Communications in
Analysis and Geometry
Volume 24, Number 2, 279-300 2016

Mapping \mathbb{B}^{n} into $\mathbb{B}^{3 n-3}$

Jared Andrews, Xiaouun Huang*, Shanyu Ji ${ }^{\dagger}$, and Wanke Yin ${ }^{\dagger \ddagger}$

1. Introduction

Denote by $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ the collection of all proper holomorphic rational maps from the unit ball $\mathbb{B}^{n} \subset \mathbb{C}^{n}$ to the unit ball $\mathbb{B}^{N} \subset \mathbb{C}^{N}$, and denote by $\operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ the collection of all proper holomorphic rational maps from \mathbb{H}_{n} to \mathbb{H}_{N}, where $\mathbb{H}_{n}=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}\left|\operatorname{Im}(w)>|z|^{2}\right\}\right.$ is the Siegel upper half space. By the Cayley transform, we can identify \mathbb{B}^{n} with \mathbb{H}_{n}, and identify $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $\operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$. We say that $f, g \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ are spherically equivalent if there are $\sigma \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}^{N}\right)$ such that $f=$ $\tau \circ g \circ \sigma$. We use the convention as in [Le11] to extend the notion of spherical equivalence naturally to maps with different target dimensions. For instance, two maps $f \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N_{1}}\right)$ and $g \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N_{2}}\right)$ with $N_{1}<N_{2}$ are said to be spherically equivalent if $(f, 0, \ldots, 0)$, with $\left(N_{2}-N_{1}\right) 0$-components added to f, is spherically equivalent to g. The study of rational and proper holomorphic maps has attracted much attention in the past several decades. Here, we refer the reader to [Fo92] DA93] Hu99] Hu03] DL09] FHJZ10] Eb13] LM07] MMZ03] Mir03] [YZ12] for discussions and many references therein for more related investigations on these matters.

The first gap theorem proved in W79] Fa86 Hu99] is stated as follows: For $N \in(n, 2 n-1)$ with $n \geq 2$, any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is spherically equivalent to a map of the form $(G, 0)$ with $G \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{n}\right)$. When $N=n$, by a classical result of Alexander [A77, any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{n}\right)$ is an automorphism of \mathbb{B}^{n}. When $N=2 n-1$, it was proved in HJ01 that any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-1}\right)$ is spherically equivalent to either the linear map or the Whitney map.

The second gap theorem was proved in HJX06: When $N \in(2 n, 3 n-3)$ and $n \geq 4$, any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is spherically equivalent to a map of the form $(G, 0)$ with $G \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$. When $N=2 n$, it was proved by Hamada Ha05 that any map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ must be spherically equivalent to a map from the D'Angelo family. In this paper, we consider the

[^0]J. Andrews, X. Huang, S. Ji, and W. Yin

other limit case $N=3 n-3$. We will give a complete classification up to the above mentioned spherical equivalence relation. This work is a continuation of the previous works by [Ha05 and HJY14. Our main theorem is stated as follows:

Theorem 1.1. Let $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-3}\right)$ with $n \geq 4$. Then F is spherically equivalent to one of the following maps G :
(1) $G(z)=(z, 0, \ldots, 0)$.
(2) $G(z)=\left(z_{2}, z_{3}, \ldots, z_{n}, z_{1}^{2}, z_{1} z_{2}, \ldots, z_{1} z_{n}, 0, \ldots, 0\right)$ (the Whitney map).
(3) $G(z)=\left(\sqrt{t} z_{1}, z_{2}, \ldots, z_{n}, \sqrt{1-t} z_{1}^{2}, \sqrt{1-t} z_{1} z_{2}, \ldots, \sqrt{1-t} z_{1} z_{n}, 0, \ldots, 0\right)$, where $0<t<1$ (the D'Angelo maps).
(4) $G(z)=\left(z_{3}, z_{4}, \ldots, z_{n}, z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}, z_{1} z_{3}, \ldots, z_{1} z_{n}, z_{2} z_{3}, z_{2} z_{4}, \ldots, z_{2} z_{n}\right)$ (the generalized Whitney map $W_{n, 2}$).

We remark that the maps in (2)-(3) are of geometric rank one (an invariant concept to be defined later); and the map in (4) is of geometric rank two. A special result of the above was proved in JX04 that any map $F \in \operatorname{Rat}\left(\mathbb{B}^{4}, \mathbb{B}^{9}\right)$ with $\operatorname{deg}(F)=2$ and geometric rank two must be spherically equivalent to the map $W_{4,2}$.

We outline the idea of the proof of Theorem 1.1 as follows. The paper is based on the previous two papers HJY14 and Le11. First, for each map $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$, there is an associated invariant called its geometric rank κ_{0}. (For a precise definition, see the next section of this paper). By the inequality $N \geq n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$ established in Hu03, any map in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-3}\right)$ with $n \geq 4$ must have geometric rank $\kappa_{0} \leq 2$. Since the rank one case was classified in [HJX06], it suffices to consider the rank two case. It was also proved in [JX04, Theorem 6.1], that for any $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-3}\right)$ with $\kappa_{0}=2$, we have $\operatorname{deg}(F) \leq 4$. The main point of this paper is to show that we actually have $\operatorname{deg}(F) \leq 2$. For this purpose, we make use of the techniques and formulas developed in a recent paper [HJY14]. We also need to develop several quite different approaches to deal with the degree estimate in our relatively large codimensional setting. Once $\operatorname{deg}(F) \leq 2$ is proved, we apply Lebl's theorem [Le11] to complete our proof.

One of the main ingredients in our proof is to obtain the optimal degree estimate for maps in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-3}\right)$. Along these lines, there is a famous conjecture called the D'Angelo conjecture, which states as follows:
Conjecture 1.2. For any $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$, the degree of F is bounded by $2 N-3$ when $n=2$; and is bounded by $\frac{N-1}{n-1}$ when $n \geq 3$.

When $N=3 n-3, \frac{N-1}{n-1}<3$. Our result hence provides a solution to the D'Angelo conjecture in this special setting.

The D'Angelo conjecture is a fundamental problem in the study of mappings between balls. It has a major impact for the classification of proper rational maps between balls, if answered affirmatively, as demonstrated in this paper. Forstneric̆ in [Fo89] first obtained a rough bound of the degree, which depends on the cubic power of the codimension. Meylan Mey06 improved the Forstnerič bound to a quadratic bound. However, obtaining a linear bound on the codimension is substantially harder and more important. When $n=2$, the D'Angelo conjecture for the monomial case was solved affirmatively in DKR03 by introducing a new method. For the general n, the D'Angelo conjecture for the monomial case was completely solved by D'Angelo-Lebl-Peters [DLP07] and Lebl-Peters [LP12].

For more discussions on the gap conjecture and connections with other studies, we refer the reader to the papers of D'Angelo-Lebl [DL09], Huang-Ji-Yin [HJY09] HJY14], Ebenfelt [Eb13], and the references therein.

Remark: We use this opportunity to mention that in our paper [HJY14], the conjugate signs in some of equations were missed in its journal printed form due to the tex non-compatibility of ours with that of the publisher. (The readers may find our original tex-file submitted to Math. Ann. in arXiv:1201.6440 (v2) where there was no such an issue).

2. Preliminaries

2a. The associated maps $F_{p}^{* *}$: Let $F=(f, \phi, g)=(\widetilde{f}, g)=\left(f_{1}, \ldots, f_{n-1}\right.$, $\left.\phi_{1}, \ldots, \phi_{N-n}, g\right)$ be a non-constant rational CR map from an open subset M of $\partial \mathbb{H}_{n}$ into $\partial \mathbb{H}_{N}$ with $F(0)=0$. For each $p \in M$ close to 0 , we write $\sigma_{p}^{0} \in \operatorname{Aut}\left(\mathbb{H}_{n}\right)$ for the map sending (z, w) to $\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right)$ and $\tau_{p}^{F} \in \operatorname{Aut}\left(\mathbb{H}_{N}\right)$ by defining

$$
\tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\widetilde{f}}\left(z_{0}, w_{0}\right)\right\rangle\right)
$$

Then F is equivalent to $F_{p}=\tau_{p}^{F} \circ F \circ \sigma_{p}^{0}=\left(f_{p}, \phi_{p}, g_{p}\right)$. Notice that $F_{0}=F$ and $F_{p}(0)=0$. The following is fundamentally important for the understanding of the geometric properties of F. Let us denote $\operatorname{Prop}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ $:=\left\{\right.$ holomorphic proper maps from \mathbb{H}_{n} into $\left.\mathbb{H}_{N}\right\}$ and $\operatorname{Prop}_{k}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right):=$ $\operatorname{Prop}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right) \cap C^{k}\left(\overline{\mathbb{H}_{n}}\right)$.

Parameterize \mathbb{H}_{n} by (z, \bar{z}, u) through the map $(z, \bar{z}, u) \rightarrow\left(z, u+i|z|^{2}\right)$. In what follows, we will assign the weight of z and u to be 1 and 2 , respectively. For a nonnegative integer m, a function $h(z, \bar{z}, u)$ defined over a small ball U of 0 in \mathbb{H}_{n} is said to be of quantity $o_{w t}(m)$ if $h\left(t z, t \bar{z}, t^{2} u\right) /|t|^{m} \rightarrow 0$ uniformly for (z, u) on any compact subset of U as $t(\in \mathbb{R}) \rightarrow 0$. We use the notation $h^{(k)}$ to denote a polynomial h which has weighted degree k.

