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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

What Does the Kernel Trick Do?
Given an algorithm which uses inner products in it’s calculations,
we can construct an alternative algorithm, by replacing each of the
inner products with a positive definite kernel function.
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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

What Does the Kernel Trick Do?
Given an algorithm which uses inner products in it’s calculations,
we can construct an alternative algorithm, by replacing each of the
inner products with a positive definite kernel function.

So ... What is a Positive Definite Kernel Function?

Nikolaos Mitsakos (MathMits@yahoo.gr) University of Houston 3/1



The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

What Is a Kernel Function?
Given a set X , a 2-variable function K : X ×X −→ C is called
positive definite (kernel) function (K ≥ 0) provided that for
each n ∈N and for every choice of n distinct points {x1, ...,xn} ⊆ X
the Gram matrix of K regarding {x1, ...,xn} is positive definite.

Gram Matrix:

The elements of the Gram Matrix (or kernel Matrix) of K regarding
{x1, ...,xn} are given by the relation:

(K(xi ,xj ))i ,j = K(xi ,xj ) for i , j = 1, ...,n (1)

The Gram Matrix is a Hermitian Matrix i.e. a matrix equal to it’s Conjugate
Transpose.

Such a matrix being Positive Definite means that λ ≥ 0 for each and every
one of it’s eigenvalues λ .
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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

How Does the Kernel Trick Do It? (in short ...)
Consider a set X and a positive definite (kernel) function
K : X ×X −→ R. The RKHS theory ensures:

the existence of a corresponding (Reproducing Kernel) Hilbert
Space H , which is a vector subspace of F (X ,R)
(Moore’s Theorem).

the existence of a representation Φ : X −→H : Φ(x) = kx

(feature representation) which maps each element of X to
an element of H (kx ∈H is called the reproducing kernel
function for the point x).

so that :

〈Φ(x),Φ(y)〉H = 〈kx ,ky 〉H = ky (x) = K (x ,y)
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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

Thus:

Through the feature map, the kernel trick succeeds in
transforming a non-linear problem within the set X into a
linear problem inside the “better” space H .

We may, then, solve the linear problem in H , which usually is
a relatively easy task, while by returning the result in space X
we obtain the final, non-linear, solution to our original
problem.
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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - Kernel Functions.

Examples of Kernel functions.

The most widely used kernel functions include the Gaussian
kernel:

K (xi ,xj ) = e−a‖xi−xj‖2

as well as the polynomial kernel:

K (xi ,xj ) = (xT
i xj + 1)p

But there are plenty of other choices (e.g. linear kernel,
exponential kernel, Laplacian kernel etc.)
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The Kernel Least Mean Squares Algorithm
PART I: Reproducing Kernel Hilbert Spaces (RKHS) - The Kernel Trick.

Examples of Algorithms capable of operating with kernels:

Support Vector Machines (SVM’s)

Gaussian processes

Fisher’s linear discriminant analysis (LDA)

Principal Components Analysis (PCA)

Adaptive filters (Least Mean Squares Algorithm) e.t.c
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The Kernel Least Mean Squares Algorithm
What follows ...

In This Presentation We Focus On:

Description of Learning Problems.

The Least Mean Squares (LMS) algorithm used to address
Learning Problems.

Application of the Kernel Trick - The Kernel LMS algorithm.

Techniques for Sparsifying the Solution:

Platt’s Novelty Criterion.
Coherence Based Sparsification strategy.
Surprise Criterion.
Quantization Technique.

The corresponding algorithms for each case are presented in the
text: Applications of Functional Analysis in Machine Learning.
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

MOTIVATION:
Suppose we wish to discover the mechanism of a function

F : X ⊂ RM −→ R ( true filter)

having at our disposal just a sequence of example inputs-outputs

{(x1,d1),(x2,d2), . . . ,(xn,dn), . . .}
(where xn ∈ X ⊂ RM and dn ∈ R for every n ∈ N).

Figure: Adaptive Filter
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

MOTIVATION:
Suppose we wish to discover the mechanism of a function

F : X ⊂ RM −→ R ( true filter)

having at our disposal just a sequence of example inputs-outputs

{(x1,d1),(x2,d2), . . . ,(xn,dn), . . .}

(where xn ∈ X ⊂ RM and dn ∈ R for every n ∈ N).

