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1 Introduction

This paper continues the previous work in [HJX06] to study proper holomorphic map-
pings F € Rat(B? BY) with degree 2. In [HJXO06], it is proved that any such a map F
is equivalent to a rational proper holomorphic map (G, 0) where G € Rat(B? B°). Also a
normal form has been obtained for such a map ([Theorem 4.1, HJX06] or Lemma 2.3 below).

Here we write B" = {z € C" : |z| < 1} and Prop(B",B") for the collection of all proper
holomorphic mappings from B" to BY where 2 < n < N. We say that f, g € Prop(B", B")
are equivalent if there are automorphisms o € Aut(B") and 7 € Aut(BY) such that f =
Togoo. We write Rat(B™, BY) for the collection of all rational proper holomorphic mappings
from B" to BY.

Let us recall some known results on maps in Rat(B? BY) with degree 2. Faran [Fa82)]
proved that any F' in Rat(B? B*) with degree two must be equivalent to either the Whitney
map (z,w) — (z, zw, w?) or the map (z,w) — (2%, V22w, w?). D’Angelo [DASS] constructed
the following continuous family of mutually inequivalent proper polynomial embeddings from
B" into B?" of degree 2:

Fy(z,w) = (2, (cos )w, (sin @) zyw, - - -, (sin @)z, _yw, (sin )w?), 0 < 0 < 7/2, (1)

where (z,w) € C"! x C. In the same paper, he also gave a list of all mutually inequivalent
monomial proper mappings from B? to BY. Among the list, there are two mutually inequiv-
alent continuous families of maps with degree 2: {Fy} in (1) and the family {G,} defined



by
Gi(z,w) = (2%, V1 + cos? tzw, (cos t)w?, (sint)w), 0 <t < /2. (2)

M. S. B. Wono [Wo93] also constructed a family of monomial maps in Rat(B?, B®) of degree
2:

Hy. = <\/1 — 022, V1= cw?®, V2 —b— czw, Vbz, \/Ew), V b,c e [0,1].
In this paper, we shall prove the following result.

Theorem 1.1 Any map F in Rat(B% BY)(N > 4) with degree 2 is equivalent to one of the
following forms:
(I) (G4,0) where G; € Rat(B* B*) is defined by

Gy(z,w) = (2%, V1 +cos?t zw, (cost)w?, (sint)w), 0<t<7/2.
(I A) (Fy,0) where Fp € Rat(B* B?) is defined by

Fy(z,w) = (z, (cos O)w, (sin §) zw, (sin )w?), 0< 6 <

Dof N

(IIB) (H.,,0) where F,, € Rat(B* B*) so that p; oH, 0py = (f, 1, ¢2, g) € Rat(H? H*),
where py, is the Cayley transformations from HF to B*, is of the form:

z+ 52w z ClzW w
- s - g -
1 4 eqw?’ 1+ eqw?’ 1 4 eqw?’

f=

where —eqy = i + ¢ and ¢, > 0.
(11C) (F01703,€1762a 0) where Fe)cserer € Rat(Bz> Bs) so that pgloF01703,e1762 opy = (f, P1, P2,
¢3) € Rat(H?, H®) is of the form.:
z+ (% +ier)zw 22

f = ¢ =

1+ ieqw + esw?’

14 ielw + 6211)27
2

cL2W csw w + ieqw?

03} ¢3

:1+i61w+62w2’ :1+i61w+62w2’ g:1+i61w+62w2’
where (cy,c3, €1, €) is in a subset Kire C R* (i.e., —ey, —eq >0, ¢; >0, c3 > 0, ejeq = 3,
—e1 — ey =+ + ¢ and it satisfies (34) ).

Notice that Fj is the linear map, Fz and Gz are equivalent to the map (z,w) —
(2, 2w, w?,0), Gy = (22,v/22w,w?,0), {Focser.ert With ez > 0 is the family {(G;,0)}, and
{Fe, 0615} With ¢; > 0 is the family {(Fp,0)}.

It remains to study whether any two distinct maps in (I) (ITA)(IIB) or (IIC) above could
be equivalent and to describe the domain ;7 more explicitly.
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2 Notation and preliminaries

eMaps between balls Write H" := {(z,w) € C*! x C: Im(w) > |2|>} for the Siegel
upper-half space. Since the Cayley transformation p,, : H" — B", p,(z,w) = (lfjw, %) is
a biholomorphic mapping between H" and B", we can identify a map F € Prop(B", B") or
Rat(B", BY) with py' o F o p, in the space Prop(H",H") or Rat(H", HY), respectively.

It is known that any F' € Rat(H", H") must be a smooth CR map from OH" into OH" .
Parameterize OH" by (z,%,u) through the map (z,%z,u) — (z,u+1|2]?). In what follows, we
will assign the weight of z and u to be 1 and 2, respectively. For a non-negative integer m,
a function h(z,Z,u) defined over a small ball U of 0 in JH" is said to be of quantity o,;(m)

if %ﬁfz“) — 0 uniformly for (z,u) on any compact subset of U as t(€ R) — 0.

e Partial normalization of F' Let F' = (.fa ¢ag) = (./?7 g) = (fla e 7.fn—1a ¢1a e a¢N—nag)
be a non-constant C*-smooth CR map from OH" into OHY with F'(0) = 0. For each p € 9H?,
we write o) € Aut(H") and 77" € Aut(H") for the maps

op(z,w) = (2 + 20, w + wo + 2i(2, 7)), (3)
(2" w*) = (2" — f(z0,w0), w* — g(z0,wo) — 2i(2*, f(z0,wp))). (4)

F'is equivalent to F, = 71" 0 F o 0) = (f,, ¢p, gp). Notice that Fyy = F and F,(0) = 0.

Lemma 2.1 ([§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a C*-smooth CR map
from OH™ into OHY , 2 < n < N with F(0) = 0. For each p € OH", there is an automorphism
"€ Auty(HY) such that Fyr = 1," o I}, satisfies the following normalization:

f;* =2z + Ea**(l) (Z)w + Owt(3)> ¢** = ¢**(2)(Z) + Owt(2)a g;* =w+ OWt(4)> (5)

217 p p

(z, a7V ()2 = |6, @ ()%

Let A(p) = —2@'(%252? 0)1<ji<mn-1)- We call the rank of A(p), denoted by Rkr(p), the

geometric rank of F' at p. Rkpr(p) is a lower semi-continuous function on p. We define the
geometric rank of F' to be ko(F') = max,eoun Rkp(p). Notice 0 < kg <n — 1. We define the
geometric rank of F' € Prop,(B", BY) to be the one for the map py' o Fop, € Prop,(H", HY).
It is proved that F'is linear fractional if and only if the geometric rank of F'is 0 ([Theorem
4.3, Hu99]). Hence, in all that follows, we assume that xo(F) > 1.