Lemma 2.1. ([Hu99]) Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ with $2 \leq n \leq N$. For each $p \in \partial \mathbb{H}_{n}$, there is an automorphism $\tau_{p}^{* *} \in A u t_{0}\left(\mathbb{H}_{N}\right)$ such that $F_{p}^{* *}:=\tau_{p}^{* *} \circ$ F_{p} satisfies the following normalization:

$$
\begin{aligned}
& f_{p}^{* *}=z+\frac{i}{2} a_{p}^{* *(1)}(z) w+o_{w t}(3) \\
& \phi_{p}^{* *}=\phi_{p}^{* *(2)}(z)+o_{w t}(2) \\
& g_{p}^{* *}=w+o_{w t}(4) \\
\text { with } & \left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2}
\end{aligned}
$$

2b. Geometric rank: Write $\mathcal{A}(p):=-2 i\left(\left.\frac{\partial^{2}\left(f_{p}\right)_{t}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)_{1 \leq j, l \leq(n-1)}$. The rank of the $(n-1) \times(n-1)$ matrix $\mathcal{A}(p)$ is called the geometric rank of F at p. In what follows, we write $R k_{F}(p)$ for the geometric rank of F at p, which depends only on p and $F . R k_{F}(p)$ is a lower semi-continuous function on p, and is independent of the choice of $\tau_{p}^{* *}(p)$. (See Hu03] for more discussions on this matter). Define the geometric rank of F to be $\kappa_{0}(F)=$ $\max _{p \in \partial \mathbb{H}_{n}} R k_{F}(p)$. Notice that it always holds that $0 \leq \kappa_{0} \leq n-1$. Define the geometric rank of $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ to be the one for the map $\rho_{N}^{-1} \circ$ $F \circ \rho_{n} \in \operatorname{Prop}_{2}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$. By [Hu03], $\kappa_{0}(F)$ depends only on the equivalence class of F and when $N<\frac{n(n+1)}{2}$, the geometric rank $\kappa_{0}(F)$ of F is precisely the κ_{0} we mentioned in the introduction.

Under the condition that $1 \leq \kappa_{0} \leq n-2$, the following theorem was proved in Hu03.

Theorem 2.2. (Hu03] and [HJX06]) Suppose that $F \in \operatorname{Prop}_{3}\left(\mathbb{H}_{n}, \mathbb{H}_{N}\right)$ has geometric rank $1 \leq \kappa_{0} \leq n-2$ with $F(0)=0$. Then there are $\sigma \in A u t\left(\mathbb{H}_{n}\right)$ and $\tau \in$ Aut $\left(\mathbb{H}_{N}\right)$ such that $\tau \circ F \circ \sigma$ takes the following form, which is still denoted by $F=(f, \phi, g)$ for convenience of notation:

$$
\left\{\begin{array}{l}
f_{l}=\sum_{j=1}^{\kappa_{0}} z_{j} f_{l j}^{*}(z, w) ; l \leq \kappa_{0} \tag{2.1}\\
f_{j}=z_{j}, \text { for } \kappa_{0}+1 \leq j \leq n-1 ; \\
\phi_{l k}=\mu_{l k} z_{l} z_{k}+\sum_{j=1}^{\kappa_{0}=1} z_{j} \phi_{l k j}^{*} \text { for } \quad(l, k) \in \mathcal{S}_{0}, \\
\phi_{l k}=O_{w t}(3), \quad(l, k) \in \mathcal{S}_{1}, \\
g=w ; \\
f_{l j}^{*}(z, w)=\delta_{l}^{j}+\frac{i \delta_{l}^{j} \mu_{l}}{2} w+b_{l j}^{(1)}(z) w+O_{w t}(4), \\
\phi_{l k j}^{*}(z, w)=O_{w t}(2), \quad(l, k) \in \mathcal{S}_{0}, \\
\phi_{l k}=\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j}^{*}=O_{w t}(3) \text { for }(l, k) \in \mathcal{S}_{1}
\end{array}\right.
$$

Here, for $1 \leq \kappa_{0} \leq n-2$, we write $\mathcal{S}=\mathcal{S}_{0} \cup \mathcal{S}_{1}$, the index set for all components of ϕ, where $\mathcal{S}_{0}=\left\{(j, l): 1 \leq j \leq \kappa_{0}, 1 \leq l \leq n-1, j \leq l\right\}, \mathcal{S}_{1}=\{(j, l)$: $\left.j=\kappa_{0}+1, \kappa_{0}+1 \leq l \leq \kappa_{0}+N-n-\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}\right\}$, and

$$
\mu_{j l}= \begin{cases}\sqrt{\mu_{j}+\mu_{l}} & \text { for } j<l \leq \kappa_{0} ; \tag{2.2}\\ \sqrt{\mu_{j}} & \text { if } j \leq \kappa_{0}<l \text { or if } j=l \leq \kappa_{0}\end{cases}
$$

2c. A family of affine subspaces L_{ϵ} : Let us review some background materials on the semi-linearity property on $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)(\mathrm{cf}.[\mathrm{H} 03]$ and [HJX06]). Let $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $1 \leq \kappa_{0} \leq n-2$. Let E_{0} be the proper complex variety consisting of points of indeterminacy and the non-immerse points of F. We define

$$
\mathcal{V}_{F}:=\left\{\left(Z, S_{Z}\right) \in\left(\mathbb{C}^{n}-E_{0}\right) \times G_{n, k^{0}}(\mathbb{C})\right.
$$

F is linear fractional when restricted to $\left.S_{Z}+Z\right\}$.
Here $G r_{n, k^{0}}(\mathbb{C})$ is the Grassmannian manifold consisting of all $k^{0}:=n-\kappa_{0^{-}}$ dimensional complex subspaces in \mathbb{C}^{n}. Then \mathcal{V}_{F} is a complex analytic variety such that the projection

$$
\begin{equation*}
\pi: \mathcal{V}_{F} \rightarrow \mathbb{C}^{n}-E_{0}, \quad\left(Z, S_{Z}\right) \mapsto Z \tag{2.3}
\end{equation*}
$$

is proper holomorphic. There is another proper complex variety $E_{1} \subset \mathbb{C}^{n}$ E_{0} such that for any $Z \in \mathbb{C}^{n}-E_{0} \cup E_{1}, \pi$ has a unique preimage in \mathcal{V}_{F}, i.e., for any $Z \in \mathbb{C}^{n}-E_{0} \cup E_{1}$, there is a unique complex subspace S_{Z} of dimension k^{0} such that F is linear fractional when restricted to $S_{Z}+Z$. Write $\mathcal{V}_{F}=\cup_{j} \mathcal{V}_{F}^{(j)}$ for the irreducible decomposition of \mathcal{V}_{F}. Then there is only one irreducible component, say $\mathcal{V}_{F}^{(1)}$, whose projection to $\mathbb{C}^{n}-E_{0}$ contains a sufficiently small domain inside \mathbb{H}_{n} and has a small piece of $\partial \mathbb{H}_{n}$ as part of
its boundary. If necessary, we can assume that $0 \notin E_{1} \cap E$ and assume that π is biholomorphic near $\left(0, S_{0}\right) \in \mathcal{V}_{F}$ with $\pi^{-1}(0)=\left(0, S_{0}\right)$.

For the case of $\kappa_{0}=1$, we can assume that for any $\epsilon(\in \mathbb{C}) \approx 0$, there is a unique affine subspace L_{ϵ} of codimension one, on which the restriction of F is linear fractional, defined by equation:

$$
\begin{equation*}
z_{1}=\sum_{j=2}^{n} a_{j}(\epsilon) z_{j}+\epsilon \tag{2.4}
\end{equation*}
$$

where $a_{j}(\epsilon)$ are holomorphic functions of ϵ with $a_{j}(0)=0$. We also denote $w:=z_{n}$. It was shown [HJX06] that if we write $a_{j}(\epsilon)=\epsilon \hat{a}_{j}(\epsilon)$, then all $\hat{a}_{j}(\epsilon)=$ constant. Then (2.4) can be written as

$$
\begin{equation*}
z_{1}=\epsilon\left(\sum_{j=2}^{n} \hat{a}_{j} z_{j}+1\right) . \tag{2.5}
\end{equation*}
$$

Two different cases were considered in ([HJX06], p.521): (i) $a_{j}(\epsilon)=\epsilon \hat{a}_{j}$ with $\hat{a}_{j}=$ constant and $\operatorname{Im}\left(\hat{a}_{n}\right)=-\sum_{j=2}^{n-1}\left|\frac{\hat{a}_{j}}{2}\right|^{2}$; (ii) $a_{j}(\epsilon)=\epsilon \hat{a}_{j}$ with $\hat{a}_{j}=$ constant but the above identity does not hold. It has been proved in ([HJX06], p. 521) that the first case cannot occur, and that in the second case, after some transformation, the hyperplanes L_{ϵ} are of the form $z_{1}=\operatorname{constant}(-i w$ $+1)$.

For the case $\kappa_{0}=2$, by a theorem of the second author in Hu03, we can assume that for any $\epsilon=\left(\epsilon_{1}, \epsilon_{2}\right)\left(\in \mathbb{C}^{2}\right) \approx 0$, there is a unique affine subspace $L_{\epsilon}=L_{\left(\epsilon_{1}, \epsilon_{2}\right)}$ of codimension two defined by equations of the form:

$$
\left\{\begin{array}{l}
z_{1}=\sum_{i=3}^{n-1} a_{i}(\epsilon) z_{i}+a_{n}(\epsilon) w+\epsilon_{1} \tag{2.6}\\
z_{2}=\sum_{i=3}^{n-1} b_{i}(\epsilon) z_{i}+b_{n}(\epsilon) w+\epsilon_{2}
\end{array}\right.
$$

such that F is a linear map on L_{ϵ}, where $a_{j}(\epsilon), b_{j}(\epsilon)$ are holomorphic functions in ϵ near 0 with $a_{j}(0,0)=b_{j}(0,0)=0$ for all j and for $j=n$.

