Rational Holomorphic Maps from \mathbb{B}^{2} into \mathbb{B}^{N} with Degree 2

Zhihua Chen, Shanyu Ji and Dekang Xu

February 28, 2007

Dedicated to Professor Gong, Sheng in the Occasion of his 75th Birthday

1 Introduction

This paper continues the previous work in [HJX06] to study proper holomorphic mappings $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2 . In [HJX06], it is proved that any such a map F is equivalent to a rational proper holomorphic map $(G, 0)$ where $G \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$. Also a normal form has been obtained for such a map ([Theorem 4.1, HJX06] or Lemma 2.3 below).

Here we write $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ and $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ for the collection of all proper holomorphic mappings from \mathbb{B}^{n} to \mathbb{B}^{N} where $2 \leq n \leq N$. We say that $f, g \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ are equivalent if there are automorphisms $\sigma \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ and $\tau \in A u t\left(\mathbb{B}^{N}\right)$ such that $f=$ $\tau \circ g \circ \sigma$. We write $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ for the collection of all rational proper holomorphic mappings from \mathbb{B}^{n} to \mathbb{B}^{N}.

Let us recall some known results on maps in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2. Faran [Fa82] proved that any F in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$ with degree two must be equivalent to either the Whitney map $(z, w) \mapsto\left(z, z w, w^{2}\right)$ or the map $(z, w) \mapsto\left(z^{2}, \sqrt{2} z w, w^{2}\right)$. D'Angelo [DA88] constructed the following continuous family of mutually inequivalent proper polynomial embeddings from \mathbb{B}^{n} into $\mathbb{B}^{2 n}$ of degree 2 :

$$
\begin{equation*}
F_{\theta}(z, w)=\left(z,(\cos \theta) w,(\sin \theta) z_{1} w, \cdots,(\sin \theta) z_{n-1} w,(\sin \theta) w^{2}\right), 0<\theta \leq \pi / 2 \tag{1}
\end{equation*}
$$

where $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$. In the same paper, he also gave a list of all mutually inequivalent monomial proper mappings from \mathbb{B}^{2} to \mathbb{B}^{4}. Among the list, there are two mutually inequivalent continuous families of maps with degree 2 : $\left\{F_{\theta}\right\}$ in (1) and the family $\left\{G_{t}\right\}$ defined
by

$$
\begin{equation*}
G_{t}(z, w)=\left(z^{2}, \sqrt{1+\cos ^{2} t} z w,(\cos t) w^{2},(\sin t) w\right), 0 \leq t<\pi / 2 \tag{2}
\end{equation*}
$$

M. S. B. Wono [Wo93] also constructed a family of monomial maps in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ of degree 2 :

$$
H_{b c}=\left(\sqrt{1-b} z^{2}, \sqrt{1-c} w^{2}, \sqrt{2-b-c} z w, \sqrt{b} z, \sqrt{c} w\right), \quad \forall b, c \in[0,1] .
$$

In this paper, we shall prove the following result.
Theorem 1.1 Any map F in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)(N \geq 4)$ with degree 2 is equivalent to one of the following forms:
(I) $\left(G_{t}, 0\right)$ where $G_{t} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ is defined by

$$
G_{t}(z, w)=\left(z^{2}, \sqrt{1+\cos ^{2} t} z w,(\cos t) w^{2},(\sin t) w\right), \quad 0 \leq t<\pi / 2
$$

(II A) $\left(F_{\theta}, 0\right)$ where $F_{\theta} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ is defined by

$$
F_{\theta}(z, w)=\left(z,(\cos \theta) w,(\sin \theta) z w,(\sin \theta) w^{2}\right), \quad 0<\theta \leq \frac{\pi}{2}
$$

(IIB) $\left(H_{c_{1}}, 0\right)$ where $F_{c_{1}} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ so that $\rho_{4}^{-1} \circ H_{c_{1}} \circ \rho_{2}=\left(f, \phi_{1}, \phi_{2}, g\right) \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{4}\right)$, where ρ_{k} is the Cayley transformations from \mathbb{H}^{k} to \mathbb{B}^{k}, is of the form:

$$
f=\frac{z+\frac{i}{2} z w}{1+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+e_{2} w^{2}}, \quad \phi_{2}=\frac{c_{1} z w}{1+e_{2} w^{2}}, \quad g=\frac{w}{1+e_{2} w^{2}},
$$

where $-e_{2}=\frac{1}{4}+c_{1}^{2}$ and $c_{1}>0$.
$(I I C)\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}, 0\right)$ where $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ so that $\rho_{5}^{-1} \circ F_{c_{1}, c_{3}, e_{1}, e_{2}} \circ \rho_{2}=\left(f, \phi_{1}, \phi_{2}\right.$, $\left.\phi_{3}\right) \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ is of the form:

$$
\begin{aligned}
f & =\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
\phi_{2} & =\frac{c_{1} z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, g=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}},
\end{aligned}
$$

where $\left(c_{1}, c_{3}, e_{1}, e_{2}\right)$ is in a subset $\mathcal{K}_{I I C} \subset \mathbb{R}^{4}$ (i.e., $-e_{1},-e_{2} \geq 0, c_{1}>0, c_{3}>0, e_{1} e_{2}=c_{3}^{2}$, $-e_{1}-e_{2}=\frac{1}{4}+c_{1}^{2}$ and it satisfies (34)).

Notice that F_{0} is the linear map, $F_{\frac{\pi}{2}}$ and $G_{\frac{\pi}{2}}$ are equivalent to the map $(z, w) \mapsto$ $\left(z, z w, w^{2}, 0\right), G_{0}=\left(z^{2}, \sqrt{2} z w, w^{2}, 0\right),\left\{F_{0, c_{3}, e_{1}, e_{2}}\right\}$ with $c_{3}>0$ is the family $\left\{\left(G_{t}, 0\right)\right\}$, and $\left\{F_{c_{1}, 0, e_{1}, e_{2}}\right\}$ with $c_{1} \geq 0$ is the family $\left\{\left(F_{\theta}, 0\right)\right\}$.

It remains to study whether any two distinct maps in (I) (IIA)(IIB) or (IIC) above could be equivalent and to describe the domain $\mathcal{K}_{\text {IIC }}$ more explicitly.

2 Notation and preliminaries

-Maps between balls Write $\mathbb{H}^{n}:=\left\{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C}: \operatorname{Im}(w)>|z|^{2}\right\}$ for the Siegel upper-half space. Since the Cayley transformation $\rho_{n}: \mathbb{H}^{n} \rightarrow \mathbb{B}^{n}, \rho_{n}(z, w)=\left(\frac{2 z}{1-i w}, \frac{1+i w}{1-w w}\right)$ is a biholomorphic mapping between \mathbb{H}^{n} and \mathbb{B}^{n}, we can identify a map $F \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ or $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $\rho_{N}^{-1} \circ F \circ \rho_{n}$ in the space $\operatorname{Prop}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ or $\operatorname{Rat}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$, respectively.

It is known that any $F \in \operatorname{Rat}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ must be a smooth CR map from $\partial \mathbb{H}^{n}$ into $\partial \mathbb{H}^{N}$. Parameterize $\partial \mathbb{H}^{n}$ by (z, \bar{z}, u) through the map $(z, \bar{z}, u) \rightarrow\left(z, u+i|z|^{2}\right)$. In what follows, we will assign the weight of z and u to be 1 and 2 , respectively. For a non-negative integer m, a function $h(z, \bar{z}, u)$ defined over a small ball U of 0 in $\partial \mathbb{H}^{n}$ is said to be of quantity $o_{w t}(m)$ if $\frac{h\left(t z, t \bar{z}, t^{2} u\right)}{|t|^{m}} \rightarrow 0$ uniformly for (z, u) on any compact subset of U as $t(\in \mathbb{R}) \rightarrow 0$.

- Partial normalization of F Let $F=(f, \phi, g)=(\tilde{f}, g)=\left(f_{1}, \cdots, f_{n-1}, \phi_{1}, \cdots, \phi_{N-n}, g\right)$ be a non-constant C^{2}-smooth CR map from $\partial \mathbb{H}^{n}$ into $\partial \mathbb{H}^{N}$ with $F(0)=0$. For each $p \in \partial \mathbb{H}^{2}$, we write $\sigma_{p}^{0} \in \operatorname{Aut}\left(\mathbb{H}^{n}\right)$ and $\tau_{p}^{F} \in \operatorname{Aut}\left(\mathbb{H}^{N}\right)$ for the maps

$$
\begin{align*}
& \sigma_{p}^{0}(z, w)=\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right) \tag{3}\\
& \tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\left.\widetilde{f}\left(z_{0}, w_{0}\right)\right\rangle}\right)\right. \tag{4}
\end{align*}
$$

F is equivalent to $F_{p}=\tau_{p}^{F} \circ F \circ \sigma_{p}^{0}=\left(f_{p}, \phi_{p}, g_{p}\right)$. Notice that $F_{0}=F$ and $F_{p}(0)=0$.

Lemma 2.1 ($\S 2, ~ L e m m a ~ 5.3, ~ H u 99], ~[L e m m a ~ 2.0, ~ H u 03]): ~ L e t ~ F ~ b e ~ a ~ C ~ C ~-s m o o t h ~ C R ~ m a p ~$ from $\partial \mathbb{H}^{n}$ into $\partial \mathbb{H}^{N}, 2 \leq n \leq N$ with $F(0)=0$. For each $p \in \partial \mathbb{H}^{n}$, there is an automorphism $\tau_{p}^{* *} \in A u t_{0}\left(\mathbb{H}^{N}\right)$ such that $F_{p}^{* *}:=\tau_{p}^{* *} \circ F_{p}$ satisfies the following normalization:

$$
\begin{gather*}
f_{p}^{* *}=z+\frac{i}{2} a_{p}^{* *(1)}(z) w+o_{w t}(3), \phi_{p}^{* *}=\phi_{p}^{* *(2)}(z)+o_{w t}(2), g_{p}^{* *}=w+o_{w t}(4), \tag{5}\\
\left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2}
\end{gather*}
$$

Let $\mathcal{A}(p)=-2 i\left(\left.\frac{\partial^{2}\left(f_{p}\right)_{i}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)_{1 \leq j, l \leq(n-1)}$. We call the rank of $\mathcal{A}(p)$, denoted by $R k_{F}(p)$, the geometric rank of F at $p . R k_{F}(p)$ is a lower semi-continuous function on p. We define the geometric rank of F to be $\kappa_{0}(F)=\max _{p \in \partial \mathbb{H}^{n}} R k_{F}(p)$. Notice $0 \leq \kappa_{0} \leq n-1$. We define the geometric rank of $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ to be the one for the map $\rho_{N}^{-1} \circ F \circ \rho_{n} \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$. It is proved that F is linear fractional if and only if the geometric rank of F is 0 ([Theorem 4.3, Hu99]). Hence, in all that follows, we assume that $\kappa_{0}(F) \geq 1$.

Denote by $\mathcal{S}_{0}=\left\{(j, l): 1 \leq j \leq \kappa_{0}, 1 \leq l \leq(n-1), j \leq l\right\}$ and write $\mathcal{S}:=\{(j, l):$ $(j, l) \in \mathcal{S}_{0}$, or $\left.j=\kappa_{0}+1, l \in\left\{\kappa_{0}+1, \cdots, \kappa_{0}+N-n-\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}\right\}\right\}$. Then we further have the following normalization for F :

Lemma 2.2 ([Lemma 3.2, Hu03]): Let F be a C^{2}-smooth $C R$ map from an open piece $M \subset \partial \mathbb{H}^{n}$ into $\partial \mathbb{H}^{N}$ with $F(0)=0$ and $R k_{F}(0)=\kappa_{0}$. Let $P\left(n, \kappa_{0}\right)=\frac{\kappa_{0}\left(2 n-\kappa_{0}-1\right)}{2}$. Then $N \geq n+P\left(n, \kappa_{0}\right)$ and there are $\sigma \in A u t_{0}\left(\partial \mathbb{H}^{n}\right)$ and $\tau \in A u t_{0}\left(\partial \mathbb{H}^{N}\right)$ such that $F_{p}^{* * *}=$ $\tau \circ F \circ \sigma:=(f, \phi, g)$ satisfies the following normalization conditions:

$$
\left\{\begin{align*}
f_{j}= & z_{j}+\frac{i \mu_{j}}{2} z_{j} w+o_{w t}(3), \quad \frac{\partial^{2} f_{j}}{\partial w^{2}}(0)=0, j=1 \cdots, \kappa_{0}, \mu_{j}>0 \tag{6}\\
f_{j}= & z_{j}+o_{w t}(3), \quad j=\kappa_{0}+1, \cdots, n-1 \\
g= & w+o_{w t}(4), \\
\phi_{j l}= & \mu_{j l} z_{j} z_{l}+o_{w t}(2), \text { where }(j, l) \in \mathcal{S} \text { with } \mu_{j l}>0 \text { for }(j, l) \in \mathcal{S}_{0} \\
& \text { and } \mu_{j l}=0 \text { otherwise. }
\end{align*}\right.
$$

Moreover $\mu_{j l}=\sqrt{\mu_{j}+\mu_{l}}$ for $j, l \leq \kappa_{0} j \neq l, \mu_{j l}=\sqrt{\mu_{j}}$ if $j \leq \kappa_{0}$ and $l>\kappa_{0}$ or if $j=l \leq \kappa_{0}$.