Denote by Sp = {(j,0) : 1 < j < ko, 1 <1 < (n—1),j <1} and write S := {(j,1) :
(j,1) € So, or j=rko+1,l € {ro+1,--- ,KO—I-N—TL—M}}. Then we further have
the following normalization for F':

Lemma 2.2 ([Lemma 3.2, Hu03]): Let F be a C*-smooth CR map from an open piece
M C OH" into OHY with F(0) = 0 and Rkr(0) = ko. Let P(n, ko) = w Then
N > n+ P(n,ko) and there are 0 € Auty(OH") and 7 € Autg(OH") such that F;** =
ToFoo:=(f ¢,9) satisfies the following normalization conditions:

( Y 2 £
fi=z+ %zjw + 0wt (3), gu{g (0)=0, j=1-+-,Kg, pj >0,
fj :zj_'_owt(g)v J=#ko+1-- n—-1
g =u+ ould) o
Gj1 =pjziz + ow(2), where (j,1) € S with pj; >0 for (j,1) € Sy
L and p; = 0 otherwise.

Moreover puj; = \/pj +  for j,l < ko g # 1, i = /1 if § < ko andl > Ko or if j =1 < Ko.

e Degree of a rational map For a rational holomorphic map H = Pry:vFm)

where P;, () are holomorphic polynomials and (P, ..., P,,, Q) = 1, we define
deg(H) = max{deg(P;), 1 < j <m, deg(Q)}.

For a rational map H and a complex affine subspace S of dimension k, we say that H
is linear fractional along S, if S is not contained in the singular set of H and for any
linear parameterization z; = z;) + Zle ajty with j = 1,-+ n, H*(t1,--- ,t) := H(} +
S anty, -+, 22 + SO ajnt;) has degree 1in (ty,-- - ,ty).

e Actions of the isotropic groups of the Heisenberg hypersurfaces Let 0 €
Auto(OH?) and 7* € Auty(OH®) be defined by [(2.4.1), Hu03] and [(2.4.2), Hu03] respectively,
by . >\2 N (2* w0k T T >\*2 *

LG U Ve L 0 ) U ) .
q(z, w) q*(z*, w)
where ¢(z,w) =1 —2i(@,2) + (r —ila|> )w, A > 0,7 € R, a € C, |U| =1, and ¢*(z*,w*) =
1—2i(a*, z*) + (r* —ila*|*)w*, \* > 0, r* € R, a* = (a},a}) € C*® and U* is an 4 x 4 unitary
matrix, such that [((2.5.1), (2.5.2), Hu03] holds:

* —1 * —1 * * —2 * U_l O
N=X"1Yal=-Xx"aU, a5 =0, r* = -\""r, U = . s (8)



where a* = (af,a3), Uj, is an 3 x 3 unitary matrix. Define F* = 7% o F' o 0. By [Lemma
2.3(A), Hu03], we can write

f(za w) =z+ %ZA'LU + Owt(g)a f*(Z,'LU) =z+ %ZA*'LU + Owt(3)>

¢(z,w) = 12(BY, B%, B¥)z + 2Bw + 1 25(0)w? + o(|(z,w)[?), (9)
2 1k
¢*(z,w) = 12(B*, B2, B*)z + 2B w + 122 (0)w? + o(| (2, w)|?),

; 02¢; ; 02¢7 . 02 o2 o2 _
where B' = 29:(0), B = S5:(0) for i = 1,2,3 and B = (g1, 202 Jos) pr —

(gj§i> gjgﬁ, gzgf’: ). Also, the same computation in [Hu03, Lemma 2.3 (A)] gives the fol-

lowing:
G (0) =0, Z55(0) =0, 5L(0) =0, Fr(0)=0, A"=NUAU,
2L (0) = iNaUAU + X 2L(0) U,

B*', B** B**| = \U[B', B?, B*U'Us, (10)
B* = \U[B', B?, B3|UtaUs, + NUBUL,
9°¢.(0) = \aU[B", B?, B|U'a'Us, + 2)\2aUBU3, + N3 2%(0)Us,.

—

e A normal form for F € Rat(B? BY) with degree 2

Lemma 2.3 ([HXJ06, theorem 4.1]) Let F € Rat(0H? 0HY) have degree 2 with N > 4,
F(0) =0 and Rkp(0) = 1. Then

(1) F is equivalent to a new map (F**,0) where F** = (f, ¢1, o, ¢3,9) in Rat(OH?,
OHP) defined by

z — 2ib2% + (L +ie) 2w 22 4+ bzw

f(z,w) = . 2 B P 1(Z’w) = . 2 2 (11)

1+ie;w + esw? — 2ibz 1+ ieqw + esw? — 2ibz

2 2
CoW* + c1zw c3w
_ = 12
D2z, 0) 1 +ieqw + eqw? — 2ibz’ b(z ) 1+ ie;w + eqw? — 2ibz’ (12)
w ~+ ie;w? — 2ibzw
Z, W) = - —. 13
9(z,w) 1+ ieqw + eqw? — 2ibz (13)
Here b, —eq, —es, 1, Co, c3 are real non-negative numbers satisfying

€16y = C% + Cg, —€1 — €9 = i + b2 + C%, —beg = C1C9, C3 = 0 Zf Cc1 — 0. (14)

(2) c1,c,c3,e1,€9,b are uniquely determined by F 1. Conversely, for any non-negative
real numbers cy, ¢, c3, €1, €2, b satisfying the relations in (14), the map F defined in (11) (12)
(13) is an element in Rat(OH?, OH®) of degree 2 with F(0) = 0 and Rkp(0) = 1.

(8) If ea = 0, then F' is equivalent to (Fy,0) with Fy as in (1).

'In the sense that if F* = 7 o F o ¢ where both F' and F* satisfy the normalized condition in Lemma
2.3, 7 € Auto(OH®) and o € Auto(OH?), then F* = F.
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Remarks (i) The new normalized map in Lemma 2.3(1) can be obtained by F** = 7% o
F** o g where F** is as in Lemma 2.2 and ¢ and 7* are as in (7).
(i) For the map F** in Lemma 2.3(1), b = \/—61 —e— 1 —c? and ¢ = \/erer — 3 are
determined by ¢y, c3,e; and es, which can be regarded as parameters. Then we denote
F™ = Fe ez ene0-
(iii) We denote by K a subset of R* such that (cy, c3, €1, e9) € K if and only if F, o ¢;.c, 1S a
map defined as above. We can identify a map Fy, ., ¢, ¢, With the 4-tuple (1, 3, €1, e2) € K.
Sometimes we also denote Fy, ¢, ¢ e, € K.
(iv) If ' € Rat(H?* H°) with F(0) = 0 and rank 1 at 0, then F** € K. Conversely, if
F € K, then F(0) =0 and F has rank 1 at 0.

To prove Theorem 1.1, the following results will be needed.