2d. Basic notation: Let $F=(f, \phi, g) \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ be as in Theorem 2.2 with geometric rank $\kappa_{0}=2$. We have $N=\sharp(f)+\sharp(\phi)+\sharp(g)$ and $\sharp(\phi)=$ $\sharp\left(\mathcal{S}_{0}\right)+\sharp\left(\mathcal{S}_{1}\right)$ where we denote by $\sharp(A)$ the number of elements in the set A, and $\sharp(f)=n-1, \sharp(g)=1, \sharp\left(\mathcal{S}_{0}\right)=\frac{\left(2 n-1-\kappa_{0}\right) \kappa_{0}}{2}=n \kappa_{0}-\frac{\left(\kappa_{0}+1\right) \kappa_{0}}{2}=2 n-3$, $\sharp\left(\mathcal{S}_{1}\right)=N-n-\sharp\left(\mathcal{S}_{0}\right)=N-3 n+3$.

We denote by $P^{(j, k)}(z, w)$ a polynomial in (z, w) with degree j in z and degree k in w, and denote by $P^{(j, k)}(z)$ the coefficient of w^{k}. For example, $P^{(1,1)}(z, w)=a z_{1} w+b z_{2} w=P^{(1,1)}(z) w$ with $\quad P^{(1,1)}(z)=a z_{1}+b z_{2}$. We also write

$$
\begin{equation*}
f^{\left(j_{1} I_{1}+j_{2} I_{2}+\cdots+j_{n} I_{n}\right)}=\frac{\partial^{j_{1}+j_{2}+\cdots+j_{n}} f}{\partial z_{1}^{j_{1}} \partial z_{2}^{j_{2}} \cdots \partial z_{n-1}^{j_{n-1}} \partial w^{j_{n}}}(0) \tag{2.7}
\end{equation*}
$$

For any rational holomorphic map $H=\frac{\left(P_{1}, \ldots, P_{m}\right)}{Q}$ on \mathbb{C}^{n}, where $\left\{P_{j}, Q\right\}$ are relatively prime holomorphic polynomials, the degree of H is defined to be $\operatorname{deg}(H):=\max \left\{\operatorname{deg}\left(P_{j}\right), \operatorname{deg}(Q), 1 \leq j \leq m\right\}$.

- The part ϕ : Write $\phi=\left(\Phi_{0}, \Phi_{1}\right), \Phi_{0}=\left(\phi_{l k}\right)_{(l, k) \in \mathcal{S}_{0}}$ and $\Phi_{1}=$ $\left(\phi_{l k}\right)_{(l, k) \in \mathcal{S}_{1}}$. Here $\sharp\left(\Phi_{0}\right)=\sharp\left(\mathcal{S}_{0}\right)$ and $\sharp\left(\Phi_{1}\right)=\sharp\left(\mathcal{S}_{1}\right)$. Since $\kappa_{0}=2$, we can write
$\Phi_{0}=\left(\phi_{11}, \phi_{12}, \phi_{1 j}, \phi_{22}, \phi_{2 j}\right)_{3 \leq j \leq n-1} \quad$ and $\quad \Phi_{1}=\left(\phi_{33}, \phi_{3 k}\right)_{4 \leq k \leq N-3 n+3}$.
- The part $f_{j}^{(1,1)}(z)$: Write $f^{(1,1)}(z)=\left(f_{1}^{(1,1)}(z), \ldots, f_{n-1}^{(1,1)}(z)\right)$. By Theorem 2.2, we have $f_{j}^{(1,1)}(z)=\frac{i \mu_{j}}{2} z_{j}, \mu_{j}>0$ for $1 \leq j \leq 2$, and $\mu_{j}=0$ for $3 \leq j \leq n-1$.
- The part $\Phi_{0}^{(2,0)}(z)$: One important portion of Φ_{0} is the z-quadric part (see Theorem 3.2): $\Phi_{0}^{(2,0)}(z)=\left\{\phi_{j l}^{(2)}(z)=\mu_{j l} z_{j} z_{l}\right\}_{(j, l) \in \mathcal{S}_{0}}$.
- The part $\Phi_{0}^{(1,1)}(z)$: Another portion of Φ_{0} is $\Phi_{0}^{(1,1)}(z) w$ which is not described precisely in Theorem 2.2:

$$
\Phi_{0}^{(1,1)}(z)=\sum_{j=1}^{\kappa_{0}} e_{j} z_{j}, \quad e_{j} \in \mathbb{C}^{\sharp\left(\mathcal{S}_{0}\right)} .
$$

We mention that $\phi_{l k}=\mu_{l k} z_{l} z_{k}+\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j}^{*}$ where $\phi_{l k j}^{*}=O_{w t}(2)$ for $(l, k) \in \mathcal{S}_{0}$. These coefficients e_{j} are important parameters for F. Since $\kappa_{0}=2$, we have

$$
\left\{\begin{array} { l }
{ e _ { 1 } = (e _ { 1 , 1 1 } , e _ { 1 , 1 2 } , e _ { 1 , 1 j } , e _ { 1 , 2 2 } , e _ { 1 , 2 j }) _ { 3 \leq j \leq n - 1 } , } \\
{ e _ { 2 } = (e _ { 2 , 1 1 } , e _ { 2 , 1 2 } , e _ { 2 , 1 j } , e _ { 2 , 2 2 } , e _ { 2 , 2 j }) _ { 3 \leq j \leq n - 1 } , }
\end{array} \quad \left\{\begin{array}{l}
\phi_{11}^{(1,1)}=z_{1} e_{1,11}+z_{2} e_{2,11}, \\
\phi_{12}^{(1,1)}=z_{1} e_{1,12}+z_{2} e_{2,12} \\
\phi_{1 j}^{(1,1)}=z_{1} e_{1,1 j}+z_{2} e_{2,1 j} \\
\phi_{22}^{(1,1)}=z_{1} e_{1,22}+z_{2} e_{2,22}, \\
\phi_{2 j}^{(1,1)}=z_{1} e_{1,2 j}+z_{2} e_{2,2 j} .
\end{array}\right.\right.
$$

We also introduce the Hermitian inner product $\xi=\left(\xi_{1}, \ldots, \xi_{\kappa_{0}}\right)=$ $\overline{\left(e_{1}, \ldots, e_{\kappa_{0}}\right)} \cdot \Phi_{0}^{(2,0)}$. When $\kappa_{0}=2$, we have

$$
\left\{\begin{aligned}
\xi_{1}=\Phi^{(2,0)} \cdot \overline{e_{1}}= & \phi_{11}^{(2,0)} \overline{e_{1,11}}+\phi_{12}^{(2,0)} \overline{e_{1,12}}+\phi_{22}^{(2,0)} \overline{e_{1,22}} \\
& +\sum_{j=3}^{n-1}\left(\phi_{1 j}^{(2,0)} \overline{e_{1,1 j}}+\phi_{2 j}^{(2,0)} \overline{e_{1,2 j}}\right), \\
\xi_{2}=\Phi^{(2,0)} \cdot \overline{e_{2}}= & \phi_{110,(2,)}^{\left(e_{2,11}\right.}+\phi_{12}^{(2,0)} \overline{e_{2,12}}+\phi_{22}^{(2,0)} \overline{e_{2,22}} \\
& +\sum_{j=3}^{n-1}\left(\phi_{1 j}^{(2,0)} \overline{e_{2,1 j}}+\phi_{2 j}^{(2,0)} \overline{e_{2,2 j}}\right)
\end{aligned}\right.
$$

2e. The components of $\Phi_{1}^{(3,0)}$: Recall the following result of [Corollary 3.4, [HJY14]:

Lemma 2.3. Let $\kappa_{0} \geq 2$ and $\left(\kappa_{0}+1\right) n-\kappa_{0} \leq N \leq\left(\kappa_{0}+2\right) n-\kappa_{0}\left(\kappa_{0}+\right.$ 1) $+\kappa_{0}-2$. Then

$$
\Phi_{1}^{(3,0)}(z)=\left(\frac{2}{\sqrt{\mu_{j}+\mu_{l}}}\left(\sqrt{\frac{\mu_{j}}{\mu_{l}}} z_{j} \xi_{l}-\sqrt{\frac{\mu_{l}}{\mu_{j}}} z_{l} \xi_{j}\right), \quad 0^{\prime}\right)_{1 \leq j<l \leq \kappa_{0}}
$$

$\left|\phi^{(3,0)}(z)\right|^{2}=4\left(\sum_{j \leq \kappa_{0}} \frac{1}{\mu_{j}}\left|\xi_{j}(z)\right|^{2}\right)|z|^{2}$. In particular, when $\kappa_{0}=2$, if the inequality $3 n-3 \leq N \leq 4 n-6$ holds, we have

$$
\begin{equation*}
\Phi_{1}^{(3,0)}(z)=\left(\frac{2}{\sqrt{\mu_{1}+\mu_{2}}}\left(\sqrt{\frac{\mu_{1}}{\mu_{2}}} z_{1} \xi_{2}-\sqrt{\frac{\mu_{2}}{\mu_{1}}} z_{2} \xi_{1}\right), 0^{\prime}\right) \tag{2.9}
\end{equation*}
$$

and $\left|\phi^{(3,0)}(z)\right|^{2}=4\left(\frac{1}{\mu_{1}}\left|\xi_{1}(z)\right|^{2}+\frac{1}{\mu_{2}}\left|\xi_{2}(z)\right|^{2}\right)|z|^{2}$.
2f. Lebl's theorem: We recall a result of Lebl, which will be used in our paper.

