
EVERY REAL ELLIPSOID IN C2
ADMITS CR UMBILICAL

POINTS

XIAOJUN HUANG AND SHANYU JI

To the memory of Professor S. S. Chern

1. Introduction

By the Cartan-Chern-Moser theory [CM], the germ of a strongly pseudoconvex
real analytic hypersurface M ⊂ Cn is determined, up to a local biholomorphic
map, by a set of complete invariants which can be expressed by the curvatures of a
connection or the coefficients in a normal form.

When n ≥ 3, the fourth-order pseudoconformal curvature tensor S of Chern-
Moser [CM] is of fundamental importance because it generates other invariants by
differentiation. It is known that S ≡ 0 if and only if M is locally biholomorphic
to the sphere ∂Bn. When n = 2, the fourth-order curvature tensor vanishes iden-
tically and its role is played by the Cartan six-order invariant curvature tensor P
[Car]. Similarly, P ≡ 0 if and only if M is locally biholomorphic to the 3-sphere
∂B2. In both cases, a point on M , at which the Chern-Moser tensor S (or the
Cartan curvature tensor P for the case of n = 2) vanishes, is called a CR umbilical
point, or briefly, an umbilical point ([CM]). CR umbilical points are biholomorphic
differential invariants of M .

The study of CR umbilical points on a compact strongly pseudoconvex hyper-
surface M provides useful information for the holomorphic structure of its enclosed
domain, as well as the intrinsic CR structure ofM itself. However, different from the
situation in the classical Differential Geometry, except in the trivial spherical case,
where S or P ≡ 0, computing umbilical points seems to be a very difficult problem.
This is because the explicit formula for the fundamental Cartan-Chern-Moser cur-
vature tensions is too complicated. Indeed, the situation is already non-trivial even
in the simplest non-spherical case— where M is a real ellipsoid. Recently, based
on his previous work on the complex dynamics property of real ellipsoids, Webster
proved the following: (See §3 for the definitions)

Theorem 1.1. (Webster [We2]): A generic real ellipsoid in Cn with n ≥ 3 does
not admit any umbilical point.

Umbilical points on a certain class of real hypersurfaces of revolution were also
studied by Webster [We3].

A natural question arising from [We2] is then to ask whether a generic real
ellipsoid in C2 shares the same property as its analogy in higher dimensions. It
is indeed this problem that motivated our present work, and we provide, in this
paper, the following:

Theorem 1.2. Every real ellipsoid M ⊂ C2 admits at least four umbilical points.
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Theorem 1.2 resembles the classical result for the umbilical points on the ellip-
soids in R3 [pp222, Spv]. A famous theorem of Hamburger [Ham] states that every
compact real analytic convex surface in R3 admits at least two umbilical points.
We do not know if there is a CR version of the Hamburger theorem. More precisely,
it is an open question to us if every compact strongly convex hypersurface in C

2

admits at least two CR umbilical points. Notice that only for n = 2, the funda-
mental curvature tension reduces to a function. It may not be surprising that it is
more likely to find umbilical points on a hypersurface in C2 than to find umbilical
points for a hypersurface in Cn (n ≥ 3).

The proof of Theorem 1.2 uses Chern’s inhomogeneous coordinates for the pro-
jective G-structure bundle of the Segre family of a real analytic strongly pseudo-
convex hypersurface [Ch] [CJ], and a formula derived in Huang-Ji-Yau [Theorem
3.1, HJY] for the complexified Cartan fundamental curvature tension represented
under these coordinates. The formula of [HJY] seems to fit particularly well with
the computation here.

In the classical Differential Geometry [Spv], surfaces in R3 without umbilical
points must be diffeomorphic to a torus. The boundary of a small thickening of the
unit circle in R2 provides examples of closed surfaces without any umbilical point.
However, this type of examples does not give compact CR manifolds without CR
umbilical points. The following theorem gives a precise description for the set of
umbilical points for the thickening of a closed real curve. It is not clear to us if
there is any embeddable three dimensional compact CR manifold which has no CR
umbilical points.

Theorem 1.3. Let Mǫ ⊂ C2 be the boundary of the ǫ-thickening of the unit circle
{|z| = 1, w = 0}in C

2, defined by the equation (1 − |z|)2 + |w|2 = ǫ2, where ǫ is a
sufficiently small positive number. Then the set of all umbilical points of Mǫ forms
a disjoint union of a closed real analytic curve and two two-dimensional totally real
analytic tori.
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their pleasant and fruitful stay at the School of Mathematical Sciences, Wuhan
University, China, in the summer of 2004. The authors are indebted to Professor
Hua Chen for his effort and arrangement, which made the visit possible. The
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2. Umbilical Points of Real Hypersurfaces In C2

In this section, we briefly review the Cartan-Chern-Moser theory (cf. [C][HJ]
[Hu]). We restrict ourselves to the case of n = 2. Let

(2.1) M = {(z, w) ∈ C
2 : r(z, w, z, w) = 0}

be a Levi non-degenerate smooth real analytic hypersurface with (z0, w0) ∈M . Its
complexification, called the Segre family of M , is then the complex three-fold

M = {(z, w, ζ, η) | r(z, w, ζ, η) = 0} ⊂ C
4.

