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PREFACE

This lecture notes is an extended version of my lecture series given at the workshop in
the Department of Mathematics, Seoul National University, in Seoul in November, 2009.

It surveys the theory of proper holomorphic mappings between balls. This theory was
originated from Poincaré’s work in 1807: any non-constant holomorphic map f : U → V
satisfying f(U ∩ ∂B2) ⊂ V ∂B2 is a map in Aut(∂B2), where U, V are open subsets of C2.
Over time many mathematicians made contribution to this theory.

In Chapter 1, we introduce some background information.
In Chapter 2 we introduce the first gap theorem, which was initiated from 1979 by

Webster, and is an accumulative result by many mathematicians over 20 years.
In Chapter 3, we illustrate a lots of examples of proper holomorphic mappings between

balls, from which a general conjecture about gap phenomenon is formulated. All constructed
examples seem to be polynomial maps, nevertheless, not every proper rational map between
balls can be equivalent to polynomial maps. A criterion, which tells when a proper rational
map can be equivalent to a polynomial one, is introduced. To illustrate the method that
used to study the classification problem, we first show a new proof for Faran’s theorem on
classification of maps from B2 to B3, and then outline how to find complete classification for
proper holomorphic rational maps from B2 to BN with degree 2.

In Chapter 4, we start with a result on maps from Bn to B2n−1. We list five main
facts in the ingredient of the proof, and discuss its generalization for higher codimensional
case. As a result, by using analytic approach, we shall demonstrate applications of these
generalizations, including the rationality problems, and the proof of the second gap theorem.

In Chapter 5, besides the analytic approach, we also introduce a geometric approach:
the Cartan’s moving frame theory in differential geometry, as well as its applications.

The author thanks the Department of Mathematics, Seoul National University, for the
wonderful hospitality during the workshop. The author is particularly indebted to Professor
Chong-Kyu Han for his kind invitation to attend the workshop. The author also thanks Mr.
Yao, Lu who helped to correct some typos in the notes when the author gave lectures in the
Capital Beijing Normal University in December, 2009.
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Chapter 1

Real Hypersurfaces

1.1 Domains and Their Boundaries

Geometry and analysis on domains in Cn and on their boundaries are closely related. We
start with several theorems concerning domains in Cn and their boundaries.

Theorem 1.1.1 [Fe74][B43] Let D1, D2 ⊂ Cn be smooth strongly pseudoconvex domains
with C∞ boundaries. Then the following statements are equivalent:

(i) There exists a biholomorphic map f : D1 → D2.
(ii) There is a C∞ CR isomorphism F : ∂D1 → ∂D2.

Theorem 1.1.2 (i) [CJ96] If Ω is a bounded simply connected domain in Cn+1 with con-
nected smooth spherical real analytic boundary, then Ω is globally biholomorphic to the unit
ball Bn+1.

(ii) [HJ98] The “simply connected” condition can be dropped if the boundary is defined
by a real polynomial.

One could pass problems in domains into the ones in boundaries. Conversely, one could
pass problems in boundaries into the ones in domains.

Siegel upper-half space and Heisenberg hypersurfaces For a domain D ⊂ Cn, its
boundary ∂D is a real hypersurface in Cn.

[Example 1.1 A]

1. Let
Bn = {z = (z1, ..., zn) ∈ Cn | |z|2 = |z1|2 + ... + |zn|2 < 1}

7



8 CHAPTER 1. REAL HYPERSURFACES

be the unit ball. Its boundary

∂Bn = {z = (z1, ..., zn) ∈ Cn | |z|2 = 1}

is the unit sphere.

2. Let
Hn := {(z, w) ∈ Cn−1 × C : Im(w) > |z|2}

be the Siegel upper-half space. Its boundary

∂Hn := {(z, w) ∈ Cn−1 × C : Im(w) = |z|2}

is the Heisenberg hypersurface. When n = 1, H1 is the upper-half plane {w ∈
C | Im(w) > 0} and ∂H1 = {w ∈ C | Im(w) = 0} is the x-axis. Among all (non-
degenerate) boundaries of domains in Cn with n ≥ 2, the most simplest one is the
∂Hn.

[Example 1.1 B]

1. More generally, we can define

Hn
ℓ := {(z, w) ∈ Cn−1 × C | Im(w) > |z|2ℓ}

where |z|2ℓ := −∑ℓ
j=1 |zj |2 +

∑n−1
j=ℓ+1 |zj |2. Its boundary

∂Hn
ℓ = {(z, w) ∈ Cn−1 × C | Im(w) = |z|2ℓ , z ∈ Cn−1}, (1.1)

is also called the (Levi) nondegenerate hyperquadric.

Notice that the pair (ℓ, n − 1 − ℓ) is completely determined by ℓ. Hence, in what
follows, for brevity, we call ℓ the signature of the above hypersurface M .

When ℓ = 0, we call ∂Hn
ℓ strongly pseudoconvex. When ℓ > 0, (1.1) is the model

example of a real hypersurface which is Levi nondegenerate but is not strongly pseu-
doconvex.

2. We can also define

Bn
ℓ := {(z, w) ∈ Cn−1 × C | |z|2ℓ + |w|2 < 1}. (1.2)

Its boundary is
∂Bn

ℓ := {(z, w) ∈ Cn−1 × C | |z|2ℓ + |w|2 = 1}. (1.3)
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Cayley transformation By the Cayley transformation, we mean a biholomorphic map

Ψn : Hn
ℓ → Bn

ℓ , Ψn(z, w) =

(
2z

1 − iw
,

1 + iw

1 − iw

)
. (1.4)

With Ψn we can identify Bn
ℓ with Hn

ℓ and identify ∂Hn
ℓ with ∂Bn

ℓ . To verify this, it suffices
to show that Ψn : ∂Hn

ℓ → ∂Bn
ℓ , i.e., to verify

∣∣∣∣
2z

i+ w

∣∣∣∣
2

ℓ

+

∣∣∣∣
i− w

i+ w

∣∣∣∣
2

= 1, ∀ Im(w) = |z|2ℓ , (1.5)

i.e. to verify that ∀ Im(w) = |z|2ℓ ,

4|z|2ℓ+ |i− w|2 = |i+ w|2
‖ ‖

(i− w)(−i− w) (i+ w)(−i+ w)
‖ ‖

1 + iw − iw + |w|2 1 − iw + iw + |w|2

,

i.e., to verify
4|z|2ℓ + 2iw − 2iw = 0, ∀ Im(w) = |z|2ℓ ,

i.e.,
4|z|2ℓ − 4Im(w) = 0, ∀ Im(w) = |z|2ℓ ,

which is trivially true.

Automorphism group By an automorphism, we mean a biholomorphic map F : Bn
ℓ →

Bn
ℓ . Let us denote by Aut(Bn

ℓ ) the group of automorphisms of Bn
ℓ . Also we define Aut(∂Bn

ℓ )
where F ∈ Aut(∂Bn

ℓ ) if F ∈ Aut(Bn
ℓ ) such that it maps the boundary ∂Bn

ℓ onto itself.
We can define Aut(Hn

ℓ ) and Aut(∂Hn
ℓ ) similarly. By Cayley transformation, we can

identify Aut(∂Bn
ℓ ) with Aut(Hn

ℓ ), and identify Aut(∂Bn
ℓ ) with Aut(∂Hn

ℓ ).
The group Aut(∂Hn

ℓ ) is transitive, i.e., for any two points P,Q ∈ ∂Hn
ℓ , there exists a

map F ∈ Aut(∂Hn) such that F (Q) = P . To prove this, we can assume Q = 0. We write
P = (z0, w0) ∈ Cn−1 × C, and then we can take

F (z, w) =
(
z + z0, w + w0 + 2i〈z, z0〉ℓ

)
. (1.6)

where 〈z, w〉ℓ = −∑ℓ
j=1 zjwj +

∑n
j=ℓ+1 zjwj.

For simplicity, we only consider the case where ℓ = 0.
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Isotropic subgroup We define

Aut0(∂Hn) = {F ∈ Aut(∂Hn) | F (0) = 0}.

which is called the isotropic subgroup of Aut(∂Hn). It is known that any F = (f, g) ∈
Aut0(∂Hn) is of the form

f(z, w) =
λ(z + ~aw)U

1 − 2i〈z,~a〉 − (r + 〈~a,~a〉)w
,

g(z, w) =
σλ2w

1 − 2i〈z,~a〉 − (r + 〈~a,~a〉)w
where σ = ±1, λ > 0, r ∈ R,~a ∈ Cn−1, U is an (n−1)× (n−1) matrix satisfying 〈zU, zU〉 =
σ〈z, z〉, ∀z ∈ Cn.

Here we verify such (f, g) ∈ Aut0(∂Hn), i.e., to verify

Im(g) = |f |2, ∀Im(w) = |z|2,

i.e. to verify that for any Im(w) = |z|2,

σλ2w

1 − 2i〈z,~a〉 − (r + i〈~a,~a〉)w
− σλ2w

1 + 2i〈z,~a〉 − (r − i〈~a,~a〉)w

= 2i

∣∣∣∣
λ(z + ~aw)U

1 − 2i〈z,~a〉 − (r + i〈~a,~a〉)w

∣∣∣∣
2

,

i.e., to verify

σλ2w
[
1 + 2i〈z,~a〉 − (r − i〈~a,~a〉)w

]
− σλ2w

[
1 − 2i〈z,~a〉 − (r + i〈~a,~a〉)w

]

= 2i
∣∣λ(z + ~aw)U

∣∣2, ∀ Im(w) = |z|2. (1.7)

Notice ∣∣λ(z + ~aw)U
∣∣2 = 〈λ(z + ~aw)U, λ(z + ~aw)U〉.

Motivated from the equation Im(w) = |z|2, we define the weighted degree:

deg(zj) = deg(zj) = j and deg(wk) = deg(wk) = 2k. (1.8)

To prove the equality in (1.7), we first prove the equality involving all terms of weighted
degree 2 (i.e., the z2, zz, z2, w and w terms) in (1.7):

σλ2w − σλ2w = 2iλ2〈zU, zU〉, ∀ Im(w) = |z|2.
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Since U is unitary, we need to show

σλ2w − σλ2w = 2iλ2σ〈z, z〉, ∀ Im(w) = |z|2,

which is true.
Secondly, we prove the equality involving all terms of weighted degree 3 (i.e., the zw, zw,

zw and zw terms) in (1.7):

σλ2w2i〈z,~a〉 − σλ2w(−2i)〈z,~a〉 = 2i〈λzU, λ~awU〉 + 2i〈λ~awU, λzU〉, ∀ Im(w) = |z|2,

Since U is unitary, the above is equivalent to

σλ2w2i〈z,~a〉 − σλ2w(−2i)〈z,~a〉 = 2iλ2σ〈z,~aw〉 + 2iλ2σ〈~aw, z〉, ∀ Im(w) = |z|2,

which is true.
Finally we prove the equality involving all terms of weighted degree 4(i.e., the ww terms)

in (1.7), which is the highest weighted degree case:

−σλ2(r − i|~a|2)|w|2 + σλ2(r + i|~a|2)|w|2 = 2i〈λ~awU, λ~awU〉, ∀ Im(w) = |z|2ℓ ,

Since U is unitary, divided by |w|2, the above is equivalent to

−σλ2(r − i|~a|2) + σλ2(r + i|~a|2) = 2iσλ2|~a|2 ∀ Im(w) = |z|2,

which is true.

1.2 Levi nondegenerate real hypersurfaces

Defining functions Let M be a smooth real hypersurface of Cn, i.e., M is a subset of Cn

such that for any point p ∈M there exists a neighborhood U of p and a smooth real-valued
function r defined in U such that

M ∩ U = {(z, w) ∈ U ∩ (Cn−1 × C) | r(z, w, z, w) = 0}

with dr 6= 0 in U . The function r is called a defining function of M at p. Notice that defining
function is not unique. Any hr is also a defining function where h is smooth real-valued
function without zero.
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[Example 1.2 A] For ∂Hn, we can take a defining function

r(z, w, z, w) = Im(w) − |z|2 =
w − w

2i
−

n−1∑

j=1

zjzj . �

[Example 1.2 B] If r(z, z) is real analytic near 0 ∈ Cn, we can write it as a power series

r(z, z) =
∑

α,β

cα,βz
αzβ

where α = (α1, ..., αn), zα = zα1
1 · ... · zαn

n , and zα = z1
α1 · ... · zn

αn . Then r is real-valued if
and only if ∑

α,β

cα,βz
αzβ =

∑

α,β

cα,βzαzβ , ∀z near 0

i.e.,
r(z, z) = r(z, z), ∀z near 0,

i.e.,
cαβ = cβ,α, ∀α, β. (1.9)

�

We denote by TM the tangent bundle of M , and by CTM = C⊗TM the complexification
of the tangent bundle of M . We define

T 1,0M = CTM ∩ T 1,0Cn,

which is called the bundle of (1, 0) vectors on M . Similarly we can define T 0,1M = CTM ∩
T 0,1Cn.

First, after a local change of coordinates, we assume that

p = 0, T0M = {v = 0}, T (1,0)
0 M = {w = 0},

where we use (z, w) ∈ Cn−1 × C for the coordinates of Cn and write w = u + iv. Then M
near 0 is the graph of the function

v = ρ(z, z, u) with ρ(0) = 0 and dρ(0) = 0.

Since ρ is real-valued, by (1.9), we can write ρ as Taylor series

ρ =

n−1∑

k,ℓ=1

akℓzkzℓ +

n−1∑

k,ℓ=1

bkℓzkzℓ +

n−1∑

k,ℓ=1

bkℓzkzℓ +

n−1∑

k=1

bkzku+

n−1∑

k=1

bkzku+ cu2 +O(3),
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where c ∈ R, O(3) = O(|(z, w)|3) = O(|(z, u)|3), A := (akℓ) is a Hermitian matrix. Then
v = ρ(z, z, u) can be written as:

Im(w) = 2Re

( n−1∑

k,ℓ=1

bkℓzkzℓ +

n−1∑

k=1

bkzku

)
+

n−1∑

k,ℓ=1

akℓzkzℓ + cu2 +O(3).

Since Re(z) = Im(iz), the above becomes

Im(w) = 2Im

(
i

n−1∑

k,ℓ=1

bkℓzkzℓ + i
n−1∑

k=1

bkzku

)
+

n−1∑

k,ℓ=1

akℓzkzℓ + cu2 +O(3),

i.e.,

Im

(
w − 2i

n−1∑

k,ℓ=1

bkℓzkzℓ − 2i

n−1∑

k=1

bkzku

)
− cu2 =

n−1∑

k,ℓ=1

akℓzkzℓ +O(3).

Since w = u + iv = u + iρ(z, z, u) = u + O(2), we have u = w + O(2) = w + O(2) and
u2 = u(w + O(2)) = uw + O(3) = w2 + O(3) = w2 + O(3) so that u2 = w2+w2

2
+ O(3) =

Re(w2) +O(3) = Im(iw2, O(3)) and that

Im

(
w − 2i

n−1∑

k,ℓ=1

bkℓzkzℓ − 2i
n−1∑

k=1

bkzkw − icw2

)
=

n−1∑

k,ℓ=1

akℓzkzℓ +O(3),

Then we define a local holomorphic coordinate change

{
z′ = z,

w′ = w − 2i
∑n−1

k,ℓ=1 bkℓzkzℓ − 2i
∑n−1

k=1 bkzkw − ciw2,

In the (z′, w′) coordinates, M can be expressed as the graph of the following function:

v′ =
∑

ak′l′z
′
kz

′
l +O(|(z′, w′)|3) = z′Az′

t
+O(|(z′, w′)|3)

where A = (ak′l′) = A
t
is a Hermitian (n− 1) × (n− 1) matrix and w′ = u′ + iv′. Write

A = Γ




λ1 0 ... 0
0 λ2 ...
...

...
...

0 0 ... λn−1


 Γ

t
= ΓΛΓ

t
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where Γ is a certain non-singular (n− 1)× (n− 1) matrix and Λ is a diagonal matrix. Then

v′ = z′ΓΛ(z′Γ)
t
+O(|(z′, w′)|3).

Let {
z′′ = z′Γ,

w′′ = w′.

We have

v′′ =
n−1∑

j=1

λj|z′′j |2 +O(|(z′′, w′′)|3)

where w′′ = u′′ + iv′′. We say that p = 0 is a Levi nondegenerate point of M if λj 6= 0 for
each j (cf. Example 1.2 B). 1

Assume in what follows that M is Levi nondegenerate at 0. Then without loss of gener-
ality, we can assume that

v′′ =

n−1∑

j=1

ǫj

∣∣∣∣
√

|λj|z′′j
∣∣∣∣
2

+O(|(z′′, w′′)|3),

where ǫj = −1 if j ≤ ℓ; and ǫj = 1 if j ≥ ℓ+ 1. Let
{
z′′′j =

√
|λj|z′′

j ,

w′′′ = w′′.

Then in the (z′′′, w′′′) coordinates, M is the graph of the following function:

v′′′ =
n−1∑

j=1

ǫj|z′′′j |2 +O(3).

Still write z for z′′′ and w for w′′′. Then by changing some order of indices, M is defined by:

v = |z|2ℓ +O(|(z, w)|3), (1.10)

where

|z|2ℓ := −
ℓ∑

j=1

|zj |2 +
n−1∑

j=ℓ+1

|zj|2. (1.11)

1The most simplest real hypersurface is a hyperplane M = {(z, w) ∈ Cn−1 × C | Im(w) = 0}, but it is
not interesting. We will focus on Levi nondegenerate real hypersurfaces.
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In the above expression and for the rest of this section, when ℓ = 0, we regard the first
term after the equality sign to be zero. Replacing (z, w) by (zℓ+1, · · · , zn−1, z1, ·, zℓ,−w) if
necessary, we can assume that ℓ ≤ n−1

2
. The integer ℓ (sometimes the pair (ℓ, n− 1 − ℓ)) is

called the signature of M at 0, which is a holomorphic invariant.
Therefore, among all Levi nondegenerate real hypersurfaces in Cn, the nondegenerate

hyperquadrics ∂Hn
ℓ in Example 1.1 B above are the most simplest one.

1.3 Segre family and Segre variety

Let M ⊂ Cn be a local real analytic hypersurface containing 0. Let U be a small neighbor-
hood of 0 in Cn, and M = {z ∈ U | r(z, z) = 0}, with dr never vanish, where r(z, z) is a
real analytic function defined on U .

Let M = {(z, ζ) ∈ U × Conj(U) | r(z, ζ) = 0} be Segre family of M —– the complexi-
fication of M—–which is also complex manifold of complex dimension 2n − 1 in Cn × Cn,
where Conj(U) = {z | z ∈ U}. Here we may shrink U if necessary, so that the power series
r(z, ζ) is convergent. Sometimes, we denote it as M = {(z, w) ∈ U × U | r(z, w) = 0}.

Write r as a local power series near 0:

r(z, z) =
∑

I,J

rIJz
IzJ . (1.12)

Since r is real-valued, we have

r(z, z) = r(z, z) = r(z, z), ∀z (1.13)

which implies

rIJ = rJI , ∀I, J. (1.14)

and then

r(z, w) = r(w, z) = r(w, z). (1.15)

Lemma 2.3 (i) M is independent of the choice of the defining function r of M .
(ii) A function holomorphic on M which vanishes on M also vanishes on any connected

open subset of M which contains a point of M .
(iii) Let f : U → U ′ be a biholomorphic map where U,U ′ ⊂ Cn+1 are open subsets.

Suppose f maps M into another real hypersurface M ′ with real analytic defining function
r′. Denote M and M′ be the corresponding Segre families of M and M ′, respectively.
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Denote F (z, w) := (f(z), f(w)), called the analytic continuation. Then F (M) ⊆ M′. When
f(M) = M ′, we have F (M) = M′.

Proof (i) If r′ is another defining function of M , then r′(z, z) = s(z, z)r(z, z), where s is
some real analytic function on U which never vanish on U , where U is sufficiently small.

(ii) Consider the power series of r(z, z) and r(z, ζ) and use the property of real analytic
functions.

