, r2(x)}

}
.

For large s the ball Bδ(s)(z, u) lies inside a fixed Bi∗
k∗ for some specific k∗, i∗.

Since we have freedom to induce on a set B placed anywhere in ∆ we need
not worry about (z, u) lying on the boundary of a Bi

k.
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For γ > 0 we also define the induced function

ψn := ψn,Bi∗
k∗ ,γ

(x) :=

∫ r2(x)

0

(
1Un(r2+γ)+s

· 1B∗
k∗ i

)
◦ F(x, s) ds,

We have to show that there exists an α and a constant K such that ‖ψn‖α <
K for all n.

It suffices to show that there exist α, K such that

ε−α
∫
B
osc(ψn, Bε(x)) dx < K

for all n.

If δ(n(r2)) 6 ε then osc(ψn, Bε(x)) 6 2ε. This is because for each y ∈ Bε(x),∫ r2(x)

0

(
1U(n(r2+γ)+s)

· 1Bik
)
◦ F(x, s) ds 6 δ(|n(r2)|) 6 ε.

So we need only consider the supremum over small ε < δ(n(r2)). The ball
Bδ(s)(z, u) ⊂ Bi∗

k∗ lies in a d+ 1-dimensional Euclidean space. Its projection
onto the d-dimensional space B is a ball Bδ(s)(z) in Bk∗ . If the distance
of Bε(x) to Bδ(s)(z)) is greater than 2ε then either Bε(x) is in the exterior

of Bδ(s)(z) or B2ε(x) ⊂ Bδ(s)(z). In the first case
∫
B osc(ψn, Bε(x)) = 0

as the flow starting in Bε(x) does not meet Bδ(s)(z, u). In the second case
i.e. Bε(x) is bounded away from the boundary of Bδ(s)(z)) by ε, then the
two parts of the boundary of Bδ(s)(z, u) which project to Bε(x) may be
written locally as graphs over Bε(x), the ‘height’ functions are given by

s − u =
√
δ(s)−

∑d
j=1(tj − zj)2 and s − u = −

√
δ(s)−

∑d
j=1(tj − zj)2

respectively, where t = (t1, . . . , td) and z = (z1, . . . , zd) are Euclidean co-

ordinates in B. Here we are restricting to t satisfying
√∑n

j=1(tj − xj)2 < ε

where x = (x1, . . . , xd) is the center of Bε(x). Note that for both branches

| ∂s∂ti | =
1
2(δ(s)−

∑d
j=1(tj− zj)2)−

1
2 (2|ti− zi|). In particular since t satisfying√∑n

j=1(tj − xj)2 < ε is bounded from the boundary of Bδ(s)(z) by ε, i.e.√
(δ(s)−

∑d
j=1(tj − zj)2) > ε we have | ∂s∂ti | 6

C√
ε

for all i and hence the

oscillation of ψn over Bε(x) is O(
√
ε). Finally if Bε(x) is within 2ε of the

boundary of Bδ(s)(z) then the oscillation of ψn over Bε(x) is O(1) but the µ2

measure of points x within a 2ε neighborhood of the boundary of Bδ(s)(z)
is O(ε).

Thus taking α = 1
2 there exists K such that

ε−
1
2

∫
B
osc(ψn, Bε(x)) dx < K

for all n. �
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6.3. Borel-Cantelli lemmas for the Teichmüller flow. In this section,
we prove Borel-Cantelli lemmas for the Teichüller flow T seen as a suspension
flow over the map R2 : BH(1)

→ BH(1)
with roof function r2.

We first prove a similar result for the mapR2. Recall that this map preserves
the measure mBH(1)

and is a skew-product over the map T2 : B → B, which

preserves µ2. To simplify the notations, we set µ := µ2 and µ̂ := mBH(1)
.

Proposition 6.5. Let (Un) be a decreasing sequence of nested balls centered
at a point (x, τ) ∈ BH(1)

, with
∑

n µ̂(Un) = ∞. Assume there exist C > 0

and γ > 0 such that µ̂(Un) > Cn−γ and (log n)µ(Un) 6 C for all n > 0.
Then the sequence (Un) is strong Borel-Cantelli for R2.

Proof. We follow the proof of [Zh, Theorem 1.5]. Let fk = 1Uk ◦ Rk2. We
denote by E(.) the expectation operator with respect to µ̂. We trivialize
BH(1)

to a product via the natural diffeomorphism BH(1)
→ B×PT+

B , where

PT+
B is the image of T+

B in the projective space PRA. Let Πx and Πτ be the

projections on the factors B and PT+
B respectively. We denote by m1 the

Lebesgue measure on each factor, and by m2 the product Lebesgue measure
on B×PT+

B . The measure µ̂ has a smooth density with respect to m2, which
is bounded uniformly from above and below. Let E(.) be the expectation
operator with respect to the measure µ̂.