- Degree of a rational map For a rational holomorphic map $H=\frac{\left(P_{1}, \ldots, P_{m}\right)}{Q}$ over \mathbb{C}^{n}, where P_{j}, Q are holomorphic polynomials and $\left(P_{1}, \ldots, P_{m}, Q\right)=1$, we define

$$
\operatorname{deg}(H)=\max \left\{\operatorname{deg}\left(P_{j}\right), 1 \leq j \leq m, \operatorname{deg}(Q)\right\}
$$

For a rational map H and a complex affine subspace S of dimension k, we say that H is linear fractional along S, if S is not contained in the singular set of H and for any linear parameterization $z_{j}=z_{j}^{0}+\sum_{l=1}^{k} a_{j l} t_{l}$ with $j=1, \cdots, n, H^{*}\left(t_{1}, \cdots, t_{k}\right):=H\left(z_{1}^{0}+\right.$ $\left.\sum_{l=1}^{k} a_{1 l} t_{l}, \cdots, z_{n}^{0}+\sum_{l=1}^{k} a_{j n} t_{j}\right)$ has degree 1 in $\left(t_{1}, \cdots, t_{k}\right)$.

- Actions of the isotropic groups of the Heisenberg hypersurfaces Let $\sigma \in$ $A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $\tau^{*} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$ be defined by [(2.4.1), Hu03] and [(2.4.2), Hu03] respectively,

$$
\begin{equation*}
\sigma=\frac{\left(\lambda(z+a w) \cdot U, \lambda^{2} w\right)}{q(z, w)}, \quad \tau^{*}\left(z^{*}, w^{*}\right)=\frac{\left(\lambda^{*}\left(z^{*}+a^{*} w^{*}\right) \cdot U^{*}, \lambda^{* 2} w^{*}\right)}{q^{*}\left(z^{*}, w^{*}\right)} \tag{7}
\end{equation*}
$$

where $q(z, w)=1-2 i\langle\bar{a}, z\rangle+\left(r-i|a|^{2}\right) w, \lambda>0, r \in \mathbb{R}, a \in \mathbb{C},|U|=1$, and $q^{*}\left(z^{*}, w^{*}\right)=$ $1-2 i\left\langle\overline{a^{*}}, z^{*}\right\rangle+\left(r^{*}-i\left|a^{*}\right|^{2}\right) w^{*}, \lambda^{*}>0, r^{*} \in \mathbb{R}, a^{*}=\left(a_{1}^{*}, a_{2}^{*}\right) \in \mathbb{C}^{3}$ and U^{*} is an 4×4 unitary matrix, such that $[((2.5 .1),(2.5 .2), \mathrm{Hu} 03]$ holds:

$$
\lambda^{*}=\lambda^{-1}, a_{1}^{*}=-\lambda^{-1} a U, a_{2}^{*}=0, r^{*}=-\lambda^{-2} r, U^{*}=\left(\begin{array}{cc}
U^{-1} & 0 \tag{8}\\
0 & U_{22}^{*}
\end{array}\right)
$$

where $a^{*}=\left(a_{1}^{*}, a_{2}^{*}\right), U_{22}^{*}$ is an 3×3 unitary matrix. Define $F^{*}=\tau^{*} \circ F \circ \sigma$. By [Lemma 2.3(A), Hu03], we can write

$$
\begin{align*}
& f(z, w)=z+\frac{i}{2} z A w+o_{w t}(3), f^{*}(z, w)=z+\frac{i}{2} z A^{*} w+o_{w t}(3), \\
& \phi(z, w)=\frac{1}{2} z\left(B^{1}, B^{2}, B^{3}\right) z+z \mathcal{B} w+\frac{1}{2} \frac{\partial^{2} \phi}{\partial w^{2}}(0) w^{2}+o\left(|(z, w)|^{2}\right), \tag{9}\\
& \phi^{*}(z, w)=\frac{1}{2} z\left(B^{* 1}, B^{* 2}, B^{* 3}\right) z+z \mathcal{B}^{*} w+\frac{1}{2} \frac{\partial^{2} \phi^{*}}{\partial w^{2}}(0) w^{2}+o\left(|(z, w)|^{2}\right),
\end{align*}
$$

where $B^{i}=\frac{\partial^{2} \phi_{i}}{\partial z^{2}}(0), B^{* i}=\frac{\partial^{2} \phi_{i}^{*}}{\partial z^{2}}(0)$ for $i=1,2,3$ and $\mathcal{B}=\left(\frac{\partial^{2} \phi_{1}}{\partial z \partial w}, \frac{\partial^{2} \phi_{2}}{\partial z \partial w}, \frac{\partial^{2} \phi_{3}}{\partial z \partial w}\right), \mathcal{B}^{*}=$ $\left(\frac{\partial^{2} \phi_{1}^{*}}{\partial z \partial w}, \frac{\partial^{2} \phi_{2}^{*}}{\partial z \partial w}, \frac{\partial^{2} \phi_{3}^{*}}{\partial z \partial w}\right)$. Also, the same computation in [Hu03, Lemma 2.3 (A)] gives the following:

$$
\begin{align*}
& \frac{\partial^{2} g^{*}}{\partial \partial^{2}}(0)=0, \frac{\partial^{2} g^{*}}{\partial z \partial w}(0)=0, \frac{\partial^{2} g^{*}}{\partial w^{2}}(0)=0, \frac{\partial^{2} f^{*}}{\partial z^{2}}(0)=0, \mathcal{A}^{*}=\lambda^{2} U \mathcal{A} U^{-1}, \\
& \frac{\partial^{2} f^{*}}{\partial w^{2}}(0)=i \lambda^{2} a U \mathcal{A} U^{-1}+\lambda^{3} \frac{\partial^{2} f}{\partial w^{2}}(0) U^{-1}, \\
& {\left[B^{* 1}, B^{* 2}, B^{* 3}\right]=\lambda U\left[B^{1}, B^{2}, B^{3}\right] U^{t} U_{22}^{*},} \tag{10}\\
& \mathcal{B}^{*}=\lambda U\left[B^{1}, B^{2}, B^{3}\right] U^{t} a^{t} U_{22}^{*}+\lambda^{2} U \mathcal{B} U_{22}^{*}, \\
& \frac{\partial^{2} \phi^{*}}{\partial w^{2}}(0)=\lambda a U\left[B^{1}, B^{2}, B^{3}\right] U^{t} a^{t} U_{22}^{*}+2 \lambda^{2} a U \mathcal{B} U_{22}^{*}+\lambda^{3} \frac{\partial^{2} \phi}{\partial w^{2}}(0) U_{22}^{*} .
\end{align*}
$$

- A normal form for $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2

Lemma 2.3 ([HXJ06, theorem 4.1]) Let $F \in \operatorname{Rat}\left(\partial \mathbb{H}^{2}, \partial \mathbb{H}^{N}\right)$ have degree 2 with $N \geq 4$, $F(0)=0$ and $R k_{F}(0)=1$. Then
(1) F is equivalent to a new map $\left(F^{* * *}, 0\right)$ where $F^{* * *}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ in $\operatorname{Rat}\left(\partial \mathbb{H}^{2}\right.$, $\left.\partial \mathbb{H}^{5}\right)$ defined by

$$
\begin{align*}
f(z, w) & =\frac{z-2 i b z^{2}+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z}, \quad \phi_{1}(z, w)=\frac{z^{2}+b z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \tag{11}\\
\phi_{2}(z, w) & =\frac{c_{2} w^{2}+c_{1} z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z}, \quad \phi_{3}(z, w)=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \tag{12}\\
g(z, w) & =\frac{w+i e_{1} w^{2}-2 i b z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \tag{13}
\end{align*}
$$

Here $b,-e_{1},-e_{2}, c_{1}, c_{2}, c_{3}$ are real non-negative numbers satisfying

$$
\begin{equation*}
e_{1} e_{2}=c_{2}^{2}+c_{3}^{2},-e_{1}-e_{2}=\frac{1}{4}+b^{2}+c_{1}^{2},-b e_{2}=c_{1} c_{2}, c_{3}=0 \text { if } c_{1}=0 \tag{14}
\end{equation*}
$$

(2) $c_{1}, c_{2}, c_{3}, e_{1}, e_{2}, b$ are uniquely determined by F^{1}. Conversely, for any non-negative real numbers $c_{1}, c_{2}, c_{3}, e_{1}, e_{2}, b$ satisfying the relations in (14), the map F defined in (11) (12) (13) is an element in $\operatorname{Rat}\left(\partial \mathbb{H}^{2}, \partial \mathbb{H}^{5}\right)$ of degree 2 with $F(0)=0$ and $R k_{F}(0)=1$.
(3) If $e_{2}=0$, then F is equivalent to $\left(F_{\theta}, 0\right)$ with F_{θ} as in (1).

[^0]Remarks (i) The new normalized map in Lemma 2.3(1) can be obtained by $F^{* * *}=\tau^{*}$ 。 $F^{* *} \circ \sigma$ where $F^{* *}$ is as in Lemma 2.2 and σ and τ^{*} are as in (7).
(ii) For the map $F^{* * *}$ in Lemma 2.3(1), $b=\sqrt{-e_{1}-e_{2}-\frac{1}{4}-c_{1}^{2}}$ and $c_{2}=\sqrt{e_{1} e_{2}-c_{3}^{2}}$ are determined by c_{1}, c_{3}, e_{1} and e_{2}, which can be regarded as parameters. Then we denote $F^{* * *}=F_{c_{1}, c_{3}, e_{1}, e_{2}}$.
(iii) We denote by \mathcal{K} a subset of \mathbb{R}^{4} such that $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}$ if and only if $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ is a map defined as above. We can identify a map $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ with the 4 -tuple $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}$. Sometimes we also denote $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K}$.
(iv) If $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ with $F(0)=0$ and rank 1 at 0 , then $F^{* * *} \in \mathcal{K}$. Conversely, if $F \in \mathcal{K}$, then $F(0)=0$ and F has rank 1 at 0 .

To prove Theorem 1.1, the following results will be needed.

Lemma 2.4 Let $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ such that $F(0)=0$, $\operatorname{deg}(F) \leq 2$, the geometric rank at 0 $R k_{F}(0)=0$, and the associated map $F^{* *}$ satisfies

$$
\begin{equation*}
\frac{\partial^{2} f^{* *}}{\partial w^{2}}(0)=0, \frac{\partial^{2} \phi^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi^{* *}}{\partial z \partial w}(0)=(0,0,0) . \tag{15}
\end{equation*}
$$

Then F must be a linear map.
Proof: By the hypothesis, $F^{* *}$ can be witten as

$$
\begin{align*}
f & =\frac{z+E_{1} z^{2}+E_{2} z w}{1+E_{1} z+E_{2} w+E_{3} z w+E_{4} w^{2}+E_{5} z^{2}} \tag{16}\\
\phi_{1} & =\frac{B_{1} w^{2}}{1+E_{1} z+E_{2} w+E_{3} z w+E_{4} w^{2}+E_{5} z^{2}} \tag{17}\\
\phi_{2} & =\frac{B_{2} w^{2}}{1+E_{1} z+E_{2} w+E_{3} z w+E_{4} w^{2}+E_{5} z^{2}} \tag{18}\\
\phi_{3} & =\frac{B_{3} w^{2}}{1+E_{1} z+E_{2} w+E_{3} z w+E_{4} w^{2}+E_{5} z^{2}} \tag{19}\\
g & =\frac{w+E_{1} z w+E_{2} w^{2}}{1+E_{1} z+E_{2} w+E_{3} z w+E_{4} w^{2}+E_{5} z^{2}} \tag{20}
\end{align*}
$$

Notice $w=u+i|z|^{2}, w^{2}=u^{2}-|z|^{4}+2 i u|z|^{2},|w|^{4}=u^{4}+2 u^{2}|z|^{4}+|z|^{8}$. From $\operatorname{Im}(g)=|\widetilde{f}|^{2}$ on $\partial \mathbb{H}^{2}$, we get

$$
\begin{aligned}
& \left(1+\overline{E_{1}} \bar{z}+\overline{E_{2}}\left(u-i|z|^{2}\right)+\overline{E_{3}} \bar{z}\left(u-i|z|^{2}\right)+\overline{E_{4}}\left(u^{2}-|z|^{4}-2 i u|z|^{2}\right)+\overline{E_{5}} \bar{z}^{2}\right) \\
& \cdot\left(u+i|z|^{2}+E_{1} z\left(u+i|z|^{2}\right)+E_{2}\left(u^{2}-|z|^{4}+2 i u|z|^{2}\right)\right) \\
& -\left(1+E_{1} z+E_{2}\left(u+i|z|^{2}\right)+E_{3} z\left(u+i|z|^{2}\right)+E_{4}\left(u^{2}-|z|^{4}+2 i u|z|^{2}\right)+E_{5} z^{2}\right) \\
& \cdot\left(u-i|z|^{2}+\overline{E_{1}} \bar{z}\left(u-i|z|^{2}\right)+\overline{E_{2}}\left(u^{2}-|z|^{4}-2 i u|z|^{2}\right)\right) \\
& =2 i|z|^{2}\left[1+E_{1} z+E_{2}\left(u+i|z|^{2}\right)\right]\left[1+\overline{E_{1}} \bar{z}+\overline{E_{2}}\left(u-i|z|^{2}\right)\right] \\
& +2 i\left(\left|B_{1}\right|^{2}+\left|B_{2}\right|^{2}+\left|B_{3}\right|^{2}\right)\left(u^{4}+2 u^{2}|z|^{4}+|z|^{8}\right), \quad \forall z \in \mathbb{C}, \forall u \in \mathbb{R} .
\end{aligned}
$$