Objective of a typical Adaptive Learning algorithm: to
determine, based on the given “training” data, the proper
input-output relation, fw, member of a parametric class of
functions H = {fw : X −→R, w ∈Rν}, so as to minimize the value
of a predefined loss function L(w).
L(w) calculates the error between the actual result dn and the
estimation fw(xn), at every step n.
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

Settings for the LMS algorithm :

hypothesis space: the class of linear functions

H1 = {fw(x) = wT x,w ∈ RM}

loss function: the Mean Sqare Error (MSE), defined as

L(w)≡ E [|dn− fw(x)|2] = E [|dn−wT x|2]

Notation: en = dn−wT
n−1xn

We call this the a priori error (at each step n).

The TARGET: based on a given set of training data
{(x1,d1),(x2,d2), . . . ,(xn,dn), . . .}, determine the proper
input-output relation fw, so as to minimize the value of the loss
function L(w).
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

Stochastic Gradient Descent method:
at each instance time n = 1,2, . . . ,N the gradient of the mean
square error

−∇L(w) = 2E [(dn−wT
n−1xn)(xn)] = 2E [enxn]

approximated by it’s value at every time instance n

E [enxn]≈ enxn

leads to the step update (or weight-update) equation, which,
towards the direction of reduction, takes the form:

wn = wn−1 + µenxn

Note: parameter µ expresses the size of the “learning step”
towards the direction of the descent.
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In more detail, the algorithm’s steps evolve in the following manner:

Initialization: w0 = 0

Step 1: (x1,d1) arrives

Step 2: f (x1)≡wT
0 x1 = 0

Step 3: e1 = d1− f (x1) = d1

Step 4: w1 = w0 + µe1x1 = µe1x1

Step 5: (x2,d2) arrives

Step 6: f (x2)≡wT
1 x2

Step 7: e2 = d2− f (x2)

Step 8: w2 = w1 + µe2x2

Step 9: (x3,d3) arrives

...
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

The Least-Mean Square Code:

w = 0

for i = 1 to N (e.g. N = 5000)

f ≡wT xi

e = di − f (a priori error)
w = w + µexi

end for

Variation: generated by replacing the last equation of the
aforementioned iterative process with

w = w +
µe

‖xi‖2
xi

called Normalized LMS. It’s optimal learning rate has been
proved to be obtained when µ = 1.
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The Kernel Least Mean Squares Algorithm
PART II: KLMS Algorithm (But first ... the LMS Algorithm!)

Note that:

After a training of n steps has taken place, each weight wn is
expressed as the linear combination of all the previous and the
last input data, all of them weighted by their corresponding a
priori errors.

The input-output procedure of this particular training system
can be expressed exclusively in terms of inner products:

f (xn+1) = wT
n xn+1 = µ

n

∑
k=1

ekxT
k xn+1

where

en = dn−µ

n−1

∑
k=1

ekxT
k xn (text pg. 34)

Conclusion: LMS can be easily extended to kernel LMS algorithm.
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The Kernel Least Mean Squares Algorithm
The Kernel LMS Algorithm.

Settings for the Kernel LMS algorithm :

new hypothesis space: the space of linear functionals
H2 = {Tw : H −→ R,Tw(φ(x)) = 〈w,φ(x)〉H ,w ∈H }
new sequence of examples: {(φ(x1),d1), . . . ,(φ(xn),dn)}
determine a function

f (xn)≡ Tw(φ(xn)) =< w,φ(xn) >H ,w ∈H

so as to minimize the loss function:

L(w)≡ E [|dn− f (xn)|2] = E [|dn−〈w,φ(xn)〉H |2]

once more:
en = dn− f (xn)
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The Kernel Least Mean Squares Algorithm
The Kernel LMS Algorithm.

We calculate the Frechet derivative:

∇L(w) =−2E [enφ(xn)]

which again (according to LMS rational...) we approximate by it’s
value for each time instance n

∇L(w) =−2enφ(xn)

eventually getting, towards the direction of minimization

wn = wn−1 + µenφ(xn) (2)
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The Kernel Least Mean Squares Algorithm
The Kernel LMS Algorithm.