(iii) We have
r′(f(z), f(w)) = s(z, w)r(z, w) (1.16)

with s 6= 0 as in the proof of (i). From this (iii) follows. �

[Example 1.3 A] Let ∂Hn be the Segre family of ∂Hn. Let us consider the automor-
phism group Aut(∂Hn). It is proved in [HJ07] that if Φ is a local holomorphic Segre self-
isomorphism of (∂Hn, 0), then Φ is of the following form:

F (z, ξ) = (S(z), T (ξ) = (S1(z), ..., Sn−1(z), Sn(z), T1(ξ), ..., Tn−1(ξ), Tn(ξ))

= (S̃(z), Sn(z), T̃ (ξ), Tn(ξ))

where

S̃(z) =
λ(z′ + ~aw)U

1 − 2i〈z′, ~e〉 + enw
, Sn(z) =

λw

1 − 2i〈z′, ~e〉 + enw
, (1.17)

T̃ (ξ) =
(ξ′ + ~eη)V

1 + 2i〈ξ′,~a〉 + (en + 2i〈~e,~a〉)η , (1.18)

Tn(ξ) =
λη

1 + 2i〈ξ′,~a〉 + (en + 2i〈~e,~a〉)η ; (1.19)

where U, V are non-singular (n−1)× (n−1) matrices of complex numbers with U ·V t = Id,
~a = (a1, ..., an−1), ~e = (e1, ..., en−1) ∈ Cn−1, λ ∈ C∗, en ∈ C, 〈~x, ~y〉 = ~x·~yt for any ~x, ~y ∈ Cn−1.
Also, F is uniquely determined by the data λ,~a,~e, en, U . �

Let M ⊂ Cn be a local smooth real hypersurface such that M∩U = {z ∈ U | r(z, z) = 0}
where r is a defining function. For any w ∈ U , we define its Segre variety with respect to
M by

Qw := {z ∈ U | r(z, w) = 0}.

[Example 1.3 B] Consider Heisenberg hypersurface M = ∂Hn which is defined by

r(z, z) :=
w − w

2i
−

n−1∑

j=1

|zj|2.
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Let p = (z0, w0) ∈ ∂Hn. Then the Segre variety

Qp =

{
(z, w) ∈ Cn−1 × C | w − w0

2i
−

n−1∑

j=1

zjz0j = 0

}
.

Qp is a complex hyperplane, which can be identified with the holomorphic tangent space to
∂Hn at p. When p = 0, Q0 = {(z, 0) ∈ Cn−1 × C}. Locally p determines Qp; conversely, Qp

determines p uniquely.

The most important property for Qw is its invariance property.

Proposition 3.3 (1) r(z, w) = r(w, z) = r(w, z).

(2) z ∈ Qw ⇔ w ∈ Qz.

(3) z ∈M ⇔ z ∈ Qz.

(4) Qz is invariant under local biholomorphisms, i.e., if f is biholomorphic map such
that f(M) = M ′, then f(Qw) = Q′

f(w).

Proof (1) Since r is real, r(z, w) =
∑
aIJz

IwJ =
∑
aIJz

IwJ , where aIJ = aJI , ∀I, J .

Then r(w, z) =
∑
aIJwIzJ ) =

∑
aJIz

JwI =
∑
aIJz

IwJ and r(w, z) =
∑
aIJwIzJ =∑

aIJw
IzJ =

∑
aJIz

JwI =
∑
aIJz

IwJ .

(2) We apply (1) to see z ∈ Qw ⇔ r(z, w) = 0 = r(w, z) ⇔ w ∈ Qz.

(3) z ∈M ⇔ r(z, z) = 0 ⇔ z ∈ Qz.

(4) Write M = {z | r(z, z) = 0}, M ′ = {z′ | r′(z′, z′) = 0}, z′ = f(z) and w′ = f(w).
Assume that r = f ◦ r′ is a defining function of M . Then Qf(w) = {z′ | r′(z′, f(w)) = 0} =

{f(z) | r′(f(z), f(w)) = 0} = f({z | r(z, w) = 0}) = f(Qw). �

1.4 CR manifolds

Foundation of CR geometry CR geometry originated from a work by Poincaré in 1907
below. N. Tanaka [T62] extended this result to high dimensional case.

Theorem 1.4.1 (Poincaré [P07]) Any non-constant holomorphic map f : U → V satisfying
f(U ∩ ∂B2) ⊂ V ∩ ∂B2 is a map in Aut(∂B2), where U, V are open subsets of C2.
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Proof:(Sketch) Assume the local map f is biholomorphic, otherwise shrinking U . Since
f(Qw) ⊂ Qf(w) where Qw is the Segre variety of ∂Bn, f maps hyperplanes into hyperplanes.
By the fundamental theorem of classical projective geometry, f must be projective linear
transformation between CPn. Therefore f must be linear fractional. �

Poincaré-Tanaka theorem could be regarded as a CR analogue of the following classical
Liouville’s Conformality Theorem. In the Euclidean space En with n ≥ 3, the only conformal
mappings are inversions, similarity transformations, and congruence transformations. More
precisely, let U, V be open subsets in Rn with n ≥ 3, equipped with the flat metric ω, and
f : U → V a smooth map. Then f is conformal (i.e., if f ∗(ω) = euω for some continuous
function u) if and only if f is a Mobius transformation: A composition of the following type
of transformations: (i) translations, (ii) rotations, (iii) scalings and inversions.

By E. Cartan [Ca32]-Chern-Moser[CM74]’s work, complete invariants for local Levi non-
degenerate real hypersurfaces are constructed.

These two pieces of work laid down the foundation of CR geometry.

CR manifolds
[Example 1.4 A] Let M be a smooth real hypersurface in Cn. For any p ∈M , we define
a complex vector space

Vp := CTpM ∩ T 0,1
p Cn.

The complex dimension dimC Vp = n− 1 for any point p ∈M . Then V = ∪p∈MVp defines a
subbundle of CTM satisfying [V,V] ⊂ V and V ∩ V = {0} where V =: CTM ∩ T 1,0.

Such M is called a CR manifold in Cn with CR dimension n− 1. The bundle V is called
a CR structure (bundle) on the manifold M. The complex dimension dimC Vp, independent
of p, is called the CR dimension. A section of V is called a CR vector field over M .

Let us find a basis of CR vectors fields over M as follows.
Recall a real hypersurface M in Rn defined by ρ(x) = 0. Let γ : [0, 1] →M , t 7→ γ(t) =

(γ1(t), ..., γn(t)), be any curve insider M . Then ρ(γ(t)) = 0, ∀t ∈ [0, 1]. By the chain rule,∑n
j=1

∂ρ
∂xj

dγj

dt
= 0, ∀t ∈ [0, 1]. Then the vector ( ∂ρ

∂x1
, ..., ∂ρ

∂xn
) ⊥ T (M), a normal vector. Let

L =
∑n

j=1 bj
∂

∂xj
. Then

∑n
j=1 bj

∂ρ
∂xj

= 0 iff (b1, ..., bn) ⊥ ( ∂ρ
∂x1
, ..., ∂ρ

∂xn
) iff L is a tangent vector

of M .
Now consider a real hypersurface M in C defined by ρ(z, z) = 0. We regard Cn = R2n

and (z, z) as a basis of vectors of R2n over the field R. Let L =
∑n

j=1 bj
∂

∂zj
+

∑n
k=1 ck

∂
∂zk

.

Then L is a tangent vector of M if and only if
n∑

j=1

bj
∂ρ

∂zj
+

n∑

k=1

ck
∂ρ

∂zk
= 0.
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Consequently, for a (1, 0)-vector L1 =
∑n

j=1 bj
∂

∂zj
, it is a tangent vector of M if and only if

n∑

j=1

bj
∂ρ

∂zj
= 0.

For a (0, 1)-vector L2 =
∑n

k=1 ck
∂

∂zk
, it is a tangent vector of M if and only if

n∑

k=1

ck
∂ρ

∂zk

= 0. (1.20)

Let M locally be defined by ρ = v − φ(z, z, u) = 0 near 0 where (z, w) is holomorphic
coordinates of Cn and w = u+ iv. Define

Lj =
∂

∂zj
− 2i

φzj

1 + iφu

∂

∂w
, 1 ≤ j ≤ n (1.21)

where we denote φzj
= ∂φ

∂zj
and φu = ∂φ

∂u
. In fact, as we did in (1.20), we just need to verify

that Lj(ρ) = 0 where ρ = w−w
2i

− φ(z, z, w+w
2

). Then

Lj(ρ) =

(
∂

∂zj
− 2i

φzj

1 + iφu

∂

∂w

)(
w − w

2i
− φ(z, z,

w + w

2
)

)

= −φzj
− 2i

φzj

1 + iφu

(
− 1

2i
− φu

1

2

)
= 0.

{L1, ..., Ln−1} form a basis for the CR bundle V. �

A CR manifold is a differentiable manifold together with a geometric structure modeled
on that of a real hypersurface in Cn. More precisely, a CR manifold is a differentiable
manifold M together with a subbundle V of the complexified tangent bundle CTM = TM⊗C

such that

[V,V] ⊆ V, and V ∩ V = {0}.
The bundle V is called a CR structure on the manifold M. V ⊕ V is called the complex
tangent bundle of M . The complex dimension dimC Vp, independent of p, is called the CR
dimension. A section of V is called a CR vector field over M . A C1 - smooth function f
is called a CR function if it locally annihilated by any CR vector field. A CR mapping is a
smooth mapping F between CR manifolds (M,VM) and (N,VN) such that df(VM) ⊆ (VN).
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[Example 1.4 B] Let M = ∂Hn ⊂ Cn be the Heisenberg hypersurface. We can take a
defining function

ρ(z) = Im(w) − |z|2 =
w − w

2i
−

n−1∑

j=1

|zj|2

of ∂Hn. From Example 1.4 A, φ = |z|2 so that φzj
= zj and φu = 0, and that

Lj :=
∂

∂zj

− 2izj
∂

∂w
, 1 ≤ j ≤ n− 1

be a basis of V = CT 0,1(∂Hn), and

Lj :=
∂

∂zj
+ 2izj

∂

∂w
, 1 ≤ j ≤ n− 1

be a basis of V = CT 1,0(∂Hn).
Also, from Example 1.4 A, the following vector field

T =
∂

∂w
+

∂

∂w

is a tangent vector field of M . Such T is a real vector, i.e., T = T . T is called a Reeb vector
field. The vector fields {Lj , Lj , T}1≤j≤n−1 form a basis of the tangent vector bundle T (M).
�

[Example 1.4 C] Let M be a smooth real submanifold in Cn of real codimension d. If
d = 1, it is the hypersurface case (see Example 1.4 A). Let us consider d > 1. Then for any
point p ∈M , there is an open subset U of Cn such that

M ∩ U = {z ∈ U | ρ1(z, z) = 0, ..., ρd(z, z) = 0}

where ρ = (ρ1, ..., ρd) is a real-valued smooth function defined on U such that dρ1(z), ...,
dρd(z) are linearly independent ∀z ∈ U . 2

We define a complex vector space

Vp := CTpM ∩ T 0,1
p Cn.

2To apply the Implicit Function Theorem, one needs the condition “ dρ1(z), ..., dρd(z) are linearly
independent”, i.e., dρ1(z) ∧ ... ∧ dρd(z) 6= 0, ∀z. Notice

dρ1 ∧ ... ∧ dρd 6= 0 ⇐ but 6⇒ ∂ρ1 ∧ ... ∧ ∂ρd 6= 0

If ∂ρ1 ∧ ... ∧ ∂ρd 6= 0 holds, we say that M is generic.
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When d = 1, the complex dimension dimC Vp = n − 1 is independent of p ∈ M . However,
when d > 1, dimC Vp may depend on p ∈M . Let us put a condition that dimC Vp = constant.
Then V = ∪p∈MVp defines a subbundle of CTM satisfying [V,V] ⊂ V and V ∩ V = {0}.
Then M is a CR manifold in Cn with CR dimension dimC Vp. �

Remarks:

1. A CR manifold defined in Example 1.4 A or 1.4 C is called an embedded CR manifold,
while a CR manifold (without mention of Cn) is called an abstract CR manifold.

2. For an abstract CR manifold M , when the CR dimension = n− 1, or codimension 1,
M is called a CR manifold of hypersurface type.

3. For any CR manifold, the complex tangent bundle V ⊕ V is a subbundle of complex
codimensional d in CTM .

4. For a CR manifold M ⊂ Cn as in Example 1.4 A, its CR dimension can be calculated
by the following formula:

dimC Vp = n− rankC

(
∂ρk

∂zj
(p, p)

)

1≤j≤n,1≤k≤d

. (1.22)

In particular, by the formula above, for a real hypersurface M = {ρ(z, z) = 0}, its CR
dimension

dimC Vp = n− rankC

(
∂ρ

∂zj
(p, p)

)

1≤j≤n

= n− 1

always holds.

[Example 1.4 D] Let M be a complex manifold. Let V = T 0,1M be a subbundle of
CTM . Then the CR dimension = n, V + V = CTM and

1. [V,V] ⊂ V

2. V ∩ V = {0}

hold so that M is a CR manifold with CR dimension n. f is a CR function ⇔ T (f) = 0 for
any CR vector filed T ⇔ ∂f

∂zj
= 0 ∀j ⇔ f is a holomorphic function. �
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[Example 1.4 E] A CR manifold M with CR dimension 0 is called totally real. For
example, M = R × R ⊂ C2. Its defining functions cane taken as

ρ1 = y1 =
z1 − z1

2i
, ρ2 = y2 =

z2 − z2
2i

.

Then ∂ρ1

z1
= − 1

2i
, ∂ρ1

z2
= 0, ∂ρ2

ovz1
= 0, ∂ρ2

z2
= − 1

2i
so that its CR dimension can be calculated

by

dimC Vp = 2 − rankC

(
− 1

2i
0

0 − 1
2i

)
= 2 − 2 = 0.

By the definition, any C1 function over M is CR function.

Contact form and Reeb vector field A real nonvanishing 1-form θ over M is called a
contact form if θ ∧ (dθ)n 6= 0. Let M be as above given by a defining function r. Then the
1-form θ = i∂r is a contact form of M .

Associated with a contact form θ one has the Reeb vector field Rθ, defined by the equa-
tions: (i) dθ(Rθ, ·) ≡ 0, (ii) θ(Rθ) ≡ 1. As a skew-symmetric form of maximal rank 2n, the
form dθ|TpM has a 1- dimensional kernel for each p ∈ M2n+1. Hence equation (i) defines a
unique vector field Rθ on M . The unique real vector field is defined by the normalization
condition (ii).

[Example 1.4 F] Let M = ∂Hn ⊂ Cn be the Heisenberg hypersurface with the defining
function ρ(z) = −Im(w) + |z|2 = −w−w

2i
+

∑n−1
j=1 |zj |2. We can take a contact form θ to be 3

θ = −i∂ρ =
1

2
dw − i

n−1∑

j=1

zjdzj.

�

3The defining function ρ can have two choices with ± signs, and we chose it so that Hn = {ρ < 0}. Also

contact form θ can have two choices with ± signs, and we choose it so that dθ = ihαβdzα ∧dzβ where (hαβ)
is positive definite.
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1.5 Levi forms

Levi form For a CR manifold (M,V) and a point p ∈M , its Levi form at p is a map (cf.
[Bog91])

hp : Vp → {Tp(M) ⊗ C}/(Vp ⊕ Vp)
vp 7→ 1

2i
πp{[v, v]}

where v is any vector filed in V that equals vp at p, and πp : Tp(M)⊗C → {Tp(M)⊗C}/(V⊕
V) is the natural projection. The definition of hp is independent of choice of v.

If M is an embedded CR manifold, we can take V = T 1,0(M) and identify the quotient
space {Tp(M) ⊗ C}/(Vp ⊕ Vp) with Xp, the complexified totall real part of the tangent
bundle.

hp : H1,0
p (M) → Xp(M)
vp 7→ 1

2i
πp{[v, v]}

It also regard the Levi form of an embedded CR manifold M ⊂ Cn as

h̃p : H1,0
p (M) → Np(M)
vp 7→ 1

2i
π̃p(J [v, v])p)

where v is any H1,0(M)-vector field extension of vp, Np(M) is the normal space of M at p,
J is the complex structure map for Tp(C

n), and π̃p : Tp(C
n) 7→ Np(M) is the orthogonal

projection map.
Let M = {ρ = 0} be a smooth real hypersurface. Let p ∈M and, by scaling, |▽ρ(p)| = 1

which is a unit base for Np(M). Then the Levi form is given by

h̃p(W ) = −
n∑

j,k=1

∂2ρ(p)

∂ζj∂ζk
wjwk ▽ ρ(p), ∀W =

n∑

k=1

wk
∂

∂ζk
∈ H1,0

p (M). (1.23)

In this case, M is called strictly pseudoconvex at p if the Levi form at p is either positive
definite or negative definite.

Levi form in terms of a contact form We could define Levi form in terms of a contact
form θ.

Fixing a contact form θ, for (M, θ), we define the Levi form

hθ(v, w) := −dθ(v, w) = θ([v, w]), ∀v, w ∈ V ⊕ V . (1.24)

Here we used the Cartan formula

〈dθ, v ∧ w〉 = v〈θ, w〉 − w〈θ, v〉 − 〈θ, [v, w]〉.
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and the fact that 〈θ, T 〉 = 0, ∀T ∈ V ⊕ V so that 〈θ, w〉 = 〈θ, v〉 = 0. The Levi form
of M can be regarded as a Hermitian 2-form, or a metric, on V := T 1,0M defined by
hθ : T 1,0M ⊗ T 1,0M → C. (M, θ) is said to be Levi nondegenerate at p if hθ(vp, wp) = 0 for
all wp implies vp = 0. (M, θ) is said to be Levi nondegenerate if hθ is Levi nondegenerate
at every point of M . (M, θ) is said to be strongly pseudoconvex if hθ is positive definite (or
pseudoconvex in case hθ is positive semidefinite).

[Example 1.5] Let M ⊂ Cn be a smooth real analytic hypersurface. Locally we consider
M ∩ U = {z ∈ U | ρ(z, z) = 0} where U is an open subset of Cn.

We choose a contact form θ to be

θ := −i∂ρ

so that from (1.24) we obtain hθ(v, w) = −〈dθ, v ∧ w〉, i.e.,

hθ = −dθ = −i∂∂ρ = i∂∂ρ.

In particular, if M = ∂Hn and ρ = −Im(w) + |z|2, we find

hθ = i∂∂
(
− w − w

2
+

n−1∑

j=1

zjzj

)
= i∂(

1

2i
dw +

n∑

j=1

zjdzj) = i
n−1∑

j=1

dzj ∧ dzj .

Then (∂Hn, θ) is strongly pseudoconvex.

1.6 Holomorphic extension of CR functions

Theorem 1.6.1 (Bochner’s Extension Theorem, 1943 [B43]) Let Ω ⊂ Cn be a bounded
open subset, n > 1, with C∞ boundary M := ∂Ω and suppose that Cn − Ω is connected. If
f ∈ C∞(M) is a CR function, there is a unique function F ∈ C∞(Ω) such that F |M = f
and F is holomorphic on Ω.

Bochner’s Extension Theorem is global. The first local version was proved by Lewy in
1956 (cf. [Bog91], p.198).

Let M = {z ∈ Cn | ρ(z) = 0} be a hypersurface where ρ is a Ck-smooth defining function
with dρ 6= 0 on M with 2 ≤ k ≤ ∞. If ρ is scaled so that | ▽ (p)ρ| = 1, ∀p ∈ M . The Levi
form of M at p is the map

W 7→
(
−

n∑

j,k=1

∂2ρ(p)

∂ζj∂ζk
)wjwk

)
▽ ρ(p), ∀W =

n∑

j=1

wj
∂

∂ζj
∈ H1,0

p (M).
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When we speak of the eigenvalues of the Levi form of M at p, we are referring to the ones
of the matrix

(
∂2ρ

∂ζj∂ζk

)
. Let Ω+ = {ρ > 0} and Ω− = {ρ < 0}.

Theorem 1.6.2 (Lewy extension theorem, [Bog91], p,198-199) Let M ⊂ Cn be a Ck-smooth
real hypersurface with 3 ≤ k ≤ ∞ and n ≥ 2. Let p ∈M be a point.

1. If the Levi form of M at p has at least one positive eigenvalue, then for each open
set ω in M with p ∈ ω, there is an open set U in Cn with p ∈ U such that for each
C1-smooth CR function f on ω, there is a unique function F which is holomorphic on
U ∩ Ω+ and continuous on U ∩ Ω+ such that F |U∩M = f .

2. If the Levi form of M at p has at least one negative eigenvalue, then the conclusion
above holds with Ω+ replaced by Ω−.

3. If the Levi form of M at p has eigenvalues of opposite sign, then for each open set ω in
M with p ∈ ω, there is an open set U in Cn with p ∈ U such that for each C1-smooth
CR function f on ω, there is a unique function F which is holomorphic on U such
that F |U∩M = f .

To illustrate the extension problem, we prove the following result.

Theorem 1.6.3 Let M ⊂ Cn+1 be a real analytic hypersurface, p ∈M and f a CR function
in a neighborhood of p of M . Then the following two statements are equivalent:

(1) f extends to a holomorphic function on a neighborhood of p in Cn+1.
(2) f is real analytic in a neighborhood of p in M .

Proof: Locally we assume that M is given by the equation

v = φ(z, z, u)

where z = (z1, ..., zn), w = u+ iv, φ is real analytic with

φ(0) = 0, dφ(0) = 0.

We know that the map

(z, z, u) 7→ (z, w) = (z, u + iφ(z, z, u)) (1.25)

is a parametrization of M with parameters (z, z, u) ∈ Cn × Cn × R.