Clearly (z0, w0, z0, w0) ∈ M. Assume that

(2.2) rw(z0, w0, z0, w0) :=
∂r

∂w
(z0, w0, z0, w0) 6= 0.
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Define
(2.3)

S : M → M̃ := S(M) ⊂ C
2 × P

1, (z, w, ζ, η) 7→
(
z, w,

[
∂r

∂z
:
∂r

∂w

]
(z, w, ζ, η)

)
.

S is locally biholomorphic by the Levi non-degeneracy condition. (See Proposition
4.1 of [CJ]). With the assumption in (2.2), we can regard (z, w, ζ) as a local non-
homogeneous coordinates system for M, and we can write S(z, w, ζ) = (z, w,− rz

rw
).

Then we use (z, w, p) as a local coordinates system, called the Chern coordinates

system, for M̃, where

(2.4) p = − rz
rw
.

Making use of the implicit function theorem, we can find a unique holomorphic
function (in its argument) h(z, z, w) near (z0, z0, w0) with h(z0, z0, w0) = w0 such
that w = h(z, z, w) solves the equation: r(z, w, z, w) = 0. Then for (z, w, ζ, η) ∈ M,
we have

(2.5) p(z, w, ζ) =
∂h(z, ζ, η)

∂z
.

We have dp = p11dz + p̂1
1dζ + p̂2

1dη, where p11 = ∂2h
∂z2 , p̂1

1 = ∂2h
∂ζ∂z and p̂2

1 = ∂2h
∂η∂z ;

and we have the following identity:

(2.6) −pdz + dw − p̂1dζ − p̂2dη = 0

where p = p1 = ∂h
∂z , p̂1 = ∂h

∂ζ and p̂2 = ∂h
∂η . Therefore, we obtain

(2.7) dp|M =

(
p11 −

p̂2
1p1

p̂2

)
dz +

p̂2
1

p̂2
dw +

(
p,1
1 − p,2

1 p
,1

p,2

)
dζ.

Hence, we have the following holomorphic coframe on M̃:

θ = dw − pdz = dw − p1dz,

θ1 = dz,

θ1 = =
p̂2
1

p̂2
θ +

(
p̂1
1 −

p̂2
1p̂

1

p̂2

)
dζ = dp− p11dz.

We emphasize again that p11 is a holomorphic function in (z, w, p) near (z0, w0, p0)
with (z0, w0) ∈M and p0 = p(z0, w0, z0); and p11 is given by the following formula:

(2.8) p11 =
∂2h

∂z2

Define the holomorphic coframes over M:

(2.9) ω = uθ, ω1 = u1θ + u1
1θ

1, ω1 = v1θ + v1
1θ1

where u, u1
1, u

1, v1 are holomorphic functions with u = iu1
1v

1
1 6= 0.

Now, the fundamental Cartan-Chern-Moser theory [CM] gives the following:

Let M = {r = 0} ⊂ C
2, (z0, w0) ∈ M such that (2.2) is satisfied and let M̃

be as in (2.3). Let π̃ : Ỹ → M̃ be the corresponding holomorphic projective
structure bundle. Then besides the 3 holomorphic 1-forms in (2.9), there exist

5 more holomorphic 1-forms φ, φ1
1, φ

1, φ1, ψ, defined over Ỹ, with holomorphic
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coordinates z, w, p, u, u1
1, u

1, v1, t, with u, u1
1 6= 0. These holomorphic 1-forms are

C - linearly independent, and satisfy the following structure equations

(2.10)

dω = iω1 ∧ ω1 + ω ∧ φ,
dω1 = ω1 ∧ φ1

1 + ω ∧ φ1,
dω1 = φ1

1 ∧ ω1 + ω1 ∧ φ+ ω ∧ φ1,
dφ = iω1 ∧ φ1 + iφ1 ∧ ω1 + ω ∧ ψ,
dφ1

1 = iω1 ∧ φ1 − 2iφ1 ∧ ω1 − 1
2ψ ∧ ω,

dφ1 = φ ∧ φ1 + φ1 ∧ φ1
1 − 1

2ψ ∧ ω1 + L11ω ∧ ω1,
dφ1 = φ1

1 ∧ φ1 − 1
2ψ ∧ ω1 + P11ω ∧ ω1,

dψ = φ ∧ ψ + 2iφ1 ∧ φ1 +H1ω ∧ ω1 +K1ω ∧ ω1.