Consider the $u z^{2}$ terms, we get $E_{5}=0$.
Consider the $u^{2} z$ terms, we get $E_{1} \overline{E_{2}}-E_{1} \overline{E_{2}}-E_{3}=0$. Then $E_{3}=0$.
Let $z=0$ in the above equation. We get

$$
\left(1+\overline{E_{2}} u+\overline{E_{4}} u^{2}\right)\left(1+E_{2} u\right)-\left(1+E_{2} u+E_{4} u^{2}\right)\left(1+\overline{E_{2}} u\right)=2 i\left(\left|B_{1}\right|^{2}+\left|B_{2}\right|^{2}\right) u^{3} .
$$

Then $\overline{E_{4}}-E_{4}=0$, i.e., E_{4} is real, and

$$
\begin{equation*}
E_{4}\left(E_{2}-\overline{E_{2}}\right)=2 i\left(\left|B_{1}\right|^{2}+\left|B_{2}\right|^{2}+\left|B_{3}\right|^{2}\right) \tag{21}
\end{equation*}
$$

Let $u=0$ in the above equation. We get

$$
\begin{aligned}
& \left(1+\overline{E_{1}} \bar{z}-i \overline{E_{2}}|z|^{2}-\overline{E_{4}}|z|^{4}\right)\left(i+i E_{1} z-E_{2}|z|^{2}\right) \\
& -\left(1+E_{1} z+i E_{2}|z|^{2}-E_{4}|z|^{4}\right)\left(-i-i \overline{E_{1}} \bar{z}-\overline{E_{2}}|z|^{2}\right) \\
& =2 i\left[1+E_{1} z+E_{2} i|z|^{2}\right]\left[1+\overline{E_{1}} \bar{z}-\overline{E_{2}} i|z|^{2}\right]+2 i\left(\left|B_{1}\right|^{2}+\left|B_{2}\right|^{2}+\left|B_{3}\right|^{2}\right)|z|^{6}
\end{aligned}
$$

Consider the $z|z|^{4}$ terms, we get $\overline{E_{4}} E_{1}=0$. In case $E_{4}=0$, it implies $B_{1}=B_{2}=B_{3}=0$ by (21). Then it implies that $F^{* *}$ is linear and we are done. In case $E_{1}=0$, then the above equation becomes

$$
\begin{aligned}
& \left(1-i \overline{E_{2}}|z|^{2}-\overline{E_{4}}|z|^{4}\right)\left(i-E_{2}|z|^{2}\right)-\left(1+i E_{2}|z|^{2}-E_{4}|z|^{4}\right)\left(-i-\overline{E_{2}}|z|^{2}\right) \\
& =2 i\left[1+E_{2} i|z|^{2}\right]\left[1-\overline{E_{2}} i|z|^{2}\right]+2 i\left(\left|B_{1}\right|^{2}+\left|B_{2}\right|^{2}+\left|B_{3}\right|^{2}\right)|z|^{6} .
\end{aligned}
$$

Consider the $|z|^{4}$ terms, $i\left|E_{2}\right|^{2}-i \overline{E_{4}}+i\left|E_{2}\right|^{2}-i E_{4}=2 i\left|E_{2}\right|^{2}$. Recall E_{4} is real. It implies $E_{4}=0$. Hence $B_{1}=B_{2}=B_{3}=0$ so that $F^{* *}$ is linear.

Lemma 2.5 Let $F \in \operatorname{Rat}\left(\partial \mathbb{H}^{2}, \partial \mathbb{H}^{5}\right)$ with $F(0)=0$ and $\operatorname{deg}(F)=2$. Suppose that $p_{m} \in$ $\partial \mathbb{H}^{2}$ is a sequence converging to $0, F_{p_{m}}$ is of rank 1 at 0 for any m and $F_{p_{m}}^{* * *}$ converges such that $\left.\frac{\partial^{2} \phi_{1, m}^{* *}}{\partial z \partial w}\right|_{0},\left.\frac{\partial^{2} \phi_{2, m}^{* * *}}{\partial w^{2}}\right|_{0},\left.\frac{\partial^{2} \phi_{2, m}^{*, *}}{\partial z \partial w}\right|_{0}$ and $\left.\frac{\partial^{2} \phi_{3, m}^{*, *}}{\partial w^{2}}\right|_{0}$ are bounded ${ }^{2}$ for all m. Then
(i) F is of geometric rank 1 at $0: R k_{F}(0)=1$, and hence $F^{* * *}$ is well-defined.
(ii) $F_{p_{m}}^{* * *} \rightarrow F^{* * *}$.
(iii) If we write $F_{p_{m}}^{* * *}=\widetilde{G}_{2, m} \circ \tau_{p_{m}} \circ F \circ \sigma_{p_{m}} \circ \widetilde{G}_{1, m}$ where $\sigma_{p_{m}}$ and $\tau_{p_{m}}:=\tau_{p_{m}}^{F}$ are as in (3), $\widetilde{G}_{1, m}$ and $\widetilde{G}_{2, m}$ are as in (7), then $\widetilde{G}_{1, m}$ and $\widetilde{G}_{2, m}$ are convergent to some $\widetilde{G}_{1} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $\widetilde{G}_{2} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$ respectively.

Proof: (i) Suppose that F has rank 0 at 0 . We'll seek a contradiction.
Denote $F^{* *}=\left(f^{* *}, \phi^{* *}, g^{* *}\right)$. We only need to prove the following claim:

$$
\begin{equation*}
\frac{\partial^{2} f^{* *}}{\partial w^{2}}(0)=0, \frac{\partial^{2} \phi^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi^{* *}}{\partial z \partial w}(0)=(0,0,0) . \tag{22}
\end{equation*}
$$

In fact, by Lemma 2.4, F must be linear but this is a contradiction with $\operatorname{deg}(F)=2$.
Since we have supposed that $R k_{F}(0)=0$, we have $\frac{\partial^{2} f^{* *}}{\partial z \partial w}(0)=0$ so that $F^{* * *}$ is not well defined.

Write $F^{* *}=G_{2} \circ F \circ G_{1}$, where $G_{1} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $G_{2} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$. Since $R k_{F}\left(p_{m}\right)=1$ for any $m,\left(F_{p_{m}}\right)^{* * *}$ is well-defined which is of the normal form as in Lemma 2.3(1). Write $q_{m} \in \partial \mathbb{H}^{2}$ so that $G_{1}\left(q_{m}\right)=p_{m}$. Consider

$$
\left(\hat{f_{m}}, \hat{\phi_{m}}, \hat{g_{m}}\right):=\left(\left(F^{* *}\right)_{q_{m}}\right)^{* *}=\left(H_{2} \circ \tau_{q_{m}}^{F} \circ G_{2}\right) \circ F \circ\left(G_{1} \circ \sigma_{q_{m}} \circ H_{1}\right)
$$

and

$$
\left(\widetilde{f}_{m}, \widetilde{\phi}_{m}, \widetilde{g}_{m}\right):=\left(F_{p_{m}}\right)^{* * *}=\left(\widetilde{G}_{2} \circ \tau_{p_{m}}^{F}\right) \circ F \circ\left(\sigma_{p_{m}} \circ \widetilde{G}_{1}\right)
$$

[^1]where $H_{1}, \widetilde{G}_{1} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right), H_{2}, \widetilde{G}_{2} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right), \sigma_{q_{m}}(0)=q_{m}, \tau_{q_{m}}^{F}\left(G_{2} \circ F\left(p_{m}\right)\right)=0$, $\sigma_{p_{m}}(0)=p_{m}$, and $\tau_{p_{m}}^{F}\left(F\left(p_{m}\right)\right)=0$ as in (3). Then
\[

$$
\begin{aligned}
& \left(F_{p_{m}}\right)^{* * *}=\widetilde{G}_{2} \circ \tau_{p_{m}}^{F} \circ F \circ \sigma_{p_{m}} \circ \widetilde{G}_{1}=\left(\widetilde{G}_{2} \circ \tau_{p_{m}}^{F} \circ G_{2}^{-1} \circ\left(\tau_{q_{m}}^{F}\right)^{-1} \circ H_{2}^{-1}\right) \\
& \circ\left(H_{2} \circ \tau_{q_{m}}^{F} \circ G_{2} \circ F \circ G_{1} \circ \sigma_{q_{m}} \circ H_{1}\right) \circ\left(H_{1}^{-1} \circ \sigma_{q_{m}}^{-1} \circ G_{1}^{-1} \circ \sigma_{p_{m}} \circ \widetilde{G}_{1}\right) \\
& =\tau^{m} \circ\left(\left(F^{* *}\right)_{q_{m}}\right)^{* *} \circ \sigma_{m},
\end{aligned}
$$
\]

where $\sigma_{m}:=H_{1}^{-1} \circ \sigma_{q_{m}}^{-1} \circ G_{1}^{-1} \circ \sigma_{p_{m}} \circ \widetilde{G}_{1} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $\tau^{m}:=\widetilde{G}_{2} \circ \tau_{p_{m}}^{F} \circ G_{2}^{-1} \circ\left(\tau_{q_{m}}^{F}\right)^{-1} \circ H_{2}^{-1} \in$ $A u t_{0}\left(\partial \mathbb{H}^{5}\right)$.

Since $q_{m} \rightarrow 0$ as $m \rightarrow \infty$, we have $\left(\left(F^{* *}\right)_{q_{m}}\right)^{* *} \rightarrow F^{* *}$ as $m \rightarrow \infty$. In order to prove Claim (22), it is enough to show that

$$
\begin{equation*}
\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0} \rightarrow 0,\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0} \rightarrow(0,0,0),\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0} \rightarrow(0,0,0), \text { as } m \rightarrow \infty \tag{23}
\end{equation*}
$$

As in (7), we write

$$
\begin{aligned}
\sigma_{m}(z, w) & =\left(\frac{\lambda_{m}\left(z+a_{m} w\right) U_{m}}{1-2 i\left\langle\overline{a_{m}}, z\right\rangle+\left(r_{m}-i\left|a_{m}\right|^{2}\right) w}, \frac{\lambda^{2} w}{1-2 i\left\langle\overline{a_{m}}, z\right\rangle+\left(r_{m}-i\left|a_{m}\right|^{2}\right) w}\right), \\
\tau^{m}\left(z^{*}, w^{*}\right) & =\left(\frac{\lambda_{m}^{*}\left(z^{*}+a_{m}^{*} w^{*}\right) U_{m}^{*}}{1-2 i\left\langle a_{m}^{*}, z^{*}\right\rangle+\left(r_{m}^{*}-i\left|a_{m}^{*}\right|^{2}\right) w}, \frac{\lambda^{* 2} w^{*}}{1-2 i\left\langle\overline{a_{m}^{*}}, z^{*}\right\rangle+\left(r_{m}^{*}-i\left|a_{m}^{*}\right|^{2}\right) w^{*}}\right),
\end{aligned}
$$

where $\lambda_{m}>0, a_{m} \in \mathbb{C}, U_{m} \in \mathbb{C}$ with $\left|U_{m}\right|=1, \lambda^{*}=\lambda^{-1}, a_{m}^{*}=\left(a_{m, 1}^{*}, a_{m, 2}^{*}\right) \in \mathbb{C} \times \mathbb{C}^{2}$, $a_{m, 1}^{*}=-\lambda_{m}^{-1} a_{m} U_{m}, a_{m, 2}^{*}=0, r_{m}^{*}=-\lambda_{m}^{-2} r_{m}, U_{m}^{*}=\left(\begin{array}{cc}U_{m}^{-1} & 0 \\ 0 & U_{m, 22}^{*}\end{array}\right)$ is a 4×4 matrix, and $U_{m, 22}^{*}$ is an unitary 3×3 unitary matrix.

By the formulas (10), the automorphisms σ_{m} and τ_{m} must satisfy the following relation-
ship.
(i) $\left.\frac{\partial^{2} \hat{f}_{m}}{\partial z \partial w}\right|_{0}=\left.\lambda_{m}^{2} \frac{\partial^{2} \widetilde{f}_{m}}{\partial z \partial w}\right|_{0}$,
(ii) $\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0}=\left.i \lambda_{m}^{2} a_{m} \frac{\partial^{2} \widetilde{f}_{m}}{\partial z \partial w}\right|_{0} U_{m}^{-1}+\left.\lambda_{m}^{3} \frac{\partial^{2} \widetilde{f}_{m}}{\partial w^{2}}\right|_{0} U_{m}^{-1}$,
(iii) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0}=\left.\lambda_{m} U_{m}^{2} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{22, m}^{*}$,
(iv) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0}=\left.\lambda_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} a_{m} U_{m}^{2} U_{22, m}^{*}+\left.\lambda_{m}^{2} U_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z \partial w}\right|_{0} U_{22, m}^{*}$,
(v) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial w^{2}}\right|_{0}=\left.\lambda_{m} a_{m}^{2} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{m}^{2} U_{22, m}^{*}+\left.2 \lambda_{m}^{2} a_{m} U_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z \partial w}\right|_{0} U_{22, m}^{*}+\left.\lambda_{m}^{3} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial w^{2}}\right|_{0} U_{22, m}^{*}$.