Theorem 2.4. Le11 Let $F: \partial \mathbb{B}^{n} \rightarrow \partial \mathbb{B}^{N}, n \geq 2$, be a rational $C R$ map of degree 2. Then F is is spherically equivalent to a map taking $\left(z_{1}, \ldots, z_{n}\right)$ to a map of the following form:

$$
\begin{array}{r}
\left(\sqrt{t_{1}} z_{1}, \sqrt{t_{2}} z_{2}, \ldots, \sqrt{t_{n}} z_{n}, \sqrt{1-t_{1}} z_{1}^{2}, \sqrt{1-t_{2}} z_{2}^{2}\right. \tag{2.10}\\
\left.\ldots, \sqrt{1-t_{n}} z_{n}^{2}, \sqrt{2-t_{i}-t_{j}} z_{i} z_{j}\right)_{i \neq j}
\end{array}
$$

where $0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1, \quad\left(t_{1}, t_{2}, \ldots, t_{n}\right) \neq(1,1, \ldots, 1)$. Furthermore, maps in 2.10) are mutually spherically inequivalent for different parameters $\left(t_{1}, \ldots, t_{n}\right)$.

When $N=3 n-3$ and $n \geq 4$, the map in Lebl's theorem is one of the maps stated in Theorem 1.1.

Indeed, suppose that the first $h t_{i}^{\prime} s$ are zero, the next $(k-h) t_{i}^{\prime} s$ are in $(0,1)$ and the rest $t_{i}^{\prime} s$ are 1 . Then the dimension of the image space of the map (2.10) is

$$
(n-h)+k+\frac{n(n-1)}{2}-\frac{(n-k)(n-k-1)}{2}
$$

We next find all nonnegative integers h and k with $h \leq k \leq n$ such that

$$
(n-h)+k+\frac{n(n-1)}{2}-\frac{(n-k)(n-k-1)}{2} \leq 3 n-3 .
$$

Namely, h and k satisfy the following:

$$
\begin{equation*}
(k-2) n+3-\frac{k(k+1)}{2}+k-h \leq 0 \tag{2.11}
\end{equation*}
$$

We claim that the following are all the possible solutions:
(1) $k=h=0$. In this case, 2.10) is the identity map with 0 components added to it.
(2) $k=1$ and $h=1$. In this case, then 2.10 is the Whitney map with 0 components added to it.
(3) $k=1$ and $h=0$. In this case, (2.10) is the D'Angelo map with 0 components added to it.
(4) $k=2$ and $h=2$. In this case, 2.10 is the generalized Whitney map in Theorem 1.1 .

Indeed, when $k=2$, (2.11) takes the form $2-h \leq 0$. Since we also have $h \leq k=2$, we obtain $h=2$. When $k=3$ or $k=4$, (2.11) takes the form $n+3-6+k-h \leq 0$ or $2 n-7+k-h \leq 0$, both of which are impossible for $n \geq 4$. When $k \geq 5$, then $(k-2) n \geq \frac{\bar{k}+1}{2} k$ and thus (2.11) can not hold neither.

When $N=3 n-3$, by the above consideration, we see that the only map of geometric rank two in this setting is given by

$$
\left(z_{3}, z_{4}, \ldots, z_{n}, z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}, z_{1} z_{3}, \ldots, z_{1} z_{n}, z_{2} z_{3}, z_{2} z_{4}, \ldots, z_{2} z_{n}\right)
$$

which is the generalized Whitney map $W_{n, 2}$.

Hence, based on the Lebl theorem, to prove Theorem 1.1, we need only to prove the map in Theorem 1.1 has degree bounded by two. We will do this in the next two sections.

3. Lower order terms in the Taylor expansion of \boldsymbol{F}

We start with the following
Proposition 3.1. Let $F \in \operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{3 n-3}\right)$ be as in Theorem 2.2 with geometric rank 2. Assume $\mu_{1} \leq \mu_{2}$. Then

$$
\begin{align*}
& f_{j}=z_{j}+\frac{i}{2} \mu_{j} z_{j} w+O\left(|(z, w)|^{3}\right) \quad \text { for } j=1,2, \\
& f_{k}=z_{k}, \quad \text { for } 3 \leq k \leq n-1, \\
& \phi_{11}=\sqrt{\mu_{1}} z_{1}^{2}+\sqrt{\mu_{1}} A z_{1} w+O\left(|(z, w)|^{3}\right), \\
& \phi_{12}=\sqrt{\mu_{1}+\mu_{2}} z_{1} z_{2}+\frac{\mu_{2} A}{\sqrt{\mu_{1}+\mu_{2}}} z_{2} w+O\left(|(z, w)|^{3}\right), \tag{3.1}\\
& \phi_{22}=\sqrt{\mu_{2}} z_{2}^{2}+O\left(|(z, w)|^{3}\right), \quad \phi_{1 k}=\sqrt{\mu_{1}} z_{1} z_{k}+O\left(|(z, w)|^{3}\right), \\
& \phi_{2 k}=\sqrt{\mu_{2}} z_{2} z_{k}+O\left(|(z, w)|^{3}\right), \quad g=w,
\end{align*}
$$

where $A:=\frac{e_{1,11}}{\sqrt{\mu_{1}}}$.
Proof. Step I. The family L_{ϵ} : Let L_{ϵ} be in (2.6) given by

$$
\left\{\begin{array}{l}
z_{1}=\sum_{j=3}^{n-1} a_{j}(\epsilon) z_{j}+a_{n}(\epsilon) w+\epsilon_{1}, \tag{3.2}\\
z_{2}=\sum_{j=3}^{n-1} b_{j}(\epsilon) z_{j}+b_{n}(\epsilon) w+\epsilon_{2} .
\end{array}\right.
$$

Consider the image $\hat{L}_{\epsilon}:=\hat{\sigma}_{\vec{c}}\left(L_{\epsilon}\right)$ given by

$$
\left\{\begin{array}{l}
Z_{1}=\sum_{j=3}^{n-1} A_{j}(\epsilon) Z_{j}+A_{n}(\epsilon) W+\rho_{1}(\epsilon), \tag{3.3}\\
Z_{2}=\sum_{j=3}^{n-1} B_{j}(\epsilon) Z_{j}+B_{n}(\epsilon) W+\rho_{2}(\epsilon),
\end{array}\right.
$$

where the inverse of the the automorphism is given by

$$
\begin{align*}
\hat{\sigma}_{\vec{c}}^{-1}(Z, W) & :=\frac{\left(Z_{1}, Z_{2}, Z_{3}+c_{3} W, \ldots, Z_{n-1}+c_{n-1} W, W\right)}{q_{c}} \tag{3.4}\\
& =\left(z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}\right)
\end{align*}
$$

and $q_{\vec{c}}:=1-2 i \overline{\vec{c}} \cdot Z-i|\vec{c}|^{2} W$, where $\vec{c}=\left(0, \ldots, 0, c_{3}, \ldots, c_{n-1}\right)$. Substituting (3.4) into (3.2), we obtain

$$
\left\{\begin{array}{l}
Z_{1}=\sum_{j=3}^{n-1} a_{j}(\epsilon)\left(Z_{j}+c_{j} W\right)+a_{n}(\epsilon) W+\epsilon_{1} q_{\vec{c}}, \\
Z_{2}=\sum_{j=3}^{n-1} b_{j}(\epsilon)\left(Z_{j}+c_{j} W\right)+b_{n}(\epsilon) W+\epsilon_{2} q_{\vec{c}}
\end{array}\right.
$$

Combining this with (3.3), we get

$$
\left\{\begin{aligned}
& \sum_{j=3}^{n-1} A_{j}(\epsilon) Z_{j}+A_{n}(\epsilon) W+\rho_{1}(\epsilon) \\
= & \sum_{j=3}^{n-3} a_{j}(\epsilon)\left(Z_{j}+c_{j} W\right)+a_{n}(\epsilon) W+\epsilon_{1}\left(1-2 i \overline{\vec{c}} \cdot Z-i|\vec{c}|^{2} W\right), \\
& \sum_{j=3}^{n-1} B_{j}(\epsilon) Z_{j}+B_{n}(\epsilon) W+\rho_{2}(\epsilon) \\
= & \sum_{j=3}^{n-1} b_{j}(\epsilon)\left(Z_{j}+c_{j} W\right)+b_{n}(\epsilon) W+\epsilon_{2}\left(1-2 i \overline{\vec{c}} \cdot Z-i|\vec{c}|^{2} W\right) .
\end{aligned}\right.
$$

By considering the $Z_{j}, 3 \leq j \leq n-1$ terms, we obtain

$$
A_{j}\left(\epsilon_{1}, \epsilon_{2}\right)=a_{j}\left(\epsilon_{1}, \epsilon_{2}\right)-\epsilon_{1}\left(2 i \overline{c_{j}}\right), \quad B_{j}\left(\epsilon_{1}, \epsilon_{2}\right)=b_{j}\left(\epsilon_{1}, \epsilon_{2}\right)-\epsilon_{2}\left(2 i \overline{c_{j}}\right) .
$$

Hence we can choose \vec{c} such that $\frac{\partial a_{j}\left(\epsilon_{1}, \epsilon_{2}\right)}{\partial \epsilon_{1}}(0)=0$.
Step II. Calculation of the linear parts of $a_{n}(\epsilon)$ and $b_{n}(\epsilon)$: For a map $F \in \operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{3 n-3}\right)$ of geometric rank 2 , we have $f_{i}, g \not \equiv 0$ and $\phi_{j l} \not \equiv 0$ for $(j, l) \in \mathcal{S}_{0}$. Notice that $n+\sharp \mathcal{S}_{0}=n+n-1+n-2=3 n-3$. Hence we have $\phi_{33} \equiv 0$. In particular, we obtain $\phi_{33}^{(2,1)}=0$ and $e_{j, 33}=0$ for $j=1,2$. Following the notation of [HJY14, (4.20)], we have

$$
\widetilde{\phi}_{33}^{(2,1)}:=\phi_{33}^{(2,1)}-2 i \sum_{j=1}^{2} \frac{\xi_{j}}{\mu_{j}} e_{j, 33}=0
$$