All of these forms ω, ω1, ω1, φ, φ
1
1, φ

1, φ1 and ψ, as well as all of the curvature func-
tions L11, P11, H1 and K1, have been calculated explicitly in [Theorem 3.1, HJY].
In particular, we have

(2.11)

L11 = − i(u1

1
)2

6u3

∂4p11

∂p4 ,

P11 = i
u(u1

1
)2

[
∂2p11

∂w2 − 1
2

∂p11

∂w
∂2p11

∂p2 + 2
3

∂p11

∂p
∂2p11

∂p∂w + p11

6
∂3p11

∂p2∂w

− 1
6

∂p11

∂p

(
∂3p11

∂p2∂z + p ∂3p11

∂p2∂w

)
− 2

3

(
∂3p11

∂z∂w∂p + p11
∂3p11

∂p2∂w + p ∂3p11

∂p∂w2

)

+ 1
6

(
∂4p11

∂p2∂z2 + p11
∂4p11

∂p3∂z + p ∂4p11

∂p2∂z∂w

)
+ 1

6
∂3p11

∂p3

(
∂p11

∂z + p∂p11

∂w

)

+ p11

6

(
∂4p11

∂z∂p3 + p11
∂4p11

∂p4 + p ∂4p11

∂p3∂w

)
+ p

6

(
∂4p11

∂z∂p2∂w + p11
∂4p11

∂p3∂w + p ∂4p11

∂p2∂w2

)]
.

On the CR structure bundle Ŷ over M̂ = S({(z, w, z, w) : (z, w) ∈ M}), there

are R-linearly independent 1-forms ω, ω1, ω1, φ1
1, φ = φ1

1 + φ1
1, φ

1, φ1, ψ satisfying
the structure equations

(2.12)

dω = iω1 ∧ ω1 + ω ∧ φ,
dω1 = ω1 ∧ φ1

1 + ω ∧ φ1,

dφ1
1 = iω1 ∧ φ1 − 2iφ1 ∧ ω1 − 1

2ψ ∧ ω,
dφ1 = φ ∧ φ1 + φ1 ∧ φ1

1 − 1
2ψ ∧ ω1 + L̂11ω ∧ ω1,

dψ = φ ∧ ψ + 2iφ1 ∧ φ1 + (−Ĥ1ω
1 − Ĥ1ω1) ∧ ω.

Ii is known that the projective connection underlines the CR connection [C]

[F]. Hence the structure equations (2.10), when restricted on Ŷ , reduce to (2.12).

Consequently, L̂11 = L11|Ŷ = P11|Ŷ . L̂11, when pulled back to (Y, π,M), is the
Cartan fundamental curvature function. Hence, (z0, w0) ∈M is an umbilical point

if and only if L11|Ŷ = 0 along the fiber π̂−1(z0, w0), where π̂ : Ŷ → M̂ is the natural
projection. Notice that (z0, w0) is an umbilical point of M if and only if there is a
biholomorphic change of coordinates under which (z0, w0) is mapped to the origin

and M̂ is defined by an equation of the form: Im(w) = |z|2 + o(|z|6). (See [CM]).
From (2.11), we notice that L11 vanishes at a point in the fiber π̂−1(S(z0,

w0, z0, w0)) if and only if L11 vanishes along the whole fiber π̂−1(S(z0, w0, z0, w0)).
Since u 6= 0, u1

1 6= 0 in (2.11), we obtain

Theorem 2.1. Let M = {r = 0} ⊂ C2. Let r and (z0, w0) ∈ M be as in (2.1).
Assume that (2.2) is satisfied. Then (z0, w0) ∈M is an umbilical point if and only



EVERY REAL ELLIPSOID IN C
2 ADMITS CR UMBILICAL POINTS 5

if

∂4p11

∂p4
(z0, w0, p0) = 0

where p0 = − rz

rw
(z0, w0, z0, w0).

3. Umbilical points of ellipsoids in C2

Recall that a real ellipsoid M ⊂ C
n is the image of the unit sphere ∂B

n under
a real-affine transformation of R2n := Cn. It is known [We1] that after a holomor-
phic affine transformation, any real ellipsoid is given by an equation of the form:∑n

j=1(Ajx
2
j + Bjy

2
j ) = 1 where Aj ≥ Bj > 0 and zj = xj + iyj. The complex

structure of ellipsoids was first studied by Webster in his famous paper [We1]. He
showed that when n ≥ 2, two ellipsoids are biholomorphically equivalent if and only
if the set of ratios (Aj −Bj)/(Aj +Bj) is the same for the two. Hence any ellipsoid
M can be made into the form:

(3.1)
n∑

j=1

(
(1 + aj)x

2
j + y2

j

)
= 1

where aj ≥ 0. Notice that M is spherical if and only if aj = 0 for all j. In particular,
after a holomorphically linear change of coordinates, any ellipsoid M in C2 can be
given by

(3.2) (1 + a1)x
2
1 + y2

1 + (1 + a2)x
2
2 + y2

2 = 1, a1, a2 ≥ 0;

or equivalently,

(3.3) a1z
2 + a1z

2 + 2(2 + a1)zz + a2w
2 + a2w

2 + 2(2 + a2)ww = 4.