Lemma 2.4 Let F € Rat(H? H°) such that F(0) = 0, deg(F) < 2, the geometric rank at 0

REkr(0) =0, and the associated map F** satisfies
82f** 82¢** 82¢**
Ow? (0) =0, 022 (0)= 0z0w

(0) = (0,0,0). (15)
Then F' must be a linear map.

Proof: By the hypothesis, F** can be witten as

24 E122 + Eyzw

= 16
/ 1+ Eiz + Fyw + Eszw + Eyw? + E522 (16)
Byw?
¢1 = - 2 2 (17)
14+ EFiz+4 Fow + BEyzw + Eyw? + Esz
Byw?
by = 2 - - (18)
14+ Eiz+4+ Eow+ Eszw + Eyw? + Esz
Bsw?
¢ = : s (19)
14+ Fiz+4 Fow + Byzw + Eyw? + Esz
w + B zw + Eyw?
) vt B (20)

1+ Fiz + Fyw + Eszw + Eyw? + E522

Notice w = u+i|z|2, w? = u® — |2|* + 2iu|2|2, |w|* = u* + 2u?|2|* + |2[8. From Im(g) = | f|?
on OHZ, we get



( + Ey(u — i|2|?) 4+ Esz(u — i|z*) + Ey(u® — |2|* — 2iu|z|*) + EEQ)
(u +i|z]* + Erz(u +i|2?) + By(u? — |2|* + 2iu|z\2))
— (1 + Bz + Ey(u+il2]?) + Esz(u +i|2|*) + Ey(u® — |2)* + 2iu|z|?) + E5z2)
(u —id|z|* + E1Z(u — i|2|?) + Ex(u® — |2|* — 2iu\z|2))
= 2i|2|? [1 + Eiz + Ey(u+ z'|z|2)] {1 + EZ+ Ey(u — i|z|2)]
+2i(|B1|* + | Bo|® + | Bs|*) (u® + 2u?|2)* + |2]®), Vz € C,Vu € R.

Consider the uz? terms, we get E5 = 0.

Consider the u?z terms, we get EyEy — E1Ey — E5 = 0. Then E; = 0.
Let z = 0 in the above equation. We get

(14 Eyu + Egu®)(1 + Eyu) — (14 Eyu + Egu®)(1 + Eyu) = 2i(| By |* + | Bo[*)u?
Then E, — E4 =0, i.e., E, is real, and
Ey(Ey — Ey) = 2i(|Bi|* + | Ba|? + | Bs[*). (21)

Let u = 0 in the above equation. We get
<1 + EiZ —iEy|z)* — E|z|4) <Z +iEyz — E2|z|2>
— (1 + Ei1z 4+ iEy|z)* — E4|z|4) ( —i—iEZ — E|z|2)
=2 {1 + Bz + E2z|z\2] {1 + Bz — E@W} + 2i(|B1|? + | Ba)* + | Bs|?)|2|°.

Consider the z|z|* terms, we get E,F; = 0. In case E; = 0, it implies By = By = B3 =0
by (21). Then it implies that F™** is linear and we are done. In case F; = 0, then the above
equation becomes



(1 — iFy|2* — E|z|4> (z — E2|z|2) - (1 + i Fy|2]* — E4|z|4) < —i— E|z|2)

=2 [1 + Egz'|z|2] [1 — Eu,ﬂ + 2i(| By + | Bo|* + | Bs|?)|2|°.

Consider the |z|* terms, i| By | —iE, +i|Ey|? —iEy = 2i|Es|?. Recall Ey is real. It implies
E, =0. Hence By = By = B3 = 0 so that F** is linear. [

Lemma 2.5 Let F' € Rat(OH?, 0H?) with F(0) = 0 and deg(F) = 2. Suppose that p,, €
OH? is a sequence converging to 0, F,  is of rank 1 at 0 for any m and E)** converges such

2 kK ok 2 1k ok ok 2 Lk k ok 2 1k okok
that aafé;;" lo, aa(ifém lo, 885)5’5\0 and aafjém lo are bounded * for all m. Then

(i) F' is of geometric rank 1 at 0: Rkr(0) =1, and hence F** is well-defined.

(ii) Fs — Fo, ) .

(iii) If we write F7** = G, 07, 0 F ooy, 0Gyy where oy, and 7, := 7} are as in (3),
Gim and Gy, are as in (7), then Gy, and G, are convergent to some Gy € Auty(OH?)

and Gy € Auto(9H?) respectively.

Proof: (i) Suppose that I has rank 0 at 0. We'll seek a contradiction.
Denote F** = (f**, ¢**, g**). We only need to prove the following claim:

82f** 82¢** 82¢**
ow? (0)=0, 022 (0) = 0z0w
In fact, by Lemma 2.4, F' must be linear but this is a contradiction with deg(F') = 2.
Since we have supposed that Rkg(0) = 0, we have gigz (0) = 0 so that F*** is not well
defined.
Write F'** = GyoF oGy, where Gy € Auty(OH?) and Gy € Autq(OHP). Since Rkp(py,) = 1
for any m, (F),,, )" is well-defined which is of the normal form as in Lemma 2.3(1). Write
¢m € OH? so that G1(¢) = pm. Consider

(0) = (0,0,0). (22)

(Fons By Gon) = ((F**>qm) = (Hz T, oGz) oFo (Gl 0 Oy, oHl)

and

(fm> 57717:5771) = (Fpm)*** = (62 © Tpfn) © F © (UPW © él)

2This means that b(pm), c1(Pm), c2(Pm), ¢3(pm) are all bounded by the notation in Lemma 2.3(1).
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where Hy, Gy € Auto(0H?), Hy, Gy € Auto(9HP), 04 (0) = Gm, 7} (G2 0 F(pm)) = 0,
0p,,(0) = P, and 7.7 (F(py)) = 0 as in (3). Then

qm

sokk Y F ~ ~ F -1 F -1 -1
(Fp) —GQOTmeFoapmoGl—(GQOTPWOG2 o(r, ) OHQ)
ol Hyor! 0GyoFoGioo, oH)o(H oo oG 0s, oG

2 qm 2 1 am 1 1 qm 1 Pm 1

*k
m ok
(i)

where o, := Hl_loa;ioGl_loapmoél € Auto(OH?) and 7™ := éQOTZf;OGz_lO(TF YloH !t €
Aut0(0H5)

Since ¢, — 0 as m — oo, we have (F**)qm) — F* as m — oo. In order to prove
Claim (22), it is enough to show that
Pdm
0z0w

%0,
022

& fon

ow?

lo — 0, lo — (0,0,0), lo — (0,0,0), as m — co. (23)

As in (7), we write

o) = Am (2 + amw) Uy, Aw
TN = 2i(@, 2) + (P — dlam 2w’ 1 — 20(Tm, 2) + (1 — ilam|Dw )’

* * * * * *2 )k
Tm(Z*,’LU*) — ( )\m(z +a’mw )Um )\ w )’

1—2i(ay,, 2) + (r, —ilay, P)w’ 1= 2i(az,, z) + (v}, — ila;, [*)w”

where Ay, > 0, a,, € C, Up, € C with |Uy| = 1, X* = X1, al, = (af,4,a5,,) € Cx C?,

Ut : :
an, ;= AL, Up, ano = 0,1, = A2, Ur = ( 6” U is a 4 x 4 matrix, and
m,22
Upn22 18 an unitary 3 x 3 unitary matrix.