In HJY14, (4.46)], we also have

$$
\widetilde{\phi}_{33}^{(2,1)}(z)=\frac{-2}{\sqrt{\mu_{1}+\mu_{2}}}\left(\sqrt{\frac{\mu_{1}}{\mu_{2}}} z_{1} f_{2}^{(1,2)}(z)-\sqrt{\frac{\mu_{2}}{\mu_{1}}} z_{2} f_{1}^{(1,2)}(z)\right) .
$$

Thus $\mu_{1} z_{1} f_{2}^{(1,2)}=\mu_{2} z_{2} f_{1}^{(1,2)}$. From HJY14, (4.3)], we know

$$
\begin{align*}
& \frac{i}{2} \mu_{1} a_{n}^{(1)}(\epsilon)+f_{1}^{(1,2)}(\epsilon, 0, \ldots, 0)=0 \tag{3.5}\\
& \frac{i}{2} \mu_{2} b_{n}^{(1)}(\epsilon)+f_{2}^{(1,2)}(\epsilon, 0, \ldots, 0)=0 .
\end{align*}
$$

Hence $\epsilon_{1} b_{n}^{(1)}(\epsilon)=\epsilon_{2} a_{n}^{(1)}(\epsilon)$, from which we yield

$$
\begin{align*}
& a_{n}^{(1)}(\epsilon)=\zeta \epsilon_{1}, \quad b_{n}^{(1)}(\epsilon)=\zeta \epsilon_{2} \quad \text { for some } \zeta \in \mathbb{C}, \\
& f_{1}^{(1,2)}(z)=-\frac{i}{2} \mu_{1} \zeta z_{1}, \quad f_{2}^{(1,2)}(z)=-\frac{i}{2} \mu_{2} \zeta z_{2} . \tag{3.6}
\end{align*}
$$

Step III. Proof for $e_{1,1 j}=0$: Let H be an affine linear function along L_{ϵ}, then we must have $\frac{\partial^{2} H \mid L_{c}}{\partial z_{j} \partial w} \equiv 0$. We can write

$$
\left.H\right|_{L_{\epsilon}}=H\left(\sum_{k=3}^{n-1} a_{k} z_{k}+a_{n} w+\epsilon_{1}, \sum_{k=3}^{n-1} b_{k} z_{k}+b_{n} w+\epsilon_{2}, z_{3}, \ldots, z_{n-1}, w\right) .
$$

Then we calculate for $1 \leq j \leq n-1$

$$
\begin{align*}
\frac{\left.\partial^{2} H\right|_{L_{e}}}{\partial z_{j} \partial w}= & \frac{\partial^{2} H}{\partial z_{1}^{2}} a_{j} a_{n}+\frac{\partial^{2} H}{\partial z_{1} \partial z_{2}}\left(a_{n} b_{j}+a_{j} b_{n}\right) \tag{3.7}\\
& +\frac{\partial^{2} H}{\partial z_{1} \partial z_{j}} a_{n}+\frac{\partial^{2} H}{\partial z_{1} \partial w} a_{j}+\frac{\partial^{2} H}{\partial z_{2}^{2}} b_{j} b_{n} \\
& +\frac{\partial^{2} H}{\partial z_{2} \partial z_{j}} b_{n}+\frac{\partial^{2} H}{\partial z_{2} \partial w} b_{j}+\frac{\partial^{2} H}{\partial z_{j} \partial w}=0, \quad \text { at }(\epsilon, 0) .
\end{align*}
$$

Choosing $H=f_{1}$ and collecting ϵ_{1} and ϵ_{2} terms in the above equation, we get

$$
\begin{equation*}
\frac{i}{2} \mu_{1} a_{j}^{(1)}+f_{1}^{\left(I_{1}+I_{j}+I_{n}\right)} \epsilon_{1}+f_{1}^{\left(I_{2}+I_{j}+I_{n}\right)} \epsilon_{2}=0, \quad \text { at }(\epsilon, 0) . \tag{3.8}
\end{equation*}
$$

In Step I, we have made $\frac{\partial a_{j}\left(\epsilon_{1} \epsilon_{2}\right)}{\partial \epsilon_{1}}(0)=0$. Hence we get $f_{1}^{\left(I_{1}+I_{j}+I_{n}\right)}=0$. On the other hand, by HJY14, (3.5)], we have $f_{1}^{(2,1)}(z)=-\xi_{1}$. Together with 2.8, we obtain $f_{1}^{\left(I_{1}+I_{j}+I_{n}\right)}=-\sqrt{\mu_{1}} \overline{e_{1,1}}, \quad f_{1}^{\left(I_{2}+I_{j}+I_{n}\right)}=0$. Hence we get $e_{1,1 j}=0$ for $3 \leq j \leq n-1$.

Step IV. Calculating $e_{1, j k}$ and $e_{2, j k}$: Since $N=3 n-3$ and $\Phi_{1}=\emptyset$, it implies $\Phi_{1}^{(3,0)}(z) \equiv 0$. From 2.9), we obtain

$$
\begin{equation*}
\mu_{1} z_{1} \xi_{2}=\mu_{2} z_{2} \xi_{1} \tag{3.9}
\end{equation*}
$$

Observing that $\mu_{1} z_{1} \xi_{2}$ (resp. $\mu_{2} z_{2} \xi_{1}$) must be divided by z_{2} (resp. z_{1}), and making use of (2.8), we obtain

$$
e_{1,22}=e_{1,2 j}=e_{2,11}=e_{2,1 j}=0 .
$$

$$
\text { Mapping } \mathbb{B}^{n} \text { into } \mathbb{B}^{3 n-3}
$$

Recall that $e_{1,1 j}=0$ for $j \geq 3$. Thus (3.9) takes the following form:

$$
\mu_{1} z_{1}\left(\phi_{2,12}^{(2,0)} \overline{e_{2,12}}+\sum_{j=2}^{n-1} \phi_{2,2 j}^{(2,0)} \overline{e_{2,2 j}}\right)=\mu_{2} z_{2}\left(\phi_{1,11}^{(2,0)} \overline{e_{1,11}}+\phi_{1,12}^{(2,0)} \overline{e_{1,12}}\right)
$$

Now a direct computation gives $e_{2,2 j}=0$ and

$$
\begin{equation*}
e_{2,12}=\frac{\mu_{2}}{\sqrt{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}} e_{1,11}, \quad e_{2,22}=\frac{\sqrt{\mu_{2}\left(\mu_{1}+\mu_{2}\right)}}{\mu_{1}} e_{1,12} . \tag{3.10}
\end{equation*}
$$

Step V. Calculation of Taylor series of F up to degree 3: Now we have obtained

$$
\begin{aligned}
f_{1}^{(1,2)}(z) & =-\frac{i}{2} \mu_{1} \zeta z_{1}, \quad f_{2}^{(1,2)}(z)=-\frac{i}{2} \mu_{2} \zeta z_{2} \\
f_{1}^{(1,1)}(z) & =\frac{i}{2} \mu_{1} z_{1}, \quad f_{2}^{(1,1)}(z)=\frac{i}{2} \mu_{2} z_{2} \\
\phi^{(1,1)}(z) & =\left(e_{1,11} z_{1}, e_{1,12} z_{1}+e_{2,12} z_{2}, e_{2,22} z_{2}, 0 \ldots, 0\right)
\end{aligned}
$$

Substituting these relations into [HJY14, (4.10)], we obtain

$$
\begin{aligned}
& 2 \operatorname{Re}\left\{\overline{z_{1}} \cdot\left(-\frac{i}{2} \mu_{1} \zeta z_{1}\right)+\overline{z_{2}} \cdot\left(-\frac{i}{2} \mu_{2} \zeta z_{2}\right)\right\}+\left|\frac{i}{2} \mu_{1} z_{1}\right|^{2}+\left|\frac{i}{2} \mu_{2} z_{2}\right|^{2} \\
& +\left|e_{1,11} z_{1}\right|^{2}+\left|e_{1,12} z_{1}+e_{2,12} z_{2}\right|^{2}+\left|e_{2,22} z_{2}\right|^{2}=0
\end{aligned}
$$

Considering the coefficients of $\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}$ and $z_{1} \overline{z_{2}}$, respectively, we get

$$
\begin{align*}
& 2 \operatorname{Re}\left\{-\frac{i}{2} \zeta\right\} \mu_{1}+\frac{\mu_{1}^{2}}{4}+\left|e_{1,11}\right|^{2}+\left|e_{1,12}\right|^{2}=0 \tag{3.11}\\
& 2 \operatorname{Re}\left\{-\frac{i}{2} \zeta\right\} \mu_{2}+\frac{\mu_{2}^{2}}{4}+\left|e_{2,22}\right|^{2}+\left|e_{2,12}\right|^{2}=0 \tag{3.12}\\
& e_{1,12} \overline{e_{2,12}}=0 \tag{3.13}
\end{align*}
$$

By calculating (3.11) $\mu_{2}-(3.12) \mu_{1}$, we get

$$
\frac{\mu_{1}^{2}}{4} \mu_{2}-\frac{\mu_{2}^{2}}{4} \mu_{1}+\mu_{2}\left|e_{1,11}\right|^{2}-\mu_{1}\left|e_{2,12}\right|^{2}+\mu_{2}\left|e_{1,12}\right|^{2}-\mu_{1}\left|e_{2,22}\right|^{2}=0
$$

Together with (3.10), we obtain

$$
\frac{1}{4} \mu_{1} \mu_{2}\left(\mu_{1}-\mu_{2}\right)+\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}}\left|e_{1,11}\right|^{2}-\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}}\left|e_{2,22}\right|^{2}=0
$$

Namely, we have

$$
\left|e_{1,11}\right|^{2}=\left|e_{2,22}\right|^{2}+\frac{1}{4}\left(\mu_{1}+\mu_{2}\right)\left(\mu_{2}-\mu_{1}\right)
$$

By (3.10) and (3.13), either $e_{1,11}$ or $e_{2,22}$ is 0 . Recall that $\mu_{2} \geq \mu_{1}$, thus

$$
\begin{equation*}
e_{2,22}=0, \quad\left|e_{1,11}\right|^{2}=\frac{1}{4}\left(\mu_{1}+\mu_{2}\right)\left(\mu_{2}-\mu_{1}\right) \tag{3.14}
\end{equation*}
$$

From all of the above, the proof of Proposition 3.1 is complete.