We notice from (3.2) that M can be parameterized by three real parameters
α, β ∈ [0, 2π], c ∈ [0, 1] through the following equation:

(3.4) z =
c√

1 + a1
cos α+ i c sin α, w =

√
1 − c2√
1 + a2

cos β + i
√

1 − c2sin β

In fact, for any c ∈ [0, 1], consider w = x2 + iy2 with (1+a2)x
2
2 + y2

2 = 1− c2. Then

w =
√

1−c2√
1+a2

cos β + i
√

1 − c2sin β for β ∈ [0, 2π]. Since (1 + a1)x
2
1 + y2

1 = c2, the

formula for z = x1 + iy1 = c√
1+a1

cos α+ i c sin α follows.

Complexifying (3.3), we obtain the Segre family M ⊂ C2 ×C2 of M , defined by
the equation:

(3.5) a1z
2 + a1ζ

2 + 2(2 + a1)zζ + a2w
2 + a2η

2 + 2(2 + a2)wη = 4.

Choose the defining function ofM to be r := a1z
2+a1z

2+2(2+a1)zz+a2w
2+a2w

2+
2(2+a2)ww−4. Then a point (z, w) satisfies (2.2) if and only if a2w+(2+a2)w 6= 0.
By (3.4), this is equivalent to the condition that c 6= 1, or equivalently, w 6= 0. We
assume

(3.6) c 6= 1, i.e., w 6= 0.

Then making use of the implicit function theorem, we have a unique function w =
h(z, z, w), which solves the the equation r = 0 near the point under study. Applying
∂
∂z and ∂2

∂z2 to (3.5), we get a1z + (2 + a1)ζ + a2w
∂h
∂z + (2 + a2)η

∂h
∂z = 0 and
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a1 + a2

(
∂h
∂z

)2

+ a2w
∂2h
∂z2 + (2 + a2)η

∂2h
∂z2 = 0. Since p = ∂h

∂z and p11 = ∂2h
∂z2 on M,

we obtain

(3.7) a1z + (2 + a1)ζ + a2wp+ (2 + a2)ηp = 0 and

(3.8) a1 + a2p
2 + a2wp11 + (2 + a2)ηp11 = 0.

At the point (z, w, z, w) ∈ M, we then have

(3.9) p = − a1z + (2 + a1)z

a2w + (2 + a2)w
.

Now, we can use (3.5) (3.6) (3.7) and (3.8) to cancel out ξ, η as follows:
Multiplying (2 + a1)

2 to the equation (3.5) and making use of the equality:
(2 + a1)ζ = −a1z − a2wp− (2 + a2)ηp from (3.7), we have

(3.10)

(2 + a1)
2a1z

2 + a1

[
a1z + a2wp+ (2 + a2)ηp

]2

+2(2 + a1)
2z

(
− a1z − a2wp− (2 + a2)ηp

)

+a2(2 + a1)
2w2 + a2(2 + a1)

2η2

+2(2 + a1)
2(2 + a2)wη = 4(2 + a1)

2.

Multiplying (3.10) by (2 + a2)
2p2

11 and making use of (3.8): (2 + a2)ηp11 = −a1 −
a2p

2 − a2wp11, we obtain the following
(3.11)

a1(2 + a1)
2(2 + a2)

2z2p2
11 + a1(2 + a2)

2

(
a1zp11 − a1p− a2p

3

)2

−2(2 + a1)
2(2 + a2)

2p11z(a1zp11 − a1p− a2p
3)

+a2(2 + a1)
2(2 + a2)

2p2
11w

2 + a2(2 + a1)
2

(
a1 + a2p

2 + a2wp11

)2

−2(2 + a1)
2(2 + a2)

2wp11(a1 + a2p
2 + a2wp11) = 4(2 + a1)

2(2 + a2)
2p2

11.

Write (3.11) as

(3.12) Ãp2
11 + 2B̃p11 + C̃ = 0, where

(3.13)

Ã = −4a1(1 + a1)(2 + a2)
2z2 − 4a2(1 + a2)(2 + a1)

2w2 − 4(2 + a1)
2(2 + a2)

2,

(3.14) B̃ = 4(a1 + a2p
2)

[
(1 + a1)(2 + a2)

2zp− (2 + a1)
2(1 + a2)w

]
,

(3.15) C̃ = (a1 + a2p
2)2

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]
.

Assume that Ã 6= 0 at the point (z, w) ∈M with w 6= 0. We can then solve p11

from (3.12):

(3.16) p11 =
−B̃ ± H̃

Ã
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where

(3.17)

H̃2 = B̃2 − ÃC̃ = 4(a1 + a2p
2)2{

4

[
(1 + a1)(2 + a2)

2zp− (1 + a2)(2 + a1)
2w

]2

+

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]
·
[
a1(1 + a1)(2 + a2)

2z2

+a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]}
.