By the formulas (10), the automorphisms o, and 7, must satisfy the following relation-



ship.

2 f 2 F

(9) gzéZ) o= gzéZ) |f’

i) L2y = i an 2o o33 2,

i) L0, 0,02 20,

(iv) gzg:} lo = Am 82¢m |0amU2 Usym + MU, %MUQW

w Lo, maa¢$ V30 + 2AfnamUm%loU§zm CLATIN

From (i), since F' has rank 0 at 0, we see 5= |0 — 0. Recall that F,, has rank one at 0
and is of the form in Lemma 2.3(1). Then gz(’;’g\o * so that \,, — 0 as m goes to oo.
3fm

From (ii), since 5%|o = 0, we know that A2 a,, is bounded

From (iii), since \,, — 0 and % o =[1,0,0], we 6 ‘Z’m\ 2‘; lo =10,0,0].

From (iv), the second term in the right hand side goes to zero for A, — 0, and the first
term in the right hand side is A, a;fy |00th2 U2*2 "= Ag”“’" [1,0,0]U3,Us,,,,- Recall from (ii)
that A2, mlois bounded All of these imply that A2 a,,

P fm

must go to zero. Then from (ii), FI5|o — 6w2 “lo=0.
From (v), the second and the third terms on the right hand side converge to zero because
of \,, and am)\fn — 0. The first term on the right hand side is bounded and can be

2 2 27
written as ’\’j\ﬁm aaf5"|0U%U§2’m. This implies that A\,a,, — 0. Then from (iv), it proves
9%m b

S0 — 8228‘;:” = [0,0,0]. Our claim (23), as well as (22), is proved.

The part (ii) is already included in the above proof. For the part (iii), éLm is convergent
because of the normalization procedure of F*** from F' (cf. [Hu03]) and because of the part
(i). O

’88

3 A lemma for local computation

The only remaining way to further simplify F*** in Lemma 2.3 is to pass from F' to F},. This
then gives us three new real parameters p = (29, ug + i|2/?) at our disposal. Here F}, is the
same as defined in §2, which is equivalent to F.
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Let F be as in Lemma 2.3 (1). By Lemma 2.3, F}, is equivalent to a map of the following
form F = (=%, 7%, 57, g5) for any p € OH? where Rkp(p) = 1:

Lp>

z — 2ib(p)2* + (% +ier(p))zw

fy(zw) = 1 + ey (p)w + ea(p)w? — 2ib(p)z’ (24)
- 22 + b(p)zw

1 (2 w) = 1+ ey (p)w + eaw? — 2ib(p)z’ (25)
. ca(p)w? + ci(p)zw

Vo (2 0) = 1 +ier(p)w + ea(p)w? — 2ib(p)z’ (26)

¢***( ) : 03(p)w : ’ (27)

1+ lelﬁp)w + 62(p)f~02 — 2ib(p)z
g (2, w) = w + ier(p)w?® — 2ib(p)zw (28)

1+ iei1(p)w + eaw? — 2ib(p)z

Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisty es(p)er(p) = ¢
b*(p) + ci(p), and —b(p)e2(p) = c1(p)ez(p). cs(p) = 0 if c1(p)
e2(p), er(p) < 0.

Lemma 3.1 Let F' = F,, ¢y ), and F;™ be as above. Then for p = (29, wo) = (20,uo +
i|z0|?) € OH? near 0, we have real analytic functions

b2 (p) = b* — 4b(2e1 + )3 (20) +o(1), A (p) = & 4 4ey(bey + 2¢3)S(2) + o(1),
ea(p) +e1(p) = ea + €1 + 8b(er + €2)S(20) + o(1),

AA(p) —ei(p) —ea(p) =cf — e — ey + <4cl(bcl + 2¢9) — 8b(ey + 62)) I(z0) + o(1)

5(p)+c3(p), —ea(p) = +er(p)+
=0, with ¢;(p), ca(p), b(p) > 0,

where we denote o(k) = o(|(zo, ug)|*).

The proof of Lemma 3.1 is long but tedious, and will be given in Section 5.
For any F., ¢y e,.e, € K, we define W(F,, ¢y e1.e0) := W(c1, c3,€1,€3) := ¢ — 1 — e3.

4 Proof of Theorem 1.1

Proof of Theorem 1.1:  For any given non-linear map F € Rat(H? HY) with deg(F) = 2,
by [Theorem 4.1, HJX06], we can assume that F' € Rat(H? H®).

Step 1. Define a limit map F, ;. Assume that F'(0) = 0 has rank 1 at 0 and
that F' = F*** € K. Using notation as in Lemma 3.1, we consider ¢ = inf W(F;™) =
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inf{c?(p) — e1(p) — ea(p)} where p runs through all points in OH? with Rkr(p) = 1. Take a
sequence of points p,, € OH? such that
ni,lngo W(E)™) = L. (29)

Write F** = ch7yl)’cgm)7eg77L)7egm) € K. We claim that all e1(pn), e2(pm), c1(Pm), c2(pm),
¢3(pm) and b(p,,) are uniformly bounded for all m. In fact, since ¢1(py), —€1(Pm), —€2(pm) are
non-negative, ¢1(pm), €1(pm) and ex(p,,) are uniformly bounded for all m. From —e;(p,,) —
ea(pm) = 1 + V*(pm) + 3 (Pm), b(pm) is uniformly bounded for any m. Finally, from
e1(pm)e2(pm) = 3(pm) + A(Pm), c2(pm) and c3(p,,) are uniformly bounded. Our claim
is proved.

Since cgm), cém), egm and egm) are bounded for any m, by taking subsequences, we assume
that (cg m) c§m>,e§’”’ eém)) — (c1,¢3,e1,62) € K as m — oo, and hence F ) m) (m) m
converges to a limit map Fi, ¢y ¢,.6, € K as m — 0o. We claim that L

F.\ cye1.e0 15 equivalent to F. (30)

In fact, since F;** is equivalent to F', we have F*** = K,, o F' o H,, where H,, € Aut(H?)
and K, € Aut(H5). Notice that the choices of such H,, and K,, are not unique. By taking
subsequences, we assume p,, := H,,(0) — py € OH2 as m — oo.