4. Proof of Theorem 1.1

By Lebl's theorem, to prove our main theorem, we need only to show that the map F has degree two.

For a map $F \in \operatorname{Rat}\left(\mathbb{H}_{n}, \mathbb{H}_{3 n-3}\right)$ with $n \geq 4$, by the inequality $N \geq n+$ $\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$ (cf. Hu 03), we have that the geometric rank κ_{0} of this map is less than or equal to 2 . If $\kappa_{0}=0, F$ is equivalent to $(z, 0, w)$. If $\kappa_{0}=1$, by [HJX06], Theorem 1.2, the map F is equivalent to a proper holomorphic map $F=\left(z_{1}, \ldots, z_{n-1}, z_{n} h\right)$ where $h \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-2}\right)$. By applying the first gap theorem [Hu99], h must be linear fractional. It suffices to prove Theorem 1.1 only for the case of $\kappa_{0}=2$.

If we are able to prove $\operatorname{deg}(F) \leq 2$, then by applying Lebl's theorem (see Theorem 2.4) and by consideration of degree, it completes the proof of Theorem 1.1. In the rest of this section, we'll prove $\operatorname{deg}(F) \leq 2$.

Step 1. The basic setting: In order to prove Theorem 1.1, we start with the equation

$$
\frac{g(z, w)-\overline{g(z, w)}}{2 i}=f(z, w) \cdot \overline{f(z, w)}+\phi(z, w) \cdot \overline{\phi(z, w)}, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

By complexification, we write

$$
\begin{aligned}
\frac{g(z, w)-\overline{g(\bar{\chi}, \bar{\eta})}}{2 i}= & \sum_{l=1}^{n-1} f_{l}(z, w) \overline{f_{l}(\bar{\chi}, \bar{\eta})} \\
& +\sum \phi_{t}(z, w) \overline{\phi_{t}(\bar{\chi}, \bar{\eta})}, \quad \forall \frac{w-\eta}{2 i}=z \cdot \chi
\end{aligned}
$$

Applying $\mathcal{L}_{j}:=\frac{\partial}{\partial z_{j}}+2 i \chi_{j} \frac{\partial}{\partial w}$ for $z=0$ and $w=\eta=0$ to the both sides of the above identity, we obtain

$$
\frac{\mathcal{L}_{j} g(0,0)}{2 i}=\sum_{l=1}^{n-1} \mathcal{L}_{j} f_{l}(0,0) \overline{f_{l}(\bar{\chi}, 0)}+\sum \mathcal{L}_{j} \phi_{t}(0,0) \overline{\phi_{t}(\bar{\chi}, 0)}
$$

and

$$
\frac{\mathcal{L}_{j} \mathcal{L}_{k} g(0,0)}{2 i}=\sum_{l=1}^{n-1} \mathcal{L}_{j} \mathcal{L}_{k} f_{l}(0,0) \overline{f_{l}(\bar{\chi}, 0)}+\sum \mathcal{L}_{j} \mathcal{L}_{k} \phi_{t}(0,0) \overline{\phi_{t}(\bar{\chi}, 0)}
$$

We can write it in terms of matrix,

$$
\left(\begin{array}{c}
\chi_{1} \tag{4.1}\\
\chi_{2} \\
0 \\
\vdots \\
0
\end{array}\right)=B\left(\frac{\left(\overline{f_{1}(\bar{\chi}, 0)}\right.}{\frac{f_{2}(\bar{\chi}, 0)}{\phi(\bar{\chi}, 0)}}\right)
$$

where B is an $(2 n-1) \times(2 n-1)$ matrix:

$$
B:=\left.\left(\begin{array}{ccccccc}
\mathcal{L}_{1} f_{1} & \mathcal{L}_{1} f_{2} & \mathcal{L}_{1} \phi_{11} & \mathcal{L}_{1} \phi_{12} & \mathcal{L}_{1} \phi_{22} & \mathcal{L}_{1} \phi_{1 j} & \mathcal{L}_{1} \phi_{2 j} \\
\mathcal{L}_{2} f_{1} & \mathcal{L}_{2} f_{2} & \mathcal{L}_{2} \phi_{11} & \mathcal{L}_{2} \phi_{12} & \mathcal{L}_{2} \phi_{22} & \mathcal{L}_{2} \phi_{1 j} & \mathcal{L}_{2} \phi_{2 j} \\
\mathcal{L}_{1} \mathcal{L}_{1} f_{1} & \mathcal{L}_{1} \mathcal{L}_{1} f_{2} & \mathcal{L}_{1} \mathcal{L}_{1} \phi_{11} & \mathcal{L}_{1} \mathcal{L}_{1} \phi_{12} & \mathcal{L}_{1} \mathcal{L}_{1} \phi_{22} & \mathcal{L}_{1} \mathcal{L}_{1} \phi_{1 j} & \mathcal{L}_{1} \mathcal{L}_{1} \phi_{2 j} \\
\mathcal{L}_{1} \mathcal{L}_{2} f_{1} & \mathcal{L}_{1} \mathcal{L}_{2} f_{2} & \mathcal{L}_{1} \mathcal{L}_{2} \phi_{11} & \mathcal{L}_{1} \mathcal{L}_{2} \phi_{12} & \mathcal{L}_{1} \mathcal{L}_{2} \phi_{22} f_{1} & \mathcal{L}_{1} \mathcal{L}_{2} \phi_{1 j} & \mathcal{L}_{1} \mathcal{L}_{2} \phi_{2 j} \\
\mathcal{L}_{2} \mathcal{L}_{2} \phi_{11} & \mathcal{L}_{2} \mathcal{L}_{2} \phi_{12} & \mathcal{L}_{2} \mathcal{L}_{2} \phi_{22} & \mathcal{L}_{2} \mathcal{L}_{2} \phi_{1 j} & \mathcal{L}_{2} \mathcal{L}_{2} \phi_{2 j} \\
\mathcal{L}_{1} f_{1} & \mathcal{L}_{1} \mathcal{L}_{k} f_{2} & \mathcal{L}_{1} \mathcal{L}_{k} \phi_{11} & \mathcal{L}_{1} \mathcal{L}_{k} \phi_{12} & \mathcal{L}_{1} \mathcal{L}_{k} \phi_{22} & \mathcal{L}_{2} \mathcal{L}_{k} \mathcal{L}_{k j} f_{2 j} & \mathcal{L}_{2} \mathcal{L}_{k} \mathcal{L}_{k 1} \phi_{2 j} \\
\mathcal{L}_{2} \mathcal{L}_{k} \phi_{12} & \mathcal{L}_{2} \mathcal{L}_{k} \phi_{22} & \mathcal{L}_{2} \mathcal{L}_{k} \phi_{1 j} & \mathcal{L}_{2} \mathcal{L}_{k} \phi_{2 j}
\end{array}\right)\right|_{(0,0, \chi, 0)} .
$$

Step 2. The main idea to prove $\operatorname{deg}(F) \leq 2$: Let $\widetilde{F}: \mathbb{C}^{n-1} \backslash\left\{1-2 i \bar{A} z_{1}=\right.$ $0\} \rightarrow \mathbb{C}^{2 n-1}$ be defined as follows:

$$
\begin{align*}
& \widetilde{f}_{1}(z)=z_{1}, \quad \widetilde{f}_{2}(z)=z_{2}, \quad \widetilde{\phi_{11}}(z)=\frac{\sqrt{\mu_{1}} z_{1}^{2}}{1-2 i \bar{A} z_{1}}, \\
& \widetilde{\phi_{12}}(z)=\frac{\sqrt{\mu_{1}+\mu_{2}} z_{2} z_{1}}{1-2 i \bar{A} z_{1}}, \quad \widetilde{\phi_{22}}(z)=\frac{\sqrt{\mu_{2}} z_{2}^{2}}{1-2 i \bar{A} z_{1}} \tag{4.2}\\
& \widetilde{\phi_{1 j}}(z)=\frac{\sqrt{\mu_{1}} z_{1} z_{j}}{1-2 i \bar{A} z_{1}}, \quad \widetilde{\phi_{2 j}}(z)=\frac{\sqrt{\mu_{2}} z_{2} z_{j}}{1-2 i \bar{A} z_{1}}
\end{align*}
$$

If we can prove that

$$
\begin{equation*}
\left.B\right|_{(0,0, \chi, 0)} \text { is non-singular } \tag{4.3}
\end{equation*}
$$

and if the following holds:

$$
\left(\begin{array}{c}
\chi_{1} \tag{4.4}\\
\chi_{2} \\
0 \\
\vdots \\
0
\end{array}\right)=B\left(\frac{\overline{f_{1}(\bar{\chi})}}{\widetilde{\widetilde{f}_{2}(\bar{\chi})}}\left(\frac{\widetilde{\phi}(\bar{\chi})}{}\right)\right.
$$

we infer from 4.1 that

$$
B\left(\begin{array}{l}
\overline{f_{1}(\bar{\chi}, 0)}-\overline{\widetilde{f}_{1}(\bar{\chi})} \\
\frac{f_{2}(\bar{\chi}, 0)}{\widetilde{\widetilde{f}_{2}(\bar{\chi})}} \\
\overline{\phi(\bar{\chi}, 0)}-\overline{\widetilde{\phi}(\bar{\chi})}
\end{array}\right)=0
$$

Then by 4.3 , it yields $F(z, 0)=\widetilde{F}(z)$, and hence $\operatorname{deg}(F(z, 0)) \leq 2$. Replacing F by $F_{p}^{* * *}$ for any $p \in \partial \mathbb{H}_{n}$ near the origin, we can show $\operatorname{deg}\left(F_{p}^{* *}(z, 0)\right) \leq$ 2 in a similar manner. By [HJ01, Section 5], we have that $\operatorname{deg}(F) \leq 2$. Then by Lebl's theorem (i.e., Theorem 2.4), the proof of Theorem 1.1 is complete.