From (i), since F has rank 0 at 0 , we see $\left.\frac{\partial^{2} \hat{f}_{m}}{\partial z \partial w}\right|_{0} \rightarrow 0$. Recall that \widetilde{F}_{m} has rank one at 0 and is of the form in Lemma 2.3(1). Then $\left.\frac{\partial^{2} f_{m}}{\partial z \partial w}\right|_{0}=\frac{i}{2}$ so that $\lambda_{m} \rightarrow 0$ as m goes to ∞.

From (ii), since $\left.\frac{\partial \widetilde{f}_{m}}{\partial w^{2}}\right|_{0}=0$, we know that $\lambda_{m}^{2} a_{m}$ is bounded.
From (iii), since $\lambda_{m} \rightarrow 0$ and $\left.\frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0}=[1,0,0]$, we see $\left.\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0} \rightarrow \frac{\partial^{2} \phi^{* *}}{\partial z^{2}}\right|_{0}=[0,0,0]$.
From (iv), the second term in the right hand side goes to zero for $\lambda_{m} \rightarrow 0$, and the first term in the right hand side is $\left.\lambda_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} a_{m} U_{m}^{2} U_{22, m}^{*}=\frac{\lambda_{m}^{2} a_{m}}{\lambda_{m}}[1,0,0] U_{m}^{2} U_{22, m}^{*}$. Recall from (ii) that $\lambda_{m}^{2} a_{m}$ is bounded. On the other hand, $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0}$ is bounded. All of these imply that $\lambda_{m}^{2} a_{m}$ must go to zero. Then from (ii), $\left.\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0} \rightarrow \frac{\partial^{2} f^{* *}}{\partial w^{2}}\right|_{0}=0$.

From (v), the second and the third terms on the right hand side converge to zero because of λ_{m} and $a_{m} \lambda_{m}^{2} \rightarrow 0$. The first term on the right hand side is bounded and can be written as $\left.\frac{\lambda_{m}^{2} a_{m}^{2}}{\lambda_{m}} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{m}^{2} U_{22, m}^{*}$. This implies that $\lambda_{m} a_{m} \rightarrow 0$. Then from (iv), it proves $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0} \rightarrow \frac{\partial^{2} \hat{\phi}}{\partial z \partial w}=[0,0,0]$. Our claim (23), as well as (22), is proved.

The part (ii) is already included in the above proof. For the part (iii), $\widetilde{G}_{1, m}$ is convergent because of the normalization procedure of $F^{* * *}$ from F (cf. [Hu03]) and because of the part (i).

3 A lemma for local computation

The only remaining way to further simplify $F^{* * *}$ in Lemma 2.3 is to pass from F to F_{p}. This then gives us three new real parameters $p=\left(z_{0}, u_{0}+i\left|z_{0}\right|^{2}\right)$ at our disposal. Here F_{p} is the same as defined in $\S 2$, which is equivalent to F.

Let F be as in Lemma 2.3 (1). By Lemma 2.3, F_{p} is equivalent to a map of the following form $F_{p}^{* * *}=\left(f_{p}^{* * *}, \phi_{1, p}^{* *}, \phi_{2, p}^{* * *}, g_{p}^{* * *}\right)$ for any $p \in \partial \mathbb{H}^{2}$ where $R k_{F}(p)=1$:

$$
\begin{align*}
f_{p}^{* * *}(z, w) & =\frac{z-2 i b(p) z^{2}+\left(\frac{i}{2}+i e_{1}(p)\right) z w}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z} \tag{24}\\
\phi_{1, p}^{* *}(z, w) & =\frac{z^{2}+b(p) z w}{1+i e_{1}(p) w+e_{2} w^{2}-2 i b(p) z}, \tag{25}\\
\phi_{2, p}^{* *}(z, w) & =\frac{c_{2}(p) w^{2}+c_{1}(p) z w}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z}, \tag{26}\\
\phi_{3, p}^{* *}(z, w) & =\frac{c_{3}(p) w^{2}}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z}, \tag{27}\\
g_{p}^{* * *}(z, w) & =\frac{w+i e_{1}(p) w^{2}-2 i b(p) z w}{1+i e_{1}(p) w+e_{2} w^{2}-2 i b(p) z} . \tag{28}
\end{align*}
$$

Here $b(p), e_{1}(p), e_{2}(p), c_{1}(p), c_{2}(p), c_{3}(p)$ satisfy $e_{2}(p) e_{1}(p)=c_{2}^{2}(p)+c_{3}^{2}(p),-e_{2}(p)=\frac{1}{4}+e_{1}(p)+$ $b^{2}(p)+c_{1}^{2}(p)$, and $-b(p) e_{2}(p)=c_{1}(p) c_{2}(p), c_{3}(p)=0$ if $c_{1}(p)=0$, with $c_{1}(p), c_{2}(p), b(p) \geq 0$, $e_{2}(p), e_{1}(p) \leq 0$.

Lemma 3.1 Let $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ and $F_{p}^{* * *}$ be as above. Then for $p=\left(z_{0}, w_{0}\right)=\left(z_{0}, u_{0}+\right.$ $\left.i\left|z_{0}\right|^{2}\right) \in \partial \mathbb{H}^{2}$ near 0 , we have real analytic functions

$$
\begin{aligned}
& b^{2}(p)=b^{2}-4 b\left(2 e_{1}+c_{1}^{2}\right) \Im\left(z_{0}\right)+o(1), \quad c_{1}^{2}(p)=c_{1}^{2}+4 c_{1}\left(b c_{1}+2 c_{2}\right) \Im\left(z_{0}\right)+o(1), \\
& e_{2}(p)+e_{1}(p)=e_{2}+e_{1}+8 b\left(e_{1}+e_{2}\right) \Im\left(z_{0}\right)+o(1) \\
& c_{1}^{2}(p)-e_{1}(p)-e_{2}(p)=c_{1}^{2}-e_{1}-e_{2}+\left(4 c_{1}\left(b c_{1}+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)\right) \Im\left(z_{0}\right)+o(1)
\end{aligned}
$$

where we denote $o(k)=o\left(\left|\left(z_{0}, u_{0}\right)\right|^{k}\right)$.
The proof of Lemma 3.1 is long but tedious, and will be given in Section 5 .
For any $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K}$, we define $\mathcal{W}\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}\right):=\mathcal{W}\left(c_{1}, c_{3}, e_{1}, e_{2}\right):=c_{1}^{2}-e_{1}-e_{2}$.

4 Proof of Theorem 1.1

Proof of Theorem 1.1: For any given non-linear map $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{N}\right)$ with $\operatorname{deg}(F)=2$, by [Theorem 4.1, HJX06], we can assume that $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$.

Step 1. Define a limit map $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ Assume that $F(0)=0$ has rank 1 at 0 and that $F=F^{* * *} \in \mathcal{K}$. Using notation as in Lemma 3.1, we consider $\ell=\inf \mathcal{W}\left(F_{p}^{* * *}\right)=$
$\inf \left\{c_{1}^{2}(p)-e_{1}(p)-e_{2}(p)\right\}$ where p runs through all points in $\partial \mathbb{H}^{2}$ with $R k_{F}(p)=1$. Take a sequence of points $p_{m} \in \partial \mathbb{H}^{2}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathcal{W}\left(F_{p_{m}}^{* * *}\right)=\ell \tag{29}
\end{equation*}
$$

Write $F_{p_{m}}^{* * *}=F_{c_{1}^{(m)}, c_{3}^{(m)}, e_{1}^{(m)}, e_{2}^{(m)}} \in \mathcal{K}$. We claim that all $e_{1}\left(p_{m}\right), e_{2}\left(p_{m}\right), c_{1}\left(p_{m}\right), c_{2}\left(p_{m}\right)$, $c_{3}\left(p_{m}\right)$ and $b\left(p_{m}\right)$ are uniformly bounded for all m. In fact, since $c_{1}\left(p_{m}\right),-e_{1}\left(p_{m}\right),-e_{2}\left(p_{m}\right)$ are non-negative, $c_{1}\left(p_{m}\right), e_{1}\left(p_{m}\right)$ and $e_{2}\left(p_{m}\right)$ are uniformly bounded for all m. From $-e_{1}\left(p_{m}\right)-$ $e_{2}\left(p_{m}\right)=\frac{1}{4}+b^{2}\left(p_{m}\right)+c_{1}^{2}\left(p_{m}\right), b\left(p_{m}\right)$ is uniformly bounded for any m. Finally, from $e_{1}\left(p_{m}\right) e_{2}\left(p_{m}\right)=c_{2}^{2}\left(p_{m}\right)+c_{3}^{2}\left(p_{m}\right), c_{2}\left(p_{m}\right)$ and $c_{3}\left(p_{m}\right)$ are uniformly bounded. Our claim is proved.

Since $c_{1}^{(m)}, c_{3}^{(m)}, e_{1}^{(m)}$ and $e_{2}^{(m)}$ are bounded for any m, by taking subsequences, we assume that $\left(c_{1}^{(m)}, c_{3}^{(m)}, e_{1}^{(m)}, e_{2}^{(m)}\right) \rightarrow\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}$ as $m \rightarrow \infty$, and hence $F_{c_{1}^{(m)}, c_{3}^{(m)}, e_{1}^{(m)}, e_{2}^{(m)}}$ converges to a limit map $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K}$ as $m \rightarrow \infty$. We claim that

$$
\begin{equation*}
F_{c_{1}, c_{3}, e_{1}, e_{2}} \text { is equivalent to } F \text {. } \tag{30}
\end{equation*}
$$

In fact, since $F_{p_{m}}^{* *}$ is equivalent to F, we have $F_{p_{m}}^{* * *}=K_{m} \circ F \circ H_{m}$ where $H_{m} \in \operatorname{Aut}\left(\mathbb{H}^{2}\right)$ and $K_{m} \in \operatorname{Aut}\left(\mathbb{H}^{5}\right)$. Notice that the choices of such H_{m} and K_{m} are not unique. By taking subsequences, we assume $p_{m}:=H_{m}(0) \rightarrow p_{0} \in \overline{\partial \mathbb{H}^{2}}$ as $m \rightarrow \infty$.

We consider two possibilities. The first, suppose that $p_{0} \neq \infty$. Then we can write

$$
\begin{aligned}
& F_{p_{m}}^{* *}=G_{2, m} \circ \tau_{p_{m}}^{F} \circ F \circ \sigma_{p_{m}} \circ G_{1, m} \\
& =G_{2, m} \circ \tau_{p_{m}}^{F} \circ\left(\tau_{p_{0}}^{F}\right)^{-1} \circ \tau_{p_{0}}^{F} \circ F \circ \sigma_{p_{0}} \circ \sigma_{p_{0}}^{-1} \circ \sigma_{p_{m}} \circ G_{1, m} \\
& =\left(G_{2, m} \circ \tau_{p_{m}}^{F} \circ\left(\tau_{p_{0}}^{F}\right)^{-1}\right) \circ F_{p_{0}} \circ\left(\sigma_{p_{0}}^{-1} \circ \sigma_{p_{m}} \circ G_{1, m}\right) \\
& =\left(G_{2, m} \circ \tau_{p_{m}}^{F} \circ\left(\tau_{p_{0}}^{F}\right)^{-1} \circ\left(\tau_{q_{m}}^{F_{p_{0}}}\right)^{-1}\right) \circ\left(\tau_{q_{m}}^{F_{p_{0}}} \circ F_{p_{0}} \circ \sigma_{q_{m}}\right) \circ\left(\sigma_{q_{m}}^{-1} \circ \sigma_{p_{0}}^{-1} \circ \sigma_{p_{m}} \circ G_{1, m}\right) \\
& =H_{2, m} \circ\left(F_{p_{0}}\right)_{q_{m}} \circ H_{1, m}=\left(F_{p_{0}}\right)_{q_{m}}^{* * *},
\end{aligned}
$$

where $q_{m}=\sigma_{p_{0}}^{-1}\left(p_{m}\right), \sigma_{p_{m}}, \sigma_{q_{m}}, \tau_{p_{m}}^{F}$, and $\tau_{q_{m}}^{F_{p_{0}}}$ are as in (3), $H_{1, m}, G_{1, m} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $H_{2, m}, G_{2, m} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$. Since $q_{m} \rightarrow 0$ and $\left(F_{p_{m}}\right)^{* * *}$ converges to $F_{c_{1}, c_{3}, e_{1}, e_{2}}$, we apply Lemma 2.5 to imply that $F_{p_{0}}$ is of rank 1 at 0 , and that $H_{1, m}$ and hence $H_{2, m}$ are convergent. Therefore $F_{p_{0}}=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ and Claim (30) is proved.