We consider two possibilities. The first, suppose that pg # co. Then we can write

= Gopp 0 oFoap oGim

F N —1
—GngTpnO(TpO) 07'1,00FoapooapO 00y, 0Gim

_ F Fy\—1 —1
- (G27m © Tpm © (Tpo) ) © Fpo © <0p0 © OPm © lem)

_ F, _ _
= (Ggm o 7‘;; o (Tplz) 1o o (Tg0)™ 1) o <7‘qu o[y, o qu) o (an} o Upol © g, © lem)
= Hymo (Fpo)qm oHym= (Fpo)***

qm ?

where ¢n, = 0, (D), Opps Ogns 71, and 7y, "n are as in (3), Him, Gi € Auto(OH?) and
Hym, Go € Auto(OHP). Since g, — 0 and (F,,,)"™* converges to F, cye1ery We apply
Lemma 2.5 to imply that F}, is of rank 1 at 0, and that H, ,, and hence H;,, are convergent.
Therefore F,, = Fp, cs.¢,.¢, and Claim (30) is proved.

In the second poss1b1hty po = 00. We write

***
pm G2 ,1 O F © UPm © Gl ,m

<G2m o, 1) 0T 0 Fooy o0 <ao_01 o 0, © GLm) (T 0 F o 00) "
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where 0o, € Aut(OH?) and 7., € Aut(OH) such that o, (0) = 0o, and 7o, 0 F 0 0,,(0) = 0,
and v,, = 0 (pmm). For example, we take 0. (2, w) = (z/w, —1/w). Since v,, — 0, we apply
Lemma 2.5 again to imply that the map 7., o F' o 0 is of rank 1 at 0, and that G, and
Gl are convergent. Claim (30) is proved.

In the following sections, we always assume that F' = I, ., ., ¢, as in (30), and we shall
classify such F.

Step 2. Consequence from the critical point If ¢; = 0, we apply Lemma 3.1 to the
function W(F;**) := (¢} — e1 — e3)(p) to obtain

W(E,™) = W(EG™) — 8b(er + €2)S(20) + o(|pl),

for p = (29, ug + i|20]?) sufficiently closed to 0 in OH?. By the minimum property (29), it
implies that the coefficient of (zy) must be zero. Then we obtain —8b(e; + e3) = 0. Since
—e1 — ey =1 +b? # 0, it implies b = 0.

If ¢; > 0, we apply Lemma 3.1 to the function W(F;**) to obtain

W(E,™) = W(FF™) + |4ei(eib + 2c9) — 8b(er + ea) | S(20) + o(|pl),

for p = (20, uo + |20/?). By the minimum property of F' = F§** (see(29)), it implies that
deq(e1b+ 2¢5) — 8b(eg + e3) = 0. Since —e; — eg = i + b2+ 2 #0and ¢, b, ¢y, —e1, —€9 > 0,
it implies b = ¢o = 0.

To study F', we distinguish two cases: Case (I) ¢; = b = 0; Case (II) ¢; # 0 and
b= Cy = 0.

Step 3. Case (I) In Case (I): ¢4 = b = 0. By Lemma 2.3, ¢c5 = 0. Hence F is of the
form F,,

z+ (5 +ier)zw 22

1(z,w)

f(z>w) =

1+ ie;w + eqw?’

¢3(z,w) =0, g(z,w)

= 31
1+ ie;w + eqw?’ (31)

w + ieqw?
1+ ieqw + eqw?

ng2

— - s
1+ ieqw + eqw?

P22, w) (32)

where e1ey = c%, —e1— €9 = i. From these two equations, by noticing e, es < 0 and ¢y > 0,
we get es(p) € [—i, 0] and e; and ¢y are determined by e;. Hence we can regard ey as the

parameter for the family of maps in (31)(32). Therefore we obtain a family {F¢, }.,¢ 10

For the family {F.,}, we consider one boundary point e; = 0. From eye; = c3, we know
¢y = 0. From —eqy = i + e1, we obtain e; = —i. By the same proof as in [§ 4, Step 2 and
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Step 3, JX04], the map in (31)(32) is equivalent to G/o. We also consider another boundary
point of {F.,}: ey = —i. From —ey = i + e1, we have e; = 0. From ege; = 3, we know
co = 0. Using the same proof in [§ 6, the proof of Theorem 1.2, case (i) and (6.7), HJX05],
such a map is equivalent to Gj.

Since the above family {F.,} 1<e,<0 Can be represented as real algebraic variety C [—1,0]
and the family {G;}o<t<z in Theorem 1.1(I) is its connected subset with the same boundary
points {—1} and {0}, we identify {Fez}—iSeKO with {G\}o<t<z. Therefore, F' is equivalent

to (Gy,0) as in Theorem 1.1(I) in Case (I).

Step 4. Maps in Case (II) that can be embedded into H* By F' can be embedded
into H*, we mean that F(H?) C G(H*) for some automorphism G € Aut(H?).
Now consider Case (II): ¢; > 0 with b = ¢y = 0. Then F'is of the form Fi, ¢, ¢; e

/ z4 (5 +iey)zw 22
- A 1= A
1+ ieqw + esw?’ 1+ ieqw + eqw?’
5 cL2W csw? w + ieqw?
2

- 1+ ieqw + eqw?’ 03 = 1+ ieyw + eqw?’ 9= 1+ ieqw + eqw?’

2
where 0 < ¢g < oo and 0 < ¢3 < % + %1 because e; and e, are non-negative real numbers
determined by eje; = ¢ and —e; — 3 = 1 + ¢f. We claim:

F can be embedded into H* <= c3 = 0. (33)

In fact, F'(H?) can be embedded into H* if and only if for any point (2, w) € OH? sufficiently

closed to (0, 0), the tangent space Tlgl(ﬁ)w)(ﬁ]ﬂl‘r’) is contained in a fixed hyperplane of C°>. More

precisely, the tangent space Tlgl(ﬁzﬂ)(8H5 ) at the point F'(z,w) is spanned by the vectors F =
(Lf, L1, Lo, Lo, Lg) = (1+ 1w+ (L —ez)w?, 2z—2ieszw, ciw—iercw?, 0, 0)+o(|(z,u)|?)
and F, = (T'f, Ty, Ty, Tps, Tq) = (42 + (&1 — 2e2)2w, —ie1 2%, c1z — 2iejcizw, 3czw —
Jiercsw?, 1 — 3eaw?) + of|(z,w)|?). The statement that F*** can be embedded into H* is
equivalent to the fact that there are constants (Aj, As, ..., Ag) # (0,0, ...,0) such that

A (1+ %w + (% — ex)w?) + Ay(22 — 2iejzw) + Az(cw — iejciw?®) = Ag + o(|(z,w)[?),
l

A1(§Z + (61 - 262)2’(1]) + A2(—i61z2) + Ag(Clz - 2i€1012w) + A4(3ng - 3’i6103w2)
+A5(1 — 3equw?) = Ag + o(|(z,w)]?), V(z,w) € OH.
If c3 = 0, we can take Ay = 1,4, = Ay = A3 = A5 = Ag = 0 so that F** can be
embedded into H*. Conversely, suppose I’ can be embedded into H* and c3 # 0. We
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seek a contradiction. By considering the constant, z and u terms, we see A; = As = Ag,
Ay =0, Az = —ﬁAl and A; = 0 because c¢3 # 0. By considering the zu terms, we get
Ai(er — 2e9) — 2iejc1 Az = 0, ie., —2e3A4; = 0. Recall ejey = ¢ # 0. This implies that
A; =0, ie., (Ay,...,Ag) = 0, which is a contradiction. Our claim (33) is proved.