26 CHAPTER 1. REAL HYPERSURFACES

From Example 1.4 A, we know that a local basis of CR vector fields is given by

Lj =
∂

∂zj
− 2i

φzj

1 + iφu

∂

∂w
, 1 ≤ j ≤ n, (1.26)

where we denote φzj
= ∂φ

∂zj
and φu = ∂φ

∂u
.

Now we define

F (z, w) = f(z, z, ζ)

where ζ satisfies ζ + iφ(z, z, ζ) = w. Hence ζ = ζ(z, z, w) is uniquely determined by the
equation with Implicit function theorem. 4 Also, by taking differentiation on the both sides
of the equation ζ + iφ(z, z, ζ) = w, we obtain

∂ζ

∂zj

+ iφzj
+ iφζ

∂ζ

∂zj

= 0. (1.27)

Also, we see F |M = f because F (z, u+ iφ(z, z, u)) = f(z, z, u) for any (z, w) ∈M .

To complete the proof, is suffices to prove that F is a holomorphic function.

Since ζ = ζ(z, z, w) is real analytic function without w terms, F is holomorphic in w.
Then it is sufficient to prove that F is holomorphic for each zj , 1 ≤ j ≤ n.

In fact, for any j,

∂F

∂zj
=
∂f

∂zj
+
∂f

∂ζ

∂ζ

∂zj

=
∂f

∂zj
− iφzj

1 + iφζ

∂f

∂ζ
(by (1.27))

= Ljf (by the formula of Lj above)

= 0. (because f is a CR function)

The proof is complete. �

Let F = (F1, ..., Fn) : M → N be a real analytic CR map between real analytic hy-
persurfaces M,N ⊂ Cn+1. Since each Fj is CR function, by Theorem above, F extends
holomorphically on a neighborhood of M .

4In general ζ may not be real-valued. But when w ∈ M , then ζ = Re(w) is real-valued.
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1.7 Hopf Lemma

Lemma 1.7.1 (Hopf lemma) Let Ω ⊂ Cn be a bounded domain with C2 boundary, a ∈ Ω,
and v(a) the inward normal to ∂Ω at a. Then for any subharmonic function u on Ω with
u < 0 on Ω must satisfy

lim
u(z)

|z − a| ≤ −c

for some constant c > 0, where the limit superior is as z → a along v(a).

Proof: Since ∂Ω is of C2 smoothness, we can take a ball BR(z0) with center z0 and radius
R in Cn such that it is tangent to ∂Ω at a and BR(z0) ⊂ Ω. Such z0 can be chosen in a fixed
compact subset of Ω.

For any 0 < r < R, define a function on BR(z0) − Br(z0):

g(z) := e−λ|z−z0|2 − e−λR2

.

When λ is sufficiently large compared to r, this function g is a subharmonic function. In fact,

∂2

∂zj∂zj
g = ∂

∂zj

(
−λ(zj−z0j)e

−λ|z−z0|2
)

= λ(λ|zj−z0j |2−1)e−λ|z−z0|2 > 0 holds BR(z0)−Br(z0)

as λ >> 0.
Clearly g = 0 holds for |z − z0| = R.
Since u < 0 on Ω, by taking sufficiently small ε > 0, u + εg ≤ 0 on the boundary of

BR(z0) − Br(z0). Thus we can apply the maximum principle to conclude u(z) ≤ −εg(z),
i.e., u(z)

g(z)
≤ −ε, for r < |z − z0| < R. It remains to show that

u(z)

|z − a| ≤ constant · u(z)
g(z)

as z → a along the vector v(a). Since u < 0, it is enough to prove g(z) ≤ constant · |z − a|.
This can be done by Taylor series expansion of g. �

Corollary 1.7.2 Let Ω, a and u be as above. If u ≤ 0 on ∂Ω and limz→a
u(z)
z−a

= 0, where z
goes to a along the normal vector direction, then u ≡ 0.

Proof Suppose u 6≡ 0, by applying the maximun principle, u < 0 holds on Ω. By Hopf
lemma above, limu(z)

z−a
≤ −ε < 0, which is a contradiction. �

As application, we have the following result.
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Theorem 1.7.3 (Burns-Krantz [BK 98]) Let g(z) : H1 → H1 be a holomorphic function
such that g(w) = w + o(|w|3) as w → 0. Then g(w) ≡ w.

Proof: Consider the harmmonic function h(w) := Im

(
1
w
− 1

g(w)

)
defined on H1. Clearly

h(w) = o(|w|) as w → 0.
We claim

limw→x∈(R+∪∞)h(w) ≥ 0.

In fact, when x ∈ R with x 6= 0, we write g(w) = U(w) + iV (w) and w = u+ iv. Then

h(w) = Im

(
1

u+ iv
− 1

U + iV

)
= − v

u2 + v2
+

V

U2 + V 2

converges to 0 + Im g
U2+V 2 ≥ 0, as w → x ∈ R with x 6= 0.

When x = 0, we have

Im

(
1

w
− 1

g(w)

)
= Im(

g(w) − w

wg(w)
) = Im(

o(|w|3)
wg(w)

) = o(|w|), as w → 0.

When x = ∞, h(w) = Im

(
1
w
− 1

g(w)

)
= − v

u2+v2 + Img
U2+V 2 → 0 + Im g

U2+V 2 ≥ 0 as w → ∞.

Claim is proved.
Take a linear fractional biholomorphic map f : B1 → H1. By the maximun principle

and the above Claim, the harmonic (hence subharmonic) function −h ◦ f ≤ 0 on B. By

Corollary 1.7.2, since limw→x
(−h◦f)(w)

w−x
= 0 by above calculation, one concludes −h ◦ f ≡ 0

so that h ≡ 0, i.e., 1
w
− 1

g(w)
≡ 0. Hence g(w) ≡ w. �

1.8 Three classes of CR submanifolds

{CR submanifolds in hyperquadratic} ( {Embeddable CR manifolds} ( {CR manifolds}

It has long been known that generic 3-dimensional CR manifolds are locally not embed-
dable, and that all strictly pseudoconvex CR manifolds of dimension 7 and higher are locally
embeddable, but the 5- dimensional strictly pseudoconvex case remains open.

Forstnerič [Fo86b] and Faran [Fa88] proved the existence of real analytic strictly pseudo-
convex hypersurfaces M2n+1 ⊂ Cn+1 which do not admit any germ of holomorphic mapping
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taking M into sphere ∂BN+1 for any N . We may compare this with the Cartan-Janet the-
orem which asserted that for any analytic Riemannian manifold (Mn, g), there exist local
isometric embeddings of Mn into Euclidean space EN as N is sufficiently large.

On the other hand, by Webster [W78b], any Levy nondegenerate real-algebraic hyper-
surface is holomorphically embeddable into a nondegenerate hyperquadric ∂Hn

ℓ .

From above, it leads us to concentrate on a subclass of the set of all CR manifolds:

{CR submanifolds in a sphere ∂BN+1}

S.-Y. Kim and J.-W. Oh [KO06] gave a necessary and sufficient condition for local em-
beddability into a sphere ∂BN+1 of a generic strictly pseudoconvex pseudohermitian CR
manifold (M2n+1, θ) in terms of its Chern-Moser curvature tensors and their derivatives.

Zaitsev [Za08] constructed explicit examples for the Forstnerič and Faran phenomenon
above.

Ebenfelt, Huang and Zaitsev [EHZ04] proved rigidity of CR embeddings of generalM2n+1

into spheres with CR co-dimension < n
2
, which generalizes a result of Webster that was for

the case of co-dimension 1 [W79]. Here by rigidity, we mean that for any two smooth CR

immersions f and f̃ : M2n+1 → ∂Bn+d+1 with d < n
2
, there exists φ ∈ Aut(∂Bn+1+d) such

that f̃ = φ ◦ f .

Very recently, Ji and Yuan [JY09] proved that if a CR submanifold M with hypersurface
type of ∂BN and with zero CR second fundamental form, then M is the image of a sphere
by a linear map.

The most basic and non-trivial example of CR submanifolds in a sphere ∂BN is the image
M = F (∂Bn) where

F : ∂Bn → ∂BN

is a proper holomorphic map that is C2-smooth up to the closed ball Bn. Here the C2-smooth
condition allows the map F restricted on the sphere to become a CR mapping

F : ∂Bn → ∂BN .
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1.9 Proper Holomorphic Maps Between Balls

Recall that a continuous map f : X → Y where X and Y are topological spaces is called
proper if for any compact subset K ⊂ Y , f−1(K) is compact in X.

Proposition 1.9.1 Let D,D′ ⊂ Cn be bounded domains and f : D → D′ a holomorphic
map. Then f is proper if and only if for any sequence zv which converges to a point in ∂D,
the image sequence {f(zv)} tends to ∂D′.

Proof: (⇒) Suppose that {f(zv)} does not tend to ∂D′. Then there is a subsequence {zvk
}

such that {f(zvk
)} is relatively compact in D′, which is a contradiction to the properness of

f .
(⇐) Suppose there is a compact subset K ⊂ D′ such that f−1(K) is not compact in D.

Then there is a sequence {zv} converging to ∂D but {f(zv)} ⊂ K does not tend to ∂D′.
�.

From the last section, it leads us to concentrate on a subclass of the set of CR subman-
ifolds in a sphere:

Prop(Bn,BN ) := {proper holomorphic map F : Bn → BN},

P ropk(B
n,BN) := Prop(Bn,BN) ∩ Ck(Bn),

Rat(Bn,BN ) := Prop(Bn,BN ) ∩ {rational maps}.

P oly(Bn,BN ) := Prop(Bn,BN) ∩ {polynomial maps}.
We say that F,G ∈ Prop(Bn,BN) are equivalent, denoted as F ∼= G, if there are au-

tomorphisms σ ∈ Aut(Bn) and τ ∈ Auto(BN) such that F = τ ◦ G ◦ σ, i.e., the following
diagram commutes

Bn G−→ BN

↑ σ � ↓ τ
Bn F−→ BN .

Theorem 1.9.2 (H. Alexander [A77]) Any proper holomorphic map from Bn onto Bn must
be an automorphism when n ≥ 2.

The condition that n ≥ 2 is crucial. In fact, when n = 1, we have
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Proposition 1.9.3

Prop(B1,B1) =

{
F (z) = eiθ

m∏

j=1

z − aj

1 − ajz
, with |aj| < 1

}
.

Proof: If f is proper, f−1(0) is compact: f−1(0) =
∑N

j=1mj [aj ] where aj ∈ B1 and
mj ∈ Z+. Let

g(z) =

N∏

j=1

(
z − aj

1 − ajz

)mj

.

To show: f
g

= constant and
∣∣f

g

∣∣ ≡ 1, which implies f ≡ eiθg.

In fact, both f
g

and g
f

are meromorphic and have only removable singularities. Then
both

f

g
,
g

f
are holomorphic in B1.

We apply Proposition 1.9.1 to know that for any ǫ > 0, there is δ > 0 such that

1 − ǫ ≤
∣∣f(z)

g(z)

∣∣ ≤ 1

1 − ǫ
, ∀|z| > 1 − δ.

By applying the maximum principle,

1 − ǫ ≤
∣∣f(z)

g(z)

∣∣ ≤ 1

1 − ǫ
, ∀|z| ≤ 1 − δ.

Hence f
g
≡ constant. By letting ǫ→ 0,

∣∣f(z)
g(z)

∣∣ ≡ 1. �

Bochner and Martin [BM48] found a necessary and sufficient condition for mappings
in Prop(Bn,BN) in terms of its power series centered at the origin. More precisely, if
F = (f1, ..., fh) is written as power series

fj(z) =
∑

a(j)
n1···nk

zn1
1 · · · znk

k , j = 1, ..., h,

then F maps ∂Bk into ∂Bh if and only if

h∑

j=1

a(j)
m1···mk

a
(j)
n1···nk = 0, for (m1 − n1)

2 + ...+ (mk − nk)
2 > 0,
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and
h∑

j=1

∣∣∣∣a
(j)
n1···nk

∣∣∣∣
2

=
(n1 + ...+ nk)!

n1! · · ·nk!
An1+···+nk

,

where AN are suitable nonnegative numbers.

It was discovered in the early 80’s (cf. [Fo93][H99]) that Prop(Bn,BN) is much larger than
Propk(B

n,BN ) in general. In fact, there are some mappings F ∈ Prop(Bn,Bn+1) ∩ C0(Bn)
but they are neither in Prop2(B

n,Bn+1) nor in Rat(Bn,Bn+1).

For any F ∈ Prop2(B
n+1,BN+1), it induces a C2 smooth CR map from ∂Bn+1 into

∂BN+1.

Webster was the first to investigate the geometric structure of proper holomorphic maps
between balls in complex spaces of different dimensions. In 1979, he showed [W79] that
a proper holomorphic map F ∈ Prop3(B

n,Bn+1) with n > 2 is indeed a linear fractional
embedding.

Forstnerič shown [Fo86] that

PropN−n+1(B
n,BN) = Rat(Bn,BN ).

Moreover, such F has no poles on ∂Bn by Cima-Suffridge [CS90].

J.P. D’Angelo did lots of work on polynomial and monomial mappings in Propk(B
n,BN)

[DA88][DA92][DA93], in particular he found the structure of proper holomorphic polynomial
mappings between balls.



Chapter 2

Earlier Result: The First Gap
Theorem

2.1 The First Gap Theorem

Theorem 2.1.1 (The First Gap Theorem) For N < 2n−1, any map F ∈ Prop2(B
n, BN)

is equivalent to the linear map (z, 0, w).

-q

0
q

1
q

2
c

n

( q q c

2n − 1

) q

2n

This theorem is a result by many mathematicians over 20 years.

In 1979, S. Webster proved [W79] that any mapping in Prop3(B
n,Bn+1) with n ≥ 3 must

be equivalent to a linear map (z, 0, w).

33
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In 1982, J. Faran [Fa82] proved that there are exactly four maps in Prop3(B
2,B3), up to

equivalence class.

Next year, A. Cima and T.J. Suffridge [CS83] improved the above results of Webster
and Faran by replacing “Prop3” with “Prop2”. In the same paper [CS83], A. Cima and T.
J. Suffridge conjectured that any mapping in Prop2(B

n,BN ) with n ≥ 3 and N ≤ 2n − 2
should be equivalent to the linear map (z, 0, w).

In 1986, Faran [Fa86] proved the Cima-Suffridge’s conjecture under the assumption that
F is holomorphic in a neighborhood of Bn.

In the same year, F. Forstnerič [Fo86] proved PropN−n+1(B
n,BN) = Rat(Bn,BN) and

later Cima and Suffridge [CS90] shown that any mapping in Rat(Bn,BN) must be holo-
morphic on the boundary. As a consequence, the First Gap Theorem is proved for any
F ∈ PropN−n+1(B

n,BN ) with N < 2n− 1.

In 1999 X. Huang [Hu99] proved that any mapping in Prop2(B
n,BN) with N ≤ 2n− 2

is equivalent to the linear map (z, 0, w).

Outline of the Proof for the First Gap Theorem:
Step 1. if N < 2n− 1, it implies that its geometric rank κ0 = 0.

• (analytic proof) Use Uniqueness theorem (see Corollary 2.11.1 and Theorem 2.11.2
below).

• (geometric proof) Use the formula

N ≥ n +
(2n− κ0 − 1)κ0

2

for any F ∈ Prop2(B
n,BN) with geometric rank κ0. In fact, if N < 2n− 1, the above

inequality forces κ0 = 0.

Step 2. Show: κ0 = 0 ⇐⇒ F is a linear fractional map.

• (analytic proof) The first order PDE argument (see Theorem 2.10.1 below).

• (geometric proof) κ0 = 0 ⇐⇒ the CR second fundamental form IIM = 0 ⇐⇒ F is a
linear fractional map. �
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We need to explain the following:

1. What is the geometric rank κ0 of a map F ? (see (2.74) below, or [HJ01])

2. Why N ≥ n+ (2n−κ0−1)κ0

2
? (see Corollary 4.2.2, or [H03])

3. Why κ0 if and only if IIM = 0 ? (see Corollary 5.7.3, [JY09][HJ09])

4. Why IIM = 0 if and only if F is a linear fractional map (see Theorem 5.2.1, [JY09]).

2.2 Passing from ∂Bn to ∂Hn

Recall the Heisenberg hypersurface

∂Hn := {(z, w) ∈ Cn−1 × C : Im(w) = |z|2}

and the Cayley transformation

ρn : Hn → Bn, ρn(z, w) =

(
2z

1 − iw
,

1 + iw

1 − iw

)
.

We can define the space Prop(Hn,HN), Propk(H
n,HN) and Rat(Hn,HN ).

We can identify a map F ∈ Propk(B
n,BN) or Rat(Bn,BN) with ρ−1

N ◦F ◦ ρn in the space
Propk(H

n,HN) or Rat(Hn,HN), respectively.

We say that F and G ∈ Prop(Hn,HN) are equivalent if there are automorphisms σ ∈
Aut(Hn) and τ ∈ Aut(HN ) such that F = τ ◦G ◦ σ.

Bn F−→ BN

↑ ρn � ↓ ρ−1
N

Hn
ρ−1

N ◦F◦ρn−→ NN .
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2.3 Differential Operators on ∂Hn

The vector fields {L1, ..., Ln−1}, where Lj := 2izj
∂

∂w
+ ∂

∂zj
, form a global basis for the complex

tangent bundle CT 1,0∂Hn over ∂Hn, and their conjugates {L1, ..., Ln−1}, called CR vector
fields, form a global basis for the complex tangent bundle CT 0,1∂Hn over ∂Hn. Recall that
for zj = xj + iyj and for w = u+ iv, we have

∂

∂zj

=
1

2

( ∂

∂xj

− i
∂

∂yj

)
,

∂

∂zj

=
1

2

( ∂

∂xj

+ i
∂

∂yj

)
.

and
∂

∂w
=

1

2

( ∂
∂u

− i
∂

∂v

)
,
∂

∂w
=

1

2

( ∂
∂u

+ i
∂

∂v

)
.

There is a real vector field which is transversal to CT (1,0)∂Hn + CT (0,1)∂Hn

T =
∂

∂Re(w)
=

∂

∂u
=

∂

∂w
+

∂

∂w
. (2.1)

which is the Reeb vector field.
The vector fields {L1, ..., Ln−1, L1, ..., Ln−1, T} forms a basis of CT∂Hn.

Lemma 2.3.1 (i) TLj = LjT , TLj = LjT , and LjLk = LkLj for all 1 ≤ j, k ≤ n− 1.

(ii) For any continuous CR function h over an open subset M1 ⊂ ∂Hn, T h is a CR
distribution over M1. For any 1 ≤ j, k ≤ n− 1, Lk(Ljh) = −[Lj , Lk]h = 2iδkjT h.

(iii) Let h be a C2 CR function over ∂Hn and χ a C1 function over ∂Hn. Then for any
integer k > 0, we have

Lk(L
2
k(h)χ) = 4iLk(T (h))χ+ L2

k(h)Lk(χ),
Lk(Lk(T (h))χ) = 2iT 2(h)χ+ Lk(T (h))Lk(χ)

in the sense of distribution.

(iv) For any k, l, j and any C2 CR function h, we have

LkLlLjh = 2iδkℓTLjh+ 2iδkjTLℓh
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in the sense of distribution. In particular, we have

LkLlLjh =





0, when k 6= l and k 6= j;
2iT (Llh), when k = j 6= l;
2iT (Ljh), when k = l 6= j;
4iT (Lkh), when k = j = l.

Proof of Lemma 2.3.1 : (i) For any differentiable function f(z, z, w, w),

T (Ljf) = (
∂

∂w
+

∂

∂w
)
( ∂f
∂zj

+ 2izj
∂f

∂w

)
=

∂2f

∂w∂zj
+ 2izj

∂2f

∂w2
+

∂2f

∂w∂zj
+ 2izj

∂2f

∂w∂w
.

Lj(Tf) =
( ∂

∂zj

+ 2izj
∂

∂w

)
(
∂f

∂w
+
∂f

∂w
) =

∂2f

∂w∂zj

+ 2izj
∂2f

∂w2
+

∂2f

∂w∂zj

+ 2izj
∂2f

∂w∂w
.

Then TLj = LjT and hence TLj = LjT . Similarly, LjLk = LkLj , ∀1 ≤ j, k ≤ n− 1.

(ii) The first statement follows from (i): Th is CR because LjTh = TLjh = 0. The
second statement follows from the following calculation:

[Lj , Lk] =
(

∂
∂zj

+ 2izj
∂

∂w

)(
∂

∂zk
− 2izk

∂
∂w

)
−

(
∂

∂zk
− 2izk

∂
∂w

)(
∂

∂zj
+ 2izj

∂
∂w

)

= −2iδjk
∂

∂w
− 2iδjk

∂
∂w

= −2iδkjT.

(iii) It is sufficient to prove (iii) for any holomorphic polynomial h by a lemma below.

By (ii), we know that Th is CR and that LkLkh = 2iTh. This follows the second identity.