In the rest of this section, we shall prove (4.3) and (4.4).

Step 3. Calculation of the partial derivatives of F up to degree 2:

-Calculate $\left(\mathcal{L}_{1} H\right)(0,0)$ for $H=f_{i}, \phi_{j k}$: At the point $(0,0)$, we have

$$
\left(\mathcal{L}_{1} f_{1}\right)(0,0)=1, \quad\left(\mathcal{L}_{1} f_{2}\right)(0,0)=0, \quad\left(\mathcal{L}_{1} \phi_{j k}\right)(0,0)=0 \quad \text { for } \quad(j, k) \in \mathcal{S}_{0}
$$

Then

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\mathcal{L}_{1} f_{j}\right)(0,0) \cdot \overline{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{1} \phi_{t}\right)(0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})}=1 \cdot \chi_{1}=\chi_{1} \tag{4.5}
\end{equation*}
$$

- Calculate $\left(\mathcal{L}_{2} H\right)(0,0)$ for $H=f_{i}, \phi_{j k}$: At the point $(0,0)$, we have

$$
\left(\mathcal{L}_{2} f_{2}\right)(0,0)=1, \quad\left(\mathcal{L}_{2} f_{1}\right)(0,0)=0, \quad\left(\mathcal{L}_{2} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \in \mathcal{S}_{0}
$$

Corresponding to 4.5, we have the following:

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\mathcal{L}_{2} f_{j}\right)(0,0) \cdot \overline{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{2} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})}=1 \cdot \chi_{2}=\chi_{2} \tag{4.6}
\end{equation*}
$$

- Calculate $\left(\mathcal{L}_{1}^{2} H\right)(0,0)$ for $H=f_{i}, \phi_{j k}$: A direct computation shows that $\mathcal{L}_{1}^{2}=\frac{\partial^{2}}{\partial z_{1}^{2}}+4 i \chi_{1} \frac{\partial^{2}}{\partial z_{1} \partial w}+\left(2 i \chi_{1}\right)^{2} \frac{\partial^{2}}{\partial w^{2}}$. At the point $(0,0)$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{1}^{2} f_{1}\right)(0,0)=4 i \chi_{1} \cdot \frac{i}{2} \mu_{1}=-2 \mu_{1} \chi_{1}, \\
& \left(\mathcal{L}_{1}^{2} \phi_{11}\right)(0,0)=2 \sqrt{\mu_{1}}+4 i \chi_{1} \sqrt{\mu_{1}} A, \\
& \left(\mathcal{L}_{1}^{2} f_{2}\right)(0,0)=0, \quad\left(\mathcal{L}_{1}^{2} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \neq(1,1) .
\end{aligned}
$$

Then we get

$$
\begin{align*}
& \sum_{j=1}^{2}\left(\mathcal{L}_{1}^{2} f_{j}\right)(0,0) \cdot \overline{\tilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{1}^{2} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})} \tag{4.7}\\
= & \left(-2 \mu_{1} \chi_{1}\right) \cdot \chi_{1}+\left(2 \sqrt{\mu_{1}}+4 i \chi_{1} \sqrt{\mu_{1}} A\right) \cdot \frac{\sqrt{\mu_{1}} \chi_{1}^{2}}{1+2 i A \chi_{1}}=0 .
\end{align*}
$$

- Calculate $\left(\mathcal{L}_{1} \mathcal{L}_{2} H\right)(0,0)$ for $H=f_{i}, \phi_{j k}$: A direct computation shows that $\mathcal{L}_{1} \mathcal{L}_{2}=\frac{\partial^{2}}{\partial z_{1} \partial z_{2}}+2 i \chi_{2} \frac{\partial^{2}}{\partial z_{1} \partial w}+2 i \chi_{1} \frac{\partial^{2}}{\partial z_{2} \partial w}-4 \chi_{1} \chi_{2} \frac{\partial^{2}}{\partial w^{2}}$. At the point $(0,0)$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{1} \mathcal{L}_{2} f_{1}\right)(0,0)=2 i \chi_{2} \cdot \frac{i}{2} \mu_{1}=-\mu_{1} \chi_{2}, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{2} f_{2}\right)(0,0)=2 i \chi_{1} \cdot \frac{i}{2} \mu_{2}=-\mu_{2} \chi_{1}, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{2} \phi_{11}\right)(0,0)=2 i \chi_{2} \cdot \sqrt{\mu_{1}} A=2 i \sqrt{\mu_{1}} \chi_{2} A, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{2} \phi_{12}\right)(0,0)=\sqrt{\mu_{1}+\mu_{2}}+2 i \chi_{1} \cdot \frac{\mu_{2} A}{\sqrt{\mu_{1}+\mu_{2}}}, \\
& \left(\mathcal{L}_{2} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \neq(1,1),(1,2) .
\end{aligned}
$$

We get

$$
\begin{align*}
& \sum_{j=1}^{2}\left(\mathcal{L}_{1} \mathcal{L}_{2} f_{j}\right)(0,0) \cdot \widetilde{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{1} \mathcal{L}_{2} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})} \tag{4.8}\\
= & -\mu_{1} \chi_{2} \cdot \chi_{1}-\mu_{2} \chi_{1} \cdot \chi_{2}+2 i \sqrt{\mu_{1}} \chi_{2} A \cdot \frac{\sqrt{\mu_{1}} \chi_{1}^{2}}{1+2 i A \chi_{1}} \\
& +\left(\sqrt{\mu_{1}+\mu_{2}}+2 i \chi_{1} \cdot \frac{\mu_{2} A}{\sqrt{\mu_{1}+\mu_{2}}}\right) \cdot \frac{\sqrt{\mu_{1}+\mu_{2}} \chi_{1} \chi_{2}}{1+2 i A \chi_{1}} \\
= & -\left(\mu_{1}+\mu_{2}\right) \chi_{1} \chi_{2}+\chi_{1} \chi_{2}\left(\mu_{1}+\mu_{2}+2 i\left(\mu_{1}+\mu_{2}\right) A \chi_{1}\right) \frac{1}{1+2 i A \chi_{1}} \\
= & 0 .
\end{align*}
$$

- Calculate $\left(\mathcal{L}_{2}^{2} H\right)(0,0)$ for $H=f_{i}, \phi_{j k}$: A direct computation shows that $\mathcal{L}_{2}^{2}=\frac{\partial^{2}}{\partial z_{2}^{2}}+4 i \chi_{2} \frac{\partial^{2}}{\partial z_{2} \partial w}+\left(2 i \chi_{2}\right)^{2} \frac{\partial^{2}}{\partial w^{2}}$. At the point $(0,0)$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{2}^{2} f_{2}\right)(0,0)=4 i \chi_{2} \cdot \frac{i}{2} \mu_{2}=-2 \mu_{2} \chi_{2}, \\
& \left(\mathcal{L}_{2}^{2} \phi_{12}\right)(0,0)=4 i \chi_{2} \frac{\mu_{2} A}{\sqrt{\mu_{1}+\mu_{2}}}=\frac{4 i \mu_{2} \chi_{2} A}{\sqrt{\mu_{1}+\mu_{2}}}, \\
& \left(\mathcal{L}_{2}^{2} \phi_{22}\right)(0,0)=2 \sqrt{\mu_{2}}, \\
& \left(\mathcal{L}_{2}^{2} f_{1}\right)(0,0)=0, \quad\left(\mathcal{L}_{2}^{2} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \neq(1,2),(2,2) .
\end{aligned}
$$

We get

$$
\begin{align*}
& \sum_{j=1}^{2}\left(\mathcal{L}_{2}^{2} f_{j}\right)(0,0) \cdot \overline{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{2}^{2} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})} \tag{4.9}\\
= & -2 \mu_{2} \chi_{2} \cdot \chi_{2}+\frac{4 i \mu_{2} \chi_{2} A}{\sqrt{\mu_{1}+\mu_{2}}} \cdot \frac{\sqrt{\mu_{1}+\mu_{2}} \chi_{1} \chi_{2}}{1+2 i A \chi_{1}}+2 \sqrt{\mu_{2}} \cdot \frac{\sqrt{\mu_{2}} \chi_{2}^{2}}{1+2 i A \chi_{1}} \\
= & 0 .
\end{align*}
$$

- Calculate $\left(\mathcal{L}_{1} \mathcal{L}_{k} H\right)(0,0)$ for $H=f_{i}, \phi_{j l}$: A direct computation shows that

$$
\mathcal{L}_{1} \mathcal{L}_{k}=\frac{\partial^{2}}{\partial z_{1} \partial z_{k}}+2 i \chi_{k} \frac{\partial^{2}}{\partial z_{1} \partial w}+2 i \chi_{1} \frac{\partial^{2}}{\partial z_{k} \partial w}+2 i \chi_{1} \cdot 2 i \chi_{k} \frac{\partial^{2}}{\partial w^{2}} .
$$

At the point $(0,0)$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{1} \mathcal{L}_{k} f_{1}\right)(0,0)=2 i \chi_{k} \cdot \frac{i}{2} \mu_{1}=-\mu_{1} \chi_{k}, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{k} \phi_{11}\right)(0,0)=2 i \chi_{k} \cdot \sqrt{\mu_{1}} A=2 i \sqrt{\mu_{1}} \chi_{k} A, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{k} \phi_{1 k}\right)(0,0)=\sqrt{\mu_{1}}, \\
& \left(\mathcal{L}_{1} \mathcal{L}_{k} f_{2}\right)(0,0)=0, \quad\left(\mathcal{L}_{1} \mathcal{L}_{k} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \neq(1,1),(1, k) .
\end{aligned}
$$