After taking out the common factor 2(a1 + a2p
2), (3.16) can be simplified as

(3.18) p11 =
−B̂ ± Ĥ

Ã
· 2(a1 + a2p

2)

where 2(a1 + a2p
2)B̂ = B̃, and

(3.19)

Ĥ2 = 4

[
(1 + a1)(2 + a2)

2zp− (1 + a2)(2 + a1)
2w

]2

+

[
a1(2 + a2)

2p2 + a2(2 + a1)
2

]

·
[
a1(1 + a1)(2 + a2)

2z2 + a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
.

Write

(3.20) Ĥ2 = Ap2 +Bp+ C, where

(3.21)
A = 4(1 + a1)

2(2 + a2)
4z2 + a1(2 + a2)

2

[
a1(1 + a1)(2 + a2)

2z2

+a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
,

(3.22) B = −8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2zw,

(3.23)
C = 4(1 + a2)

2(2 + a1)
4w2 + a2(2 + a1)

2

[
a1(1 + a1)(2 + a2)

2z2

+a2(1 + a2)(2 + a1)
2w2 + (2 + a1)

2(2 + a2)
2

]
.

Assume that Ĥ2 = Ap2 + Bp + C 6= 0 at the point (z, w) ∈ M with p being

given as before. Notice that Ã is independent of p and that the degree of B̂ in p is
1. From the formula of p11 in (3.18), it follows that at (z, w, z, w),

(3.24)
∂4p11

∂p4
= 0 ⇔ ∂4

∂p4

(
(a1 + a2p

2)Ĥ

)
= 0.

Assume that Ĥ(z∗, w∗, p∗) = 0 with (z∗, w∗) ∈M and p∗ = p(z∗, w∗, z∗), where

w∗, A(z∗, w∗), Ã(z∗, w∗) 6= 0.

Since p11(z, w, p) is a holomorphic function for (z, w, p) ≈ (z∗, w∗, p∗), we eas-

ily see from (3.18) that J(z, w, p) := Ĥ · (a1 + a2p
2) is also holomorphic for
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(z, w, p) ≈ (z∗, w∗, p∗). In particular, J(z∗, w∗, p) is holomorphic in p for p ≈ p∗.

Now, suppose that 2A(z∗, w∗)p∗ + B(z∗, w∗) 6= 0. Then Ĥ = ±(p − p∗)1/2h∗

with h∗ 6= 0 holomorphic for p ≈ p∗, by (3.20). This clearly contradicts the
fact that J(z∗, w∗, p) is holomorphic in p for p ≈ p∗. Hence, we conclude that

Ĥ(z∗, w∗, p∗) = 0 can only occur at the point where

(3.25) 2A(z∗, w∗)p∗ +B(z∗, w∗) = 0.

Next, we have

(3.26)
∂4

∂p4

(
(a1 + a2p

2)Ĥ

)
= 12a2

∂2Ĥ

∂p2
+ 8a2p

∂3Ĥ

∂p3
+ (a1 + a2p

2)
∂4Ĥ

∂p4
.

Since Ĥ2 = Ap2+Bp+C, we get 2Ĥ ∂Ĥ
∂p = 2Ap+B. We continue to differentiate

it to get

(
∂Ĥ
∂p

)2

+ Ĥ ∂2Ĥ
∂p2 = A. Hence

(3.27)
∂2Ĥ
∂p2 =

A−( ∂Ĥ
∂p

)2

Ĥ
= 4AĤ2−(2Ap+B)2

4Ĥ3

= 4A(Ap2+Bp+C)−(4A2p2+4ABp+B2)

4Ĥ3
= 4AC−B2

4Ĥ3
.

Continuing differentiation on

(
∂Ĥ
∂p

)2

+Ĥ ∂2Ĥ
∂p2 = A, we obtain 3∂Ĥ

∂p
∂2Ĥ
∂p2 +Ĥ ∂3Ĥ

∂p3 =

0 and thus

(3.28)
∂3Ĥ
∂p3 = − 3

Ĥ
· ∂Ĥ

∂p · ∂2Ĥ
∂p2

= − 3
Ĥ

· 2Ap+B

2Ĥ
· 4AC−B2

4Ĥ3
= − 3

8Ĥ5
(2Ap+B)(4AC −B2).

Again from the equation 3∂Ĥ
∂p

∂2Ĥ
∂p2 + Ĥ ∂3Ĥ

∂p3 = 0, we get by differentiation

3

(
∂2Ĥ

∂p2

)2

+ 4
∂Ĥ

∂p

∂3Ĥ

∂p3
+ Ĥ

∂4Ĥ

∂p4
= 0, and thus

(3.29)

∂4Ĥ
∂p4 = 1

Ĥ

[
− 3

(
∂2Ĥ
∂p2

)2

− 4∂Ĥ
∂p

∂3Ĥ
∂p3

]

= 3(4AC−B2)

16Ĥ7

(
B2 − 4AC + 4(2Ap+ B)2

)
.

