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Unsupervised Learning And Clustering

• Supervised learning - human effort involved

• Example: Learning conditional distribution P(Y|X), X: features, Y: classes

• Unsupervised learning - no human effort involved

• Example: learning distribution P(X), X: features

• Definition: Clustering is the task of grouping a set of objects in such 
that objects in the same group are more similar to each other than 
to those in other groups



Types of Clustering Algorithms

Clustering Algorithms

Flat Algorithms Hierarchical Algorithms

Single Linkage Complete Linkage

Hard Partitioning Soft Partitioning

Examples:
• K-Means
• Self Organizing maps
• DBSCAN

Examples:
• Expectation Maximization
• Fuzzy Clustering Methods

Other Linkages



K-means
• Objective: Minimize the empirical quantization error E(X)

• Algorithm:
1. choose the number k of clusters;

2. initialize the codebook V with vectors randomly picked from X;

3. compute the Voronoi set i associated to the code vector vi ;

4. move each code vector to the mean of its Voronoi set

5. return to step 3 if any code vector has changed otherwise

6. return the codebook.



K-means Vizualization

Initalize Partition Update Output

Redo partition if 
update is not 

small 

Source: http://en.wikipedia.org/wiki/K-means_clustering



Kernel Clustering Basics
• Mercer Kernels:

• Polynomial:

• Gaussian:

• Distances in kernel space can be computed by using the distance kernel 
trick

• First map the data set X, into kernel space by computing the Gram 
Matrix, K, where each element kij is the dot product in kernel space.

using



Kernel K-means
• The Voronoi region and Voronoi Set in the feature space are redefined 

as: and 

• Algorithm:
1. Project the data set X into a feature space F, by means of a nonlinear 

mapping

2. Initialize the codebook with 

3. Compute for each center the set the set 

4. Update the code vectors       in

5. Go to step 3 until any       changes

6. Return the feature space codebook.



Kernel K-means Continued
• Since       is not explicitly known updating the code vectors is not straight 

forward

• Writing each centroid in Kernel space where is 1 if xh
belongs to the set j, zero otherwise.

• Now, can be expanded to:

• Gram Matrix, ideally has a block diagonal structure if the clusters are 
uniformly dense and hence provide a good way to estimate the number 
of clusters too



Kernel K-means Examples

M. Girolami, Mercer kernel based clustering in feature space, IEEE Trans. Neural Networks 13 (3) (2002) 780–784.
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with RBF = 0.5 showing 

three major clusters



Self Organizing Map(SOM)
• Code vectors organized on a grid and their adaptation is propagated 

along the grid

• Some popular metrics for the map include the Manhattan distance 
where the distance between two elements r = (r1, r2) and s = (s1, s2) is:

• Algorithm
1. Initialize the codebook V randomly picking from X
2. Initialize the set C of connections to form the rectangular grid of dimension 

n1×n2

3. Initialize t = 0
4. Randomly pick an input x from X.
5. Determine the winner:
6. Adapt each code vector:
7. Increment t
8. If t < tmax go to step 4



SOM Example
A SOM showing U.S. Congress voting patterns. 
The data were initially distributed randomly on a 
2D grid and then clustered. The grey dots show 
the neurons. The first box shows clustering and, 
the second distances. The third is a panel shows 
the party affiliation, red-republican and blue-
democrat and the rest are the features, which, in 
this instance are yes(blue) or no(red) votes. 
Source: http://en.wikipedia.org/wiki/Self-organizing_map

Schematic of A 
Self Organizing 
Map

Source: http://cs.oswego.edu/~dschlege/sitev2/courses/468/Cog468%20ASOM%20Presentation.htm



Kernel SOM
• Again the algorithm is adapted by first mapping the points to kernel space.

• The code vectors are defined as: (1)

• The winner is computed with:

or

• The update rules are: 

Using (1) we get



Kernel SOM Example

D. Macdonald, C. Fyfe, The kernel self-organising map, in: Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and 
Allied Technologies 2000, vol. 1, 2000, pp. 317–320.

Input data clustered by Kernel 

SOM on the right
Data clustered by Kernel  SOM, 

using an RBF of 0.1 and 2 

clusters

Neuron 2
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r1 - Distance from 
Neuron 1 in Hilbert 
Space

r2 - Distance from 
Neuron 2 in Hilbert 
Space
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Neural Gas and Kernel Neural Gas

• Similar to SOM the major difference being a soft adaptation rule in 
which all neurons are adapted to each individual input.

• 𝜌j is the rank of closeness of the current code vector j, to the input x

• 𝜆 is the characteristic decay

• For the kernelized version the update rule is:



Fuzzy C-Means
• Starts by defining a membership matrix, Acn denotes vector space of c x n 

real matrices;

• Minimizes functional:

with the constraint

• m controls the fuzziness of the memberships and is usually set close to 2, 
if  m tends to 1, the solution tends to the k-means solution

• Lagrangian of the objective is 

• Taking the derivative with respect to uih and vi and setting them to zero 
yields the iteration scheme: ,



Kernel Fuzzy C-Means
• The objective in the kernel space is:

• In case of the Gaussian Kernel the derivative is:

• This yields the iteration scheme:

,



Possibilistic C-Means 
• Here, the class membership of a data point can be high for more than one 

class

• Objective that is minimized is:

• The iteration scheme is:

,

• For the parameter 𝜂𝑖 the authors suggest using:



Kernel Possibilistic C-Means 
• Kernelization of the metric in the objective yields:

• Minimization yields the iteration scheme:

• For the Gaussian Kernel:



One Class Support Vector Machines
• The idea is to find the smallest enclosing sphere in kernel space of radius R 

centered at v: ,𝜉𝑖 ≥ 0 , are the slack variables

• The Lagrangian for the above is:

,𝛽𝑖 ≥ 0 and 𝜇𝑖 ≥ 0 are

Lagrange multipliers, is the penalty term with C -user defined const.

• Taking the derivative wrt 𝜉𝑗 , 𝑅, v and the KKT complementarity conditions 
yield the following QP:

• 𝜉𝑖 > 0 , for outliers and 𝜉𝑖 = 0, 0 < 𝛽𝑖 < 𝐶 for the support vectors



Example of one class SVMs

One class SVM with a linear kernel
applied to a data set with outliers. 

The gray line shows the projection 

in input space of the smallest 

enclosing sphere in feature

space



Extension of one class SVMs to Clustering
• Similar to Kernel SVM but here the SVMs are applied to partition the space.

• The Voronoi regions are now spheres:

• Algorithm:
1. Project the data set X into a feature space    , by means of a nonlinear mapping

2. Initialize the codebook with 

3. Compute           for each center 

4. Apply One Class SVM to each          and assign the center obtained to 

5. Go to step 2 until any        changes.

6. Return the feature space codebook.