To prove the first identity, it is sufficient to prove

LkL
2
kh = 4iLkTh, ∀ C2 CR function h. (2.2)

In fact, LkL
2
kh equals to

([Lk, Lk] + LkLk)Lkh = 2iTLkh+ Lk([Lk, Lk] + LkLk)h = 2iTLkh+ 2iLkTh+ 0 = 4iTLkh.

(iv) It is sufficient to prove (iv) for any holomorphic polynomial h as above.
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Consider

LkLℓLjh =
(
[Lk, Lℓ] + LℓLk

)
Ljh

= 2iδkℓTLjh+ Lℓ(LkLj)h = 2iδkℓTLjh+ Lℓ

(
[Lk, Lj] + LjLk

)
h

= 2iδkℓTLjh+ Lℓ2iδkjTh+ 0 = 2iδkℓTLjh + 2iδkjTLℓh

=





0, if k 6= j, k 6= ℓ,

2iTLℓh if k = j, j 6= ℓ,

2iTLjh if k = ℓ 6= j,

4iTLkh k = j = ℓ.

by using the similar computation. �

Let h be a Cv-smooth function and thenD1(h) is a C0-smooth function for any differential
operator D1 of degree v. Let D2 be another differential operator. In general D2D1(h) does
not make sense. However if D2D1(h) can be written as D3(h) where D3 is of degree v. Then
D2D1(h) is still a C0 function. This fact is presented by a lemma below. As an example,
LjLlh = 2iδjlTh. It can also been seen in Lemma 2.3.1 (ii) and (iii).

Lemma 2.3.2 Let h be a Cv-smooth CR map from a neighborhood of M in ∂Hn into CN .
Let D1(h) = H(p, p, LαLβT γ(h))|α|+|β|+|γ|≤v with H holomorphic in its argument where p ∈
∂Hn. Let D2 = Lα1Lβ1T γ1 be a differential operator along M . Suppose that there is a certain
holomorphic function H0 in its argument such that for each polynomial map h∗ from Cn into
CN ,

D2(D1(h
∗)) = H0(p, p, L

α2Lβ2T γ2(h∗))|α2|+|β2|+|γ2|≤v

Then the distribution D2(D1(h)), acting on C∞
0 (M), coincides with the continuous function

D3(h) := H0(p, p, L
α2Lβ2T γ2(h))|α2|+|β2|+|γ2|≤v.

Proof of Lemma 2.3.2: It is an immediate application of the Baouendi-Treves approximation
theorem. Here we outline the proof. There is a sequence of holomorphic polynomial maps
{hm}∞m=1 which converges to h in the Cv-norms over M . Hence D1(hm) → D1(h) in the
C0-norm over M , and D2(D1(hm)) → D2(D1(h)) in the sense of distribution. By the
assumption, D2(D1(hm)) converges also to H0(p, p, L

αLβT γ(G))|α|+|β|+|γ|≤v in the C0-norm
over M . �
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2.4 Equations Associated with F

Let F = (f, φ, g) = (f̃ , g) : M1 ∩ ∂Hn → ∂HN be a non-constant C2- smooth CR map
with F (0) = 0, where M1 is an open subset of ∂Hn. We denote f = (f1, ..., fn−1), φ =

(φ1, ..., φN−n) and f̃ = (f, φ). The basic equation is

Im g = f̃ · f̃
t

= 〈f̃ , f̃〉, ∀(z, w) ∈M1

i.e.,

g − g

2i
=

n−1∑

j=1

|fj|2 +

N−n∑

j=1

|φj|2, ∀(z, w) ∈M1 with Im(w) = |z|2. (2.3)

By the Lewy Extension Theorem (see Theorem 1.6.2), F extends holomorphically to a
certain pseudoconvex side of M1 denoted.

Let us differentiate (2.3) by Lj and T . First we consider the first order differential

operators: Ll and T , 1 ≤ l ≤ n− 1: Llg
2i

= Llf̃ · f̃
t

where we denote by t the transport, i.e.,

Llg

2i
=

∑

j

Llfj · fj
t
+

∑

j

Llφj · φj
t
= Llf̃ · f̃

t

, ∀(z, w) ∈M1, (2.4)

Tg − Tg

2i
= T f̃ · f̃ t + f̃ · T f̃

t

, ∀(z, w) ∈M1. (2.5)

We consider the second order differential operators LkLl, TLl and T 2, 1 ≤ k, l ≤ n− 1.

LkLlg

2i
= Lk(Llf̃) · f̃

t

, ∀(z, w) ∈M1. (2.6)

1

2i
T (Llg) = T (Llf̃) · f̃

t

+ Ll(f̃) · T f̃
t

, ∀(z, w) ∈M1 (2.7)

Im(T 2g) = 2 Im(iT 2f̃ · f̃ t) + 2|T f̃ |2, ∀(z, w) ∈M1. (2.8)

1

2i
LkLlg = LkLlf̃ · f̃ t + Llf̃ · Lkf̃ t, ∀(z, w) ∈M1. (2.9)

In particular, if k = l, by using LlLl = 2iT , we obtain

Tg = 2i〈T f̃ , f̃〉 + |Lj f̃ |2, ∀(z, w) ∈M1. (2.10)
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Next we consider the third order differential operators LkLjLl, 1 ≤ k, j, l ≤ n− 1:

1

2i
Lk(Lj(Llg)) = Lk(Lj(Llf̃)) · f̃

t

+ Lj(Llf̃) · Lkf̃
t

. (2.11)

When k 6= j and k 6= l, by Lemma 2.3.1(iv), (2.11) becomes

Lj(Llf̃) · Lkf̃
t

= 0. (2.12)

When k = j 6= l, by Lemma 2.3.1 (iv), (2.11) becomes

T (Llg) = 2iT (Llf̃) · f̃
t

+ Lj(Llf̃) · Lj f̃
t

. (2.13)

When k = l 6= j, by Lemma 2.3.1 (iv), (2.11) becomes

T (Ljg) = 2iT (Lj f̃) · f̃
t

+ Ll(Lj f̃) · Llf̃
t

. (2.14)

When k = j = l, by Lemma 2.3.1(iv) again, we have

2T (Lkg) = 4iT (Lkf̃) · f̃
t

+ Lk(Lkf̃) · Lkf̃
t

. (2.15)

Since F (0) = 0, by (2.4) and (2.6), we obtain

∂g

∂zj
|0 =

∂2g

∂zk∂zl
|0 = 0. (2.16)

2.5 The Associated Map F ∗ of F

From (2.9), since F (0) = 0, we have

1

2i
LkLjg|0 = Lj f̃ |0 · Lkf̃ |0.

By Lemma 2.3.1, we have

1

2i
LkLjg|0 =

1

2i
2iδkjTg|0 = λδkj

where
λ = Tg|0 > 0. (2.17)
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In fact, by (2.10), Tg|0 = 2i〈T f̃, f̃〉|0 + |Llf̃ |2|0 = |Llf̃ |2
∣∣
0
> 0.

Remark Another way to take look at the formula Tg|0 = λ > 0 is to use Hopf lemma. We

apply the maximum principle to the subharmonic function −Im(g)+
n−1∑
j=1

|fj|2+
N−n∑
j=1

|φj|2 ≤ 0

over Ω, we conclude F (Ω) ⊂ HN . Then we apply Hopf lemma to obtain

∂

∂ Im(w)

(
− Im(g) +

n−1∑

j=1

|fj|2 +
N−n∑

j=1

|φj|2
)∣∣∣∣

0

=
∂

∂ Im(w)
(−Im(g))|0

= −i
( ∂

∂w
− ∂

∂w

)g − g

2i

∣∣∣∣
0

= −Tg|0 = −λ < 0.

Then we have the orthogonal property:

Lj f̃ |0 · Lkf̃ |0 = λδjk.

Denoting

El = (
∂f̃

∂zl

)|0 =
(∂f1

∂zl

, ...,
∂fn−1

∂zl

,
∂φ1

∂zl

, ...,
∂φN−n

∂zl

)∣∣
0
,

and

Ew = (
∂f̃

∂w
)|0 =

(∂f1

∂w
, ...,

∂fn−1

∂w
,
∂φ1

∂w
, ...,

∂φN−n

∂w

)∣∣
0
.

Then it has orthogonal property:

Ej√
λ

Et
k√
λ

= δjk. (2.18)

We extend { E1√
λ
, ..., En−1√

λ
} to a certain orthonormal basis of CN−1:

{
E1√
λ
, ...,

En−1√
λ
, C1, ..., CN−n

}
. (2.19)

Now we define a new map F ∗ = (f ∗
l , φ

∗
k, g

∗) = H ◦ F where H ∈ Aut(HN), which is
equivalent to F , defined by

f ∗
l =

1

λ
f̃ · El

t
, φ∗

k =
1√
λ
f̃ · Ck

t
, g∗ =

1

λ
g. (2.20)
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F ∗ satisfies some initial conditions at 0:

F ∗(0) = 0,
∂f ∗

j

∂zl

∣∣∣∣
0

= δl
j ,
∂φ∗

j

∂zl

∣∣∣∣
0

= 0,
∂g∗

∂zl

∣∣∣∣
0

= 0,
∂g∗

∂w

∣∣∣∣
0

= 1. (2.21)

In fact, for example,

∂f ∗
j

∂zl
|0 = Llf

∗
j |0 = Ll(

1

λ
f̃ · Ej

t
)|0 =

1

λ
Llf̃ · Ej

t
=

1

λ
El|0 · Ej

t
=

1

λ
λδlj = δlj .

It is not good enough because we need to take care of the terms
∂f∗

j

∂w

∣∣
0

and
∂φ∗

j

∂w

∣∣
0
. We

need further normalization.
Since Lj |0 = ∂

∂zj
|0 and T |0 = ∂

∂w
|0, by taking differential and by the chain rule, we have

(
f ∗

l

)′

zk

|0 =
1

λ
Lkf̃ · El

t|0 =
1

λ
Lk(f̃) · Ll(f̃)

t

|0 = δk
l ,

(
f ∗

l

)′

w

|0 =
1

λ
Ew · El

t|0 =
1

λ
T (f̃) · Ll(f̃)

t

|0,
(
φ∗

l

)′

zk

|0 =
1√
λ
Lkf̃ · Cl

t|0 = 0,

(
φ∗

k

)′

w

|0 =
1√
λ
Ew · Ck

t|0 =
1√
λ
T (f̃) · Ck

t|0,

(
g∗

)′

zl

|0 =
1

λ

(
Llg − 2iLlf̃ · f̃

t
)
|0 = 0, (By (2.4))

(
g∗

)′

w

|0 =
1

λ

(
Tg − 2iT f̃ · f̃

t
)
|0 = 1, (By (2.10))

Besides, other formulas up to degree 2 are given as follows.

(
f ∗

j

)′′

zkzl

|0 =
1

λ
LkLlf̃ · Lj f̃

t

|0,
(
f ∗

l

)′′

zjw

|0 =
1

λ
LjT (f̃) · Ll(f̃)

t

|0,
(
f ∗

j

)′′

w2

|0 =
1

λ
T 2f̃ · Lj f̃

t

|0,
(
φ∗

j

)′′

zkzl

|0 =
1√
λ
LkLlf̃ · Cj

t|0,
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(
φ∗

j

)′′

zkw

|0 =
1√
λ
TLkf̃ · Cj

t|0,
(
φ∗

j

)′′

w2

|0 =
1√
λ
T 2f̃ · Cj

t|0,

(
g∗

)′′

zlzk

|0 =
1

λ

(
LlLkg − 2iLlLkf̃ · f̃

t
)
|0 = 0, (By(2.6))

(
g∗

)′′

zlw

|0 =
1

λ
Ll

(
Tg − 2iT f̃ · f̃

t
)

=
2i

λ
Llf̃ · T f̃

t

|0,
(
g∗

)′′

w2

|0 =
1

λ

(
T 2g − 2iT 2f̃ · f̃

t

− 2iT f̃ · T f̃
t
)
|0.

2.6 The Associated Map F ∗∗ of F

We want to define F ∗∗ = (f̃ ∗∗, g∗∗) = (f ∗∗, φ∗∗, g∗∗) = (f ∗∗
l , φ∗∗

k , g
∗∗) = G ◦ F ∗, for some

G ∈ Aut(∂HN ), such that this normalization F ∗∗ satisfies the following properties:

F ∗∗(0) = 0,
∂f ∗∗

l

∂zj

|0 = δlj,
∂f ∗∗

∂w
|0 = 0,

∂φ∗∗
k

∂zl

|0 = 0,
∂φ∗∗

k

∂w
|0 = 0,

g∗∗

∂zl

|0 = 0,
g∗∗

∂w
|0 = 1, (2.22)

and
∂2g∗∗

∂zj∂zk
|0 =

∂2g∗∗

∂w2
|0 = 0. (2.23)

This can be done by defining (cf. [H99])

G(z∗, w∗) =
(z∗ − aw∗, w∗)

1 + 2i〈z∗, a〉 + (r − i|a|2)w∗ ∈ Aut0(∂HN ) (2.24)

where

a :=

(
f̃ ∗

)′

w

∣∣∣∣
0

=

(
· · · , T f̃ · Lj f̃

t

λ
, · · · ; · · · , T f̃ · Cj

t

√
λ

, · · ·
)∣∣∣∣

0

= (a1, ..., an−1, b1, ..., bN−n),

r :=
1

2
Re

(
g∗

)′′

w2

|0 =
1

2λ
Re

(
T 2g − 2iT 2f̃ · f̃

t
)∣∣∣∣

0

. (2.25)
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The the normalization is defined by F ∗∗ := G ◦ F ∗.

f ∗∗
j =

f ∗
j − ajg

∗

1 + 2i〈f̃ ∗, a〉 + (r − i|a|2)g∗
, (2.26)

φ∗∗
j =

φ∗
j − bjg

∗

1 + 2i〈f̃ ∗, a〉 + (r − i|a|2)g∗
. (2.27)

g∗∗ =
g∗

1 + 2i〈f̃ ∗, a〉 + (r − i|a|2)g∗
. (2.28)

It implies (2.22).

To prove (2.23), by taking differential and by the chain rule, we continue to calculate

(
f ∗∗

j

)′′

zkzl

|0 =

(
f ∗

j

)′′

zkzl

|0 − 2iδk
j al − 2iδl

jak

= 1
λ
LkLlf̃ · Lj f̃

t

|0 −
2iδk

j

λ
T f̃ · Llf̃

t|0 −
2iδl

j

λ
T f̃ · Lkf̃

t|0.
(2.29)

(
f ∗∗

l

)′′

zjw

|0 =

(
f ∗

l

)′′

zjw

|0 − al

(
g∗

)′′

zjw

|0 − δl
j

[
2i(f̃ ∗)′w|0 · a + (r − i|a|2)

]
|0

=

(
f ∗

l

)′′

zjw

|0 − al

(
g∗

)′′

zjw

|0 − δl
j [i|a|2 + r]|0

=
1

λ
LjT f̃ · Llf̃

t

|0 −
2i

λ2

(
T f̃ · Llf̃

t
)(

Lj f̃ · T f̃
t
)
|0

−iδjl
λ

|T f̃ |2|0 −
δjl
2λ
Re

(
T 2g − 2iT 2f̃ · f̃

t
)
|0.

We can say more about this important formula which will be used to define geometric

rank κ0. Applying T 2 to the basic equation Im(g) = |f̃ |2, we get 0 = 2iIm(iT 2f̃ · f̃ t) +

2i|T f̃ |2 − i Im(T 2g) on ∂Hn by (2.8), i.e.,

|T f̃ |2 =
1

2
Im

(
T 2g − 2iT 2f̃ · f̃

t
)

(2.30)

Combining this to the above, we get
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(
f ∗∗

l

)′′

zjw

|0 = 1
λ
LjT f̃ · Llf̃

t

|0 − 2i
λ2

(
T f̃ · Llf̃

t
)(

Lj f̃ · T f̃
t
)
|0

− δjl

2λ

(
T 2g − 2iT 2f̃ · f̃

t
)
|0.

(2.31)

(
f ∗∗

l

)′′

w2

|0 =

(
f ∗

l

)′′

w2

|0 − al

(
g∗

)′′

w2

|0

= 1
λ
T 2f̃ · Llf̃

t

|0 − 1
λ2

(
T f̃ · Llf̃

t
)(

T 2g − 2iT 2f̃ · f̃
t

− 2i|T f̃ |2
)
|0.

(2.32)

(
φ∗∗

l

)′′

zjzk

|0 =

(
φ∗

l

)′′

zjzk

|0 − bl(g
∗)′′zjzk

=

(
φ∗

l

)′′

zjzk

|0 = 1√
λ
LjLkf̃ · Cl

t|0.
(2.33)

Here we used the fact that (g∗)′′zjzk
|0 = 0.

(
φ∗∗

l

)′′

zjw

|0 =

(
φ∗

l

)′′

zjw

|0 − bl(g
∗)′′zjw|0

= 1√
λ
TLj f̃ · Cl

t|0 − 1
λ3/2

(
T f̃ · Cl

t
)
Lj

(
Tg − 2iT f̃ · f̃

t
)
|0

= 1√
λ
TLj f̃ · Cl

t|0 − 2i
λ3/2

(
T f̃ · Cl

t
)(

Lj f̃ · T f̃
t
)
|0.

(2.34)

(
φ∗∗

l

)′′

w2

|0 =

(
φ∗

l

)′′

w2

|0 − bj

(
g∗

)′′

w2

|0

= 1√
λ
T 2f̃ · Cl

t|0 − 1
λ3/2

(
T f̃ · Cl

t
)(

T 2g − 2iT 2f̃ · f̃
t

− 2i|T f̃ |2
)
|0.

(2.35)

(
g∗∗

)′′

zjzk

|0 = 0,

(
g∗∗

)′′

zjw

|0 =

(
g∗

)′′

zjw

|0 − 2iaj =
2i

λ
Lj f̃ · T f̃

t

|0 −
2i

λ
T f̃ · Lj f̃

t

|0,
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(
g∗∗

)′′

w2

|0 =

(
g∗

)′′

w2

|0 − 2

[
i|aj|2 + r

]
|0

=
1

λ

(
T 2g − 2iT 2f̃ · f̃

t
)
|0 −

2

λ

[
i|T f̃ |2 +

1

2
Re

(
T 2g − 2iT 2f̃ · f̃

t
)]

|0

=
1

λ
Im(T 2g − 2iT 2f̃ · f̃

t

)|0 =
2

λ
|T f̃ |2

∣∣
0

= 0.

This implies
(
g∗∗

)′′
w2|0 = 0. Here we used (2.30). Then (2.23) are proved.

2.7 The Chern-Moser Operator

If F = F ∗∗ ∈ Prop2(∂Hn, ∂HN ), then we have

f = z + f̂ , g = w + ĝ with f̂ , ĝ, φ = O(|(z, w)|2), ∂2ĝ

∂zl∂zk

|0 =
∂2ĝ

∂w2
|0 = 0. (2.36)

Then we obtain

Im(w + ĝ) =

n−1∑

j=1

|zj + f̂j |2 +

N−n∑

j=1

|φj|2, ∀(z, w) ∈ ∂Hn. (2.37)

Let M1 ⊂ ∂Hn be an open subset. For a function f on M1, we denote h ∈ owt(s) if

lim
t→0+

h(tz, t2w, tz, t2w)

ts
→ 0

uniformly with respect to (z, w) ≈ (0′, 0) ∈ Cn1 × C. In other words, we define weighted
degree by (see also (1.8))

degwt(z
kwl) = k + 2l.

We write F as

f̂j =

m−1∑

s=2

f
(s)
j + owt(m−1), ĝ =

m∑

s=3

g(s) + owt(m), φj =

m−l∑

s=l

φ
(s)
j + owt(m− l), l ≥ 2, (2.38)

where we denote by h(s) the homogeneous polynomial of (z, w) of weighted degree s.
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Substituting these into (2.37), we obtain

Im(w) + Im(ĝ) =
∑

j

(zj + f̂j)(zj + f̂j) +
∑

k

( ∑

s

φ
(s)
k

)(∑

t

φ(t)
k

)

= |z|2 +
∑

j

(zj f̂j + f̂jzj + |f̂j|2) +
∑

k

(∑

s

φ
(s)
k

)(∑

t

φ
(t)
k

)

= |z|2 +
∑

j

Im(2i〈zj , f̂j〉) +
∑

j

|f̂j|2 +
∑

k

(∑

s

φ
(s)
k

)(∑

t

φ
(t)
k

)
, ∀Im(w) = |z|2.

Here we used the fact a+ a = Im(2ia) for any a ∈ C. Then

Im(ĝ) = Im(2i〈z, f̂〉) + |f̂ |2 +
∑

k

(∑

s

φ
(s)
k

)(∑

t

φ
(t)
k

)
, ∀Im(w) = |z|2.