Since c3 = ejeq, by Claim (33), the case of ¢c3 = 0 can be divided into two subcases: Case
(ITA) ¢3 = ey = 0, and Case (IIB) ¢3 = e; = 0.

Step 5. Case (ITA) In this subcase, I is of the form F,

2z 4+ (% +ie1)zw 22 c12Ww

fo= 1+ ieqw ’¢1:1+i61w’ ¢2:1+i61w

7¢3:0ag:w7

where —e; = i + cf and ¢; > 0 can be regarded as a parameter. Since es = 0, by Lemma
2.3(3), F is equivalent to Fy as in (1). Therefore, F' is equivalent to (Fy,0) as in Theorem
1.1(ITA) in Case (IIA).

By the way, for the family {F., }, we consider one boundary point: when ¢; = 0, the map
F, is equivalent to Fz ~ G%. We also consider another boundary point: when ¢; — 400,
the map F,, tends to the linear map Fy = (z,0,0,w).

Step 6. Case (IIB) In this subcase, F'is of the form

z+ 52w 22 c12W w

= — = — = - :O - @@
/ 1+62w27¢1 1+62w2’¢2 1+62w2’¢3 I T T e’

where —ey = i + 2. Here ¢; > 0 can be regarded as a parameter.

Step 7. Case(IIC) Let us consider Case(II) in which ¢3 > 0, i.e., ' cannot be embedded
into H*. From Step 4, such F' = F,, ., ¢, is of the form

z+ (% +iey)zw 2
Z,w) = - , Z, W) = . 9
.f( ) 1 + ieqw + 62'UJ2 ¢1( ) 1 —+ e w + 62w2
2 e w?
B 12w B csw - w + e w
¢2(Z,w) T1x iew + eqw?’ ¢3(sz) 14+ ieqw + eqw?’ g(z’w) 1+ ierw + eqw?’

where —e; > 0, —e5 > 0,¢1 > 0,¢5 >0, e165 = ¢3 and —e; — €3 = 1 + ¢}
We say that F' = Fi, c;e, e, is in Case (IIC) if W(EF;**) = (¢] — e1 — e3)(p) satisfies

W(E™) > W(F;™), YV peU C oH? (34)
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where U is some neighborhood of 0 in 0H2. We denote K ;¢ to be a subset of K C R* such
that (c1, ¢, e1,e2) € Krpe if and only if Fi, ., ¢, ¢, is in Case (IIC). Sometimes we may denote
F e K.

Clearly, for any Fi, ¢y ¢, e, of Case (IIC) with ¢5 > 0 defined in Step 1, F, cye,.e0 € Kr1c-
The proof of Theorem 1.1 is compete except of Lemma 3.1. [J

5 Proof of Lemma 3.1

Proof of Lemma 3.1:  Let F' = F, ¢, ¢,.e,- We will first follow the procedure to normalize
F, to a map F, and then further normalize it to the map F;* satisfying the condition in
Lemma 2.0. Write p = (2o, wo). We obtain normalization F**.

Step 1. Compute F}, We have

f(z,w) = [z — 2ibz* + (% +ider)zw] |1+ (—ieqw + 2ibz — epw?) + (—ieqw + 2ibz)?

+0(3) =z + %zw —bz*w + (% — ep)2w? + 0(3),

7 e
Lf(p) =1+ §w0 — 2bzpwy + (51 — eg)wg — |,zo|2 + 0(2),

1
Tf(p) = §z0 — bzg -+ (61 — 262)Zow0 + 0(2)7

L*f(p) = —2bwy — 2%y + o(1),
TLf(p) = % — 2b2g + (e1 — 2ex)wo + o(1), T?f, = (e1 — 2e2)z + o(1),

b1(z,w) = (2% + bzw) |1 + (—ieyw + 2ibz) | + o(3)

= 22 + baw + (—iey + 2ib%) 22w + 2ibz® — ie;bzw? + o(3),
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Loi(p) = 220 + bwgy + (—2ie; + 4z'b2)zow0 + Gibzg — z'elbwg + 2ib|20|2 + 0(2),

To1(p) = bz — z'elzg — 2ibeq zowy + 22’b22’§ + 0(2),

L?¢1(p) = 2 + (—2ie; + 4ib*)wg + 12ibzg + 4ibZo + o(1),

TL¢1 (p) =b+ (—21'61 + 47:62)20 - 2ielbw0 + 0(1), T2¢1 (p) = —2i61b20 + 0(1),

P2(z,w) = (caw® + crzw) | 1 + (—ieqw + 2ibz) | + o(3)

= cow? + crzw — ieycow® + (—ieyc + 2ibcy)zw? + 2ibe; 2w + 0(3),

Lo (p) = crwg + (—iejcy + 2ibey)wy + 4ibey zgwo + 2i%Z0(c120 + 2c2wp) + 0(2),

Tos(p) = 2cowg + 129 — 3@'6102108 + (—2ieycq + 4ibey) zowo + 2ibclzg + 0(2),

L?¢a(p) = dibcrwg + 4icyZo + o(1),

T Lpo(p) = c1 + (—2ieycy + 4ibes)wg + 4ibeyzg + 4icsZo + o(1),

T?¢a(p) = 2¢5 — Bieycowy + (—2iejey + 4ibey)zg + o(1),
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¢3(z,w) = csw? |1 + (—ieyw + 2ib2) | + 0(3) = c3w? — ieycsw® + 2ibeszw? + o(3),

Ls(p) = 2ibeswi + 4icsZywo + 0(2),

Tos(p) = 2c3wy — 32’6103108 + 4ibeszowo + 0(2), L2¢3(p) =o(1),

TL¢3(p) = 4ib03U)0 + 4’i0320 + 0(1), T2¢3(p) = 203 - 6i€103w0 + 4ib0320 + 0(1),

g(z,w) = (w+ ieyw? — 2ibzw) |1 + (—ieyw + 2ibz — esw?) + (—ieqw + 2ibz)?