For i < j, we calculate

E(fifj) =

∫
1Ui ◦ Ri2 1Uj ◦ R

j
2 dµ̂ =

∫
1Ui 1Uj ◦ R

j−i
2 dµ̂

.
∫
Ui

1ΠxUi 1ΠxUj ◦Πx ◦ Rj−i2 dm2

. m1(ΠτUi)m1(ΠxUi ∩ T −(j−i)
2 ΠxUj)

. m1(ΠτUi)µ(ΠxUi ∩ T −(j−i)
2 ΠxUj)

. m1(ΠτUi)
(
µ(ΠxUi)µ(ΠxUj) + Cθj−iµ(ΠxUj)

)
. m1(ΠτUi)

(
m1(ΠxUi)m1(ΠxUj) + Cθj−im1(ΠxUj)

)
. (m2(Ui))

1
2

(
(m2(Ui))

1
2 (m2(Uj))

1
2 + Cθj−i(m2(Uj))

1
2

)
. (m2(Ui))

3
2 + θj−im2(Ui).

Throughout this calculation, we have used the fact that µ and µ̂ have a
density with respect to m1 and m2 respectively which are bounded uniformly
from above and below, decay of correlations for T2 given by Proposition
1.8 and the fact that there exists a constant K such that for all ball U ,

m1(U) 6 K(m2(U))
1
2 .
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So, using decay of correlations for R2 and Lipschitz observables, we have

n∑
j=i+1

(E(fifj)− E(fi)E(fj)) 6 (

i+a log i∑
j=i+1

+
∑

j>i+a log i

)[E(fifj)− E(fi)E(fj)]

. (log i)(m2(Ui))
3
2 +m2(Ui) +

∑
j>i+a log i α

j−i||f̃i||Lip||f̃j ||Lip

where a will be chosen later and f̃i is a Lipschitz approximation to fi,
satisfying m2(|f̃i − fi|) . 1

i2
and ‖f̃i‖Lip . iκ for some fixed κ. We are

able to satisfy both conditions as m2(Ui) & i−γ for some γ > 0. We have

(log i)(m2(Ui))
3
2 . m2(Ui) and for a > 0 sufficiently large∑

j>i+a log i

αj−i||f̃i||Lip||f̃j ||Lip . m2(Ui).

We have thus shown that
n∑

i=m

n∑
j=i+1

(E(fifj)− E(fi)E(fj)) .
n∑

i=m

E(fi)

which implies the strong Borel-Cantelli property by Proposition 2.2. �

Remark 6.6. Note that the proof above does not use the assumption that the
balls are nested, nor that they are balls just that they may be approximated
by Lipschitz functions f̃i such that m2(|f̃i − fi|) . 1

i2
and ‖f̃i‖Lip . iκ for

some fixed κ.

We now show that the (SBC) property for the map R2 implies the SBC
property for nested balls Ut in the full suspension flow.

Theorem 6.7. Let U = (Ut)t>0 be a family of shrinking balls in Br2
H(1)

, with

µT (Ut) . t−γ for some γ > 0 and supt>0(log t)µT (Ut) <∞. Assume that

Et := Et(U) =

∫ t

0
µT (Us)ds

diverges.

Then the family U is strong Borel-Cantelli for the flow: for µT a.e. p ∈
Br2
H(1)

,

1

Et(U)

∫ t

0
1Us(T t(p)) ds→ 1.

Proof. Note that the measure on the flow µT is the product of the base
measure and Lebesgue measure in the flow direction, so that dµT = dµ̂× dt
and that the projection Π, say, via flow lines of the balls Ut in the suspension
flow is a t-parametrized sequence of nested ‘balls’ Ct in the Poincaré section
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BH(1)
. The dynamics of the return map toBH(1)

is given by the skew-product

map R2 : BH(1)
→ BH(1)

. The flow (T t) is rectifiable in a sufficiently small

neighborhood of the balls Ut. Let k̂(p) be the time that T t(p) returns to
BH(1)

for the k-th time under T , where p ∈ BH(1)
. or µ̂ a.e. p ∈ BH(1)

,

lim
k→∞

k̂(p)

k
=

∫
BH(1)

r2 dµ̂ := r̄2

We fix an integer n and discretize Ct into disjoint sets Ct,j , j = 1 to n, of

roughly equal µ̂ measure and define Ũt,j := {q ∈ Ut : Πq ∈ Ct,j}. Hence Ct,j
lie in BH(1)

while Ũt,j lies in the full suspension flow Br2
H(1)

.