In the second possibility: $p_{0}=\infty$. We write

$$
\begin{aligned}
& F_{p_{m} * *}^{* *}=G_{2, m} \circ \tau_{p_{m}}^{F} \circ F \circ \sigma_{p_{m}} \circ G_{1, m} \\
& =\left(G_{2, m} \circ \tau_{p_{m}}^{F} \circ \tau_{\infty}^{-1}\right) \circ \tau_{\infty} \circ F \circ \sigma_{\infty} \circ\left(\sigma_{\infty}^{-1} \circ \sigma_{p_{m}} \circ G_{1, m}\right)=\left(\tau_{\infty} \circ F \circ \sigma_{\infty}\right)_{v_{m}}^{* * *}
\end{aligned}
$$

where $\sigma_{\infty} \in \operatorname{Aut}\left(\partial \mathbb{H}^{2}\right)$ and $\tau_{\infty} \in \operatorname{Aut}\left(\partial \mathbb{H}^{5}\right)$ such that $\sigma_{\infty}(0)=\infty$, and $\tau_{\infty} \circ F \circ \sigma_{\infty}(0)=0$, and $v_{m}=\sigma_{\infty}^{-1}\left(p_{m}\right)$. For example, we take $\sigma_{\infty}(z, w)=(z / w,-1 / w)$. Since $v_{m} \rightarrow 0$, we apply Lemma 2.5 again to imply that the map $\tau_{\infty} \circ F \circ \sigma_{\infty}$ is of rank 1 at 0 , and that $G_{1, m}$ and $G_{2, m}$ are convergent. Claim (30) is proved.

In the following sections, we always assume that $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ as in (30), and we shall classify such F.

Step 2. Consequence from the critical point If $c_{1}=0$, we apply Lemma 3.1 to the function $\mathcal{W}\left(F_{p}^{* * *}\right):=\left(c_{1}^{2}-e_{1}-e_{2}\right)(p)$ to obtain

$$
\mathcal{W}\left(F_{p}^{* * *}\right)=\mathcal{W}\left(F_{0}^{* * *}\right)-8 b\left(e_{1}+e_{2}\right) \Im\left(z_{0}\right)+o(|p|)
$$

for $p=\left(z_{0}, u_{0}+i\left|z_{0}\right|^{2}\right)$ sufficiently closed to 0 in $\partial \mathbb{H}^{2}$. By the minimum property (29), it implies that the coefficient of $\Im\left(z_{0}\right)$ must be zero. Then we obtain $-8 b\left(e_{1}+e_{2}\right)=0$. Since $-e_{1}-e_{2}=\frac{1}{4}+b^{2} \neq 0$, it implies $b=0$.

If $c_{1}>0$, we apply Lemma 3.1 to the function $\mathcal{W}\left(F_{p}^{* * *}\right)$ to obtain

$$
\mathcal{W}\left(F_{p}^{* * *}\right)=\mathcal{W}\left(F_{0}^{* * *}\right)+\left[4 c_{1}\left(c_{1} b+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)\right] \Im\left(z_{0}\right)+o(|p|)
$$

for $p=\left(z_{0}, u_{0}+i\left|z_{0}\right|^{2}\right)$. By the minimum property of $F=F_{0}^{* * *}$ (see(29)), it implies that $4 c_{1}\left(c_{1} b+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)=0$. Since $-e_{1}-e_{2}=\frac{1}{4}+b^{2}+c_{1}^{2} \neq 0$ and $c_{1}, b, c_{2},-e_{1},-e_{2} \geq 0$, it implies $b=c_{2}=0$.

To study F, we distinguish two cases: Case (I) $c_{1}=b=0$; Case (II) $c_{1} \neq 0$ and $b=c_{2}=0$.

Step 3. Case (I) In Case (I): $c_{1}=b=0$. By Lemma 2.3, $c_{3}=0$. Hence F is of the form $F_{e_{2}}$

$$
\begin{array}{r}
f(z, w)=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}(z, w)=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
\phi_{2}(z, w)=\frac{c_{2} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}(z, w)=0, \quad g(z, w)=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}} \tag{32}
\end{array}
$$

where $e_{1} e_{2}=c_{2}^{2}, \quad-e_{1}-e_{2}=\frac{1}{4}$. From these two equations, by noticing $e_{1}, e_{2} \leq 0$ and $c_{2} \geq 0$, we get $e_{2}(p) \in\left[-\frac{1}{4}, 0\right]$ and e_{1} and c_{2} are determined by e_{2}. Hence we can regard e_{2} as the parameter for the family of maps in (31)(32). Therefore we obtain a family $\left\{F_{e_{2}}\right\}_{e_{2} \in\left[-\frac{1}{4}, 0\right]}$.

For the family $\left\{F_{e_{2}}\right\}$, we consider one boundary point $e_{2}=0$. From $e_{2} e_{1}=c_{2}^{2}$, we know $c_{2}=0$. From $-e_{2}=\frac{1}{4}+e_{1}$, we obtain $e_{1}=-\frac{1}{4}$. By the same proof as in [§4, Step 2 and

Step 3, JX04], the map in $(31)(32)$ is equivalent to $G_{\pi / 2}$. We also consider another boundary point of $\left\{F_{e_{2}}\right\}: e_{2}=-\frac{1}{4}$. From $-e_{2}=\frac{1}{4}+e_{1}$, we have $e_{1}=0$. From $e_{2} e_{1}=c_{2}^{2}$, we know $c_{2}=0$. Using the same proof in [§6, the proof of Theorem 1.2, case (i) and (6.7), HJX05], such a map is equivalent to G_{0}.

Since the above family $\left\{F_{e_{2}}\right\}_{-\frac{1}{4} \leq e_{2}<0}$ can be represented as real algebraic variety $\subseteq\left[-\frac{1}{4}, 0\right]$ and the family $\left\{G_{t}\right\}_{0 \leq t<\frac{\pi}{2}}$ in Theorem 1.1(I) is its connected subset with the same boundary points $\left\{-\frac{1}{4}\right\}$ and $\{0\}$, we identify $\left\{F_{e_{2}}\right\}_{-\frac{1}{4} \leq e_{2}<0}$ with $\left\{G_{t}\right\}_{0 \leq t<\frac{\pi}{2}}$. Therefore, F is equivalent to $\left(G_{t}, 0\right)$ as in Theorem 1.1(I) in Case (I).

Step 4. Maps in Case (II) that can be embedded into $\mathbb{H}^{4} \quad$ By F can be embedded into \mathbb{H}^{4}, we mean that $F\left(\mathbb{H}^{2}\right) \subset G\left(\mathbb{H}^{4}\right)$ for some automorphism $G \in A u t\left(\mathbb{H}^{5}\right)$.

Now consider Case (II): $c_{1}>0$ with $b=c_{2}=0$. Then F is of the form $F_{c_{1}, c_{3}, e_{1}, e_{2}}$:

$$
\begin{aligned}
& f=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
& \phi_{2}=\frac{c_{1} z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, g=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}},
\end{aligned}
$$

where $0<c_{1}<\infty$ and $0 \leq c_{3} \leq \frac{1}{8}+\frac{c_{1}^{2}}{2}$ because e_{1} and e_{2} are non-negative real numbers determined by $e_{1} e_{2}=c_{3}^{2}$ and $-e_{1}-e_{2}=\frac{1}{4}+c_{1}^{2}$. We claim:

$$
\begin{equation*}
F \text { can be embedded into } \mathbb{H}^{4} \Longleftrightarrow c_{3}=0 \tag{33}
\end{equation*}
$$

In fact, $F\left(\mathbb{H}^{2}\right)$ can be embedded into \mathbb{H}^{4} if and only if for any point $(z, w) \in \partial \mathbb{H}^{2}$ sufficiently closed to $(0,0)$, the tangent space $T_{F(z, w)}^{(1,0)}\left(\partial \mathbb{H}^{5}\right)$ is contained in a fixed hyperplane of \mathbb{C}^{5}. More precisely, the tangent space $T_{F(z, w)}^{(1,0)}\left(\partial \mathbb{H}^{5}\right)$ at the point $F(z, w)$ is spanned by the vectors $\vec{F}_{z}=$ $\left(L f, L \phi_{1}, L \phi_{2}, L \phi_{3}, L g\right)=\left(1+\frac{i}{2} w+\left(\frac{e_{1}}{2}-e_{2}\right) w^{2}, 2 z-2 i e_{1} z w, c_{1} w-i e_{1} c_{1} w^{2}, 0,0\right)+o\left(|(z, u)|^{2}\right)$ and $\vec{F}_{w}=\left(T f, T \phi_{1}, T \phi_{2}, T \phi_{3}, T g\right)=\left(\frac{i}{2} z+\left(e_{1}-2 e_{2}\right) z w,-i e_{1} z^{2}, c_{1} z-2 i e_{1} c_{1} z w, 3 c_{3} w-\right.$ $\left.3 i e_{1} c_{3} w^{2}, 1-3 e_{2} w^{2}\right)+o\left(|(z, w)|^{2}\right)$. The statement that $F^{* * *}$ can be embedded into \mathbb{H}^{4} is equivalent to the fact that there are constants $\left(A_{1}, A_{2}, \ldots, A_{6}\right) \neq(0,0, \ldots, 0)$ such that

$$
\begin{aligned}
& A_{1}\left(1+\frac{i}{2} w+\left(\frac{e_{1}}{2}-e_{2}\right) w^{2}\right)+A_{2}\left(2 z-2 i e_{1} z w\right)+A_{3}\left(c_{1} w-i e_{1} c_{1} w^{2}\right)=A_{6}+o\left(|(z, w)|^{2}\right) \\
& A_{1}\left(\frac{i}{2} z+\left(e_{1}-2 e_{2}\right) z w\right)+A_{2}\left(-i e_{1} z^{2}\right)+A_{3}\left(c_{1} z-2 i e_{1} c_{1} z w\right)+A_{4}\left(3 c_{3} w-3 i e_{1} c_{3} w^{2}\right) \\
& \quad+A_{5}\left(1-3 e_{2} w^{2}\right)=A_{6}+o\left(|(z, w)|^{2}\right), \quad \forall(z, w) \in \partial \mathbb{H}^{2}
\end{aligned}
$$

If $c_{3}=0$, we can take $A_{4}=1, A_{1}=A_{2}=A_{3}=A_{5}=A_{6}=0$ so that $F^{* * *}$ can be embedded into \mathbb{H}^{4}. Conversely, suppose F can be embedded into \mathbb{H}^{4} and $c_{3} \neq 0$. We
seek a contradiction. By considering the constant, z and u terms, we see $A_{1}=A_{5}=A_{6}$, $A_{2}=0, A_{3}=-\frac{i}{2 c_{1}} A_{1}$ and $A_{4}=0$ because $c_{3} \neq 0$. By considering the $z u$ terms, we get $A_{1}\left(e_{1}-2 e_{2}\right)-2 i e_{1} c_{1} A_{3}=0$, i.e., $-2 e_{2} A_{1}=0$. Recall $e_{1} e_{2}=c_{3}^{2} \neq 0$. This implies that $A_{1}=0$, i.e., $\left(A_{1}, \ldots, A_{6}\right)=0$, which is a contradiction. Our claim (33) is proved.

Since $c_{3}=e_{1} e_{2}$, by Claim (33), the case of $c_{3}=0$ can be divided into two subcases: Case (IIA) $c_{3}=e_{2}=0$, and Case (IIB) $c_{3}=e_{1}=0$.

Step 5. Case (IIA) In this subcase, F is of the form $F_{c_{1}}$

$$
f=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w}, \phi_{1}=\frac{z^{2}}{1+i e_{1} w}, \phi_{2}=\frac{c_{1} z w}{1+i e_{1} w}, \phi_{3}=0, g=w
$$

where $-e_{1}=\frac{1}{4}+c_{1}^{2}$ and $c_{1}>0$ can be regarded as a parameter. Since $e_{2}=0$, by Lemma $2.3(3), F$ is equivalent to F_{θ} as in (1). Therefore, F is equivalent to $\left(F_{\theta}, 0\right)$ as in Theorem 1.1(IIA) in Case (IIA).

By the way, for the family $\left\{F_{c_{1}}\right\}$, we consider one boundary point: when $c_{1}=0$, the map $F_{c_{1}}$ is equivalent to $F_{\frac{\pi}{2}} \simeq G_{\frac{\pi}{2}}$. We also consider another boundary point: when $c_{1} \rightarrow+\infty$, the map $F_{c_{1}}$ tends to the linear map $F_{0}=(z, 0,0, w)$.