Then for any l ≤ s ≤ m, we collect terms in the above equation of weighted degree s to
obtain the following equation:

Im(g(s) − 2i〈z, f (s−1)〉) =
N−n∑

j=1

s−l∑

p=l

φ
(s−p)
j φ

(p)
j +G(s), ∀(z, w) ∈ ∂Hn (2.39)

where G(s) is weighted homogeneous polynomial of weighted degree s contributed by f (σ−1)

and g(σ), σ ≤ s− 1. Here we denote φ(s) ≡ 0 if s < 0. The operator

L(f, g) := Im(ĝ − 2i〈z, f̂〉)

is called the Chern-Moser operator.

We notice G(s) ≡ 0 if f (σ−1) ≡ g(σ) ≡ 0 for σ ≤ s− 1. Let us consider the following two
cases.

Case 1: s = 2k We suppose s = 2k ≤ m. If the following additional conditions are
satisfied

f (σ−1) ≡ φ(σ) ≡ 0, for σ ≤ 2k − 1, (2.40)

then

Im(g(2k)(z, w) − 2i〈z, f (2k−1)(z, w)〉) =
N−n∑

j=1

φ
(k)
j φ

(k)
j , ∀(z, w) ∈M1. (2.41)
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Case 2: s = 2k + 1 We suppose s = 2k + 1 ≤ m. If the following conditions are satisfied

f (σ−1) ≡ φ(σ) ≡ 0 for σ ≤ 2k, (2.42)

then
Im(g(2k+1)(z, w) − 2i〈z, f (2k)(z, w)〉) = 0, ∀(z, w) ∈M1. (2.43)

Lemma 2.7.1 Let F = F ∗∗ ∈ Prop2(H
n,HN) be as above. Then

(i) f (2) ≡ 0, f (3) ≡ a(1)(z)w, φ(2)(z, w) = φ(2)(z), g(3) = g(4) ≡ 0.

(ii) −2i〈a(1)(z), z〉|z|2 =
∑N−n

j=1 |φ(2)
j (z)|2.

Proof: Consider s = 2 and (2.39). Since both sides of the equality are zero, the equation
(2.39) is trivially true.

Consider s = 3 and m = 3 in the identity (2.43):

Im(g(3) − 2i〈z, f (2)〉) ≡ 0 on ∂Hn. (2.44)

We claim
g(3) ≡ 0 and f (2) ≡ 0. (2.45)

In fact, write f (2)(z, w) = a(2)(z) and g(3)(z, w) = c(3)(z)+c(1)(z)w. Substituting into (2.43),
we have

Im(c(3)(z) + c(1)(z)w − 2i〈z, a(2)(z)〉) ≡ 0, ∀Im(w) = |z|2.
Since w = u + i|z|2, it follows that c(1)(z) ≡ 0, c(3)(z) ≡ 0 and a(2)(z) ≡ 0. Hence Claim is
proved.

Consider s = 4 and m = 4 in (2.41):

Im(g(4) − 2i〈z, f (3)〉) =

N−n∑

j=1

|φ(2)
j |2, ∀Im(w) = |z|2. (2.46)

We claim
g(4) ≡ 0, φ

(2)
j ≡ φ

(2)
j (z), f (3) ≡ a(1)(z)w,

−2i〈a(1)(z), z〉|z|2 =
N−n∑

j=1

|φ(2)
j (z)|2, (2.47)

where a(1)(z) is a certain holomorphic homogeneous polynomial of weighted degree one. In
fact, write

f (3)(z, w) = a(1)(z)w + a(3)(z), φ
(2)
j (z, w) = b

(2)
j (z)
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and g(4)(z, w) = c(4)(z) + c(2)(z)w. Here we used ∂2g
∂w2 |0 = 0. Substituting into (2.41),

Im(c(4)(z) + c(2)(z)w − 2i〈z, a(1)(z)〉|z|2 − 2i〈z, a(3)(z)〉) =

N−n∑

j=1

|b(2)j (z)|2, ∀(z, w) ∈M1.

Since w = u + i|z|2 and z, u are independent variables, we consider u0 and u terms to get
three identities:

Im(c(4)(z) + ic(2)(z)|z|2 + 2〈z, a(1)(z)〉w − 2i〈z, a(3)(z)〉) =

N−n∑

j=1

|b(2)j (z)|2,

Im(c(2)(z) − 2i〈z, a(1)(z)〉)u = 0,

Then c(2)(z) ≡ 0 and Im(2i〈z, a(1)(z)〉) ≡ 0. Thus from the first one, c(4)(z) ≡ 0 and
a(3)(z) ≡ 0 so that the claim is proved. �

By Lemma 2.7.1, we obtain:

Theorem 2.7.2 ([H99], Lemma 5.3) Let F ∈ Prop2(H
n,HN ), 2 ≤ n ≤ N with F (0) = 0.

Then there is an automorphism τ ∗∗ ∈ Aut0(H
N ) such that F ∗∗ := τ ∗∗ ◦ F = (f ∗∗, φ∗∗, g∗∗)

satisfies the following normalization:

f ∗∗ = z +
i

2
a∗∗(1)(z)w + owt(3), φ∗∗ = φ∗∗(2)(z) + owt(2), g∗∗ = w + owt(4), (2.48)

〈z, a∗∗(1)(z)〉|z|2 = |φ∗∗(2)(z)|2.

2.8 The Associated Map Fp of F

Let
F = (f, φ, g) = (f̃ , g) = (f1, ..., fn−1, φ1, ..., φN−n, g)

be a non-constant C2 smooth CR map from M1 ⊂ ∂Hn into M2 ⊂ ∂HN as above.
For any point p ∈M1, we have an associated CR map Fp from a small neighborhood of

0 ∈ ∂Hn to ∂HN with Fp(0) = 0, defined by

Fp = τF
p ◦ F ◦ σ0

p , (2.49)
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p ∈ ∂Hn F−→ ∂HN ∋ F (p)
↑ σ0

p ↓ τF
p

0 ∈ ∂Hn
Fp:=τF

p ◦F◦σp−→ ∂HN ∋ 0

where σ0
p ∈ Aut(Hn), p = (z0, w0), given by

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉), (2.50)

and τF
p ∈ Aut(HN) is given by

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0) − 2i〈z∗, f̃(z0, w0)〉). (2.51)

Notice that F (0) may not be 0, but we always have Fp(0) = 0. By the similar calculation
of F ∗ and F ∗∗, w have the following formulas.

(
f̃p

)′

zl

|0 = Ll(f̃)(p) := El(p),

(
f̃p

)′

w

|0 = T (f̃)(p) := Ew(p),

λ(p) := |Lj f̃ |2(p), for any j ∈ {1, ..., n− 1},

(gp)
′
zl
|0 = Llg(p) − 2iLlf̃(p) · f̃(p)

t

= 0 (because (2.4)),

(gp)
′
w|0 = Tg(p) − 2iT f̃(p) · f̃(p)

t

= |Lj f̃p(0)|2, 1 ≤ j ≤ n− 1,

(
f̃p

)′′

zlzk

|0 = LlLk(f̃)(p),

(
f̃p

)′′

zlw

|0 = TLl(f̃)(p),

(
f̃p

)′′

w2

|0 = T 2(f̃)(p),

(gp)
′′
zlzk

|0 = LlLkg(p) − 2iLlLkf̃(p) · f̃(p)
t

= 0, (By (2.6))

(gp)
′′
wzl

|0 = Ll

(
Tg(p) − 2iT f̃(p) · f̃(p)

t
)

= 2iLlf̃(p) · T f̃(p)
t

,

(gp)
′′
w2|0 = T 2g(p) − 2iT 2f̃(p) · f̃(p)

t

− 2iT f̃(p) · T f̃(p)
t

.
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Here for the second equality about (gp)
′′
wzl

, we used the fact that g − g = 2if̃ · f̃
t

and then

TLlg = 2iTLpf̃ · f̃
t

+ 2iLlf̃ · T f̃ t. Notice that there are two formulas for (gp)
′′
wzl

|0.
We define F ∗

p = (f̃ ∗
p , g

∗
p) given by

F ∗
p = (f ∗

p , φ
∗
p, g

∗
p) =

(
f ∗

p,l, φ
∗
p,k, g

∗
p

)
(2.52)

where

f ∗
p,l =

1

λp
f̃p · El(p)

t
, φ∗

p,k =
1√
λp

f̃p · Ck(p)
t
, g∗p =

1

λp
gp, (2.53)

where 1 ≤ l ≤ n− 1 and 1 ≤ k ≤ N − n. F ∗
p satisfies the following properties:

F ∗
p (0) = 0,

(
f ∗

p,j

)′

zl

|0 = δl
j,

(
φ∗

p,j

)′

zl

|0 = 0,

(
g∗p

)′

zl

|0 = 0,

(
g∗p

)′

w

|0 = 1. (2.54)

As before, we can choose vectors C1(p), ..., CN−n(p) ∈ CN−1 so that
{
E1(p)

t

√
λ

, ...,
En−1(p)

t

√
λ

, C1(p)
t, ..., CN−n(p)

t

}
(2.55)

form an (N − 1) × (N − 1) unitray matrix.

(
f ∗

p,l

)′

zk

|0 =
1

λ(p)
Lkf̃(p) · El(p)

t
=

1

λ(p)
Lk(f̃)(p) · Ll(f̃)(p)

t

= δk
l ,

(
f ∗

p,l

)′

w

|0 =
1

λ(p)
Ew(p) · El(p)

t
=

1

λ(p)
T (f̃)(p) · Ll(f̃)(p)

t

,

(
φ∗

p,l

)′

zk

|0 =
1√
λ(p)

Lkf̃(p) · Cl(p)
t
= 0,

(
φ∗

p,k

)′

w

|0 =
1√
λ(p)

Ew(p) · Ck(p)
t
=

1√
λ(p)

T (f̃)(p) · Ck(p)
t
,

(
g∗p

)′

zl

|0 =
1

λ(p)

(
Llg(p) − 2iLlf̃(p) · f̃(p)

t
)

= 0, (By (2.4))

(
g∗p

)′

w

|0 =
1

λ(p)

(
Tg(p) − 2iT f̃(p) · f̃(p)

t
)

= 1, (By (2.10))
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(
f ∗

p,j

)′′

zkzl

|0 =
1

λ(p)
LkLlf̃(p) · Lj f̃(p)

t

,

(
f ∗

p,l

)′′

zjw

|0 =
1

λ(p)
LjT (f̃)(p) · Ll(f̃)(p)

t

,

(
f ∗

p,j

)′′

w2

|0 =
1

λ(p)
T 2f̃(p) · Lj f̃(p)

t

,

(
φ∗

p,j

)′′

zkzl

|0 =
1√
λ(p)

LkLlf̃(p) · Cj(p)
t
,

(
φ∗

p,j

)′′

zkw

|0 =
1√
λ(p)

TLkf̃(p) · Cj(p)
t
,

(
φ∗

p,j

)′′

w2

|0 =
1√
λ(p)

T 2f̃(p) · Cj(p)
t
,

(
g∗p

)′′

zlzk

|0 =
1

λ(p)

(
LlLkg(p) − 2iLlLkf̃(p) · f̃(p)

t
)

= 0, (By(2.6))

(
g∗p

)′′

zlw

|0 =
1

λ(p)
Ll

(
Tg(p) − 2iT f̃(p) · f̃(p)

t
)

=
2i

λ(p)
Llf̃(p) · T f̃(p)

t

,

(
g∗p

)′′

w2

|0 =
1

λ(p)

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t

− 2iT f̃(p) · T f̃(p)
t
)
.

We define

Gp =
(z∗ − a(p)w∗, w∗)

1 + 2i〈z∗, a(p)〉 + (r(p) − i|a(p)|2)w∗
(2.56)

where

a(p) :=

(
f̃ ∗

p

)′

w

|0 = (a(p), b(p)) = (a1(p), .., an−1(p), b1(p), ..., bN−n(p)) =

=

(
· · · , T f̃(p) · Lj f̃(p)

t

λ(p)
, · · · ; · · · , T f̃(p) · Cj(p)

t

√
λ(p)

, · · ·
)
, (2.57)

r(p) :=
1

2
Re

(
g∗p

)′′

w2

|0 =
1

2λ(p)
Re

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t
)
. (2.58)

In particular, because A = (
Ej√

λ
, Ck) is a unitary matrix,

|a(p)|2 =
1

λ(p)
|Ew(p)|2 =

1

λ(p)
|T f̃(p)|2. (2.59)
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We then define the normalization

F ∗∗
p = (f̃ ∗∗

p , g∗∗p ) = (f ∗∗
p , φ∗∗

p , g
∗∗
p ) := Gp ◦ F ∗

p . (2.60)

f ∗∗
p,j =

f ∗
p,j − aj(p)g

∗
p

1 + 2i〈f̃ ∗
p , a(p)〉 − (−r(p) + i|a(p)|2)g∗p

, (2.61)

φ∗∗
p,j =

φ∗
p,j − bj(p)g

∗
p

1 + 2i〈f̃ ∗
p , a(p)〉 − (−r(p) + i|a(p)|2)g∗p

. (2.62)

g∗∗p =
g∗p

1 + 2i〈f̃ ∗
p , a(p)〉 − (−r(p) + i|a(p))|2)g∗p

. (2.63)

The purpose of this normalization is that F ∗∗
p must satisfy the following properties:

F ∗∗
p ,

(
f ∗∗

p − z

)′

zl

,

(
f ∗∗

p

)′

w

,

(
φ∗∗

p

)′

zl

,

(
φ∗∗

p

)′

w

,

(
g∗∗p

)′

zl

,

(
g∗∗p − w

)′

w

,

(
g∗∗p

)′′

zlzk

,

and

(
g∗∗p

)′′

w2

all vanish at (z, w) = 0. (2.64)

From (2.61) (2.62) and (2.63), we have

(f ∗∗
p,j)

′
zl
|0 = δl

j , (f ∗∗
p,j)

′
w|0 = (f ∗

p,j)
′
w|0 − aj(p) = 0,

(φ∗∗
p,j)

′
zl
|0 = 0, (φ∗∗

p,j)
′
w|0 = (φ∗

p,j)
′
w − bj(p) = 0,

(g∗p)
′
zl
|0 = 0, (g∗p)

′
w|0 = 0.

(
f ∗∗

p,j

)′′

zkzl

|0 =

(
f ∗

p,j

)′′

zkzl

|0 − 2iδk
j al(p) − 2iδl

jak(p)

= 1
λ(p)

LkLlf̃(p) · Lj f̃(p)
t

− 2iδk
j

λ(p)
T f̃(p) · Llf̃(p)t − 2iδl

j

λ(p)
T f̃(p) · Lkf̃(p)t = 0.

(2.65)

Here we used the fact that (g∗p)
′′
zjzk

|0 = 0. The last equality holds because of Lemma 2.7.1
(i).
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(
f ∗∗

p,l

)′′

zjw

|0 =

(
f ∗

p,l

)′′

zjw

|0 − al(p)

(
g∗p

)′′

zjw

|0 − δl
j

[
2i(f̃ ∗

p )′w|0 · a + (r(p) − i|a(p)|2)
]

=

(
f ∗

p,l

)′′

zjw

|0 − al(p)

(
g∗p

)′′

zjw

|0 − δl
j [i|a(p)|2 + r(p)]

=
1

λ(p)
LjT f̃(p) · Llf̃(p)

t

− 2i

λ(p)2

(
T f̃(p) · Llf̃(p)

t
)(

Lj f̃(p) · T f̃(p)
t
)

− iδjl
λ(p)

|T f̃(p)|2 − δjl
2λ(p)

Re

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t
)
.

We can say more about this important formula which will be used to define geometric

rank κ0. Applying T 2 to the basic equation Im(g) = |f̃ |2, we get 0 = 2iIm(iT 2f̃ · f̃ t) +

2i|T f̃ |2 − i Im(T 2g) on ∂Hn by (2.8). Combining this to the above, we get

(
f ∗∗

p,l

)′′

zjw

|0 = 1
λ(p)

LjT f̃(p) · Llf̃(p)
t

− 2i
λ(p)2

(
T f̃(p) · Llf̃(p)

t
)(

Lj f̃(p) · T f̃(p)
t
)

− δjl

2λ(p)

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t
)
.

(2.66)

(
f ∗∗

p,l

)′′

w2

|0 =

(
f ∗

p,l

)′′

w2

|0 − al(p)

(
g∗p

)′′

w2

|0

= 1
λ(p)

T 2f̃(p) · Llf̃(p)
t

− 1
λ(p)2

(
T f̃ · Llf̃

t
)(

T 2g − 2iT 2f̃ · f̃
t

− 2i|T f̃ |2
)

(p).

(2.67)

(
φ∗∗

p,l

)′′

zjzk

|0 =

(
φ∗

p,l

)′′

zjzk

|0 − bl(g
∗
p)

′′
zjzk

=

(
φ∗

p,l

)′′

zjzk

|0 = 1√
λ(p)

LjLkf̃(p) · Cl(p)
t
.

(2.68)
Here we used the fact that (g∗p)

′′
zjzk

|0 = 0.
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(
φ∗∗

p,l

)′′

zjw

|0 =

(
φ∗

p,l

)′′

zjw

|0 − bl(p)(g
∗
p)

′′
zjw|0

= 1√
λ(p)

TLj f̃(p) · Cl(p)
t − 1

λ(p)3/2

(
T f̃(p) · Cl(p)

t
)
Lj

(
Tg(p) − 2iT f̃(p) · f̃(p)

t
)

= 1√
λ(p)

TLj f̃(p) · Cl(p)
t − 2i

λ(p)3/2

(
T f̃(p) · Cl(p)

t
)(

Lj f̃(p) · T f̃
t

(p)

)
.

(2.69)

(
φ∗∗

p,l

)′′

w2

|0 =

(
φ∗

p,l

)′′

w2

|0 − bj(p)

(
g∗p

)′′

w2

|0

= 1√
λ(p)

T 2f̃(p) · Cl(p)
t − 1

λ(p)3/2

(
T f̃(p) · Cl(p)

t
)(

T 2g(p) − 2iT 2f̃(p) · f̃(p)
t

− 2i|T f̃(p)|2
)
.

(2.70)

(
g∗∗p

)′′

zjzk

|0 = 0,

(
g∗∗p

)′′

zjw

|0 =

(
g∗p

)′′

zjw

|0 − 2iaj(p) =
2i

λ(p)
Lj f̃(p) · T f̃(p)

t

− 2i

λ(p)
T f̃(p) · Lj f̃(p)

t

= 0,

(
g∗∗p

)′′

w2

|0 =

(
g∗p

)′′

w2

|0 − 2

[
i|aj(p)|2 + r(p)

]

=
1

λ(p)

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t
)

− 2

λ(p)

[
i|T f̃(p)|2 +

1

2
Re

(
T 2g(p) − 2iT 2f̃(p) · f̃(p)

t
)]

= 0.

The above two equalities equal to zero because of Lemma 2.7.1 (i).

By the similar calculation of F ∗ and F ∗∗, we can define F ∗
p and F ∗∗

p with the following
theorem.
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Theorem 2.8.1 ([H99], Lemma 5.3) Let F ∈ Prop2(H
n,HN), 2 ≤ n ≤ N with F (0) = 0.

For each p ∈ ∂Hn, there is an automorphism τ ∗∗p ∈ Aut0(H
N ) such that F ∗∗

p := τ ∗∗p ◦ Fp =
(f ∗∗

p , φ∗∗
p , g

∗∗
p ) satisfies the following normalization:

f ∗∗
p = z +

i

2
a∗∗(1)p (z)w + owt(3), φ∗∗

p = φ∗∗
p

(2)(z) + owt(2), g∗∗p = w + owt(4), (2.71)

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗
p

(2)(z)|2. (2.72)

2.9 Geometric Rank of F

We denote a
∗∗(1)
p (z) = zA(p) where

A(p) = −2i

(
∂2f ∗∗

p,l

∂zj∂w
|0

)

1≤j,l≤n−1

is an (n − 1) × (n − 1) matrix. A(p) is Hermitian. In fact, (2.72) can be written as

zA(p)zt|z|2 = |φ∗∗(2)(z)|2, ∀z. Then zA(p)
t
zt|z|2 = |φ∗∗(2)(z)|2 so that z

(
A(p) −A(p)

t)
zt =

0, ∀z. This implies that A(p) = A(p)
t
, i.e., A(p) is Hermitian. Also, from (2.72), the matrix

A(p) is semi-positive.

We define [H03]
RkF (p) := Rank(A(p)), (2.73)

which is called the geometric rank of F at p and is a lower semi-continuous function on p.
We also define

κ0 = κ0(F ) := maxp∈∂HnRkF (p) (2.74)

which is called the geometric rank of F .