We consider two sequences of sets Cα,t,j and Cβ,t,j in the suspension flow
defined by flow lines through Ct,j of constant length τ1(t, j) and τ2(t, j) such

that for each Ût,j , Cα,t,j ⊂ Ût,j ⊂ Cβ,t,j and moreover for each j, t > 0,

µT (Cβ,t,j) − µT (Cα,t,j) 6 e(n)µT (Ût,j) where e(n) → 0 as n → ∞. We can

ensure this as the boundary of Ũt,j consists of two manifolds, each a smooth
graph over Ct,j .

Hence µT (∪jCα,t,j) 6 µT (Ut) 6 µT (∪jCβ,t,j) and µT (∪jCβ,t,j)−µT (∪jCα,t,j) 6
e(n)µT (Ut) where e(n)→ 0 as n→∞.

Recall k̂(p) denotes the k-th return time to BH(1)
of a point p ∈ BH(1)

under

the flow T t so that T k̂(p) = Rk2(p). By the ergodic theorem given ε > 0 for

µ̂ a.e. p there exists k∗(ε)(p) such that k(r̄2 − ε) 6 k̂(p) 6 k(r̄2 + ε) for all
k > k∗(ε).

We fix ε and n. For each j, the sequences of sets, indexed by k, (C[k(r̄2+ε)],j)
and (C[k(r̄2−ε)],j) both have the (SBC) property for R2 : BH(1)

→ BH(1)
, i.e.

lim
k→∞

1

E(k,j,ε,+)

k∑
i=1

1C([i(r̄2+ε)],j)
◦ Ri2(p) = 1

for µ̂ a.e. p ∈ BH(1)
, where E(k,j,ε,+) :=

∑k
i=1 µ̂(C[i(r̄2+ε)],j) and sim-

ilarly for (C([k(r̄2−ε)],j)). Indeed, this follows from Proposition 6.5 since

µ̂(C[i(r̄2+ε)],j) ' µT (U[i(r̄2+ε)])
1
2 as k →∞, for fixed n and ε.

Note that k(r̄2−ε) 6 k̂ 6 k(r̄2 +ε) and by the Lipschitz regularity of µ̂(Ct,j)
in t if k(r̄2 − ε) 6 t 6 k(r̄2 + ε) then µ̂(C([k(r̄2+ε)],j)) − µ̂(C([k(r̄2−ε)],j)) 6
ρ(ε)µ̂(C([k(r̄2+ε)],j)) where ρ(ε)→ 0 as ε→ 0.

Furthermore, for sufficiently large t, once Rk2(p) enters Ct,j its trajectory
spends a length of flow time between τ1([k(r̄2 − ε)], j) and τ2([k(r̄2 + ε)], j)

in the sets (Ũt,j).
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Thus for µ̂ a.e. p, (recall n is fixed)

n∑
j=1

T∑
i=1

τ1([i(r̄2 − ε)], j))µ̂(C([i(r̄2−ε)],j)) 6
n∑
j=1

∫ T r̄2

0
µ̂(ΠŨt,j)1Ut,j ◦ T t(p)dt

6
n∑
j=1

T∑
i=1

τ1([i(τ1 + ε), j))µ̂(C([i(τ1+ε],j))

The sums L(T, n) :=
∑n

j=1

∑T
i=1 τ1([i(r̄2−ε)], j))µ̂(C([i(r̄2−ε)],j)) and U(T, n) :=∑n

j=1

∑T
i=1 τ1([i(τ1+ε), j))µ̂(C([i(τ1+ε],j)) are Riemann sums, and limT→∞

U(T,n)
L(T,n) =

κ(n) where κ(n)→ 1 as n→∞.

Using a change of variables

n∑
j=1

∫ T r̄2

0
µ̂(ΠŨt,j)1Ut,j ◦ T t(p)dt ∼

1

r̄2

n∑
j=1

∫ T

0
µ̂(ΠŨt,j)1Ut,j ◦ T t(p)dt

where H(T ) ∼ G(T ) means limT→∞
G(T )
H(T ) = 1.

Furthermore ∣∣∣∣∣
1
τ1

∑n
j=1

∫ T
0 µ̂(ΠŨt,j)1Ut,j ◦ T t(p)dt∫ T

0 ν(Ut)dt
− 1

∣∣∣∣∣ 6 κ2(n)

where κ2(n)→ 0 as n→∞.

This proves the SBC property for nested balls in the full suspension flow. �

6.4. Extreme Value Laws for the flow. We have established EVLs for
sufficient regular observations on the dynamical system (T2, B, µ2). We now
consider EVLs for the flow Fs : Br2 → Br2 . To do this we use [HNT, Theo-
rem 2.6] which relates Extreme Value Theory for functions on the suspension
of a base transformation to the Extreme Value statistics of observations on
the base.