Algorithm Steps:

w0 = 0

w1 = µe1φ(x1)

w2 = µe1φ(x1) + µe2φ(x2)

...

wn = µ

n

∑
k=1

ekφ(xk )
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The Kernel Least Mean Squares Algorithm
The Kernel LMS Algorithm.

So, at each time instance n we get:

f (xn) = Twn−1(φ(xn)) =< wn−1,φ(xn) >H

=< µ

n−1

∑
k=1

ekφ(xk ),φ(xn) >H

= µ

n−1

∑
k=1

ek < φ(xk ),φ(xn) >H

= µ

n−1

∑
k=1

ek K (xk ,xn)
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The Kernel Least-Mean Square Code:

Inputs: the data (xn,yn) and their number N

Output: the expansion w =
N

∑
k=1

αkK(·,uk ), where αk = µek

Initialization:
f 0 = 0, n: the learning step, µ: the parameter µ of the learning step
Define: vector α = 0, array D = {} and the parameters of the kernel
function.

for n = 1 . . .N do

if n == 1 then
fn = 0

else

Calculate the filter output fn =
M

∑
k=1

αk K (uk ,xn)

end if
Calculate the error: en = dn− fn

αn = µen

Register the new center un = xn at the center’s list, i.e.
D = {D,un}, αT = {αT ,αn}

end for
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The Kernel Least Mean Squares Algorithm
The Kernel LMS Algorithm.

Notes on Kernel LMS algorithm :

After N steps of the algorithm, the input-output relation is

wn = µ

n

∑
k=1

ekφ(xk )

f (xn) = µ

n−1

∑
k=1

ek K (xk ,xn) (see text pg. 37)

We can, again, use a normalised version:

wn = wn−1 +
µen

K (xn,xn)
φ(xn)

getting the normalized KLMS (NKLMS).(replacing the step

an = µen with an =
µen

κ
, where κ = K (xn,xn) would have

already been calculated at some earlier step).
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The Kernel Least Mean Squares Algorithm
PART III: Sparsifying the Solution

Disadvantage of the KLMS algorithm: The number of points
xn that get involved to the estimation of the result (Dictionary)
increases continually. This leads to:

constant increase in memory demands

constant increase in computational power demand

for as long as the algorithm evolves.
Solution: Discover methods that will limit the expansion’s size, by

forming the dictionary, to some extend, during the first stages
of the algorithm, adding plenty of new points (centers) and
increasing it’s range

subsequently allow new points to be added as centres only
when they satisfy certain criteria.
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Applications of Functional Analysis in Machine Learning
PART III: Sparsifying the Solution.

Generally, sparsification can be achieved by importing in
Kernel LMS algorithm the following procedure:

...

Calculate the error: en = dn− fn

αn = µen

Sparsification Rules Check
if Sparsification Rules are Satisfied then

M = M + 1
Register the new centre uM = xn at the centres list
D = {D,uM}, αT = {αT ,αn}

end if
...

Go to text (pg.40): See Platt’s Novelty Criterion & Quantization.
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Applications of Functional Analysis in Machine Learning
PART III: Sparsifying the Solution.

Platt’s novelty criterion: for every pair (xn,dn) that arrives:

Initially, the distance of the new point xn from the dictionary Dn−1
is calculated

dist = min
uk∈Dn−1

{‖xn−uk‖}

If dist < δ1 (a predefined lower limit), i.e. the vector under
consideration is “very” close to one of the vectors already in the
dictionary: the new vector is not registered at the dictionary (so
Dn = Dn−1).

Else the error en = dn− fn is calculated. If |en| ≤ δ2 (predefined
limit): the new point, still, doesn’t get registered at the dictionary,
(once more Dn = Dn−1).

Only if |en| ≥ δ2 then: xn is registered at Dn−1 so the dictionary is
then shaped as Dn = Dn−1∪{xn}.

Of course, every time we register a new point at the dictionary D we
should not neglect to register the corresponding coefficient an = µen at
the coefficients list α.
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Main disadvantage: such methods they preserve, indefinitely and
unchanged, the old information (in the form of ai that constitute
α), thus not being able to cope with changes that may effect the
channel. (should be considered more as on-line than as adaptive
filtering algorithms).