Remarks (i) κ0(F ) is an invariant.
(ii) 0 ≤ κ0(F ) ≤ n− 1.
(iii) κ0(F ) = κ0 if and only if at a generic point p ∈ ∂Hn, F ∼= F ∗∗

p that satisfies





f ∗∗
j,p = zj +

iµj(p)

2
zjw + owt(3), 1 ≤ j ≤ κ0, µj(p) > 0

f ∗∗
j,p = zj + owt(3), κ0 + 1 ≤ j ≤ n− 1,

φ∗∗
p = φ

(2)∗∗
p (z) + owt(2),

g∗∗p = w + owt(4).
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(iv) When κ0(F ) = n− 1, the image submanifold F (∂Hn) “occupies more room” in the
target space ∂HN so that it is the most complicated case. In fact, when κ0(F ) ≤ n − 2, F
has “semi-linearity” properties.

2.10 Maps with Geometric Rank κ0 = 0

Theorem 2.10.1 (Linearity Criterion, [H99])

κ0 = 0 ⇐⇒ F is equivalent to the linear map.

To prove this theorem, let us first prove two lemmas.

Lemma 2.10.2 Let m and n be any positive integers. Let X = (f1, ..., fm) be a vector-
valued differentiable function defined in a neighborhood of 0 in Rn satisfying

DX = A(x)X t, X(0) = 0,

where D = ( ∂
∂x1 , ...,

∂
∂xn ) and A(x) is a matrix of continuous functions. Then X ≡ 0 holds

in some neighborhood of 0 in Rn.

Proof of Lemma 2.10.2: ∀p ∈ Rn near 0, we denote Xp(t) := X(tp) = (f1(tp), ..., fm(tp))
for 0 ≤ t ≤ 1. Then

dXp

dt
=

( d
dt
f1(tp), ...,

d

dt
fm(tp)

)
=

( n∑

j=1

∂f1

∂xj
pj , ...,

n∑

j=1

∂fm

∂xj
pj

)
= pDXp = pA(tp)Xp(t)

t.

Since Xp(0) = 0, we get Xp(t) =
∫ t

0
pA(τp)Xp(τ)

tdτ . Hence ‖Xp‖ ≤ C‖p‖‖Xp‖ for some
constant C > 0 which is independent of p. It follows that Xp ≡ 0 once ‖p‖ < 1

c
. �

Lemma 2.10.3 We have
(i) For any p ∈ ∂Hn,

LkLlf̃(p) · Lj f̃(p)
t

= 2
√
−1δj

k

(
T f̃(p) · Llf̃(p)t

)
+ 2

√
−1δj

l

(
T f̃(p) · Lkf̃(p)t

)
.
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(ii) For any fixed j and k, if (φ∗∗
p )′′zjzk

|0 = 0 for any p ∈ ∂Hn1, then

LjLk f̃(p) =
2
√
−1

λ

(
T f̃(p) · Lj f̃(p)t

)
Lkf̃(p) +

2
√
−1

λ

(
T f̃(p) · Lkf̃(p)t

)
Lj f̃(p).

Proof (i) By the construction of F ∗∗, we know that

(
f ∗∗

p,l

)′′

zjzk

|0 = 0. By (2.65), we have

(
f ∗∗

p,l

)′′

zjzk

|0 =
1

λ(p)
LkLlf̃(p) · Lj f̃(p)

t

− 2iδk
j

λ(p)
T f̃(p) · Llf̃(p)t − 2iδl

j

λ(p)
T f̃(p) · Lkf̃(p)t = 0.

Then (i) follows.

(ii) By the formula (2.68), we see that (φ∗∗
p )′′zkzl

|0 ≡ 0 if and only if LkLlf̃(p) · C(p)
t
=

0. Then LkLlf̃(p) is perpendicular to the subspace span{C(p)} so that they are linear

combination of the vectors Es(p): LkLlf̃(p) =
∑n−1

s=1 λ
s
klEs(p), and hence LkLlf̃(p) ·Ej(p)

t
=∑n−1

s=1 λ
s
klEs(p) · Ej(p)

t
= λλj

kl. Here we have used the orthogonal property: Es · Ej
t
= λδsj

in (2.18). Finally we use (i) to obtain the desired identity. �

Proof of Theorem 2.10.1: By the normalization condition, we assume F = F ∗∗.
If we can show φ ≡ 0, then (f, g) : ∂Hn → ∂Hn is a C2-smooth CR map. By Poincaré-

Tanaka theorem, (f, g) ∈ Aut(∂Hn) = Aut(Hn) so that (f, g) must be linear fractional. This
implies that F (z, w) is a linear map.

Since φ(0) = 0, it suffices to show Xφ ≡ 0 for any tangent vector field X over ∂Hn.
Since Lj, Lj and T form a basis for T (∂Hn) and φ is CR, it suffices to show that Ljφ ≡ 0
and Tφ ≡ 0 for all 1 ≤ j ≤ n− 1.

By applying Lemma 2.10.2, it is enough for us to prove





Lj(Lk(φ)) = Aj(z, w)Lk(φ) + Ak(z, w)Lj(φ);
TLkφ = Bk,1(z, w)Lk(φ) +Bk,2(z, w)T (φ);
T 2φ = Ck,1(z, w)Lk(φ) + Ck,2(z, w)T (φ),

(2.75)

where Ak, Bk,1, Bk,2, Ck,1 and Ck,2 are continuous function defined in a neighborhood of 0 in
∂Hn.

1Notice that the geometric rank κ0 = 0 if and only if (φ∗∗

p )′′zjzk
|0 = 0, ∀j, k. In fact, by (2.72), this

condition implies A(p) = 0.
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Notice κ0 = 0 ⇐⇒ (φ∗∗
p )′′zjzk

= 0, ∀p ∈ ∂Hn. From Lemma 2.10.3(ii), we obtain

Lj(Lk(φ)) = Aj(z, w)Lk(φ) + Ak(z, w)Lj(φ), (2.76)

where Ak := 2iT ef ·(Lk
ef)t

λ(z,w)
which are C1(∂Hn). Then the first equality of (2.75) is proved.

Putting j = k in (2.76), we get L2
k(φ) = 2AkLk(φ). Applying Lk and by Lemma

2.3.1(ii)(iii), we have

TLkφ =
LkAk

2i
Lk(φ) + AkT (φ) = Bk,1Lk(φ) +Bk,2T (φ), (2.77)

where Bk,1 := LkAk

2i
∈ C0(∂Hn) and Bk,2 := Ak ∈ C1(∂Hn). We have proved the second

equality of (2.75).
Applying Lk again to (2.77), we obtain

2iT 2(φ) = (LkBk,1)Lk(φ) + (Bk,12i+ LkBk,2)T (φ) = Ck,1Lk(φ) + Ck,2T (φ), (2.78)

where Ck,2 := Bk,12i+ LkBk,2 ∈ C0(∂Hn) because of Bk,2 ∈ C1(∂Hn), and Ck,1 := LkBk,1.
It remains to prove the following claim: Ck,1 is continuous. In fact, when j = k, apply

Lemma 2.10.2(ii) and take the component fk, as we did for (2.76), we get Ak =
L2

k(fk)

2Lk(fk)
.

Then

Bk,1 = 1
2i
Lk(Ak) = 1

4i
Lk

(
1

Lk(fk)

)
L2

k(fk) + 1
Lk(fk)

TLk(fk)

= − T (fk)
2(Lk(fk))2

L2
k(fk) + 1

Lk(fk)
TLk(fk)

= bk,1L
2
k(fk) + bk,2TLk(fk),

(2.79)

where bk,1, bk,2 ∈ C1(∂Hn). Thus

Ck,1 = LkBk,1 = Lk(bk,1L
2
k(fk) + bk,2TLk(fk))

= Lkbk,1 · L2
kfk + 4ibk,1LkTfk + Lkbk,2 · TLk(fk) + 2ibk,2T

2(fk)
∈ C0(∂Hn).

(2.80)

Hence the claim is proved so that the third equality in (3.11) is proved. �

2.11 Analytic Proof of the First Gap Theorem

By Theorem 2.10.1, in order to complete the proof of the First Gap Theorem, we need to
show
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Corollary 2.11.1 Let F ∈ Prop2(B
n,BN) with 2 ≤ n ≤ N ≤ n− 2. Then F has geometric

rank κ0 = 0.

Proof: Let F ∈ Prop2(B
n,BN) with 2 ≤ n ≤ N ≤ n − 2. Then for any p ∈ ∂Hn, F ∗∗

p

satisfies the normalization condition in (2.72) and

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗(2)
p (z)|2.

Since n ≤ 2n− 2, by a uniqueness theorem 2.11.2 below, it implies

φ∗∗(2)
p ≡ 0 and a∗∗(1)p ≡ 0. (2.81)

Thus κ0(F ) = 0. �

Theorem 2.11.2 ([H99], [EHZ05]) Let φj, ψj be holomorphic function near the origin of
Cn, 1 ≤ j ≤ k, n > 1. Suppose that H(z, z) is a real analytic function defined in a
neighborhood of 0 ∈ Cn such that

H(z, z)|z|2 =

k∑

j=1

φj(z)ψj(z) for z ∈ Cn near 0, . (2.82)

Suppose k ≤ n− 1. Then H(z, z) ≡ 0 and
∑k

j=1 φj(z)ψj(z) ≡ 0.

Proof: Complexifying the identity, we have

H(z, ζ)〈z, ζ〉 =

k∑

j=1

φj(z)ψj(ζ) (2.83)

where z, ζ are independent variables. Assume that φj 6≡ 0 for each 1 ≤ j ≤ k. We can find
a point z0 near the origin such that φj(z0) = ǫj 6= 0 for each j.

Consider the complex variety Vz0 = {z | φj(z) = φj(z0), 1 ≤ j ≤ k}. Since k ≤ n − 1,
this variety Vz0 has complex dimension at least 1. For each z∗ ∈ Vz0 , there exists a complex
hyperplane Kz∗ = {ζ | 〈z∗, ζ〉 = 0}. Then for any ζ ∈ Kz∗ , we have

∑k
j ǫjψj(ζ) = 0.

Since dimC Vz0 ≥ 1 and dimC Kz∗ = n − 1, such ζ fills in an open subset of Cn. Hence∑k
j ǫjψj(ζ) = 0, or ψk(z) +

∑k−1
j=1

ǫj

ǫk
ψj(z) = 0. Multiplying with ψk(z) and subtracting this

to (2.82 ), we obtain

H(z, z)〈z, z〉 =
k−1∑

j=1

(
φj(z) −

ǫj
ǫk
φk(z)

)
ψj(z).
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Then applying an induction argument, it follows easily that
∑
φjψj ≡ 0 and H ≡ 0. �

Theorem 2.11.2 can be extended into a more general version by induction as follows.

Corollary 2.11.3 Let φjp, ψjp, 1 ≤ j ≤ n − 1, 0 ≤ p ≤ q, be holomorphic functions near
the origin of Cn with n > 1. Suppose that H(z, z) is a real analytic function defined in a
neighborhood of 0 ∈ Cn such that

H(z, ζ)〈z, ζ〉q+1
ℓ =

q∑

p=0

( n−1∑

j=1

φjp(z)ψjp(ζ)

)
〈z, ζ〉pℓ , for z ∼ 0 and ζ ∼ 0.

Then H(z, ζ) ≡ 0 and
∑n−1

j=1 φjp(z)ψjp(ζ) ≡ 0, 1 ≤ p ≤ q.



62 CHAPTER 2. EARLIER RESULT: THE FIRST GAP THEOREM



Chapter 3

Construction and Classification of
Rational Maps

3.1 Gap Phenomenon

A map F ∈ Prop(Bn,BN ) is called minimum if F is not equivalent to a map of the form
(G, 0) where G ∈ Prop(Bn,BN ′

) with N ′ < N .
Recall the First Gap Theorem in Lecture 1:

Any F ∈ Prop2(B
n, BN ) where N < 2n − 1 is equivalent to a linear map

(z, w) 7→ (z, 0, w).

This theorem can be restated as

Theorem 3.1.1 (The First Gap Theorem) There is no minimum map in Prop2(B
n,BN ) if

N ∈ I1 = {m ∈ Z+ | n < m < 2n− 1}.

-q

0
q

1
q

2
c

n

( q q c

2n − 1

) c

2n
( q q c

3n − 3
) q q c

3n
( q q c

4n− 6
) q

Furthermore, it is proved by Huang-Ji-Xu [HJX06] that if F ∈ Prop3(B
n,BN) with

2n < N < 3n− 3, then F is equivalent to another map (G, 0) where G ∈ Rat(Bn,B2n). As
above, this theorem can be rewritten as

63
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Theorem 3.1.2 (The Second Gap Theorem) (Huang-Ji-Xu, [HJX06]) There is no mini-
mum map in Prop3(B

n, BN ) if n ≥ 4 and

N ∈ I2 = {m ∈ Z+ | 2n < m < 3n− 3}.

Theorem 3.1.3 (The Third Gap Theorem, Huang-Ji-Yin, preprint) There is no minimum
map in Prop3(B

n,BN) if n ≥ 7 and

N ∈ I3 = {m ∈ Z+ | 3n < m < 4n− 6}.

In general, we formulate the following: For the integer n > 0, let

K(n) := max{t ∈ Z+ | t(t+ 1)

2
< n}.

For integer k with 1 ≤ k ≤ K(n), let

Ik :=

{
m ∈ Z+ | kn < m < (k + 1)n− k(k + 1)

2

}

[Example]
If n ≥ 2, then K(n) ≥ 1. Take k = 1 and I1 = {m ∈ Z+ | n < m < 2n− 1}.
If n ≥ 4, then K(n) ≥ 2. Take k = 2 and I2 = {m ∈ Z+ | 2n < m < 3n− 3}.
If n ≥ 7, then K(n) ≥ 3. Take k = 3 and I3 = {m ∈ Z+ | 3n < m < 4n− 6}.

Theorem 3.1.4 (Huang-Ji-Yin, [HJY09]) For n > 2, let K(n) be as above. For each k
with 1 ≤ k ≤ K(n), let Ik be as above. Then for each N > n with

N 6∈ ∪K(n)
k=1 Ik,

there exists a minimum monomial map in Rat(Bn,BN ).

Conjecture: For n > 2, let K(n) be as above. For each k with 1 ≤ k ≤ K(n), let Ik be as
above. Then for each N > n, the following two statements are equivalent:

(i) There exists no minimum maps in Prop2(B
n,BN).

(ii) N ∈ Ik for some k with 1 ≤ k ≤ K(n).

Recently, D’Angelo and Lebl (2007) found out that there is no gap phenomenon for
mappings in Rat(Bn,BN) when N ≥ T (n) = n2 − 2n+ 2.

Based on the above conjecture, it would imply that there is no gap phenomenon for
mappings in Rat(Bn,BN) when N > n3/2.
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3.2 Examples of Minimum Maps

Let us survey some important minimum maps.
• N = n ≥ 2, Alexander’s theorem. [A77], any map in Prop2(B

n,Bn) = Aut(Bn) is
equivalent to the identity map F (z, w) = (z, w).

• n < N < 2n− 1, the first gap theorem, any map in Prop2(B
n,BN ) is equivalent to the

linear map F (z, w) = (z, 0, w).

• N = 2n− 1 with n ≥ 3, Huang and Ji (2001) [HJ01], F is equivalent to the linear map
F (z, w) = (z, 0, w), or F is equivalent to Whitney map:

Wn,1 = (z′, wz) where z = (z′, w) ∈ Cn−1 × C.

• N = 2n− 1 = 3 with n = 2, Faran (1982) [Fa82], four equivalent classes of maps:

(z, w, 0); (z, zw, w2), (z2,
√

2zw, w2); (z3,
√

3zw, w3).

• N = 2n, D’Angelo family [DA88].

Fθ = (z, wcosθ, z1wsinθ, ..., zn−1wsinθ, w
2sinθ), with 0 ≤ θ ≤ π

2
,

is a family of proper holomorphic monomial maps from Bn into B2n. Here Fθ is equivalent
to Fθ′ if and only if θ = θ′.

Denote Wn,1(z; h, λ) = (z′, λzn,
√

1 − λ2znh(z)) where z = (z′, zn) ∈ Cn−1 × C, λ ∈ [0, 1]
and h is a holomorphic map from Bn into BN ′

. In particular, when h(z) = z, the maps

Wn,1(z; z, λ) = (z′, λzn,
√

1 − λ2znz)

is the D’Angelo’s family.

• 2n < N < 3n − 3 with n ≥ 4, by the second gap theorem [HJX06] any F ∈
Prop3(B

n,BN) is equivalent to a map
(
Wn,1(z; z, λ), 0

)
where λ ∈ [0, 1].

The proof of Theorem 3.1.4 is based on the construction of the following minimum maps.
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[Example A][HJY09] Let





ψ1 = (z1,
√

2z2, ...,
√

2zk, zk+1, ..., zn),

ψ2 = (z2,
√

2z3, ...,
√

2zk, zk+1, ..., zn),

......,

ψk−1 = (zk−1,
√

2zk, zk+1, ..., zn),

ψk = (zk, zk+1, ..., zn),

ψk+1 = (zk+1, ..., zn).

Let
Wn,k(z) = Wn,k(z1, ..., zn) :=

(
z1ψ1, ..., zkψk, ψk+1

)
.

This map, called generalized Whitney map, is a quadratic polynomial minimum map in
Prop(Bn,BN) where

N = (k + 1)n− k(k + 1)

2
.

When n = 1, Wn,1 : Bn → B2n−1 is given by

Wn,1(z1, ..., zn) = (z1ψ1, ψ2) =
(
z1(z1, ..., zn), (z2, ..., zn)

)
.

We can verify |Wn,1(z1, ..., zn)|2 = 1, ∀|z1|2 + ... + |zn|2 = 1. In fact,

|z1|2(|z1|2 + .. + |zn|2) + (|z2|2 + ...+ |zn|2) ? = 1, ∀|z1|2 + ... + |zn|2 = 1,
‖

|z1|2 + (|z2|2 + ...+ |zn|2) = 1

When n = 2, Wn,2 : Bn → B3n−3 is given by

Wn,2 = (z1ψ1, z2ψ2, ψ3)

where ψ1 = (z1,
√

2z2, z3, ..., zn), ψ2 = (z2, ..., zn) and ψ3 = (z3, ..., zn). We can verify
|Wn,2(z1, ..., zn)|2 = 1, ∀|z1|2 + ... + |zn|2 = 1. In fact, ∀|z1|2 + ...+ |zn|2 = 1, we have

|z1|2(|z1|2 + 2|z2|2 + |z3|2 + ...+ |zn|2) + |z2|2(|z2|2 + ... + |zn|2) + (|z3|2 + ...+ |zn|2) ? = 1,
‖

|z1|2(1 + |z2|2) + |z2|2(|z2|2 + ...+ |zn|2) + (|z3|2 + ...+ |zn|2)
‖

|z1|2 + |z2|2(|z1|2 + |z2|2 + ... + |zn|2) + (|z3|2 + ... + |zn|2)
‖

|z1|2 + |z2|2 + |z3|2 + ...+ |zn|2 = 1
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Wn,1 can also be written as (z, w) 7→ (z, w(z, w)) where (z, w) ∈ Cn−1 × C, which is the
classical Whitney map.

[Example B] [HJY09] Let Let ψj be defined as above. Let τ be an integer with 1 ≤ τ ≤ k
and λj ∈ (0, 1) with 1 ≤ j ≤ τ . We define

Wn,k(z;λ1, ..., λτ ) =
(
z1ψ̃1, ..., zkψ̃k, ψk+1, λ1z1, ..., λτzτ

)

where





ψ̃1 = (
√

1 − λ2
1z1,

√
1 − λ2

1 + µ2
12z2, ...,

√
1 − λ2

1 + λ2
1kzk,

√
1 − λ2

1zk+1, ...,
√

1 − λ2
1zn),

ψ̃2 = (
√

1 − λ2
2z2,

√
1 − λ2

2 + µ2
23z3, ...,

√
1 − λ2

2 + λ2
2kzk,

√
1 − λ2

2zk+1, ...,
√

1 − λ2
2zn),

......,

ψ̃τ = (
√

1 − λ2
τzτ ,

√
1 − λ2

τ + µ2
τ(τ+1)zτ+1, ...,

√
1 − λ2

τ + λ2
τkzk,

√
1 − λ2

τzk+1, ...,

,
√

1 − λ2
τzn), for τ < k

ψ̃τ = (
√

1 − λ2
τzk,

√
1 − λ2

τzk+1, ...,
√

1 − λ2
τzn), for τ = k,

ψ̃j = ψj if τ < j ≤ k.

where µjl =
√

1 − λ2
l for j ≤ l ≤ τ and µjl = 1 for l > τ .

This map is a quadratic polynomial minimum map in Prop(Bn,BN ) where

N = (k + 1)n− k(k + 1)

2
+ τ.

[Example C] [HJY09] Let F : Bn → BN∗

be a proper polynomial minimum map
with F (0) = 0. Then we define a new map Wn,k(z;F, λ1, ..., λτ ) by modifying the map
Wn,k(z;λ1, ..., λτ) in the following way: while keeping all other components the same, re-

placing ψ̃1 with

ψ̃1 = (
√

1 − λ2
1z1F,

√
1 − λ2

1 + µ2
12z2, ...,

√
1 − λ2

1 + λ2
1kzk,

√
1 − λ2

1zk+1, ...,
√

1 − λ2
1zn).

