A Survey of Kernel Clustering Methods

Maurizio Filippone, Francesco Camastra, Francesco Masulli and Stefano Rovetta

Presented by: Kedar Grama

Outline

- Unsupervised Learning and Clustering
- Types of clustering algorithms
- Clustering Algorithms

Partitioning Methods (in Euclidean Space)

- K-Means
- Self Organizing Maps(SOM)
- Neural Gas
- Fuzzy C-Means
- Probabilistic C-Means

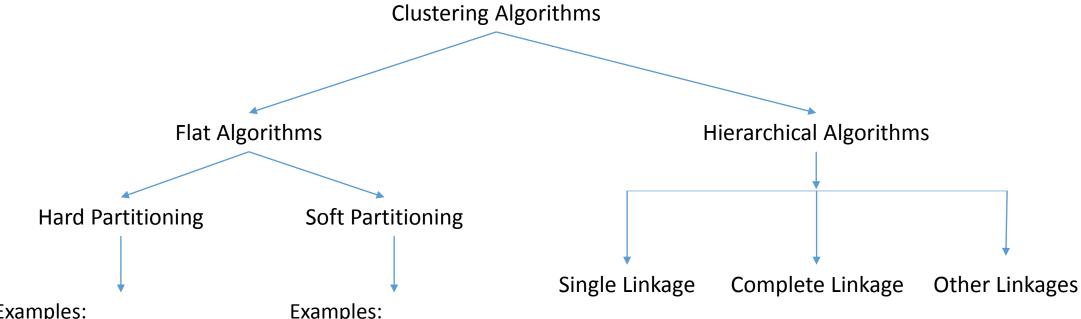
Kernel Clustering Methods

- Kernel K-Means
- Kernel SOM
- Kernel Neural Gas
- Kernel Fuzzy C-Means
- Kernel Probabilistic C-Means
- One class SVMs and Support Vector Clustering

Unsupervised Learning And Clustering

- Supervised learning human effort involved
 - Example: Learning conditional distribution P(Y|X), X: features, Y: classes
- Unsupervised learning no human effort involved
 - Example: learning distribution P(X), X: features
- Definition: **Clustering** is the task of grouping a set of objects in such that objects in the same group are more similar to each other than to those in other groups

Types of Clustering Algorithms



Examples:

- K-Means
- Self Organizing maps
- **DBSCAN**

Examples:

- **Expectation Maximization**
- **Fuzzy Clustering Methods**

K-means

Objective: Minimize the empirical quantization error E(X)

$$E(X) = \frac{1}{2n} \sum_{i=1}^{k} \sum_{\mathbf{x} \in \pi_i} \|\mathbf{x} - \mathbf{v}_i\|^2$$

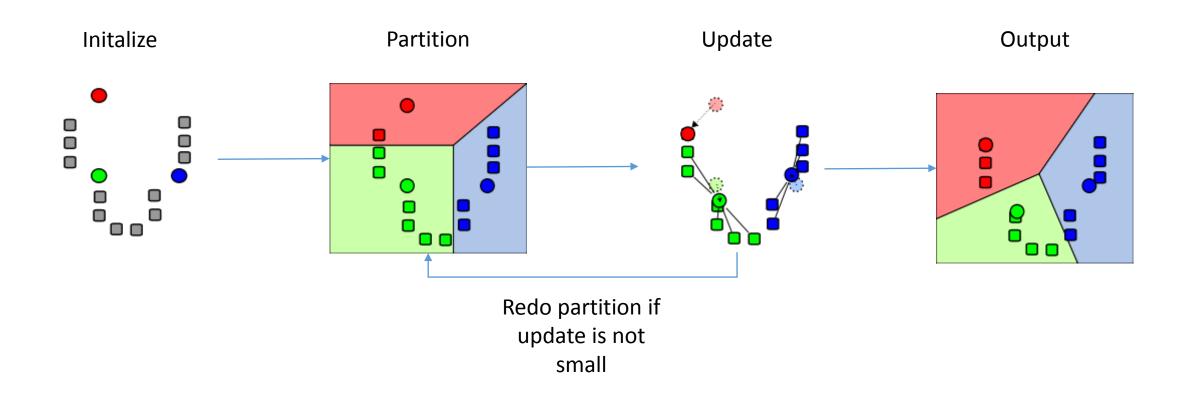
Algorithm:

- 1. choose the number *k* of clusters;
- 2. initialize the codebook V with vectors randomly picked from X;
- 3. compute the Voronoi set i associated to the code vector \mathbf{v}_i ;
- 4. move each code vector to the mean of its Voronoi set

$$\mathbf{v}_i = \frac{1}{|\pi_i|} \sum_{\mathbf{x} \in \pi_i} \mathbf{x}$$

- 5. return to step 3 if any code vector has changed otherwise
- 6. return the codebook.

K-means Vizualization



Source: http://en.wikipedia.org/wiki/K-means_clustering

Kernel Clustering Basics

- Mercer Kernels:
 - Polynomial: $K^{(p)}(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i \cdot \mathbf{x}_j)^p, \quad p \in \mathbb{N}$
 - Gaussian: $K^{(g)}(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}\right), \quad \sigma \in \mathbb{R}.$
- Distances in kernel space can be computed by using the distance kernel trick $\|\Phi(\mathbf{x}_i) \Phi(\mathbf{x}_i)\|^2$

$$= (\Phi(\mathbf{x}_i) - \Phi(\mathbf{x}_j)) \cdot (\Phi(\mathbf{x}_i) - \Phi(\mathbf{x}_j))$$

$$= \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i) + \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_j) - 2\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

$$= K(\mathbf{x}_i, \mathbf{x}_i) + K(\mathbf{x}_j, \mathbf{x}_j) - 2K(\mathbf{x}_i, \mathbf{x}_j)$$

• First map the data set X, into kernel space by computing the Gram Matrix, K, where each element k_{ii} is the dot product in kernel space.

$$\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i)$$
 using $\|\Phi(\mathbf{x}_i) - \Phi(\mathbf{x}_j)\|^2 = k_{ii} + k_{jj} - 2k_{ij}$

Kernel K-means

The Voronoi region and Voronoi Set in the feature space are redefined

$$\mathsf{as:} \ R_i^\Phi = \{\mathbf{x}^\Phi \in \mathscr{F} | i = \arg \min_j \|\mathbf{x}^\Phi - \mathbf{v}_j^\Phi\|\} \ \ \mathsf{and} \quad \pi_i^\Phi = \{\mathbf{x} \in X | i = \arg \min_j \|\Phi(\mathbf{x}) - \mathbf{v}_j^\Phi\|\}$$

• Algorithm:

- 1. Project the data set X into a feature space F, by means of a nonlinear mapping Φ
- 2. Initialize the codebook $V^{\Phi} = (\mathbf{v}_1^{\Phi}, \dots, \mathbf{v}_k^{\Phi})$ with $\mathbf{v}_i^{\Phi} \in \mathscr{F}$
- 3. Compute for each center the set \mathbf{v}_i^{Φ} the set π_i^{Φ}
- 4. Update the code vectors \mathbf{v}_i^{Φ} in \mathscr{F} $\mathbf{v}_i^{\Phi} = \frac{1}{|\pi_i^{\Phi}|} \sum_{\mathbf{x} \in \pi_i^{\Phi}} \Phi(\mathbf{x})$
- 5. Go to step 3 until any \mathbf{v}_i^{Φ} changes
- 6. Return the feature space codebook.