By Theorem 2.1, (3.24), (3.26), (3.27), (3.28) and (3.29), (z, w) ∈ M is an
umbilical point if and only if

a2(4AC −B2)

Ĥ3
− a2p(2Ap+B)(4AC −B2)

Ĥ5

+

(
a1 + a2p

2

)
(4AC −B2)[B2 − 4AC + 4(2Ap+B)2]

16Ĥ7
= 0,

which amounts to say that either 4AC −B2 = 0 or

(3.30) a2Ĥ
4 − a2p(2Ap+ B)Ĥ2 +

1

16
[a1 + a2p

2][B2 − 4AC + 4(2Ap+B)2] = 0.

Since Ĥ2 = Ap2 +Bp+ C, it follows from (3.30) that

4a2(Bp+ 2C)2 + 4a1(2Ap+B)2 + (a1 + a2p)(B
2 − 4AC) = 0.

Hence, we have proved the following criterion on umbilical points.
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Theorem 3.1. Let M ⊂ C2 be as in (3.2). Let (z, w) ∈ M be such that w 6= 0,

Ã(z, w) 6= 0 and Ĥ(z, w, p(z, w, z)) = Ap2+Bp+C 6= 0. Then (z, w) is an umbilical
point if and only if either 4AC −B2 = 0 or

(3.31) 4a2(Bp+ 2C)2 + 4a1(2Ap+B)2 + (a1 + a2p)(B
2 − 4AC) = 0

at (z, w, p). Here p is as in (3.9); A,B and C are as in (3.21), (3.22) and (3.23).

4. Proof of Theorem 1.2

Lemma 4.1. Let M be as in (3.2). Assume that a1 > 0. If 16a1+16a1a2+3a1a
2
2−

4a2
2 > 0, then M is umbilical at ( c√

1+a1

, i
√

1 − c2) ∈M for a certain c ∈ (0, 1).

Proof: Consider the curve Γ ⊂M with the parameter c ∈ [0, 1], defined by:

z(c) =
c√

1 + a1
,(4.1)

w(c) = i
√

1 − c2, 0 ≤ c < 1.(4.2)

Then along Γ, from (3.9), we have

p(c) = −a1z + (2 + a1)z

aw + (2 + a)w
= − i(

√
1 + a1)c√
1 − c2

.(4.3)

By (3.21),(3.22) and (3.23), we have

(4.4)
A(c) = 4(1 + a1)(2 + a2)

4c2 + a1(2 + a2)
2

[
a1(2 + a2)

2c2

−a2(1 + a2)(2 + a1)
2(1 − c2) + (2 + a1)

2(2 + a2)
2

]
,

(4.5) B(c) = −8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2ic
√

1−c2√
1+a1

,

(4.6)
C(c) = −4(1 + a2)

2(2 + a1)
4(1 − c2) + a2(2 + a1)

2

[
a1(2 + a2)

2c2

−a2(1 + a2)(2 + a1)
2(1 − c2) + (2 + a1)

2(2 + a2)
2

]
.

By Theorem 3.1, it is enough to show that there is a certain c ∈ (0, 1) such that

at the point (z(c), w(c), p(c)) ∈ M̃

(4.7) Ã 6= 0,

(4.8) Ap2 +Bp+ C 6= 0, and

(4.9) 4a2(Bp+ 2C)2 + 4a1(2Ap+B)2 + (a1 + a2p
2)(B2 − 4AC) = 0.

We first prove that (4.7) holds for any point in Γ. By (3.13), Ã = 0 at
(z(c), w(c)) ∈ Γ if and only if

−4a1(2 + a2)
2c2 + 4a2(1 + a2)(2 + a1)

2(1 − c2) − 4(2 + a1)
2(2 + a2)

2 = 0,

namely,

−4a1(2 + a2)
2c2 − 4(2 + a1)

2[4 + 3a2 + c2a2 + c2a2
2] = 0.
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But this is a contradiction because the left hand side is strictly negative for any
c ∈ [0, 1].

We also notice that A > 0 along Γ, too.
Next, after restricted to Γ, (4.9) can be written as

(4.10)

[
4a2B

2 + 16a1A
2 + a2(B

2 − 4AC))

]
p2 + (16a2BC + 16a1AB)p

+

[
16a2C

2 + 4a1B
2 + a1(B

2 − 4AC)

]
= 0.

In order to solve the equation (4.9), by (4.3) and (4.10), it is enough to show that
there exists a point c ∈ (0, 1) such that K(c) = 0, where

(4.11)

K(c) : =

[
4a2B

2 + 16a1A
2 + a2(B

2 − 4AC))

](
a1z + (2 + a1)z

)2

−(16a2BC + 16a1AB)

(
a1z + (2 + a1)z

)(
a2w + (2 + a2)w

)

+

[
16a2C

2 + 4a1B
2 + a1(B

2 − 4AC)

](
a2w + (2 + a2)w

)2

.