We get

$$
\begin{align*}
& \sum_{j=1}^{2}\left(\mathcal{L}_{1} \mathcal{L}_{k} f_{j}\right)(0,0) \cdot \overline{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{1} \mathcal{L}_{k} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})} \tag{4.10}\\
= & -\mu_{1} \chi_{k} \cdot \chi_{1}+2 i \sqrt{\mu_{1}} \chi_{k} A \cdot \frac{\sqrt{\mu_{1}} \chi_{1}^{2}}{1+2 i A \chi_{1}}+\sqrt{\mu_{1}} \cdot \frac{\sqrt{\mu_{1}} \chi_{1} \chi_{k}}{1+2 i A \chi_{1}}=0 .
\end{align*}
$$

- Calculate $\left(\mathcal{L}_{2} \mathcal{L}_{k} H\right)(0,0)$ for $H=f_{i}, \phi_{j l}$: A direct computation shows that

$$
\mathcal{L}_{2} \mathcal{L}_{k}=\frac{\partial^{2}}{\partial z_{2} \partial z_{k}}+2 i \chi_{k} \frac{\partial^{2}}{\partial z_{2} \partial w}+2 i \chi_{2} \frac{\partial^{2}}{\partial z_{k} \partial w}+2 i \chi_{2} \cdot 2 i \chi_{k} \frac{\partial^{2}}{\partial w^{2}}
$$

At the point $(0,0)$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{2} \mathcal{L}_{k} f_{2}\right)(0,0)=2 i \chi_{k} \cdot \frac{i}{2} \mu_{2}=-\mu_{2} \chi_{k} \\
& \left(\mathcal{L}_{2} \mathcal{L}_{k} \phi_{12}\right)(0,0)=2 i \chi_{k} \cdot \frac{\mu_{2} A}{\sqrt{\mu_{1}+\mu_{2}}}=\frac{2 i \mu_{2} \chi_{k} A}{\sqrt{\mu_{1}+\mu_{2}}} \\
& \left(\mathcal{L}_{2} \mathcal{L}_{k} \phi_{2 k}\right)(0,0)=\sqrt{\mu_{2}} \\
& \left(\mathcal{L}_{2} \mathcal{L}_{k} f_{1}\right)(0,0)=0, \quad\left(\mathcal{L}_{2} \mathcal{L}_{k} \phi_{j k}\right)(0,0)=0 \quad \text { for }(j, k) \neq(1,2),(2, k) .
\end{aligned}
$$

By a similar computation as that of 4.10, we get

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\mathcal{L}_{2} \mathcal{L}_{k} f_{j}\right)(0,0) \cdot \overline{\widetilde{f}_{j}(\bar{\chi})}+\sum_{t}\left(\mathcal{L}_{2} \mathcal{L}_{k} \phi_{t}\right)(0,0) \cdot \overline{\widetilde{\phi}_{t}(\bar{\chi})}=0 \tag{4.11}
\end{equation*}
$$

By all of the above, (4.4) is proved. Also, we see

$$
\begin{aligned}
B= & \operatorname{diag}\left(1,1,2 \sqrt{\mu_{1}}, \sqrt{\mu_{1}+\mu_{2}}, 2 \sqrt{\mu_{2}}, \sqrt{\mu_{1}}, \ldots, \sqrt{\mu_{1}}, \sqrt{\mu_{2}}, \ldots, \sqrt{\mu_{2}}\right) \\
& +O(|\chi|) .
\end{aligned}
$$

Hence (4.3) is proved. The proof of Theorem 1.1 is complete.
Acknowledgement: The authors are grateful to both referees for their many important comments and suggestions, which have greatly improved both the exposition and the mathematics of the paper.

References

[A77] H. Alexander, Proper holomorphic maps in \mathbf{C}^{n}, Indiana Univ. Math. Journal, 26, 137-146, (1977)
[DA93] J. P. D'Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC press, 1993.
[DL09] J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, International Journal of Mathematics, 20, no. 2, 149-166, (2009).
[DKR03] J. P. D'Angelo, S. Kos, and E. Riehl, A sharp bound for the degree of propermonomial mappings between balls, J. Geom. Anal., 13(4), 581-593, (2003)
[DLP07] J. P. D'Angelo, J. Lebl, and H. Peters, Degree estimates for polynomials constant on a hyperplane, The Michigan Mathematical Journal, 55(3), 481-720, (2007)
[Eb13] P. Ebenfelt, Partial rigidity of degenerate CR embeddings into spheres, Adv. Math., 239 (2013), 72-96.
[Fa86] J. Faran, The linearity of proper holomorphic maps between balls in the low codimension case, J. Diff. Geom., 24 (1986), 15-17.
[FHJZ10] J. Faran, X. Huang, S. Ji, and Y. Zhang, Rational and polynomial maps between balls, Pure and Applied Mathematics Quarterly, 6(3), 829-842, (2010)
[Fo89] F. Forstnerič, Extending proper holomorphic mappings of positive codimension, Invent. Math., 95(1), 31-61, (1989)
[Fo92] F. Forstnerič, A survey on proper holomorphic mappings, Proceeding of Year in SCVs at Mittag-Leffler Institute, Math. Notes 38(1992), Princeton University press, Princeton,N.J.
[Ha05] H. Hamada, Rational proper holomorphic maps from \mathbf{B}^{n} into $\mathbf{B}^{2 n}$, Math. Ann., 331(3), 693-711, 2005.
[Hu99] X. Huang, On a linearity of proper holomorphic maps between balls in the complex spaces of different dimensions, J. Diff. Geom, 51(1999), 13-33.
[Hu01] X. Huang, On Some Problems in Several Complex Variables and CR Geometry, First Internatinal Congress of Chinese Mathematicians (Beijing, 1998), 383-396, AMS/IP Stud. Adv. Math., 20, Amer. Math. Soc., Providence, RI. (2001)
[Hu03] X. Huang, On a semi-rigidity property for holomorphic maps, Asian J. Math, 7(2003), 463-492.
[HJ01] X. Huang and S, Ji, Mapping \mathbb{B}^{n} into $\mathbb{B}^{2 n-1}$, Invent. Math., 145 (2001), 219-250.
[HJX06] X. Huang, S. Ji, and D. Xu, A new gap phenomenon for proper holomorphic mappings from \mathbb{B}^{n} to \mathbb{B}^{N}, Math Research Letter, $\mathbf{3}$ (2006), no. 4, 509-523.

$$
\text { Mapping } \mathbb{B}^{n} \text { into } \mathbb{B}^{3 n-3}
$$

[HJY09] X. Huang, S. Ji, and W. Yin, Recent Progress on Two Problems in Several Complex Variables, Proceedings of International Congress of Chinese Mathematicians 2007, vol. I, 563-575, International Press, 2009.
[HJY14] X. Huang, S. Ji, and W. Yin, On the Third Gap for Proper Holomorphic Maps between Balls, Math. Ann., Volume 358, 115-142, 2014. (See also arXiv:1201.6440 (v2)).
[JX04] S. Ji and D. Xu, Maps between \mathbb{B}^{n} and \mathbb{B}^{N} with geometric rank $k_{0} \leq n-2$ and minimum N, Asian J. Math., 8 (2004), 233-258.
[LP11] L. Juri and H. Peters, Polynomials constant on a hyperplane and CR maps of hyperquadrics, Mosc. Math. J., 11 (2011), no. 2, 285-315.
[LP12] L. Juri and H. Peters, Polynomials constant on a hyperplane and CR maps of spheres, Illinois J. Math., 56 (2012), no. 1, 155-175.
[LM07] B. Lamel and N. Mir, Parametrization of local CR automorphisms by finite jets and applications, J. Amer. Math. Soc., 20 (2007), no. 2, 519-572.
[Le11] J. Lebl, Normal forms, hermitian operators, and CR maps of spheres and hyperquadrics, Michigan Math. J., 60 (2011), no. 3, 603-628.
[Mey06] F. Meylan, Degree of a holomorphic map between unit balls from \mathbb{C}^{2} to \mathbb{C}^{n}, Proc. Amer. Math. Soc., 134 (2006), no. 4, 1023-1030
[MMZ03] F. Meylan, N. Mir, and D. Zaitsev, Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CRmanifolds, The Asian Journal of Mathematics 7, (2003), no. 4, 493-509.
[Mir03] N. Mir, Analytic regularity of CR maps into spheres, Math. Res. Lett., 10 (2003), no. 4, 447-457.
[YZ12] Y. Yuan and Yuan Zhang, Rigidity for local holomorphic isometric embeddings from \mathbb{B}^{n} into $\mathbb{B}^{N_{1}} \times \cdots \times \mathbb{B}^{N_{m}}$ up to conformal factors, J. Differential Geom., 90 (2012), no. 2, 329-349.
[W79] S. Webster, On mapping an ($n+1$)-ball in the complex space, Pac. J. Math., 81 (1979), 267-272.

Department of Mathematics, University of Houston
Houston, TX 77204, USA
E-mail address: jna31415@alumni.rice.edu

Department of Mathematics, Rutgers University
New Brunswick, NJ 08903, USA
E-mail address: huangx@math.rutgers.edu

Department of Mathematics, University of Houston
Houston, TX 77204, USA
E-mail address: shanyuji@math.uh.edu

School of Mathematics and Statistics, Wuhan University
Hubei 430072, China
E-mail address: wankeyin@whu.edu.cn
Received October 22, 2014

[^0]: * Xiaojun Huang is supported in part by NSF-1363418.
 \dagger Shanyu Ji and Wanke Yin are supported in part by NSFC- 11571260.
 \ddagger Wanke Yin is supported in part by FANEDD-201117 and NSFC-11271291.