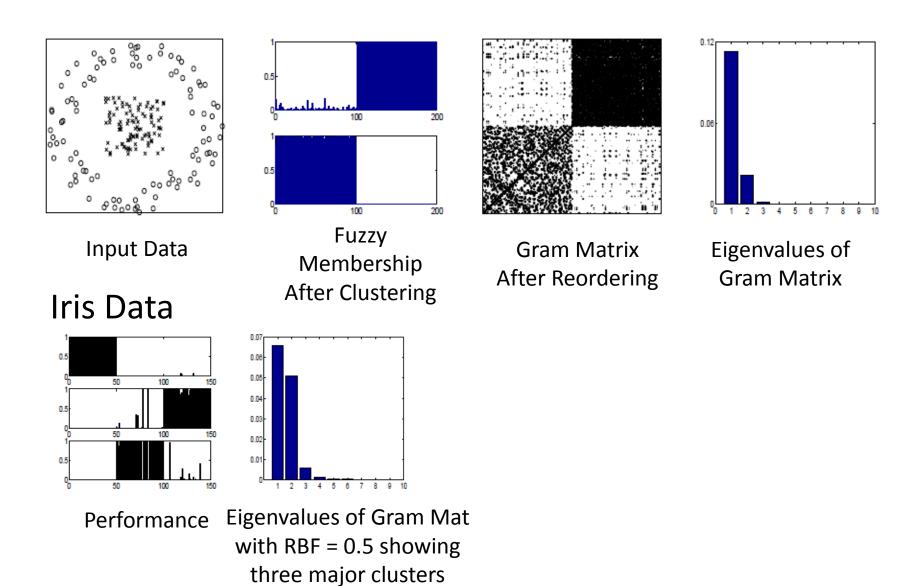
Kernel K-means Continued

- ullet Since $oldsymbol{arPhi}$ is not explicitly known updating the code vectors is not straight forward
- Writing each centroid in Kernel space $\mathbf{v}_j^{\Phi} = \sum_{h=1}^{\infty} \gamma_{jh} \Phi(\mathbf{x}_h)$ where γ_{jh} is 1 if \mathbf{x}_h belongs to the set j, zero otherwise.
- Now, $\| \Phi(\mathbf{x}_i) \mathbf{v}_j^{\Phi} \|^2 = \left\| \Phi(\mathbf{x}_i) \sum_{h=1}^n \gamma_{jh} \Phi(\mathbf{x}_h) \right\|^2$ can be expanded to:

$$\left\| \Phi(\mathbf{x}_i) - \sum_{h=1}^n \gamma_{jh} \Phi(\mathbf{x}_h) \right\|^2 = k_{ii} - 2 \sum_h \gamma_{jh} k_{ih} + \sum_r \sum_s \gamma_{jr} \gamma_{js} k_{rs}$$

 Gram Matrix, ideally has a block diagonal structure if the clusters are uniformly dense and hence provide a good way to estimate the number of clusters too

Kernel K-means Examples



M. Girolami, Mercer kernel based clustering in feature space, IEEE Trans. Neural Networks 13 (3) (2002) 780–784.

Self Organizing Map(SOM)

- Code vectors organized on a grid and their adaptation is propagated along the grid
- Some popular metrics for the map include the Manhattan distance where the distance between two elements $\mathbf{r} = (r_1, r_2)$ and $\mathbf{s} = (s_1, s_2)$ is:

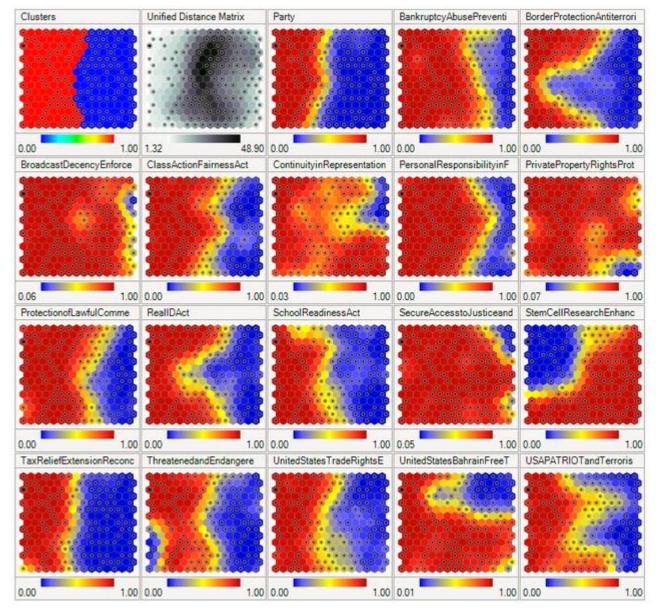
$$d_{rs} = |r_1 - s_1| + |r_2 - s_2|$$

- Algorithm
 - Initialize the codebook V randomly picking from X
 - Initialize the set C of connections to form the rectangular grid of dimension $n_1 \times n_2$
 - Initialize t = 0
 - Randomly pick an input **x** from *X*.

 - Determine the winner: $\mathbf{s}(\mathbf{x}) = \arg\min_{\mathbf{v}_j \in V} \|\mathbf{x} \mathbf{v}_j\|$ Adapt each code vector: $\Delta \mathbf{v}_j = \varepsilon(t) h(d_{rs}) (\mathbf{x} \mathbf{v}_j)$ $h(d_{rs}) = \exp\left(-\frac{d_{rs}^2}{2\sigma^2(t)}\right)$ $\sigma(t) = \sigma_i \left(\frac{\sigma_f}{\sigma_i}\right)^{t/t_{\text{max}}}$
 - Increment t
 - 8. If $t < t_{\text{max}}$ go to step 4

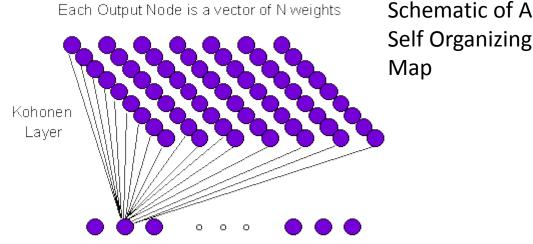
$$\varepsilon(t) = \varepsilon_{\rm i} \left(\frac{\varepsilon_{\rm f}}{\varepsilon_{\rm i}}\right)^{t/t_{\rm max}}$$

SOM Example



A SOM showing U.S. Congress voting patterns. The data were initially distributed randomly on a 2D grid and then clustered. The grey dots show the neurons. The first box shows clustering and, the second distances. The third is a panel shows the party affiliation, red-republican and bluedemocrat and the rest are the features, which, in this instance are yes(blue) or no(red) votes.

Source: http://en.wikipedia.org/wiki/Self-organizing_map



Self Organizing Map

Input Layer -- Each Node a vector representing Niterms.

Source: http://cs.oswego.edu/~dschlege/sitev2/courses/468/Cog468%20ASOM%20Presentation.htm

Kernel SOM

- Again the algorithm is adapted by first mapping the points to kernel space.
- The code vectors are defined as: $\mathbf{v}_{j}^{\Phi} = \sum_{i=1}^{N} \gamma_{jh} \Phi(\mathbf{x}_{h})$ (1)
- The winner is computed with:

$$\mathbf{s}(\Phi(\mathbf{x}_i)) = \arg\min_{\mathbf{v}_j^{\Phi} \in V} \|\Phi(\mathbf{x}_i) - \mathbf{v}_j^{\Phi}\| \quad \text{or}$$

$$\mathbf{s}(\Phi(\mathbf{x}_i)) = \arg\min_{\mathbf{v}_i^{\Phi} \in V} \left(k_{ii} - 2\sum_{l} \gamma_{jh} k_{ih} \sum_{r} \sum_{s} \gamma_{jr} \gamma_{js} k_{rs} \right)$$