An alternative approach: imposing sparsity on the solution of
KLMS, preserving also the ability to adjust to channel’s changes
(quantization of the training data inside the input space).
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The Quantized Kernel Least-Mean Square (QKLMS):
Each new data xn arrives successively and the algorithm decides whether this is
a new center or a redundant point. Specifically:

If the distance of xn from the dictionary Dn, as shaped until that certain
time instance, is greater or equal than the quantizing size δ (i.e. xn

cannot be “quantized” to one of the points already in Dn−1): xn is
classified as a new center and it gets registered at the dictionary
(Dn = {Dn−1,xn}).

Otherwise, xn is recognized as “redundant” point and the algorithm does
not unnecessarily burden the size of the dictionary by registering it as a
new center. However it takes advantage of that information by updating
the coefficient of the center which is closest to this particular point (say
ul ∈Dn)(i.e. al = al + µen) .
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization

In order to test the performance of KLMS algorithm we consider a
typical non-linear channel equalization task. The non-linear
channel consists of a linear filter

tn = 0.8 ·yn + 0.7 ·yn−1

and a memoryless non-linearity

qn = tn + 0.8 · t2n + 0.7 · t3n

Then, the signal gets effected by additive white Gaussian noise
being finally observed as xn. Noise level has been set equal to 15
dB.
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

Figure: Equalization Task
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

The Channel Equalization Task aims at designing an inverse
filter which acts upon the filter’s output, xn, thus producing
the original input signal as close as possible.

We execute the algorithm KLMS for the set of examples

((xn,xn−1, . . . ,xn−k+1),yn−D)

where k > 0 is the “equalizer’s length” and D the “equalizer’s
time delay” (present at almost any equalization set up).

In other words, the equalizer’s result at each time instance n
corresponds to the estimation of yn−D .

Nikolaos Mitsakos (MathMits@yahoo.gr) University of Houston 30/1



Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

Details about the test:

We used 50 sets of 5000 input signal samples each (Gaussian
random variable with zero mean and unit variance) comparing
the performance of standard LMS with that of KLMS,
applying two different sparsification strategies.

Regarding the two versions of KLMS:

Gaussian kernel function was used in both variants.
NKLMS(nov.crit.): Platt’s Novelty Criterion was adopted as
the solution’s sparsification strategy
QNKLMS: the technique of data quantization was used.

We consider all algorithms in their normalized version.

The step update parameter was set for optimum results (in
terms of the steady-state error rate). Time delay was also
configured for optimum results.
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

Figure: The Learning curves for normalized LMS and two different versions of the KLMS algorithms. For
KLMS, the Gaussian kernel function (σ = 5) was used in both cases. For NKLMS(nov.crit.) variant Platt’s Novelty
Criterion was adopted as the solution’s sparsification technique (δ1 = 0.04, δ2 = 0.04), while in QNKLMS
quantization of the data undertakes the sparsification labor (with quantization size δ = 0.8).
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

Figure: The evolution of the expansion of the solution (i.e. the number of terms that appear in the expansion
of the solution) applying the two different sparsification methods: Platt’s novelty criterion (δ1 = 0.04, δ2 = 0.04) in
NKLMS(nov.crit.), quantization of the data (with quantization size δ = 0.8) in QNKLMS.

Nikolaos Mitsakos (MathMits@yahoo.gr) University of Houston 33/1



Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Non-linear Channel Equalization.

Conclusions:

The superiority of KLMS is obvious, which was of no
surprise as LMS is incapable of handling non-linearities.

The economy achieved by quantization, without any actual
cost in the efficiency of the algorithm, is remarkable.
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Applications of Functional Analysis in Machine Learning
PART IV: Simulations - testing the algorithms: Other Simulations.

Chaotic Time Series Prediction: short-term prediction of
the terms of the chaotic Mackey-Glass time-series. (see paper)

Real Data Prediction (in progress):
Apollo 14 Active Seismic Experiment: prediction of the actual,
chaotic, data recorded during the “thumber Apollo 14 Active
Seismic Experiment (ASE).
Economy Indices: prediction of the National Stock Market
Index of Greece.
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Applications of Functional Analysis in Machine Learning
END of Presentation

Thank You !

Enjoy Summer While it Lasts!
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