By (4.11) (4.4) (4.5) and (4.6), K(c) is a real-valued function defined on [0, 1].
When c = 0, we have z = 0, w = i and

A = a1(2 + a2)
2

[
− a2(1 + a2)(2 + a1)

2 + (2 + a1)
2(2 + a2)

2

]

= a1(2 + a1)
2(2 + a2)

2(4 + 3a2), B = 0,

C = −4(1 + a2)
2(2 + a1)

4 + a2(2 + a1)
2

[
− a2(1 + a2)(2 + a1)

2

+(2 + a1)
2(2 + a2)

2

]
= −(2 + a1)

4(2 + a2)
2.

Hence

(4.12) K(0) = −16C(4a2C − a1A) < 0,

by noticing that C < 0 and A > 0.
When c = 1, we have z = 1√

1+a1

, w = 0 and

A = 4(1 + a1)(2 + a2)
4 + a1(2 + a2)

2

[
a1(2 + a2)

2 + (2 + a1)
2(2 + a2)

2

]

= (2 + a2)
4(1 + a1)(2 + a1)

2, B = 0,

C = a2(2 + a1)
2

[
a1(2 + a2)

2 + (2 + a1)
2(2 + a2)

2

]

= a2(2 + a1)
2(2 + a2)

2(1 + a1)(4 + a1)

Hence

(4.13)
K(1) = 4A(4a1A− a2C)4(1 + a1)

= d∗[4a1(2 + a2)
2 − a2

2(4 + a1)].

Here d∗ > 0. Hence, when

4a1(2 + a2)
2 − a2

2(4 + a1) = 16a1 + 16a1a2 + 3a1a
2
2 − 4a2

2 > 0,

K(0) < 0 and K(1) > 0. Thus, K(c) = 0 for a certain c ∈ (0, 1). Namely, we
showed that (4.9) holds for a certain c.
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It remains to prove that (4.8) cannot hold for the above c ∈ (0, 1). Suppose that

Ĥ(c)2 = 0. Since Ã(c) > 0 and A(c) > 0, w conclude by (3.25), that 2Ap+B = 0.
Making use of (4.3), (4.4) and (4.5), we thus have

(4.14) −8(1 + a1)(1 + a2)(2 + a1)
2(2 + a2)

2 ic
√

1 − c2√
1 + a1

=
2i(

√
1 + a1)c√
1 − c2

·A(c)

This is a contradiction, for after dividing the fact i, the left hand side of (4.14) is
negative, while its right hand side is strictly positive. The proof of Lemma 4.1 is
complete. �

Proof of Theorem 1.2: If M is spherical, then every point is umbilical point. We
assume that M is not spherical. Then a1 + a2 > 0. We notice that (1 + a1)x

2
1 +

y2
1 + (1 + a2)x

2
2 + y2

2 = 1 is holomorphically equivalent to the ellipsoid defined by
(1 + a2)x

2
1 + y2

1 + (1 + a1)x
2
2 + y2

2 = 1 through the map (z, w) → (w, z). Hence, we
need only to prove Theorem 1.2 for the case when a1 ≥ a2. Then the assumption
in Lemma 4.1 holds automatically and thus we have an umbilical point of the form
( c√

1+a1

, i
√

1 − c2) (c ∈ (0, 1)). Notice that M has automorphisms sending (z, w) to

(±z,±w). We easily conclude that M possesses at least four umbilical points. �

5. Proof of Theorem 1.3

The ǫ-thickening Ωǫ of the unit circle {|z| = 1, w = 0} is defined to be the set
of points whose distance to the circle is less than ǫ. It is straightforward to verify
that the boundary Mǫ of Ωǫ is defined by the following equation, which is strictly
plurisubharmonic when 0 < ǫ < 1/4:

(5.1) |z|2 − 2|z|+ 1 + |w|2 = ǫ2.

Here and in what follows, we assume 0 < ǫ << 1. Also, since Ωǫ is a Reinhardt
domain, we need only to study the points (z, w) ∈ Mǫ with z = x1 ≥ 0 and
w = x2 ≥ 0. Also, we assume that x2 > 0. Notice that when ǫ << 1, x2 ≈ 1.

The complexification of (5.1) is given by

(5.2) r := zζ − 2(zζ)1/2 + 1 + wη − ǫ2 = 0.

As we did in §3, we have

(5.3) rz = ζ − (zζ)−1/2ζ + pη = 0, and

(5.4) rzz =
1

2
(zζ)−3/2ζ2 + p11η = 0.

From (5.3), we have

(5.5) zζ − (zζ)1/2 + pzη = 0.

Subtracting (5.2) from (5.5), we obtain

(5.6) (zζ)1/2 = 1 − ǫ2 + (w − pz)η.