This map is a polynomial minimum map in Prop(Bn,BN ) where

N = N∗ − 1 + (k + 1)n− k(k + 1)

2
+ τ.
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Lemma 3.2.1 [HJY09] Let F : Bn → Bn(k−k0) be a minimum proper polynomial map with
k > k0 > 0 and F (0) = 0. Then a new map

Wn,k0(z;F, λ1, ..., λr) : Bn → BN ,

with

N = (k + 1)n− k0(k0 + 1)

2
, and 0 ≤ τ ≤ k0 ≤ n

is a proper polynomial minimum map.

Proof of Theorem 3.1.4: We need to construct minimum proper monomial map from Bn

into BN under the assumption that either (k + 1)n − k(k + 1)/2 ≤ N ≤ (k + 1)n with
k ≤ K(n) or N ≥ (K(n) + 1)n−K(n)(K(n) + 1). Apparently, K(n) ≤

√
2n.

Let k ≤ n. By Example C, we see the existence of minimum proper monomial maps
from Bn into BN when (k + 1)n − k(k + 1)/2 ≤ N ≤ (k + 1)n − k(k − 1)/2. If k − 1 > 0,
applying Lemma 3.2.1 with κ0 = k−1 and τ = 0, ..., k−1, we see the existence of minimum
proper monomial maps from Bn into BN with (k + 1)n − k(k − 1)/2 ≤ N ≤ (k + 1)n −
(k − 1)(k − 2)/2 − 1. Again, applying Lemma 3.2.1 with κ0 = k − 2 (if k − 2 > 0) and
τ = 0, ..., k − 2, we see the existence of minimum proper monomial maps from Bn into
BN with (k + 1)n − (k − 1)(k − 2)/2 − 1 ≤ N ≤ (k + 1)n − (k − 2)(k − 3)/2 − 1. By
an inductive use of Lemma 3.2.1, we see the existence of the required maps for N with
(k + 1)n− k(k + 1)/2 ≤ N ≤ (k + 1)n for k ≤ n.

Next, letting k = n + 1 in Lemma 3.2.1 and inductively applying Lemma 3.2.1 with
κ0 = n, n − 1, ...,, we conclude the existence of the required maps when (n + 2)n − n(n +
1)/2 − 1 ≤ N ≤ (n+ 2)n. In particular, this would give the existence of the required maps
when (n + 1)n ≤ N ≤ (n + 2)n. Applying an induction argument, we easily conclude the
existence of the required maps for any N ≥ (n+ 1)n. �

3.3 Rational and Polynomial Map

All examples above are polynomial maps. Nevertheless, not every map in Rat(Bn,BN) can
be equivalent to a polynomial map.

Let us introduce a criterion which tells whether or not a rational map can be equivalent
to a polynomial one as follows.
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Let F = P
q

= (P1,...,PN)
q

∈ Rat(Bn,BN ) where (Pj)
N
j=1, q are holomorphic polynomial

functions and (P1, ..., PN , q) = 1. We define

deg(F ) = max{deg(Pj)Nj=1, deg(q)}.

Then F induces a rational map from CPn into CPN given by

F̂ ([z1 : ... : zn : t]) =

[
tkP (

z

t
) : tkq(

z

t
)

]

where z = (z1, ..., zn) ∈ Cn and deg(F ) = k > 0. F̂ may not be holomorphic in general.
Denote by Sing(F̂ ) the singular set of F̂ , namely, the collection of points where F̂ fails
to be (or fails to extend to be) holomorphic. Then Sing(F̂ ) is an algebraic subvariety of
codimension two or more in CPn. We denote Bn

1 := {[z1 : ... : zn : t] ∈ CPn | ∑n
j=1 |zj|2 <

|t|2}.

Theorem 3.3.1 [FHJZ2010] Let F be a non-constant rational holomorphic map from Bn

into BN with N, n ≥ 1. Then F is equivalent to a holomorphic polynomial map from Bn into
BN , namely, there are σ ∈ Aut(Bn) and τ ∈ Aut(BN) such that τ ◦ F ◦ σ is a holomorphic
polynomial map from Bn into BN , if and only if there exist (complex) hyperplanes H ⊂ CPn

and H ′ ⊂ CPN such that H ∩ Bn
1 = ∅, H ′ ∩ BN

1 = ∅ and

F̂ (H \ Sing(F̂ )) ⊂ H ′, F̂
(

CPn\(H ∪ Sing(F̂ ))
)
⊂ CPN\H ′.

Proof: If F is a non-constant holomorphic polynomial map, then F̂ = [tkF ( z
t
), tk] with

deg(F ) = k > 0. Let H = H∞ and H ′ = H ′
∞. Then they satisfy the property described in

the theorem.
If F is equivalent to a holomorphic polynomial map G, then there exist σ̂ ∈ U(n +

1, 1), τ̂ ∈ U(n + 1, 1) such that F̂ = τ̂ ◦ Ĝ ◦ σ̂. Let H = σ̂−1(H∞) and H ′ = τ̂ (H ′
∞). Then

they are the desired ones.
Conversely, suppose that F̂ , H and H ′ are as in the theorem. By a lemma below, we

can find σ̂ ∈ U(n + 1, 1) and τ̂ ∈ U(n + 1, 1) such that σ̂(H) = H∞ and τ̂(H ′) = H ′
∞. Let

Q̂ = τ̂ ◦ F̂ ◦ σ̂−1. Then Q̂ induces a rational holomorphic map Q from Bn into BN . If Q = P
q

where (P, q) = 1 and deg(Q) = k > 0, then

Q̂ = [tkP (
z

t
) : tkq(

z

t
)].
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Suppose that q 6≡ constant. Let z0 ∈ Cn be such that q(z0) = 0 but P (z0) 6= 0. Then
[z0 : 1] 6∈ Sing(Q̂) ∪ H∞ and Q̂([z0 : 1]) ∈ H ′

∞. Notice that Q̂(H∞ \ Sing(Q̂)) ⊂ H ′
∞ and

Q̂
(

CPn\(H∞ ∪ Sing(Q̂))
)
⊂ CPN\H ′

∞. This is a contradiction. Thus, we showed that Q

is a polynomial. �

Lemma 3.3.2 For any hyperplane H ⊂ CPn with H ∩ Bn
1 = ∅, there is a σ ∈ U(n + 1, 1)

such that σ(H) = H∞ = {[z1 : · · · : zn : 0] ∈ CPn}.

Proof: Assume that H :
∑n

j=1 ajzj − an+1t = 0 with ~a = (a1, ..., an+1) 6= 0. Under the

assumption that H ∩ Bn
1 = ∅, we have an+1 6= 0. Without loss of generality, we can assume

that an+1 = 1. Let U be an n× n unitary matrix such that

(a1, ..., an)U = (λ, 0, ..., 0),

for some λ ∈ C. Let σ =

(
U 0
0 I

)
. Then σ(H) = {[z : t] ∈ CPn | λz1 − t = 0} with |λ| < 1.

Let T ∈ Aut(Bn) be defined by

T (z1, z
′) =

(
z1 − λ

1 − λz1
,

√
1 − |λ|2z′
1 − λz1

)

with z′ = (z2, ..., zn). Then T̂ ∈ U(n + 1, 1) is defined by

T̂ ([z1 : z′ : t]) = [z1 − λt :
√

1 − |λ|2z′ : t− λz1].

Now, it is easy to see that T̂ ◦ σ maps H to H∞. �

Example D[FHJZ2010] Let G(z, w) =

(
z2,

√
2zw, w2( z−a

1−az
,

√
1−|a|2w

1−az
)

)
, |a| < 1, be a map

in Rat(B2, B4). G is equivalent to a proper holomorphic polynomial map in Poly(B2,B4) if
and only if a = 0.

In fact, we have

Ĝ =

[
(t− az)z2 : (t− az)

√
2zw : w2(z − at) : w2

√
1 − |a|2w : (t3 − at2z)

]
.

Suppose there exist hyperplanes H = {µ1z1 +µ2w+µ0t = 0} ⊂ CP2 and H ′ = {∑4
j=1 λjz

′
j +

λ0t
′ = 0} ⊂ CP4 such that

H ∩ B2
1 = ∅, H ′ ∩ B4

1 = ∅, Ĝ(H \ Sing(Ĝ)) ⊂ H ′, Ĝ
(

CP2\(H ∪ Sing(Ĝ))
)
⊂ CP4\H ′.
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Then

λ1(t− az)z2 + λ2(t− az)
√

2zw + λ3w
2(z − at) + λ4w

2
√

1 − |a|2w
+λ0(t

3 − at2z) = (µ1z + µ2w + µ0t)
3 ∀[z : w : t] ∈ CP2.

Apparently λ0 6= 0. Hence we can assume that λ0 = 1, µ0 = 1. By comparing the coefficient
of z3, w3, wt2, zt2, z2t, zwt, z2w, zw2, w2t, respectively, in the above equation, we get

µ3
1 = −aλ1, µ

3
2 = λ4

√
1 − |a|2, 3µ2 = 0, 3µ1 = −a, 3µ2

1 = λ1,

6µ1µ2 =
√

2λ2, 3µ2
1µ2 = −

√
2λ2a, 3µ1µ

2
2 = λ3, 3µ2

2 = −aλ3.

We then have λ2 = λ3 = λ4 = µ2 = 0. If a 6= 0, then µ1, λ1 6= 0. From µ3
1 = −aλ1 and

3µ2
1 = λ1, we get µ1 = −3a. Since 3µ1 = −a, we get a = 0. This is a contradiction. Notice

that when a = 0, F is a polynomial. By Theorem 3.3.1, we see the conclusion. �

Example E[FHJZ2010] Let F (z′, w) =

(
z′, wz′, w2(

√
1−|a|2z′

1−aw
, w−a

1−aw
)

)
with |a| < 1 be a

map in Rat(Bn,B3n−2). F is equivalent to a proper polynomial map in Poly(Bn,B3n−2) if
and only if a = 0.

By the criterion in Theorem 3.3.1, it is also proved that

Theorem 3.3.3 [FHJZ2010] A map F ∈ Rat(B2,BN) of degree two is equivalent to a
polynomial proper holomorphic map in Poly(B2,BN ).

Recently, J. Lebl claimed in a preprint ([Le09], theorem 1.5):

Theorem 3.3.4 Let F ∈ Rat(Bn,BN ) with n ≥ 3 and deg(F ) = 2. Then F is equivalent
to a monomial map.

[Example F][FHJZ2010] Let F ∈ Rat(B2,B5) be a rational mapping given by F =
(f, φ1, φ2, φ3, g) defined as follows:

f(z, w) =
z + ( i

2
− i)zw

1 − iw − 1
3
w2

, φ1(z, w) =
z2

1 − iw − 1
3
w2
,

φ2(z, w) =

√
13
12
zw

1 − iw − 1
3
w2
, φ3(z, w) =

√
3

3
w2

1 − iw − 1
3
w2
, g(z, w) =

w − iw2

1 − iw − 1
3
w2
.
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Then this mapping F is indeed equivalent to the polynomial map

G(z, w) =

(√
3

9
(−2 + 4z + z2),−

√
6

9
(1 + z + z2),

√
3

12
(5 + 3z)w,

√
6

6
w2,

√
13

12
i(1 − z)w

)
.

3.4 Degree of Rational Maps between Balls

In order to outline a proof for Faran’s theorem (see next section), we need to introduce the
degree problems for maps in Rat(Bn,BN).

For any rational map H 6≡ 0, write H = (P1,··· ,Pm)
R

, where Pj, R are holomorphic polyno-
mials and (P1, · · · , Pm, R) = 1. We then define

deg(H) = max(deg(Pj)j=1,··· ,m, deg(R)).

(When H ≡ 0, we set deg(H) = −∞).
D’Angelo raised a conjecture [DKR 03]: For any F ∈ Rat(Bn,BN), does it satisfy

deg(F ) ≤
{

2N − 3, if n = 2,
N−1
n−1

, if n ≥ 3.
(3.1)

Both of the above bounds are sharp. In fact, when n = 2, the degree bound 2N − 3 is
achieved (see p.173 and p. 189 in [DA93]) for the polynomial map F ∈ Rat(B2,B2+r)
defined by F (z, w) = (z2r+1, ..., csz

2(r−s)1ws, ..., w2r+1) where cs are certain constants. When
n ≥ 3, we consider the Whitney map h(z, w) = (z, w(z, w)) : Bn → B2n−1 with degree 2. By
letting (z, w) 7→ (z, wh), we get a proper polynomial map from Bn into BN with N = 3n−2
of degree 3. Inductively, we can construct a proper polynomial map from Bn into BN with
N = kn− (k − 1) of degree k. Hence N−1

n−1
= k so that the bound in (3.1) is sharp.

[Example] We can show that any F ∈ Rat(B2,B5) has degree deg(F ) ≤ 7. We have
classified all degree 2 maps in F ∈ Rat(B2,B5). For higher degree maps, the situation
should be very complicated. D’Angelo classified all monomial maps in F ∈ Rat(B2,B5). He
find out 




degree 3 : 31 isolated maps or continuous families;

degree 4 : 47 isolated maps or continuous families;

degree 5 : 24 isolated maps or continuous families;

degree 6 : 5 isolated maps or continuous families;

degree 7 : 3 isolated maps;

For example, maps with degree 7 in Rat(B2,B5) are
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1. (z7, w7,
√

7√
2
wz5,

√
7√
2
w5z,

√
7√
2
wz)

2. (z7, w7,
√

7wz5,
√

14w2z3,
√

7w3z)

3. (z7, w7,
√

7w3z3,
√

7wz3,
√

7w3z)

• Forstnerič proved that for any F ∈ Rat(Bn,BN), its degree deg(F ) ≤ N2(N − n + 1)
in [Fo86].

• Huang-Ji-Xu proved [HJX06]: Let F ∈ Rat(Bn,BN) with geometric rank κ0 = 1 and
n ≥ 3. Then deg(F ) ≤ N−1

n−1
. For the proof, see § 4.2.

To illustrate the idea how to deal with degree deg(F ), we present a lemma and a theorem
below.

Lemma 3.4.1 ([HJ01], lemma 5.4) Let H = (P1,··· ,Pm)
R

be a rational map from Cn into Cm,
where Pj, R are holomorphic polynomials with (P1, · · · , Pm, R) = 1 (m > n > 1). Assume
for each p ∈ ∂Hn close to the origin,

deg(H|Qp) ≤ k

with k > 0 a fixed integer, where Q(ζ,η) = {(z, w) | w−η
2i

=
∑n−1

j=1 zjηj} is the Segre variety of
∂Hn. Then deg(H) ≤ k.

Theorem 3.4.2 Let F ∈ Rat(B2,B3). Then deg(F ) ≤ 3.

Proof: By Cayley transformation, we consider F ∈ Rat(H2,H3). By Lemma 3.4.1, it
suffices to prove that deg(F |Qp0

) ≤ 3 for any p0 ∈ ∂Hn.
It is equivalent to show that for every p ∈ ∂H2, we have

deg
(
F ∗∗

p |Q0

)
≤ 3. (3.2)

Here Q0 = {w = 0}. In fact, deg(F |Qp) = deg(F |σp(Q0)) = deg((F ◦ σp)|Q0) = deg((σ ◦
(F ∗∗

p ) ◦ τ)|Q0) = deg((F ∗∗
p )|Q0).

Write F ∗∗
p = (f, φ, g) where f = z +

∑
j+k≥2 ajkz

jwk, φ =
∑

j+k≥2 bjkz
jwk, and g =

w +
∑

j+k≥4 cjkz
jwk.

Applying L and L2 to the basic equation g−g
2

= ff + φφ, we get

{
1
2i
Lg = Lf · f + Lφ · φ,

1
2i
L2g = L2f · f + L2φ · φ,
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i.e.,
1

2i

[
Lg
L2g

]
=

[
Lf Lφ
L2f L2φ

] [
f

φ

]
, ∀(z, w) ∈ ∂H2

where L = ∂
∂z

+ 2iz ∂
∂w

.
We complexify this identity so that

1

2i

[
Lg(z, w)
L2g(z, w)

]
=

[
Lf(z, w) Lφ(z, w)
L2f(z, w) L2φ(z, w)

] [
f(ζ, η)

φ(ζ, η)

]

holds for any point (z, w, ζ, η) ∈ ∂H2 where L = ∂
∂z

+ 2iζ ∂
∂w

and ∂H2 = {(z, w, ζ, η) ∈
C4 | w−η

2i
= zζ} is the Segre family of ∂H2.

Since (0, 0, ζ, 0) ∈ ∂H2, we have




Lf |(0,0,ζ,0) = 1,

Lφ|(0,0,ζ,0) = 0,

Lg|(0,0,ζ,0) = 2iζ,

L2f |(0,0,ζ,0) = −8a02ζ
2 + 4ia11ζ,

L2φ|(0,0,ζ,0) = −8b02ζ
2 + 4ib11ζ + 2b02,

L2g|(0,0,ζ,0) = 0,

so that

det

[
Lf Lφ
L2f L2φ

] ∣∣∣∣
(0,0,0,0)

= det

[
1 0
0 2b20

]
= 2b02 6= 0.

Then we obtain
[
f(ζ, 0)

φ(ζ, 0)

]
=

1

2i

[
Lf Lφ
L2f L2φ

]−1 ∣∣∣∣
(0,0,ζ,0)

·
[
Lg
L2g

] ∣∣∣∣
(0,0,ζ,0)

=
1

2i

[
2iζ

2iζ(8a02ζ2−4ia11ζ)
−8b02ζ2+4ib11ζ+2b02

]
=

[
ζ

ζ(8a02ζ2−4ia11ζ)
−8b02ζ2+4ib11ζ+2b02

]

This implies

f(z, 0) = z, φ(z, 0) =
4a02z

3 + 2ia11z
2

−4b02z2 − 2ib11z + b02
.

Also we put (0, 0, ζ, 0) into the identity g(z,w)−g(ζ,η)
2i

= f(z, w)f(ζ, η) + φ(z, w)φ(ζ, η) to get
g(z, 0) = 0. Thus (3.2) is proved. �

By similar argument, we are able to prove the following.
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Theorem 3.4.3 ([HJ01], lemma 5.2) Let F ∈ Prop2(B
n,B2n−1) with n ≥ 3. Then F is

rational and deg(F ) ≤ 2.

Proof: By Cayley transformation, we consider F ∈ Prop2(H
n,H2n−1). By Lemma 3.4.1,

it suffices to prove that deg(F |Qp0
) ≤ 2 for any p0 ∈ ∂Hn.

It is equivalent to show that for every p ∈ ∂Hn, we have

deg
(
F ∗∗∗

p |Q0

)
≤ 2. (3.3)

Here Q0 = {w = 0}.
By the normalization, for any F ∈ Prop2(Hn,H2n−1), we knew that F ∗∗

p = (f, φ, g)
satisfies

F ∗∗∗
p (0, w) = (0, w),

f1 = z1 + i
2
z1w + z1ã(1)(z)w + owt(4),

fl = zl + owt(4), 2 ≤ l ≤ n− 1,

φj = z1zj + bjz1w + b
(3)
j (z) + owt(3), 1 ≤ j ≤ n− 1,

g = w + o(|(z, w)|3).

(3.4)

g(z, w) − g(ζ, η)

2i
=

n−1∑

l=1

fl(z, w)fl(ζ, η) +
n−1∑

l=1

φl(z, w)φl(ζ, η). (3.5)

Applying Lj and L1Lj to the above equation, using (3.4) and letting (z, w) = 0, η = 0, we
get 



ζ1
...

ζn−1

0


 =

(
I(n−1)×(n−1) 0
A(n−1)×(n−1) B(n−1)×(n−1)

) (
f(ζ, 0)

φ(ζ, 0)

)
.

Here I(n−1)×(n−1) is the identical (n− 1) × (n− 1) matrix,

A(n−1)×(n−1) = A =




−2ζ1 0 · · · 0

−ζ2 0 · · · 0
... 0 · · · 0

−ζn−1 0 · · · 0


 and

B(n−1)×(n−1) = B =




2 + 4ib1ζ1 4ib2ζ1 ... 4ibn−1ζ1
2ib1ζ2 1 + 2ib2ζ2 ... 2ibn−1ζ2
... ... ... ...

2ib1ζn−1 2ib2ζn−1 ... 1 + 2ibn−1ζn−1


 .
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This implies

f̃(z, 0) =

(
z,

z1z

1 − 2i
∑

j≥1 bjzj

)
. (3.6)

Finally, by putting z = w = η = 0, we get g(ζ, 0) = 0 by (3.4). Hence, it is clear that
F (z, 0) can be written as the quotient of a vector-valued quadratic polynomial with a linear
function. Hence (3.3) is proved. �

By similar method, the following results are proved.