+0(3) = w — eqw® + 0(3),

Tg(p) = 1 = 3eawj + 0(2), T?g(p) = —6eawy +o(1), A(p) = Tg,(0) = 1+ o(1).
Step 2. Compute F;*: As in [pp 467, (2.1.3), (2.1.4), Hu03}, we get

i ¢’ 4?0 e
) Vo VoY )
o CMp P P 0
\p) NS VoY oY
Fy=F|Iew o'eo @20 e |
A(p) o V5N o
Lis) ' Pw o)
Ap) VoY VoY Vo
0 0 0 0 3
where
L ¢y o
e p) = - (p) = =225 — by + o(1),
' VIL TP+ L 612
(1) Lf i__ (1) 1)
2 (p) = (p) =1—-wo+ 0(1)7 Cs (p) =0, C'4 (p) = 0.
VIL fI2+|L ¢:1] 2
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L ;L f

cPp) = - = —cywg + o(1
1 (p) JLIET LoV JETIL 0P s L ¢2|2(p) ey + o(1),
oDy — L ¢oL ¢y o1
N % R e T RNy s A
2 2
O ) LTI ol (1) =1+ o0(1). C2(p) =0,

T VILIPT L oPVIL [P+ 1L 61+ L 6o

c® 0y — LosL f _
B () — L ¢3L ¢ _
B () — L ¢3L ¢o _
5 (p) WA D ¢2|2(p) o(1),
2 2 2

VWL TEFIL 612 + L 6]

Let F* be as defined in Lemma 2.1(see [(2.1.8), Hu03]). By using the formula in [((2.1.6)-
(2.1.8), Hu03] we have

a2f;* B 1 _ ¢ % _ ¢ 2
1 2 2 T =~
53 (290~ 277 0) - T )

o _ 1 :
= LTf - L] + LT¢: - Loy + LT - L — 5T + o(1) = % — 2bzy + 2675 + o(1).

Here we used the formula —e; — eg = i + 0%+

82f;* 1 27 —— 1 ~ —=t 2 .2 7 = . N2
o 0) = 5T 1F = 5 (1717 ) (12— 2rF T = 2R )

= T2f . L_f + T2¢2 . L—qbg + 0(1) = (61 — 262)20 + 20102U0 + 0(1),
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P 1 TN AT 0]

— L2 . — L2 (1) 1
522 (0) o) f(p) - Ci(p) $1Cy " +o(1)
= 2+ 12ibzg + 2i(20* — e1)u + 4ibZy + dug + o(1),

P 1 o\ At 2 T\ At .
Toh0) = =T ) T = 5oy (77 -G ) (277 )

—TLf-CY 4 TLéy - O 4 o(1) = b — izg + 20(26? — e1)z0 — 2iberuo + o(1),

angﬁ 1 9 —t
Ow? (O> = )\(p)T f(p) ) Cl(p>

1 ry Vol 2 2 Y 1 T2
s (70 -G ) (729t0) ~ 20 - T~ 27712 ) 0

= T2¢1 : @ + 0(1) = —Qibelzo + 0(1),

a;f? (0) = Al(p) L*F(p) - Co(p) = L2y + (1) = dibeyug + icyZ5 + o(1),
62¢;§ o 1 ry ) ——t _ 21 ~ ‘ —t ~ ‘ —t
T 0) = —ASTLI) - G 35 (17 - T ) (270077 )

= TLf . @ + TL(bg + 0(1) = C1 — %Cﬂlo + 2@(2[)02 — 0161)u0 + 4’”)0120 + 4’iCQZ_0 + 0(1),

e 1 27\ At
T2 (0) = A(p)T f(p) - Ca(p)

1 ~ —t ) e - S
_W(Tf(p).oz(p) ) (T g(p) = 2iT%f(p) - f(p) — 2| TF| )

= T%py + 0(1) = 2¢y — Gicae ug + 2i(2bcy — cre1)zp + o(1),
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8;;3 0) = ;(p) sz(p) _mt — %6 + o(1) = o1),

Py 1 ~ =t 24 - —t
T 0) = AL - G0 35 (17 -G ) (270077 )
=T L¢3+ o(1) = dibczug + 4icszo + o(1),

09y 1 or
0) = T?f-C
ow? (0) A(p) U

1 iy 7t ~ —t .
s (170 T ) () - 2125 0) - T — 2117717
= T2¢3 + 0(1) = 263 — 6'é03€1U0 + 47;60320 + 0(1)

Step 3. Compute F;**: We next transform F* into a normal form as in Lemma 2.2

For clarification, we do it in several steps.
62 * % . .
Define F; = 7" o F)* 0 0 so that 572>(0) = 1, where o and 7* are as in (7) with
zZow

1
=1 — 2ibzy + 2ibZ; + o(1),

2 £k
ap

—2i 0z0w (0)

A=

a=0,7=0,U;, =id,U =id. Then by the formulas (10),

82f** 82f** 82f**
aprb (0) = \° 8pr o = 8pr lo +0o(1) = (e1 — 2e2)20 + 2c1cup + o(1),
82 *Zl 82 *T
8;; (0) =\ 8z§ lo = 2+ 8ibzy + 2iug(20* — e1) + 8biZy + iug + o(1),
P, Pop _
az‘g 0)) =X 825 lo = 4ibciug + 4c1iZo + o(1),

02 koK 82¢**
S3(0) = A2y = of1),
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P i , 005
0z0w (0) =X 0z0w

|0 =b— iZO — 2’i6120 — 27:[?61U0 + 4Zb22_0 + 0(1),

82¢ 82 ** i . | |
8,25122 (0) = A? 20w |0 =1~ 50 + 2i(2bcy — creq)ug + dicyZy + 4ibeiZo + o(1),

82 *ok 82¢**
b3 N2 p3
0z0w (0) =2 0z0w

‘0 = 4’ib03U0 + 4’i032_0 + 0(1),

O o :
9510y ~ 50, ey v o),
82 *% 82
81,:;2 (0) = A" af} lo = 2¢5 — 2icrerz0 — Gicaerug — 8ibcazo + 12ibeyzg + o(1),
0” 50°
8?;?2113 (0) = x? &gi lo = 2¢3 — Gicgequg — 8ibegzg + 12ibesZg + o(1).

Define F;* = 7'2 o F*b* o g9 so that f”c lo = 0, where 75 and oy are as in (7) with

82f
= awz (0) = i(61 - 262)20 + 2i0102u0 + 0(1)
Then by the formulas(10),
82 *ok 82
2l 0) = pit (0) = 2 + 8ibzg + 2iug(2b> — e1) + 8bizg + iug + o(1),
02?2 02?2
P Ppe Py . _
822 (0) = 8;; (0) = 4ibcrug + 4c11Zg + o(1),
82 *Z a2¢
82’23(0) - ang3(0) 20(1)7
P Py Py

8z8p;1( )=ua 5.2 (0) 520w (0) = b —izg — 2ibejug + 4ib*Z5 — 4iegzg + 4icycoug + o(1),
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2 [ k% 2 kK
0 optox"s

pc2 .
5200 V) =05 (0O F

o
8;;1)1,{;2 (0) =c1— %cluo + 2iug(2bcy — creq) + dicoZg + 4ibei Zg + o(1)

P o oy

82 ¢pb3
200 0 = e (O F

520w (0) = 4ibcgug + 4dicszo + o(1),

82 * 82
8wp21( ) = a 8221)1 (0) +2a

2 2
9 pbl 0 pbl

D20w (O) w2 (0) = —4’ib€220 + 4’ib0102uO + 0(1),

0*¢rs 2 %h 2055 ¢,
D02 (0)—a 5. (0) + 2a 520w (0) + T2 (0)

= 2¢y — Bicyerug — 8ibcyzg + 12ibeyZy — 4icieazg + 4ich coug + o(1)

2 2 2 2
0k 0) = a2 0) + 20 8 0) 4 T

0
20w O gz )
= 2¢3 — Giczequg — 8ibeszg + 12@6032'0 + o(1).