Returning to (5.4) and making use of (5.6), we get

(5.7) 1 − ǫ2 + (w − pz)η + 2ηz2p11 = 0.

Here, we remark that near the point under study, η ≈ x2 6= 0. Hence 1−ǫ2

η + (w −
pz) + 2z2p11 = 0 and

(5.8)
∂4p11

∂p4
= 0 ⇐⇒ ∂4

∂p4

(
1

η

)
= 0.
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Set X = 1
η . Substituting (5.6) into (5.2), we get

[
(1 − ǫ)2 + (w − pz)η

]2

− 2

[
(1 − ǫ2) + (w − pz)η

]
+ 1 + wη − ǫ2 = 0, or

(w−pz)2η2+

[
2(1−ǫ2)(w−pz)−2(w−pz)+w

]
η+(1−ǫ2)2−2(1−ǫ2)+(1−ǫ2) = 0,

−ǫ2(1 − ǫ2)X2 +

[
− 2ǫ2(w − pz) + w

]
X + (w − pz)2 = 0.

Hence

(5.9) X =
−(−2ǫ2(w − pz) + w) ±H

−2ǫ2(1 − ǫ2)

where

H2 := (2ǫ2(w − pz)− w)2 + 4ǫ2(1 − ǫ2)(w − pz)2.

Hence

(5.10)
∂4p11

∂p4
= 0 ⇐⇒ ∂4H

∂p4
= 0.

Write H2 = Ap2 +Bp+ C where

(5.11)
A = 4ǫ2z2 + 4ǫ2(1 − ǫ2)z2 = 4ǫ2z2,
B = −4ǫ2z(2ǫ2w) − 8ǫ2(1 − ǫ2)wz = −4ǫ2wz,
C = ǫ2w2.

By (3.29), we conclude that ∂4p11

∂p4 = 0 if and only if

(5.12) either 4AC −B2 = 0 or B2 − 4A+ 4(2Ap+B)2 = 0.

Since 4AC − B2 = 4ǫ2(zw)2(1 − 4ǫ2) 6= 0, the first equality in (5.12) never occurs.
The second equality in (5.12) is equivalent to 4AC −B2 = 4(2Ap+B)2, namely,

(5.13) 2ǫzw
√

1 − 4ǫ2 = ±2(2Ap+B).

At the point in M with z = x1 > 0 and w = x2 > 0, by (5.3), we find x1 − 1 +
px2 = 0, or

(5.14) p =
1 − x1

x2
.

Hence we get from (5.11)

(5.15) A = 4ǫ2x2
1, B = −4ǫ2x1x2 and C = ǫ2x2

2.

Then (5.13) is equivalent to

(5.16) 2ǫx1x2

√
1 − 4ǫ2 = ±2

(
8ǫ2x2

1 ·
1 − x1

x2
− 4ǫ2x1x2

)
.

Since x1 ≈ 1, we get from (5.16):

(5.17) x2
2

√
1 − 4ǫ2 = ±

(
8ǫ(x1 − x2

1) − 4ǫx2
2

)
.

Recall x2
2 = ǫ2−(1−x1)

2. Let T = 1−x1. Then x1−x2
1 = T −T 2 and x2

2 = ǫ2−T 2.
Hence (5.17) is equivalent to

(5.18) (ǫ2 − T 2)
√

1 − 4ǫ2 = ±4ǫ(2T − T 2 − ǫ2),
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or

f(T ) := (
√

1 − 4ǫ2 ∓ 4ǫ)T 2 ± 8ǫT + (−ǫ2
√

1 − 4ǫ2 ∓ ǫ2) = 0.

Notice that −ǫ < T < ǫ. From the fact that

f ′(T ) = 2(
√

1 − 4ǫ2 ∓ 4ǫ)T ± 8ǫ = 0 ⇐⇒ |T | ≈ 4ǫ

for ǫ << 1, we conclude that the real-valued function f(T ) is monotonic for T ∈
(−ǫ, ǫ). We further compute

f(−ǫ) = (
√

1 − 4ǫ2 ∓ 4ǫ)ǫ2 ∓ 8ǫ2 + (−ǫ2
√

1 − 4ǫ2 ∓ 4ǫ3) ≈ ∓8ǫ2

and

f(ǫ) = (
√

1 − 4ǫ2 ∓ 4ǫ)ǫ2 ± 8ǫ2 + (−ǫ2
√

1 − 4ǫ2 ∓ 4ǫ3) ≈ ±8ǫ2

for ǫ << 1. Then we see that (5.12) has two solutions in (−ǫ, ǫ). A little more effort
actually shows that these two solutions are different. Therefore, by Theorem 2.1, we
conclude that M admits two distinct umbilical points with z = x1 > 0, w = x2 > 0.
One can similarly verify that points in M with w = 0 are umbilical points. The
statement Theorem 1.3 thus follows from the Reinhardt property of Ωǫ. �
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