Step 6. Case (IIB) In this subcase, F is of the form

$$
f=\frac{z+\frac{i}{2} z w}{1+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+e_{2} w^{2}}, \quad \phi_{2}=\frac{c_{1} z w}{1+e_{2} w^{2}}, \quad \phi_{3}=0, g=\frac{w}{1+e_{2} w^{2}},
$$

where $-e_{2}=\frac{1}{4}+c_{1}^{2}$. Here $c_{1}>0$ can be regarded as a parameter.
Step 7. Case(IIC) Let us consider Case(II) in which $c_{3}>0$, i.e., F cannot be embedded into \mathbb{H}^{4}. From Step 4 , such $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ is of the form

$$
\begin{aligned}
& f(z, w)=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \phi_{1}(z, w)=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
& \phi_{2}(z, w)=\frac{c_{1} z w}{1+i e_{1} w+e_{2} w^{2}}, \phi_{3}(z, w)=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, g(z, w)=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}},
\end{aligned}
$$

where $-e_{1} \geq 0,-e_{2} \geq 0, c_{1}>0, c_{3}>0, e_{1} e_{2}=c_{3}^{2}$ and $-e_{1}-e_{2}=\frac{1}{4}+c_{1}^{2}$.
We say that $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ is in Case (IIC) if $\mathcal{W}\left(F_{p}^{* * *}\right)=\left(c_{1}^{2}-e_{1}-e_{2}\right)(p)$ satisfies

$$
\begin{equation*}
\mathcal{W}\left(F_{p}^{* * *}\right) \geq \mathcal{W}\left(F_{0}^{* * *}\right), \quad \forall p \in U \subset \partial \mathbb{H}^{2} \tag{34}
\end{equation*}
$$

where U is some neighborhood of 0 in $\partial \mathbb{H}^{2}$. We denote $\mathcal{K}_{I I C}$ to be a subset of $\mathcal{K} \subset \mathbb{R}^{4}$ such that $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I I C}$ if and only if $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ is in Case (IIC). Sometimes we may denote $F \in \mathcal{K}_{I I C}$.

Clearly, for any $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ of Case (IIC) with $c_{3}>0$ defined in Step 1, $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K}_{I I C}$. The proof of Theorem 1.1 is compete except of Lemma 3.1.

5 Proof of Lemma 3.1

Proof of Lemma 3.1: Let $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$. We will first follow the procedure to normalize F_{p} to a map F_{p}^{*}, and then further normalize it to the map $F_{p}^{* *}$ satisfying the condition in Lemma 2.0. Write $p=\left(z_{0}, w_{0}\right)$. We obtain normalization $F_{p}^{* * *}$.

Step 1. Compute F_{p} We have

$$
\begin{gathered}
f(z, w)=\left[z-2 i b z^{2}+\left(\frac{i}{2}+i e_{1}\right) z w\right]\left[1+\left(-i e_{1} w+2 i b z-e_{2} w^{2}\right)+\left(-i e_{1} w+2 i b z\right)^{2}\right] \\
+o(3)=z+\frac{i}{2} z w-b z^{2} w+\left(\frac{e_{1}}{2}-e_{2}\right) z w^{2}+o(3), \\
L f(p)=1+\frac{i}{2} w_{0}-2 b z_{0} w_{0}+\left(\frac{e_{1}}{2}-e_{2}\right) w_{0}^{2}-\left|z_{0}\right|^{2}+o(2), \\
T f(p)=\frac{i}{2} z_{0}-b z_{0}^{2}+\left(e_{1}-2 e_{2}\right) z_{0} w_{0}+o(2), \\
L^{2} f(p)=-2 b w_{0}-2 \bar{z}_{0}+o(1), \\
T L f(p)=\frac{i}{2}-2 b z_{0}+\left(e_{1}-2 e_{2}\right) w_{0}+o(1), T^{2} f_{p}=\left(e_{1}-2 e_{2}\right) z_{0}+o(1), \\
\phi_{1}(z, w)=\left(z^{2}+b z w\right)\left[1+\left(-i e_{1} w+2 i b z\right)\right]+o(3) \\
=z^{2}+b z w+\left(-i e_{1}+2 i b^{2}\right) z^{2} w+2 i b z^{3}-i e_{1} b z w^{2}+o(3),
\end{gathered}
$$

$$
L \phi_{1}(p)=2 z_{0}+b w_{0}+\left(-2 i e_{1}+4 i b^{2}\right) z_{0} w_{0}+6 i b z_{0}^{2}-i e_{1} b w_{0}^{2}+2 i b\left|z_{0}\right|^{2}+o(2)
$$

$$
T \phi_{1}(p)=b z_{0}-i e_{1} z_{0}^{2}-2 i b e_{1} z_{0} w_{0}+2 i b^{2} z_{0}^{2}+o(2)
$$

$$
L^{2} \phi_{1}(p)=2+\left(-2 i e_{1}+4 i b^{2}\right) w_{0}+12 i b z_{0}+4 i b \bar{z}_{0}+o(1)
$$

$T L \phi_{1}(p)=b+\left(-2 i e_{1}+4 i b^{2}\right) z_{0}-2 i e_{1} b w_{0}+o(1), T^{2} \phi_{1}(p)=-2 i e_{1} b z_{0}+o(1)$,

$$
\begin{aligned}
& \phi_{2}(z, w)=\left(c_{2} w^{2}+c_{1} z w\right)\left[1+\left(-i e_{1} w+2 i b z\right)\right]+o(3) \\
& =c_{2} w^{2}+c_{1} z w-i e_{1} c_{2} w^{3}+\left(-i e_{1} c_{1}+2 i b c_{2}\right) z w^{2}+2 i b c_{1} z^{2} w+o(3)
\end{aligned}
$$

$$
L \phi_{2}(p)=c_{1} w_{0}+\left(-i e_{1} c_{1}+2 i b c_{2}\right) w_{0}^{2}+4 i b c_{1} z_{0} w_{0}+2 i \bar{z}_{0}\left(c_{1} z_{0}+2 c_{2} w_{0}\right)+o(2)
$$

$$
\begin{gathered}
T \phi_{2}(p)=2 c_{2} w_{0}+c_{1} z_{0}-3 i e_{1} c_{2} w_{0}^{2}+\left(-2 i e_{1} c_{1}+4 i b c_{2}\right) z_{0} w_{0}+2 i b c_{1} z_{0}^{2}+o(2) \\
L^{2} \phi_{2}(p)=4 i b c_{1} w_{0}+4 i c_{1} \bar{z}_{0}+o(1)
\end{gathered}
$$

$$
T L \phi_{2}(p)=c_{1}+\left(-2 i e_{1} c_{1}+4 i b c_{2}\right) w_{0}+4 i b c_{1} z_{0}+4 i c_{2} \bar{z}_{0}+o(1)
$$

$$
T^{2} \phi_{2}(p)=2 c_{2}-6 i e_{1} c_{2} w_{0}+\left(-2 i e_{1} c_{1}+4 i b c_{2}\right) z_{0}+o(1)
$$

$$
\begin{gathered}
\phi_{3}(z, w)=c_{3} w^{2}\left[1+\left(-i e_{1} w+2 i b z\right)\right]+o(3)=c_{3} w^{2}-i e_{1} c_{3} w^{3}+2 i b c_{3} z w^{2}+o(3), \\
L \phi_{3}(p)=2 i b c_{3} w_{0}^{2}+4 i c_{3} \overline{z_{0}} w_{0}+o(2)
\end{gathered}
$$

$$
T \phi_{3}(p)=2 c_{3} w_{0}-3 i e_{1} c_{3} w_{0}^{2}+4 i b c_{3} z_{0} w_{0}+o(2), \quad L^{2} \phi_{3}(p)=o(1)
$$

$$
\begin{aligned}
& T L \phi_{3}(p)=4 i b c_{3} w_{0}+4 i c_{3} \bar{z}_{0}+o(1), T^{2} \phi_{3}(p)=2 c_{3}-6 i e_{1} c_{3} w_{0}+4 i b c_{3} z_{0}+o(1) \\
& \quad g(z, w)=\left(w+i e_{1} w^{2}-2 i b z w\right)\left[1+\left(-i e_{1} w+2 i b z-e_{2} w^{2}\right)+\left(-i e_{1} w+2 i b z\right)^{2}\right] \\
& \quad+o(3)=w-e_{2} w^{3}+o(3)
\end{aligned}
$$

$T g(p)=1-3 e_{2} w_{0}^{2}+o(2), T^{2} g(p)=-6 e_{2} w_{0}+o(1), \lambda(p)=T g_{p}(0)=1+o(1)$.
Step 2. Compute $F_{p}^{* *}$: As in [pp 467, (2.1.3), (2.1.4), Hu03], we get
where

$$
\begin{aligned}
C_{1}^{(1)}(p) & =-\frac{\overline{L \phi_{1}}}{\sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}}}(p)=-2 \overline{z_{0}}-b \overline{w_{0}}+o(1) \\
C_{2}^{(1)}(p) & =\frac{\frac{L f}{\sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}}}}{}(p)=1-\frac{i}{2} \overline{w_{0}}+o(1), C_{3}^{(1)}(p)=0, C_{4}^{(1)}(p)=0
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}^{(2)}(p)=-\frac{\overline{L \phi_{2}} L f}{\sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=-c_{1} \overline{w_{0}}+o(1) \\
& C_{2}^{(2)}(p)=-\frac{\mid L \phi_{2} L \phi_{1}}{\sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=o(1) \\
& C_{3}^{(2)}(p)=\frac{\left|L \phi_{1}\right|^{2}}{\sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=1+o(1), \quad C_{4}^{(2)}(p)=0
\end{aligned}
$$

$$
C_{1}^{(3)}(p)=-\frac{\overline{L \phi_{3}} L f}{\sqrt{\lambda} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=o(1)
$$

$$
C_{2}^{(3)}(p)=-\frac{\overline{L \phi_{3}} L \phi_{1}}{\sqrt{\lambda} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=o(1)
$$

$$
C_{3}^{(3)}(p)=-\frac{\overline{L \phi_{3}} L \phi_{2}}{\sqrt{\lambda} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=o(1)
$$

$$
C_{4}^{(3)}(p)=\frac{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}{\sqrt{\lambda} \sqrt{|L f|^{2}+\left|L \phi_{1}\right|^{2}+\left|L \phi_{2}\right|^{2}}}(p)=1+o(1)
$$

Let $F_{p}^{* *}$ be as defined in Lemma 2.1(see [(2.1.8), Hu03]). By using the formula in [((2.1.6)(2.1.8), Hu03] we have

$$
\left.\begin{array}{l}
\left.\frac{\partial^{2} f_{p}^{* *}}{\partial z \partial w}\right|_{0}=\frac{1}{\lambda(p)} L T \widetilde{f}(p) \cdot \overline{L \widetilde{f}(p)} \\
t \\
-\frac{1}{2 \lambda(p)}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\widetilde{f}(p)}\right.
\end{array}{ }^{t}\right)\left.\left.T \widetilde{f}(p) \cdot \overline{L \widetilde{f}(p)}\right|^{t}\right|^{2} .
$$

Here we used the formula $-e_{1}-e_{2}=\frac{1}{4}+b^{2}+c_{1}^{2}$.

$$
\begin{aligned}
& \frac{\partial^{2} f_{p}^{* *}}{\partial w^{2}}(0)=\frac{1}{\lambda(p)} T^{2} \widetilde{f}(p) \cdot \overline{L \widetilde{f}}^{t}-\frac{1}{\lambda(p)^{2}}\left(T \widetilde{f} \cdot \overline{L \widetilde{f}}^{t}\right)\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\breve{f}}^{t}-2 i \| T \widetilde{f}^{2}\right)(p) \\
& =T^{2} f \cdot \overline{L f}+T^{2} \phi_{2} \cdot \overline{L \phi_{2}}+o(1)=\left(e_{1}-2 e_{2}\right) z_{0}+2 c_{1} c_{2} u_{0}+o(1)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{p 1}^{* *}}{\partial z^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} L^{2} \widetilde{f}(p) \cdot \overline{C_{1}(p)} \\
& t=L^{2} \phi_{1} \overline{C_{2}^{(1)}}+o(1) \\
& =2+12 i b z_{0}+2 i\left(2 b^{2}-e_{1}\right) u+4 i b \overline{z_{0}}+i u_{0}+o(1),
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{p}^{* *}}{\partial z \partial w}(0)=\frac{1}{\sqrt{\lambda(p)}} T L \tilde{f}(p) \cdot{\overline{C_{1}(p)}}^{t}-\frac{2 i}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{1}(p)}}^{t}\right)\left(L \widetilde{f}(p) \cdot T \overline{\widetilde{f}}^{t}(p)\right) \\
& =T L f \cdot \bar{C}_{1}^{(1)}+T L \phi_{1} \cdot{\overline{C_{2}^{(1)}}}^{(1)} o(1)=b-i z_{0}+2 i\left(2 b^{2}-e_{1}\right) z_{0}-2 i b e_{1} u_{0}+o(1),
\end{aligned}
$$

$$
\frac{\partial^{2} \phi_{p 1}^{* *}}{\partial w^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} T^{2} \widetilde{f}(p) \cdot{\overline{C_{1}(p)}}^{t}
$$

$$
-\frac{1}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{1}(p)}}^{t}\right)\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\widetilde{f}}(p)^{t}-2 i\|T \widetilde{f}\|^{2}\right)(p)
$$