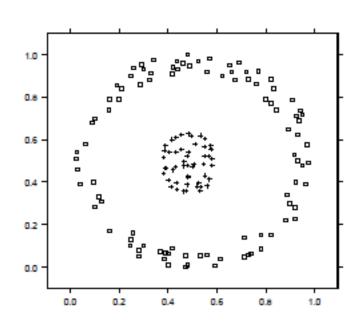
The update rules are:

$$\mathbf{v}_{j}^{\Phi\prime} = \mathbf{v}_{j}^{\Phi} + \varepsilon(t)h(d_{rs})(\Phi(\mathbf{x}) - \mathbf{v}_{j}^{\Phi}).$$
Using (1) we get
$$\sum_{h=1}^{n} \gamma_{jh}' \Phi(\mathbf{x}_{h}) = \sum_{h=1}^{n} \gamma_{jh} \Phi(\mathbf{x}_{h}) + \varepsilon(t)h(d_{rs}) \times \left(\Phi(\mathbf{x}) - \sum_{h=1}^{n} \gamma_{jh} \Phi(\mathbf{x}_{h})\right)$$

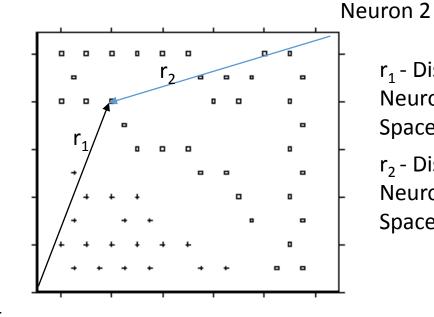
$$\left((1 - \varepsilon(t)h(d_{rs}))\gamma_{jt} - \inf_{h=1} i \neq i\right)$$

$$\gamma'_{jh} = \begin{cases} (1 - \varepsilon(t)h(d_{rs}))\gamma_{jh} & \text{if } i \neq j, \\ (1 - \varepsilon(t)h(d_{rs}))\gamma_{jh} + \varepsilon(t)h(d_{rs}) & \text{otherwise.} \end{cases}$$

Kernel SOM Example



Input data clustered by Kernel SOM on the right



r₁ - Distance from Neuron 1 in Hilbert Space

r₂ - Distance from Neuron 2 in Hilbert Space

Neuron 1

Data clustered by Kernel SOM, using an RBF of 0.1 and 2 clusters

D. Macdonald, C. Fyfe, The kernel self-organising map, in: Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies 2000, vol. 1, 2000, pp. 317–320.

Neural Gas and Kernel Neural Gas

 Similar to SOM the major difference being a soft adaptation rule in which all neurons are adapted to each individual input.

$$\Delta \mathbf{v}_j = \varepsilon(t) h_{\lambda}(\rho_j) (\mathbf{x} - \mathbf{v}_j), \varepsilon(t) \in [0, 1] \ h_{\lambda}(\rho_j) = \exp(-\rho_j/\lambda)$$

- ρ_i is the rank of closeness of the current code vector j, to the input x
- λ is the characteristic decay
- For the kernelized version the update rule is:

$$\Delta \mathbf{v}_{j}^{\Phi} = \varepsilon h_{\lambda}(\rho_{j})(\Phi(\mathbf{x}) - \mathbf{v}_{j}^{\Phi})$$

Fuzzy C-Means

- Starts by defining a membership matrix, A_{cn} denotes vector space of c x n real matrices; $M_{fc} = \left\{ U \in A_{cn} \middle| u_{ih} \in [0,1] \ \forall i,h; \sum_{i=1}^{c} u_{ih} = 1 \ \forall h; \ 0 < \sum_{h=1}^{n} u_{ih} < n \ \forall i \right\}$
- Minimizes functional:

$$J(U, V) = \sum_{h=1}^{n} \sum_{i=1}^{c} (u_{ih})^{m} \|\mathbf{x}_{h} - \mathbf{v}_{i}\|^{2} \text{ with the constraint } \sum_{i=1}^{c} u_{ih} = 1 \quad \forall i = 1, \dots, n.$$