Define F;7 = 75 0 [;7 0 03 so that ¢1”d

lo =2 and “’d

|0:0forj—2and3 where o
and 73 are as as in (7) with A = 1,r =0,U

,7=0,U=1d,a= O,a 0,Us, = U where the unitary
matrix U is defined by

i1 w2 w3
- o
— u21 U222  U23
U= p2  op2 op2 |0
B3 H3  H3
where
82 **1 2 **2 82 **3
Ui = 7 ——2—(0), w1 = T‘ZC(O), Ui = —- £=(0),
82 *k 82 *k 2¢
pcl pe2 |9 pc3
P L T S L e
82¢ 82¢**
_ pc2 pcl o
U2l = 022 (0), uge = 022 (0), ug3 =0,

Py Py
/J’2_\/‘ 01;1|0_|_‘ 022|0_2+O(1>7
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92wk | Q2 Lxx |2 2 kK 2 2
Uz = 8 pc3 a ¢pcl _ 0(1) Usy = 8 p03a (bpcz8 ¢pcl _ 0(1)’
022 | 022 ’ 022 022 022
vy = T (180|005
% 922 °\| 922 |, | 922 |,

= —8 4 32ibZ + Siug(26* — €;) + 32ibzg + 4iug + of

gl | P oy ¢y 0 *Z (92 e :
a(igl\/| ¢“|2+| o PPl \/l S+ ¢p2| 2=8+o(l).

Then by the formulas (10)

Py (0) = 32615;21( )
0z0w 0z0w "y  0z0w

U3 =

— 2 JE— 2 _
wr , PO )T | s T3

0z0w
1
=b— 2ib3u0 — b’inel — 4b2i20 — inUO

—izy — diegzy + 4dicicaug — 2ibciug — 2c3izy + o(1),

a2¢pd2 Port Ty 0o Um0 U3
0 pc 0) =2+ pc2 0 22 pc3 0 23
0z0w (0) = 8201,0( ) + 8201,0( )t 02810( )

= ¢ + 6bcyiZy + 4ibcy zo + dicoZy + 4zbc2u0 — 3iciequg + 0(1),

0 0) = 0> e 0 4 0 e 0% O dpes 0%
ow? ow? i ow? i ow? fi2
= 209 + dicyb®ug — Sicoequg + 20ibesZzg — dicieazy + 42’0?02u0 + cotug + o(1).

a2¢pd3 82 pcl u—31 82@;2 u—32 a ¢pc3 u—33
5200 " = 3200 V70 T 5200 V0 T 00 W,
= —dibcsug — 4dicszy + o(1),

82 82 J— 82 *ok JE— 82 Kk J—

¢pd3 (0) _ pcl( Uzt n ¢pc2 (0)@ i ¢pc3 0)@

ow? ow? L2 ow? i ow? i
= —2c3 — 20ic3bZy + (Sicge; — dicsb® — ics)ug + o(1).
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Step 4. Normalization such that ¢ (p) = 882%’62 (0) >0 and 2 pea “2(0) =0  We define

¥ = 7f o Fy7 o0y so that ¢p62 - (0)

L 9) A=1,a=0,U =1 and r = 0, where

0 U)’
Ay —Aj
~ Ay Ay
VIA2 + A2

82 . 0%
L R, i SRR £ P
2= . 9%pr ’ 3= 020 ( )
L if 52(0) =0 2w

22(0) = 0, where o4 and 7] are as in (7)

with Uz = (

Notice that when ¢; > 0, azé’f( ) # 0 holds as |p| sufficiently small. While when ¢; = 0,
from Lemma 2.3, we have c3 = 0 so that ¢35 = 0. Hence 86%’63 (0) = 0 is automatically
true so that A3 = 0. As a result, this step of normalization is not differentiable of p when

C1 (p) =0.
We have

Ag _ |A2|—|—0(1), Ag :_4’Lb03u0_4103z_0+0(1)’
VA2l + [A3]? VI A2|? + [A3]? €1 Sl

By the formulas(10), we have

Jpe = Fpd> Ppar = Ppans

82 p62 (0) 82 pd2( ) . A_Z + 82 pd3( ) . A_3

0z0w 0z0w VA2 + A2 0z0w V| A2|% + | As)?
82 ¢pd2 2 82 ¢pd3 2 82 pd2

B \/ 0z0w (0) 0z0w (0) 0z0w (0)' +oll),

(0) may not be differentiable of p,

2¢ 2
i)

¢>pe
and 5=(0) =

is real analytic.
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Step 5. Normalization such that b(p) > 0, c1(p) > 0, ei(p) € R, and c3(p) > 0
Define F;** = 75 o F)¥ 0 05 so that e1(p) € R, b(p) > 0 and c3(p) > 0, where o5 and 75 are
as in (7) with

. e20 0
r=—R(ie;), U = e, Uss = 0 eif -05
0 0 e
where
82(1)1151 a2¢p51 . 82¢>p61
olf — { 970w 0)/| 5250 (0)] if 25, (0) #0, (35)
P
1 Z‘f 8251111 (O) = 07
ei,@Q — €_i9’
Oy DSy 09
€i53 — 6“’23 (O>/ 8u12(3 (Ow Zf 8w23 (O> 7& 07
2 kok
1 if 88%263 (0) =0.

Notice that U = ¢ and Uj, are not differentiable of p when b(p) = 0.
Then it turns out that

A(p) = o ;S*( )2 o ;:2( 2 _ |7 (0) = &+ 4eq (bey + 262)S(20) + o(1)
)= 0z0w 0z0w 0z0w o o 2 0 ’
82¢*** 2 82 ok 2 82 *ok 2
2 pel o pdl 12
Here we used the formulas —e; — ey = i + 0% 4 ¢ and cicy = —be;.

Since ex(p) +e1(p) = —5 —b*(p) — 3 (p), we get ex(p) +e1(p) = e2+€148b(er +€2)S(20) +

o(1). All of the formulas in Lemma 3.1(1) have been proved. Even ¢ (p), ( ) and U are not

differentiable at py € OH? when by (pg) = 0, from the above, the function ¢?(p) and b?(p) are
real analytic of p. [
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