$$
=T^{2} \phi_{1} \cdot \overline{C_{2}^{(1)}}+o(1)=-2 i b e_{1} z_{0}+o(1)
$$

$$
\frac{\partial^{2} \phi_{p 2}^{* *}}{\partial w^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} T^{2} \widetilde{f}(p) \cdot{\overline{C_{2}(p)}}^{t}
$$

$$
-\frac{1}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{2}(p)}}^{t}\right)\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}-2 i\|T \widetilde{f}\|^{2}\right)
$$

$$
=T^{2} \phi_{2}+o(1)=2 c_{2}-6 i c_{2} e_{1} u_{0}+2 i\left(2 b c_{2}-c_{1} e_{1}\right) z_{0}+o(1)
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{p 2}^{* *}}{\partial z^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} L^{2} \widetilde{f}(p) \cdot{\overline{C_{2}(p)}}^{t}=L^{2} \phi_{2}+o(1)=4 i b c_{1} u_{0}+4 i c_{1} \overline{z_{0}}+o(1), \\
& \frac{\partial^{2} \phi_{p 2}^{* *}}{\partial z \partial w}(0)=\frac{1}{\sqrt{\lambda(p)}} T L \widetilde{f}(p) \cdot{\overline{C_{2}(p)}}^{t}-\frac{2 i}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{2}(p)}}^{t}\right)\left(L \widetilde{f}(p) \cdot T \overline{\widetilde{f}}^{t}(p)\right) \\
& =T L f \cdot \overline{C_{1}^{(2)}}+T L \phi_{2}+o(1)=c_{1}-\frac{i}{2} c_{1} u_{0}+2 i\left(2 b c_{2}-c_{1} e_{1}\right) u_{0}+4 i b c_{1} z_{0}+4 i c_{2} \overline{z_{0}}+o(1),
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial z^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} L^{2} \widetilde{f}(p) \cdot{\overline{C_{3}(p)}}^{t}=L^{2} \phi_{3}+o(1)=o(1) \\
& \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial z \partial w}(0)=\frac{1}{\sqrt{\lambda(p)}} T L \widetilde{f}(p) \cdot{\overline{C_{3}(p)}}^{t}-\frac{2 i}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{3}(p)}}^{t}\right)\left(L \widetilde{f}(p) \cdot T \widetilde{f}^{t}(p)\right) \\
& =T L \phi_{3}+o(1)=4 i b c_{3} u_{0}+4 i c_{3} \overline{z_{0}}+o(1), \\
& \quad \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial w^{2}}(0)=\frac{1}{\sqrt{\lambda(p)}} T^{2} \widetilde{f} \cdot{\overline{C_{3}}}^{t} \\
& \quad-\frac{1}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{3}(p)}}^{t}\right)\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \bar{f}(p)^{t}-2 i\|T \widetilde{f}\|^{2}\right) \\
& =T^{2} \phi_{3}+o(1)=2 c_{3}-6 i c_{3} e_{1} u_{0}+4 i b c_{3} z_{0}+o(1) .
\end{aligned}
$$

Step 3. Compute $F_{p}^{* * *}$: We next transform $F_{p}^{* *}$ into a normal form as in Lemma 2.2. For clarification, we do it in several steps.

Define $F_{p b}^{* *}=\tau^{*} \circ F_{p}^{* *} \circ \sigma$ so that $\frac{\partial^{2} f_{p}^{* *}}{\partial z \partial w}(0)=1$, where σ and τ^{*} are as in (7) with

$$
\lambda=\frac{1}{\sqrt{-2 i \frac{\partial^{2} f_{p}^{* *}}{\partial z \partial w}(0)}}=1-2 i b z_{0}+2 i b \overline{z_{0}}+o(1)
$$

$a=0, r=0, U_{22}^{*}=i d, U=i d$. Then by the formulas (10),

$$
\begin{gathered}
\frac{\partial^{2} f_{p b}^{* *}}{\partial w^{2}}(0)=\left.\lambda^{3} \frac{\partial^{2} f_{p}^{* *}}{\partial w^{2}}\right|_{0}=\left.\frac{\partial^{2} f_{p}^{* *}}{\partial w^{2}}\right|_{0}+o(1)=\left(e_{1}-2 e_{2}\right) z_{0}+2 c_{1} c_{2} u_{0}+o(1) \\
\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z^{2}}(0)=\left.\lambda \frac{\partial^{2} \phi_{p 1}^{* *}}{\partial z^{2}}\right|_{0}=2+8 i b z_{0}+2 i u_{0}\left(2 b^{2}-e_{1}\right)+8 b i \overline{z_{0}}+i u_{0}+o(1) \\
\left.\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z^{2}}(0)\right)=\left.\lambda \frac{\partial^{2} \phi_{p 2}^{* *}}{\partial z^{2}}\right|_{0}=4 i b c_{1} u_{0}+4 c_{1} i \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z^{2}}(0)=\left.\lambda \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial z^{2}}\right|_{0}=o(1)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z \partial w}(0)=\left.\lambda^{2} \frac{\partial^{2} \phi_{p 1}^{* *}}{\partial z \partial w}\right|_{0}=b-i z_{0}-2 i e_{1} z_{0}-2 i b e_{1} u_{0}+4 i b^{2} \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z \partial w}(0)=\left.\lambda^{2} \frac{\partial^{2} \phi_{p 2}^{* *}}{\partial z \partial w}\right|_{0}=c_{1}-\frac{i}{2} c_{1} u_{0}+2 i\left(2 b c_{2}-c_{1} e_{1}\right) u_{0}+4 i c_{2} \overline{z_{0}}+4 i b c_{1} \overline{z_{0}}+o(1), \\
\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z \partial w}(0)=\left.\lambda^{2} \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial z \partial w}\right|_{0}=4 i b c_{3} u_{0}+4 i c_{3} \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial w^{2}}(0)=\left.\lambda^{3} \frac{\partial^{2} \phi_{p 1}^{* *}}{\partial w^{2}}\right|_{0}=-2 i b e_{1} z_{0}+o(1) \\
\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial w^{2}}(0)=\left.\lambda^{3} \frac{\partial^{2} \phi_{p 2}^{* *}}{\partial w^{2}}\right|_{0}=2 c_{2}-2 i c_{1} e_{1} z_{0}-6 i c_{2} e_{1} u_{0}-8 i b c_{2} z_{0}+12 i b c_{2} \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial w^{2}}(0)=\left.\lambda^{3} \frac{\partial^{2} \phi_{p 3}^{* *}}{\partial w^{2}}\right|_{0}=2 c_{3}-6 i c_{3} e_{1} u_{0}-8 i b c_{3} z_{0}+12 i b c_{3} \overline{z_{0}}+o(1)
\end{gathered}
$$

Define $F_{p c}^{* *}=\tau_{2}^{*} \circ F_{p b}^{* *} \circ \sigma_{2}$ so that $\left.\frac{\partial^{2} f_{p c}^{* *}}{\partial w^{2}}\right|_{0}=0$, where τ_{2}^{*} and σ_{2} are as in (7) with $\lambda=1, r=0, U=i d, U_{22}^{*}=i d$,

$$
a=i \frac{\partial^{2} f_{p b}^{* *}}{\partial w^{2}}(0)=i\left(e_{1}-2 e_{2}\right) z_{0}+2 i c_{1} c_{2} u_{0}+o(1)
$$

Then by the formulas(10),

$$
\begin{gathered}
\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z^{2}}(0)=2+8 i b z_{0}+2 i u_{0}\left(2 b^{2}-e_{1}\right)+8 b i \overline{z_{0}}+i u_{0}+o(1) \\
\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z^{2}}(0)=4 i b c_{1} u_{0}+4 c_{1} i \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z^{2}}(0)=o(1) \\
\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z \partial w}(0)=a \frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z^{2}}(0)+\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z \partial w}(0)=b-i z_{0}-2 i b e_{1} u_{0}+4 i b^{2} \overline{z_{0}}-4 i e_{2} z_{0}+4 i c_{1} c_{2} u_{0}+o(1)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z \partial w}(0)=a \frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z^{2}}(0)+\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z \partial w}(0)=c_{1}-\frac{i}{2} c_{1} u_{0}+2 i u_{0}\left(2 b c_{2}-c_{1} e_{1}\right)+4 i c_{2} \overline{z_{0}}+4 i b c_{1} \overline{z_{0}}+o(1), \\
\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z \partial w}(0)=a \frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z^{2}}(0)+\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z \partial w}(0)=4 i b c_{3} u_{0}+4 i c_{3} \overline{z_{0}}+o(1) \\
\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial w^{2}}(0)=a^{2} \frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z^{2}}(0)+2 a \frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial z \partial w}(0)+\frac{\partial^{2} \phi_{p b 1}^{* *}}{\partial w^{2}}(0)=-4 i b e_{2} z_{0}+4 i b c_{1} c_{2} u_{0}+o(1), \\
\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial w^{2}}(0)=a^{2} \frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z^{2}}(0)+2 a \frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial z \partial w}(0)+\frac{\partial^{2} \phi_{p b 2}^{* *}}{\partial w^{2}}(0) \\
=2 c_{2}-6 i c_{2} e_{1} u_{0}-8 i b c_{2} z_{0}+12 i b c_{2} \overline{z_{0}}-4 i c_{1} e_{2} z_{0}+4 i c_{1}^{2} c_{2} u_{0}+o(1) \\
\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial w^{2}}(0)=a^{2} \frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z^{2}}(0)+2 a \frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial z \partial w}(0)+\frac{\partial^{2} \phi_{p b 3}^{* *}}{\partial w^{2}}(0) \\
=2 c_{3}-6 i c_{3} e_{1} u_{0}-8 i b c_{3} z_{0}+12 i b c_{3} \overline{z_{0}}+o(1) .
\end{gathered}
$$

Define $F_{p d}^{* *}=\tau_{3}^{*} \circ F_{p c}^{* *} \circ \sigma_{3}$ so that $\left.\frac{\partial^{2} \phi_{1 p d}^{* p}}{\partial z^{2}}\right|_{0}=2$ and $\left.\frac{\partial^{2} \phi_{j p d}^{* *}}{\partial z^{2}}\right|_{0}=0$ for $j=2$ and 3 , where σ_{3} and τ_{3}^{*} are as as in (7) with $\lambda=1, r=0, U=i d, a=0, a^{*}=0, U_{22}^{*}=\bar{U}^{t}$, where the unitary matrix \tilde{U} is defined by

$$
\tilde{U}=\left(\begin{array}{lll}
\frac{u_{11}}{\mu_{1}} & \frac{u_{12}}{\mu_{1}} & \frac{u_{13}}{\mu_{1}} \\
\frac{u_{21}}{\mu_{2}} & \frac{u 22}{\mu_{2}} & \frac{u_{23}}{\mu_{2}} \\
\frac{u_{31}}{\mu_{3}} & \frac{u_{32}}{\mu_{3}} & \frac{u_{33}}{\mu_{3}}
\end{array}\right)
$$

where

$$
\begin{gathered}
u_{11}=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}(0), u_{12}=\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}(0), u_{13}=\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}}(0) \\
\mu_{1}=\sqrt{\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|_{0}^{2}+\left|\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}\right|_{0}^{2}+\left|\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}}\right|_{0}^{2}}=2+o(1) \\
u_{21}=-\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}(0), u_{22}=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}} \\
\mu_{2}=\sqrt{\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|_{0}^{2}+\left|\frac{\partial^{2} \phi_{p c}^{* *}}{\partial z^{2}}\right|_{0}^{2}}=2+o(1)
\end{gathered}
$$

$$
\begin{aligned}
& u_{31}=\overline{\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}}}\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|^{2}=o(1), u_{32}=\left.\overline{\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}} \frac{\partial^{2} \phi_{p c}^{* *}}{\partial z^{2}} \frac{\overline{\partial^{2} \phi_{p c 1}^{* *}}}{\partial z^{2}}=o(1),} \begin{array}{l}
u_{33}^{2} \phi_{p c 1}^{* *} \\
\partial z^{2}
\end{array}\right|_{0}\left(\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|_{0}^{2}+\left|\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}\right|_{0}^{2}\right) \\
& =-8+32 i b \overline{z_{0}}+8 i u_{0}\left(2 b^{2}-e_{1}\right)+32 i b z_{0}+4 i u_{0}+o(1), \\
& \mu_{3}=\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right| \sqrt{\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|^{2}+\left|\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}\right|^{2}+\left|\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z^{2}}\right|^{2} \sqrt{\left|\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z^{2}}\right|^{2}+\left|\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z^{2}}\right|^{2}}=8+o(1) .} .
\end{aligned}
$$

Then by the formulas (10)