- *m* controls the fuzziness of the memberships and is usually set close to 2, if *m* tends to 1, the solution tends to the k-means solution
- Lagrangian of the objective is $L_h = \sum_{i=1}^{c} (u_{ih})^m ||\mathbf{x}_h \mathbf{v}_i||^2 + \alpha_h \left(\sum_{i=1}^{c} u_{ih} 1\right)$
- Taking the derivative with respect to u_{ih} and v_i and setting them to zero yields the iteration scheme: $u_{ih}^{-1} = \sum_{i=1}^{c} \left(\frac{\|\mathbf{x}_h \mathbf{v}_i\|}{\|\mathbf{x}_h \mathbf{v}_i\|} \right)^{2/(m-1)}, \quad \mathbf{v}_i = \frac{\sum_{h=1}^{n} (u_{ih})^m \mathbf{x}_h}{\sum_{h=1}^{n} (u_{ih})^m}$

Kernel Fuzzy C-Means

The objective in the kernel space is:

$$J^{\Phi}(U, V) = \sum_{h=1}^{n} \sum_{i=1}^{c} (u_{ih})^{m} \|\Phi(\mathbf{x}_{h}) - \Phi(\mathbf{v}_{i})\|^{2}$$

In case of the Gaussian Kernel the derivative is:

$$\frac{\partial K(\mathbf{x}_h, \mathbf{v}_i)}{\partial \mathbf{v}_i} = \frac{(\mathbf{x}_h - \mathbf{v}_i)}{\sigma^2} K(\mathbf{x}_h, \mathbf{v}_i)$$

This yields the iteration scheme:

$$u_{ih}^{-1} = \sum_{i=1}^{c} \left(\frac{1 - K(\mathbf{x}_h, \mathbf{v}_i)}{1 - K(\mathbf{x}_h, \mathbf{v}_j)} \right)^{1/(m-1)} \mathbf{v}_i = \frac{\sum_{h=1}^{n} (u_{ih})^m K(x_h, v_i) \mathbf{x}_h}{\sum_{h=1}^{n} (u_{ih})^m K(x_h, v_i)}$$

Possibilistic C-Means

- Here, the class membership of a data point can be high for more than one class
- Objective that is minimized is:

$$J(U, V) = \sum_{h=1}^{n} \sum_{i=1}^{c} (u_{ih})^{m} \|\mathbf{x}_{h} - \mathbf{v}_{i}\|^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{h=1}^{n} (1 - u_{ih})^{m}$$

• The iteration scheme is:

$$u_{ih} = \left[1 + \left(\frac{\|\mathbf{x}_h - \mathbf{v}_i\|^2}{\eta_i}\right)^{1/(m-1)}\right]^{-1} \quad \mathbf{v}_i = \frac{\sum_{h=1}^n (u_{ih})^m \mathbf{x}_h}{\sum_{h=1}^n (u_{ih})^m}$$

• For the parameter η_i the authors suggest using:

$$\eta_i = \gamma \frac{\sum_{h=1}^{n} (u_{ih})^m \|\mathbf{x}_h - \mathbf{v}_i\|^2}{\sum_{h=1}^{n} (u_{ih})^m}$$

Kernel Possibilistic C-Means

Kernelization of the metric in the objective yields:

$$J^{\Phi}(U, V) = \sum_{h=1}^{n} \sum_{i=1}^{c} (u_{ih})^{m} \|\Phi(\mathbf{x}_{h}) - \Phi(\mathbf{v}_{i})\|^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{h=1}^{n} (1 - u_{ih})^{m}$$

Minimization yields the iteration scheme:

$$u_{ih}^{-1} = 1 + \left(\frac{\|\Phi(\mathbf{x}_h) - \Phi(\mathbf{v}_i)\|^2}{\eta_i}\right)^{1/(m-1)}$$

$$\mathbf{v}_i = \frac{\sum_{h=1}^n (u_{ih})^m K(x_h, v_i) \mathbf{x}_h}{\sum_{h=1}^n (u_{ih})^m K(x_h, v_i)}$$