We start with some preliminary notation. Let r2 =
∫
B r2(x)dµ2. Let

φ : Br2 → R∪{+∞} be a function, strictly maximized at a point (x0, u0) ∈
Br2 , which is sufficiently regular that for large r the set {(x, u) ∈ Br2 :
φ((x, u)) > r} corresponds to a topological ball centered at (x0, u0). Let
φ̄(x) = sup06u6r2(x) φ((x, u)) and define un(t) by the requirement that

nµ2{φ̄ > un(t)} → t. Let MT (x, s) := max{φ(Fs(x, u) : 0 6 s 6 T}.
As a consequence of [HNT, Theorem 2.6],
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Proposition 6.8. Suppose when we write un(t) = g(t)
an

+ bn the normalizing
constants an > 0 and bn satisfy:

lim
ε→0

lim sup
n→∞

an|b[n+εn] − bn| = 0, (4)

lim
ε→0

lim sup
n→∞

∣∣∣∣1− a[n+εn]

an

∣∣∣∣ = 0. (5)

Then,

1) If x0 is not a periodic point for T2 then µ{MT 6 u[T/r2](t)} → e−t.

(2) If x0 is a repelling periodic point of prime period k then µ{MT 6
u[T/r2](t)} → e−θt where θ = 1− |Jac(DT −k2 )(p0)|.

The extreme value result for the Teichmüller flow T = (T t)t∈R holds from
combining [Gu, Theorem 2.1] with [HNT, Corollary 2.3] (note that the proof
for Gibbs Markov maps holds in any dimension as long as con formality
holds) and [HNT, Theorem 2.6].

7. Appendix: Aperiodicity and weak mixing

Let (X,T, µ) be an ergodic measure-preserving dynamical system.

Definition. (X,T, µ) is weakly mixing if f ◦ T = eitf for some non-zero
f ∈ L2(µ) and t ∈ [0, 2π) implies that t = 0 and f is constant.

Remark 7.1. This definition is equivalent to the classical one, stating that

1

n

n−1∑
k=0

∣∣∣µ(T−k(A) ∩B)− µ(A)µ(B)
∣∣∣→ 0

for any measurable sets A and B. See [Wal, Theorem 1.26] in the case where
(X,T, µ) is invertible, and [KMC, Theorem 664] or [EW, Theorem 2.36] for
a proof of the equivalence valid in any case.

Let Y ⊂ X be a subset of positive µ-measure. We denote by τ(y) the first
return time of y ∈ Y to Y :

τ(y) = min{n > 1 : Tny ∈ Y }.

We then define the first return map T̂ : Y → Y by T̂ = T τ . It preserves
the normalisation µY of the restriction to Y of the measure µ and is ergodic
with respect to it.

Definition. We will say that the first return time is aperiodic if f◦T̂ = eitτf
for some non-zero f ∈ L2(µY ) and t ∈ [0, 2π) implies that t = 0 and f is
constant.
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Remark 7.2. By [Mo1, Proposition 1.1], the relation f ◦ T̂ = eitτf is

equivalent to L(eitτf) = f , where L is the transfer operator of T̂ with respect
to the measure µY .

Proposition 7.3. The first return time is aperiodic if and only if (X,T, µ)
is weakly mixing.

Proof. Suppose first that the first return time is aperiodic and let f ∈ L2(µ)
non-zero and t ∈ [0, 2π) such that f ◦ T = eitf . We easily verify that the

restriction fY of f to Y satisfies fY ◦ T̂ = eitτfY :

fY (T̂ y) = f(T τ(y)y) = eitτ(y)f(y) = eitτ(y)fY (y).

fY is also non identically zero: otherwise, f would vanish on the set ∪n>0T
−nY ,

which by ergodicity is equal to X mod µ. Aperiodicity yields that t = 0,
which means that f ◦ T = f . Ergodicity implies that f is constant.
Conversely, suppose that (X,T, µ) is weakly mixing and that f ∈ L2(µY )

is non identically zero and satisfies f ◦ T̂ = eitτf . We first extend τ on the
whole space X as being the first hitting time. By ergodicity, it is well defined
µ-a.e. We then define f̃ ∈ L2(µ) by f̃ = e−itτf ◦ T τ . Since T τ(x)x belongs

to Y for µ-a.e. x ∈ X by definition, f̃ is well-defined. Our assumption on f
implies that f̃ and f coincide on Y , so that it is non identically zero.
Now, we verify that f̃ ◦ T = eitf̃ . Let x ∈ X with τ(x) > 1. Since

τ is the first hitting time, we have τ(Tx) = τ(x) − 1. Hence, f̃(Tx) =

e−itτ(Tx)f(T τ(Tx)Tx) = eite−itτ(x)f(T τ(x)x) = eitf̃(x). If τ(x) = 1, which

implies Tx ∈ Y , we have by definition of f̃ that f̃(x) = e−itf(Tx) =

e−itf̃(Tx).

Weak mixing implies that t = 0 and f̃ is constant. Since the restriction of
f̃ to Y is f , this shows that f is constant, and concludes the proof. �
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