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{p d 1}^{* *}}{\partial z \partial w}(0)=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{11}}}{\mu_{1}}+\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{12}}}{\mu_{1}}+\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{13}}}{\mu_{1}} \\
& =b-2 i b^{3} u_{0}-b i u_{0} e_{1}-4 b^{2} i z_{0}-\frac{1}{2} b i u_{0} \\
& -i z_{0}-4 i e_{2} z_{0}+4 i c_{1} c_{2} u_{0}-2 i b c_{1}^{2} u_{0}-2 c_{1}^{2} i z_{0}+o(1) \\
& \frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0)=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{21}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{22}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{23}}}{\mu_{2}} \\
& =c_{1}+6 b c_{1} i \overline{z_{0}}+4 i b c_{1} z_{0}+4 i c_{2} \overline{z_{0}}+4 i b c_{2} u_{0}-3 i c_{1} e_{1} u_{0}+o(1),
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial w^{2}}(0)=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{21}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{22}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{23}}}{\mu_{2}} \\
& =2 c_{2}+4 i c_{2} b^{2} u_{0}-8 i c_{2} e_{1} u_{0}+20 i b c_{2} \overline{z_{0}}-4 i c_{1} e_{2} z_{0}+4 i c_{1}^{2} c_{2} u_{0}+c_{2} i u_{0}+o(1)
\end{aligned}
$$

$$
\frac{\partial^{2} \phi_{p d 3}^{* *}}{\partial z \partial w}(0)=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{31}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{32}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial z \partial w}(0) \frac{\overline{u_{33}}}{\mu_{2}}
$$

$$
=-4 i b c_{3} u_{0}-4 i c_{3} \overline{z_{0}}+o(1)
$$

$$
\frac{\partial^{2} \phi_{p d 3}^{* *}}{\partial w^{2}}(0)=\frac{\partial^{2} \phi_{p c 1}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{31}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 2}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{32}}}{\mu_{2}}+\frac{\partial^{2} \phi_{p c 3}^{* *}}{\partial w^{2}}(0) \frac{\overline{u_{33}}}{\mu_{2}}
$$

$$
=-2 c_{3}-20 i c_{3} b \overline{z_{0}}+\left(8 i c_{3} e_{1}-4 i c_{3} b^{2}-i c_{3}\right) u_{0}+o(1)
$$

Step 4. Normalization such that $c_{1}(p)=\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0) \geq 0$ and $\frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial z \partial w}(0)=0 \quad$ We define $F_{p e}^{* *}=\tau_{4}^{*} \circ F_{p d}^{* *} \circ \sigma_{4}$ so that $\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0)>0$ and $\frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial z \partial w}(0)=0$, where σ_{4} and τ_{4}^{*} are as in (7) with $U_{22}^{* *}=\left(\begin{array}{cc}1 & 0 \\ 0 & \widetilde{U}\end{array}\right), \lambda=1, a=0, U=1$ and $r=0$, where

$$
\begin{gathered}
\widetilde{U}=\frac{\left(\begin{array}{cc}
\overline{A_{2}} & -A_{3} \\
A_{3} & A_{2}
\end{array}\right)}{\sqrt{\left|A_{2}\right|^{2}+\left|A_{3}\right|^{2}}}, \\
A_{2}=\left\{\begin{array}{ll}
\frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0), & \text { if } \frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial \partial \partial w}(0) \neq 0 \\
1, & \text { if } \frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0)=0
\end{array}, \quad A_{3}=\frac{\partial^{2} \phi_{p d 3}^{* *}}{\partial z \partial w}(0) .\right.
\end{gathered}
$$

Notice that when $c_{1}>0, \frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0) \neq 0$ holds as $|p|$ sufficiently small. While when $c_{1}=0$, from Lemma 2.3, we have $c_{3}=0$ so that $\phi_{3} \equiv 0$. Hence $\frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial z \partial w}(0)=0$ is automatically true so that $A_{3}=0$. As a result, this step of normalization is not differentiable of p when $c_{1}(p)=0$.

We have

$$
\frac{A_{2}}{\sqrt{\left|A_{2}\right|^{2}+\left|A_{3}\right|^{2}}}=\left|A_{2}\right|+o(1), \frac{A_{3}}{\sqrt{\left|A_{2}\right|^{2}+\left|A_{3}\right|^{2}}}=-\frac{4 i b c_{3}}{c_{1}} u_{0}-\frac{4 i c_{3}}{c_{1}} \overline{z_{0}}+o(1),
$$

By the formulas(10), we have

$$
\begin{gathered}
f_{p e}^{* *}=f_{p d}^{* *}, \phi_{p e 1}^{* *}=\phi_{p d 1}^{* *} \\
\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0)=\frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0) \cdot \frac{\overline{A_{2}}}{\sqrt{\left|A_{2}\right|^{2}+\left|A_{3}\right|^{2}}}+\frac{\partial^{2} \phi_{p d 3}^{* *}}{\partial z \partial w}(0) \cdot \frac{\overline{A_{3}}}{\sqrt{\left|A_{2}\right|^{2}+\left|A_{3}\right|^{2}}} \\
=\sqrt{\left|\frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0)\right|^{2}+\left|\frac{\partial^{2} \phi_{p d 3}^{* *}}{\partial z \partial w}(0)\right|^{2}}=\left|\frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0)\right|+o(1),
\end{gathered}
$$

and $\frac{\partial^{2} \phi_{p=3}^{* *}}{\partial z \partial w}(0)=0$. Notice that although $\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0)$ may not be differentiable of $p,\left|\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0)\right|^{2}$ is real analytic.

Step 5. Normalization such that $b(p) \geq 0, c_{1}(p) \geq 0, e_{1}(p) \in \mathbb{R}$, and $c_{3}(p) \geq 0$ Define $F_{p}^{* * *}=\tau_{5}^{*} \circ F_{p e}^{* *} \circ \sigma_{5}$ so that $e_{1}(p) \in \mathbb{R}, b(p) \geq 0$ and $c_{3}(p) \geq 0$, where σ_{5} and τ_{5}^{*} are as in (7) with

$$
r=-\Re\left(i e_{1}\right), U=e^{i \theta}, U_{22}^{* *}=\left(\begin{array}{ccc}
e^{-2 i \theta} & 0 & 0 \\
0 & e^{i \beta_{2}} & 0 \\
0 & 0 & e^{i \beta_{3}}
\end{array}\right)
$$

where

$$
\begin{gather*}
e^{i \theta}= \begin{cases}\frac{\partial^{2} \phi_{p e 1}^{* *}}{\partial z \partial w}(0) /\left|\frac{\partial^{2} \phi_{p e 1}^{* *}}{\partial z \partial w}(0)\right| & \text { if } \frac{\partial^{2} \phi_{p e 1}^{* *}}{\partial z \partial w}(0) \neq 0, \\
1 & \text { if } \frac{\partial^{2} \phi_{p e 1}^{* *}}{\partial z \partial w}(0)=0,\end{cases} \tag{35}\\
e^{i \beta_{3}}= \begin{cases}\frac{i \beta_{2}}{\partial z}=e^{-i \theta}, \\
\frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial w^{2}}(0) /\left|\frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial w^{2}}(0)\right| & \text { if } \frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial w^{2}}(0) \neq 0, \\
1 & \text { if } \frac{\partial^{2} \phi_{p e 3}^{* *}}{\partial w^{2}}(0)=0 .\end{cases}
\end{gather*}
$$

Notice that $U=e^{i \theta}$ and U_{22}^{*} are not differentiable of p when $b(p)=0$.
Then it turns out that

$$
\begin{aligned}
c_{1}^{2}(p) & =\left|\frac{\partial^{2} \phi_{p 2}^{* * *}}{\partial z \partial w}(0)\right|^{2}=\left|\frac{\partial^{2} \phi_{p e 2}^{* *}}{\partial z \partial w}(0)\right|^{2}=\left|\frac{\partial^{2} \phi_{p d 2}^{* *}}{\partial z \partial w}(0)\right|^{2}=c_{1}^{2}+4 c_{1}\left(b c_{1}+2 c_{2}\right) \Im\left(z_{0}\right)+o(1) . \\
b^{2}(p) & =\left|\frac{\partial^{2} \phi_{p 1}^{* *}}{\partial z \partial w}(0)\right|^{2}=\left|\frac{\partial^{2} \phi_{p e 1}^{* *}}{\partial z \partial w}(0)\right|^{2}=\left|\frac{\partial^{2} \phi_{p d 1}^{* *}}{\partial z \partial w}(0)\right|^{2}=b^{2}-4 b\left(2 e_{1}+c_{1}^{2}\right) \Im\left(z_{0}\right)+o(1) .
\end{aligned}
$$

Here we used the formulas $-e_{1}-e_{2}=\frac{1}{4}+b^{2}+c_{1}^{2}$ and $c_{1} c_{2}=-b e_{1}$.
Since $e_{2}(p)+e_{1}(p)=-\frac{1}{4}-b^{2}(p)-c_{1}^{2}(p)$, we get $e_{2}(p)+e_{1}(p)=e_{2}+e_{1}+8 b\left(e_{1}+e_{2}\right) \Im\left(z_{0}\right)+$ $o(1)$. All of the formulas in Lemma 3.1(1) have been proved. Even $c_{1}(p), b(p)$ and U are not differentiable at $p_{0} \in \partial \mathbb{H}^{2}$ when $b_{1}\left(p_{0}\right)=0$, from the above, the function $c_{1}^{2}(p)$ and $b^{2}(p)$ are real analytic of p.

References

[A77] H. Alexander, Proper holomorphic maps in \mathbf{C}^{n}, Indiana Univ. Math. Journal 26, 137-146 (1977).
[BER99] M. S. Baouendi, P. Ebenfelt and L. Rothschild, Real Submanifolds in Complex Spaces and Their Mappings, Princeton Univ. Mathematics Series 47, Princeton University, New Jersey, 1999.
[BR90] M. S. Baouendi, and L. P. Rothschild, Geometric properties of mappings between hypersurfaces in complex spaces, J. Differential Geom. 31, 473-499, 1990
[CS90] J.Cima and T. J. Suffridge, Boundary behavior of rational proper maps, Duke Math. J. 60, 135-138 (1990).
[DA93] J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993.
[DA88] J. P. D'Angelo, Proper holomorphic mappings between balls of different dimensions, Mich. Math. J. 35, 83-90 (1988).
[DC96] J. D'Angelo and D. Catlin, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math Research Letters 3, 149-166 (1996).
[EHZ03] P. Ebenfelt, X. Huang and D. Zaitsev, The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics , preprint, 2003. (to appear in American Jour. of Math.)
[Fa82] J. Faran, Maps from the two ball to the three ball, Invent. Math. 68, 441-475 (1982). [Fa86] J. Faran, On the linearity of proper maps between balls in the lower dimensional case, Jour. Diff. Geom. 24, 15-17 (1986).
[Fo89] F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math., 95, 31-62 (1989).
[Ha04] H. Hamada, Rational proper holomorphic maps from \mathbb{B}^{n} into $\mathbb{B}^{2 n}$, Math. Ann. 331 (2005), no. 3, 693-711.
[Hu99] X. Huang, On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions, Jour. of Diff. Geom. Vol (51) No. 1, 13-33 (1999). [Hu01] X. Huang, On some problems in several complex variables and CR geometry. First International Congress of Chinese Mathematicians (Beijing, 1998), 383-396, AMS/IP Stud. Adv. Math., 20, Amer. Math. Soc., Providence, RI, 2001.
[Hu03] X. Huang, On a semi-rigidity property for holomorphic maps, Asian J. Math. Vol(7) No. 4(2003), 463-492.
[HJ01] X. Huang and S. Ji, Mapping \mathbb{B}^{n} into $\mathbb{B}^{2 n-1}$, Invent. Math. 145, 219-250(2001).
[HJ06] X. Huang and S. Ji, On some rigidity problems in Cauchy-Riemann geometry, to appear in: AMS/IP advanced study series.
[HJX05] X. Huang, S. Ji, and D. Xu, Several results for holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N}, Contemporay Math vol. 368 (A special issue in honor of Professor F. Treves), (2005), 267-292.
[HJX06] X. Huang, S. Ji, and D. Xu, Proper holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N} with geometric rank one, to appear in: Math. Res. Lett., 2006.
[JX04] S. Ji and D. Xu, Rational maps between \mathbb{B}^{n} and \mathbb{B}^{N} with geometric rank $\kappa_{0} \leq n-2$ and minimal target dimension, Asian J. Math. Vol(8) No. 2(2004), 233-258.
[W79] S. Webster, On mapping an ($\mathrm{n}+1$)-ball in the complex space, Pac. J. Math. 81, 267-272 (1979).
[Wo93] Marcus S.-B. Wono, Dissertation, Proper holomorphic mappings in Several Complex Variables, University of Illinois at Urbana-Champaign, 1993.
[X06] D. Xu, Dissertation, University of Houston, 2006.

Zhihua Chen, zzzhcc@tongji.edu.cn, Department of Mathematics, Tongji University, Shanghai 200092, China
S. Ji, shanyuji@math.uh.edu, D. Xu, dekangxu@math.uh.edu, Department of Mathematics, University of Houston, Houston, TX 77204, USA

[^0]: ${ }^{1}$ In the sense that if $F^{*}=\tau \circ F \circ \sigma$ where both F and F^{*} satisfy the normalized condition in Lemma 2.3, $\tau \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$ and $\sigma \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$, then $F^{*}=F$.

[^1]: ${ }^{2}$ This means that $b\left(p_{m}\right), c_{1}\left(p_{m}\right), c_{2}\left(p_{m}\right), c_{3}\left(p_{m}\right)$ are all bounded by the notation in Lemma $2.3(1)$.