• For the Gaussian Kernel: $u_{ih}^{-1} = 1 + 2\left(\frac{1 - K(\mathbf{x}_h, \mathbf{v}_i)}{\eta_i}\right)^{1/(m-1)}$

One Class Support Vector Machines

- The idea is to find the smallest enclosing sphere in kernel space of radius R centered at v: $\|\Phi(\mathbf{x}_j) \mathbf{v}\|^2 \le R^2 + \xi_j \quad \forall j$, $\xi_i \ge 0$, are the slack variables
- The Lagrangian for the above is:

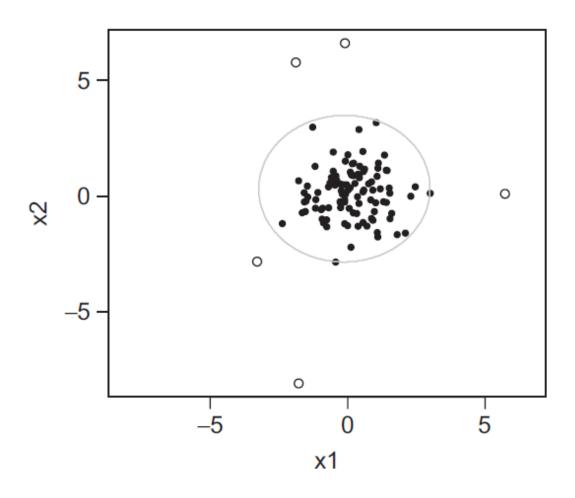
$$L = R^2 - \sum_j (R^2 + \xi_j - \|\Phi(\mathbf{x}_j) - \mathbf{v}\|^2) \beta_j - \sum_j \xi_j \mu_j + C \sum_j \xi_j \quad , \beta_i \ge 0 \text{ and } \mu_i \ge 0 \text{ are}$$
 Lagrange multipliers, $C \sum_j \xi_j$ is the penalty term with C -user defined const.

• Taking the derivative wrt ξ_j , R, v and the KKT complementarity conditions yield the following QP: $\sum_i \beta_j = 1, \quad \mathbf{v} = \sum_i \beta_j \Phi(\mathbf{x}_j), \quad \beta_j = C - \mu_j$

$$\xi_j \mu_j = 0, \quad (R^2 + \xi_j - \|\Phi(\mathbf{x}_j) - \mathbf{v}\|^2)\beta_j = 0$$

• $\xi_i > 0$, for outliers and $\xi_i = 0$, $0 < \beta_i < \mathcal{C}$ for the support vectors

Example of one class SVMs



One class SVM with a linear kernel applied to a data set with outliers. The gray line shows the projection in input space of the smallest enclosing sphere in feature space

Extension of one class SVMs to Clustering

- Similar to Kernel SVM but here the SVMs are applied to partition the space.
- The Voronoi regions are now spheres:

$$\pi_i^{\Phi}(\rho) = \{\mathbf{x}_j \in \pi_i^{\Phi} \text{ and } \|\Phi(\mathbf{x}_j) - \mathbf{v}_i^{\Phi}\| < \rho\}.$$

- Algorithm:
 - 1. Project the data set X into a feature space \mathscr{F} , by means of a nonlinear mappin Φ
 - 2. Initialize the codebook $V^{\Phi} = (\mathbf{v}_1^{\Phi}, \dots, \mathbf{v}_k^{\Phi})$ with $\mathbf{v}_i^{\Phi} \in \mathscr{F}$
 - 3. Compute $\pi_i^{\Phi}(\rho)$ for each center \mathbf{v}_i^{Φ}
 - 4. Apply One Class SVM to each $\pi_i^{\Phi}(\rho)$ and assign the center obtained to \mathbf{v}_i^{Φ}
 - 5. Go to step 2 until any \mathbf{v}_i^{Φ} changes.
 - 6. Return the feature space codebook.