Theorem 3.4.4 (1) [JX04] Let F ∈ Rat(Bn,BN) with geometric rank κ0, 1 ≤ κ0 ≤ n− 2,

and with N = n + (2n−κ0−1)κ0

2
. Then deg(F ) ≤ κ0 + 2.

(2) [HJX05] Let F ∈ Rat(B3,B6) with geometric rank κ0(F ) = 2. Then deg(F ) ≤ 4.

3.5 Classification of Maps from B2 to B3

Theorem 3.3.3 is proved based on the classification of maps of Rat(B2,BN ) with degree 2
(see Theorem 3.6.1).

To illustrate techniques used to study the classification problem, we first give a proof for
the following Faran’s theorem [Fa82]:

Theorem 3.5.1 (Faran, 1982) Any map F ∈ Rat(B2,B3) must be equivalent to one of the
following maps: 




degree 1 : (z, w, 0);

degree 2 : (z, zw, w2), and (z2,
√

2zw, w2);

degree 3 : (z3,
√

3zw, w3).

The proof here is given in [J09] which is different from Faran’s original Proof. The
difficulty to study Rat(B2,B3), comparing study Rat(Bn,BN) with high n and N , is that we
have less numbers of equations.

We already shown in Theorem 3.4.3) that deg(F ) ≤ 3. Since maps in Rat(B2,BN) with
degree ≤ 2 can be classified (see Theorem 3.6.1), it suffices to show: there exists exactly one
map F ∈ Rat(B2,B3) with degree 3.
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The normal form F ∗∗∗ of F 1, still denoted as (f, φ, g), becomes

f =
z − 2ib11z

2 + (ie1 + i/2)zw − 4b02z
3 + E11z

2w + A12zw
2 + A03w

3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

φ =
z2 + b11zw + b02w

2 +B21z
2w +B12zw

2 +B03w
3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

g =
w − 2ib11zw + ie1w

2 − 4b02z
2w + E11zw

2 + C03w
3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

with b02 > 0 and e1 ∈ R.
Consider the basic equation: Im(g) = |f |2 + |φ|2, ∀Im(w) = |z|2, we obtain all algebraic

equations about the parameters. Among these equations, we find

e1Im(b211) = 0. (3.7)

By (3.7), we consider



Case A : e1 6= 0 ⇒

{
Case A1 : Im(b11) = 0;

Case A2 : Re(b11) = 0.

Case B : e1 = 0.

In Case A1, we list all the equations about the parameters:

A12 = E02 −
1

8
− 5

4
e1 −

1

2
b2, b11 = b is a real parameter,

b02 determined by
1

2
e1 + 4e1b

2 + e21 + 12b202 + 4b02b
2 = 0,

B21 = i(
1

4
+

3

2
e1 + b2), B12 = i(

1

4
b+

3

2
be + b3),

B03 = ib02(
1

4
+

3

2
e1 + b2), C03 = E02 −

e1
2
, e1 6= 0 is a real parameter,

E11 =
1

2
b+ e1b+ 2b3 − 8bb02, E12 = −i(eb+ 2bb02),

E21 = −2ib02, E02 =
1

16
+

5

4
e1 +

1

2
b2 + 2b202 + 3e1b

2 +
5

4
e21 + b4,

E03 = i(
1

2
e21 − |b02|2).

1For the definition of F ∗∗∗, see § 4.1. It means here that the coefficient of the z2 term of φ is 1.
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From the equation for b02 above, we obtain

e1 =
−(1

2
+ 4b2) ±

√
(1

2
+ 4b2)2 − 4(12b202 + 4b02b2)

2

Since e1 is a real number, we must have (1
2

+ 4b2)2 − 4(12b202 + 4b02b
2) ≥ 0, i.e.,

(
1

2
+ 4b2

)2

+
4

3
b4 ≥ 48

(
b202 +

b2

6

)2

.

If we consider F ∗∗∗
p = (f ∗∗∗

p , φ∗∗∗
p , g∗∗∗p ), it is of the same form

f ∗∗∗
p =

z − 2ib11z
2 + (ie1 + i/2)zw − 4b02z

3 + E11z
2w + A12zw

2 + A03w
3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

φ∗∗∗
p =

z2 + b11zw + b02w
2 +B21z

2w +B12zw
2 +B03w

3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

g∗∗∗p =
w − 2ib11zw + ie1w

2 − 4b02z
2w + E11zw

2 + C03w
3

1 − 2ib11z + ie1w − 4b02z2 + E11zw + E02w2 + E21z2w + E12zw2 + E03w3
,

with b02 > 0 and e1 ∈ R. Here all coefficients, A12, b11, ..., are functions of p ∈ ∂H2. From
above calculation, all of the coefficients (as functions of p) of F ∗∗∗

p are bounded when |b11(p)|
is bounded.

Similar conclusion holds for Case A2 and Case B.
Then we take a sequence pm ∈ ∂H2 so that the associated map F ∗∗∗

pm
satisfies

lim
m→∞

b11(pm) = inf
p
{b11(p)}.

Then we show
F is equivalent to F̃ = lim

m→∞
(Fpm)∗∗∗.

Here we have to take care of the facts that pm could go to ∞: [0 : a : b] ∈ ∂H2 and the
equivalence is not obvious.

The limit map F̃ has the minimum property for its parameter b11, namely, if we denote
by b11(p) the corresponding coefficient of the map (F̃p)

∗∗∗ and p = (z0, w0) = (z0, u0 + i|z0|2),
we find

|b11(p)|2 = |b11|2 − i(b11 + 2b11e1 + 12b11b02 + 4b11|b11|2)z0
+i(b11 + 2b11e1 + 12b11b02 + 4b11|b11|2)z0 + 32b02Re(b11)Im(b11)u0 + o(1).
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Since the critical point of the function b11(p) is zero by the minimum property, it gives the
desired extra equation:

Im(b11)Re(b11) = 0, and b11 + 2e1b11 + 4b11|b11|2 + 12b02b11 = 0. (3.8)

It leads us consider Case(C): b11 = 0 and Case(D): b11 6= 0.
Finally we consider all cases:

Case A1 C cannot occur
Case A2 C cannot occur
Case B C ∃ a unique map
Case A1 D cannot occur
Case A2 D cannot occur
Case B D cannot occur

The only map in Rat(H2,H3) of degree 3 is of the normalized form F = F ∗∗∗ = (f, φ, g):

f =
z + i

2
zw − 1

16
zw2

1 + 1
16
w2

, φ =
z2 + i

4
z2w

1 + 1
16
w2

, g =
w + 1

16
w3

1 + 1
16
w2

. (3.9)

We notice that it is too complicated to find (3.9) directly by the definition of F ∗∗∗.
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3.6 Classification of Maps from B2 With Degree Two

The classification problem for maps in Rat(B2,BN) with degree 2 has been solved.

Theorem 3.6.1 [JZ09] (i) Any nonlinear map in Rat(B2,BN ) with degree 2 is equivalent
to a map (F, 0) where F ∈ Rat(B2,B5) is of one of the following forms:
(I): F = (Gt, 0) where Gt ∈ Rat(B2,B4) is defined by

Gt(z, w) = (z2,
√

1 + cos2 t zw, (cos t)w2, (sin t)w), 0 ≤ t < π/2. (3.10)

(IIA): F = (Fθ, 0) where Fθ ∈ Rat(B2,B4) is defined by

Fθ(z, w) = (z, (cos θ)w, (sin θ)zw, (sin θ)w2), 0 < θ ≤ π

2
. (3.11)

(IIC): F = Fc1,c3,e1,e2 = ρ−1
5 ◦ F ◦ ρ2 = (f, φ1, φ2, φ3, g) ∈ Rat(H2, H5) is of the form:

f =
z + ( i

2
+ ie1)zw

1 + ie1w + e2w2
, φ1 =

z2

1 + ie1w + e2w2
,

φ2 =
c1zw

1 + ie1w + e2w2
, φ3 =

c3w
2

1 + ie1w + e2w2
, g =

w + ie1w
2

1 + ie1w + e2w2
,

where c1, c3 > 0,−e1,−e2 ≥ 0, e1e2 = c23, −e1 − e2 = 1
4

+ c21, satisfying one of the following
conditions: either

{
e1 =

−( 1
4
+c21)−

√
( 1
4
+c21)

2−4c23
2

, e2 =
−( 1

4
+c21)+

√
( 1
4
+c21)

2−4c23
2

,
0 < 4c23 ≤ (1

4
+ c21)

2,
(3.12)

or {
e1 =

−( 1
4
+c21)+

√
( 1
4
+c21)

2−4c23
2

, e2 =
−( 1

4
+c21)−

√
( 1
4
+c21)

2−4c23
2

,
1
2
c21 + c41 ≤ 4c23 ≤ (1

4
+ c21)

2.
(3.13)

(ii) Any two maps in Rat(B2,B5) in the form of types (I), (IIA), and (IIC) above are
equivalent if and only if they are identical.

In Faran’s Theorem on Rat(B2,B3), there are four maps, up to automorphisms, which are
isolated. Nevertheless, for Rat(B2,BN) with N > 3, there exists a continuous family of maps,
up to automorphism. For example, D’Angelo constructed Ft = (z, w cos t, (w sin t)z) ∈
Rat(Bn,B2n) with t ∈ (0, π

2
) satisfies: Ft is equivalent to Fs if and only if t = s. To classify

continuous family of maps, we have to use different technique.
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3.7 Proof of Theorem 3.6.1 - Part 1

As a reduction in the proof of Theorem 3.6.1, Huang-Ji-Xu [HJX06] proved: Any map F in
Rat(H2,HN ) with deg(F ) = 2 is equivalent to a map (G, 0) where G = (f, φ1, φ2, φ3, g) ∈
Rat(H2,H5) is of the form (see also Lemma 2.3 below)

f(z, w) =
z − 2ibz2 + ( i

2
+ ie1)zw

1 + ie1w + e2w2 − 2ibz
,

φ1(z, w) =
z2 + bzw

1 + ie1w + e2w2 − 2ibz
,

φ2(z, w) =
c2w

2 + c1zw

1 + ie1w + e2w2 − 2ibz
,

φ3(z, w) =
c3w

2

1 + ie1w + e2w2 − 2ibz
,

g(z, w) =
w + ie1w

2 − 2ibzw

1 + ie1w + e2w2 − 2ibz
,

where b,−e1,−e2, c1, c2, c3 are real non-negative numbers satisfying e1e2 = c22+c
2
3, −e1−e2 =

1
4

+ b2 + c21, −be2 = c1c2, and c3 = 0 if c1 = 0.
Since b and c2 are determined by c1, c3, e1 and e2, a map in the above form is determined

by c1, c3, e1 and e2. We denote a map of the above form, which is determined by c1, c3, e1
and e2, to be

F(c1,c3,e1,e2) ∈ K. (3.14)

It was unclear which of the coefficients e1, e2, c1 and c3 of F are independent parameters.

Let us show why F is equivalent to another map (G, 0) where G ∈ Rat(B2,B5).
Let F = (f, φ1, φ2, g) be a proper rational map of degree two from ∂H2 into ∂HN .

Assume that F (0) = 0 and 0 is a generic point of F , namely, κF (0) = 1. Without loss of
generality, we assume that N ≥ 4. By Lemma 3.1 in [H03], we have σ ∈ Aut0(∂H2) and
τ ∈ ∂Aut0(∂HN ) such that τ ◦F ◦σ, still denoted by F = (f, φ, g), takes the following form:

f =z +
i

2
zw + owt(3),

∂2f

∂w2
(0) = 0,

g =w + owt(4),

φ1 =z2 + A1zw +B1w
2 + E1z

3 + · · · ,
φj =owt(2), j ≥ 2.

(3.15)

Replacing (φ2, · · · , φN−2) by (φ2, · · · , φN−2)·U with U a certain (N−3)×(N−3) unitary
matrix, we can assume that φj = Ajzw+Bjw

2 + o(|(z, w)|2) for j ≥ 2 and Aj = 0 for j ≥ 3.
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In a similar manner, we can assume that Bj = 0 for j ≥ 4 (if N ≥ 6). Making use of the
assumption that F has degree 2, we can thus assume in (3.15) that

φ2 =A2zw +B2w
2 + o(|(z, w)|2),

φ3 =B3w
2 + o(|(z, w)|2),

φj =0, j ≥ 4. �

(3.16)

3.8 Proof of Theorem 3.6.1 - Part 2

In[CJX06], by obtaining an extra equation, we got a more clearer picture on the maps as
above.

Let us describe how to obtain this extra equation.
For any F ∈ Rat(H2,H5) with deg(F ) = 2, F is equivalent to another map F ∗∗∗ ∈

Rat(H2,H5) of the above form. Also we can associate a family of maps Fp ∈ Rat(H2,H5)
for any p ∈ ∂H2, as well as the associated maps (Fp)

∗∗∗ that is of the above form.
We define a real analytic function

W(F ∗∗∗
p ) = c1(p)

2 − e1(p) − e2(p)

where c1(p), e1(p) and e2(p) are the coefficients of F ∗∗∗
p :

f ∗∗∗
p (z, w) =

z − 2ib(p)z2 + ( i
2

+ ie1(p))zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
, (3.17)

φ∗∗∗
1,p (z, w) =

z2 + b(p)zw

1 + ie1(p)w + e2w2 − 2ib(p)z
, (3.18)

φ∗∗∗
2,p (z, w) =

c2(p)w
2 + c1(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
, (3.19)

φ∗∗∗
3,p (z, w) =

c3(p)w
2

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
, (3.20)

g∗∗∗p (z, w) =
w + ie1(p)w

2 − 2ib(p)zw

1 + ie1(p)w + e2w2 − 2ib(p)z
. (3.21)

Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisfy

e2(p)e1(p) = c22(p) + c23(p), −e2(p) =
1

4
+ e1(p) + b2(p) + c21(p),

and −b(p)e2(p) = c1(p)c2(p), c3(p) = 0 if c1(p) = 0, with

c1(p), c2(p), b(p) ≥ 0, e2(p), e1(p) ≤ 0.
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We observe that as long as W(F ∗∗∗
p ) is bounded, all

e1(pm), e2(pm), c1(pm), c2(pm), c3(pm), b(pm)

are uniformly bounded for all m. In fact, since c1(pm),−e1(pm),−e2(pm) are non-negative,
c1(pm), e1(pm) and e2(pm) are uniformly bounded for all m. From −e1(pm) − e2(pm) =
1
4

+ b2(pm) + c21(pm), b(pm) is uniformly bounded for any m. Finally, from e1(pm)e2(pm) =
c22(pm) + c23(pm), c2(pm) and c3(pm) are uniformly bounded.

The desired extra equation is obtained by moving up p to the extremal value as follows.
We choose a sequence of pm ∈ ∂H2 such that

pm → p0 ∈ ∂H2 and lim
m

W(F ∗∗∗
pm

) = inf
p∈∂H2−ΞF

{W(F ∗∗∗
p )} (3.22)

where ΞF is a proper real analytic variety such that ∀p ∈ ∂H2 − ΞF , Fp has geometric rank
one at 0 so that W(F ∗∗

p ) is well defined.
Then F is equivalent to F ∗∗∗

p0
which is of the above form and with the minimum property

W(F ∗∗∗
p0

) = infp∈∂H2−ΞF
W(F ∗∗∗

p ).

A key lemma used to prove convergence of the limit map is the following result.

Lemma 3.8.1 ([CJX06] lemma 2.5) Let F ∈ Rat(∂H2, ∂H5) with F (0) = 0 and deg(F ) =
2. Suppose that pm ∈ ∂H2 is a sequence converging to 0, Fpm is of rank 1 at 0 for any m

and F ∗∗∗
pm

converges such that
∂2φ∗∗∗

1,m

∂z∂w
|0, ∂2φ∗∗∗

2,m

∂w2 |0, ∂2φ∗∗∗

2,m

∂z∂w
|0 and

∂2φ∗∗∗

3,m

∂w2 |0 are bounded for all m.
Then

(a) F is of geometric rank 1 at 0: RkF (0) = 1, and hence F ∗∗∗ is well-defined.
(b) F ∗∗∗

pm
→ F ∗∗∗.

(c) If we write F ∗∗∗
pm

= G̃2,m ◦ τpm ◦ F ◦ σpm ◦ G̃1,m where σpm and τpm := τF
pm

are as in

[CJX06, (3)], G̃1,m and G̃2,m are as in [CJX06, (7)], then G̃1,m and G̃2,m are convergent to

some G̃1 ∈ Aut0(∂H2) and G̃2 ∈ Aut0(∂H5) respectively.

Proof:(Sketch) (a) Suppose that F has rank 0 at 0. We’ll seek a contradiction.
Denote F ∗∗ = (f ∗∗, φ∗∗, g∗∗). We only need to prove the following claim:

∂2f ∗∗

∂w2
(0) = 0,

∂2φ∗∗

∂z2
(0) =

∂2φ∗∗

∂z∂w
(0) = (0, 0, 0). (3.23)

In fact, by Lemma 2.4 [CJX06], F must be linear but this is a contradiction with deg(F ) = 2.
Write

(Fpm)∗∗∗ = (f̃m, φ̃m, g̃m)
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and also (Fpm)∗∗∗ = τm ◦
(
(F )∗∗qm

)∗∗ ◦ σm where

(
(F )∗∗qm

)∗∗
= (f̂m, φ̂m, ĝm),

σm(z, w) =

(
λm(z + amw)Um

1 − 2i〈am, z〉 + (rm − i|am|2)w
,

λ2w

1 − 2i〈am, z〉 + (rm − i|am|2)w

)
,

and

τm(z∗, w∗) =

(
λ∗m(z∗ + a∗mw

∗)U∗
m

1 − 2i〈a∗m, z∗〉 + (r∗m − i|a∗m|2)w
,

λ∗2w∗

1 − 2i〈a∗m, z∗〉 + (r∗m − i|a∗m|2)w∗

)
.

In order to prove Claim (3.23), it is enough to show that

∂2f̂m

∂w2
|0 → 0,

∂2φ̂m

∂z2
|0 → (0, 0, 0),

∂2φ̂m

∂z∂w
|0 → (0, 0, 0), as m→ ∞. (3.24)

Then by the construction of F ∗∗∗ (see § 4.3), σm and τm satisfy the following properties.

(i)
∂2f̂m

∂z∂w
|0 = λ2

m

∂2f̃m

∂z∂w
|0,

(ii)
∂2f̂m

∂w2
|0 = iλ2

mam
∂2f̃m

∂z∂w
|0U−1

m + λ3
m

∂2f̃m

∂w2
|0U−1

m ,

(iii)
∂2φ̂m

∂z2
|0 = λmU

2
m

∂2φ̃m

∂z2
|0U∗

22,m,

(iv)
∂2φ̂m

∂z∂w
|0 = λm

∂2φ̃m

∂z2
|0amU

2
mU

∗
22,m + λ2

mUm
∂2φ̃m

∂z∂w
|0U∗

22,m,

(v)
∂2φ̂m

∂w2
|0 = λma

2
m

∂2φ̃m

∂z2
|0U2

mU
∗
22,m + 2λ2

mamUm
∂2φ̃m

∂z∂w
|0U∗

22,m + λ3
m

∂2φ̃m

∂w2
|0U∗

22,m.

From (i), since F has rank 0 at 0, we see ∂2f̂m

∂z∂w
|0 → 0. Recall that F̃m has rank one at 0

and is of the form in § 3.7. Then ∂2 efm

∂z∂w
|0 = i

2
so that λm → 0 as m goes to ∞.

From (ii), since ∂ efm

∂w2 |0 = 0, we know that λ2
mam is bounded.

From (iii), since λm → 0 and ∂2 eφm

∂z2 |0 = [1, 0, 0], we see ∂2φ̂m

∂z2 |0 → ∂2φ∗∗

∂z2 |0 = [0, 0, 0].
From (iv), the second term in the right hand side goes to zero for λm → 0, and the first

term in the right hand side is λm
∂2 eφm

∂z2 |0amU
2
mU

∗
22,m = λ2

mam

λm
[1, 0, 0]U2

mU
∗
22,m. Recall from (ii)

that λ2
mam is bounded. On the other hand, ∂2φ̂m

∂z∂w
|0 is bounded. All of these imply that λ2

mam

must go to zero. Then from (ii), ∂2f̂m

∂w2 |0 → ∂2f∗∗

∂w2 |0 = 0.
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From (v), the second and the third terms on the right hand side converge to zero because
of λm and amλ

2
m → 0. The first term on the right hand side is bounded and can be

written as λ2
ma2

m

λm

∂2 eφm

∂z2 |0U2
mU

∗
22,m. This implies that λmam → 0. Then from (iv), it proves

∂2φ̂m

∂z∂w
|0 → ∂2φ̂

∂z∂w
= [0, 0, 0]. Our claim (3.24), as well as (3.23), is proved.

The part (b) is already included in the above proof. For the part (c), G̃1,m is convergent
because of the normalization procedure of F ∗∗∗ from F (cf. [Hu03]) and because of the part
(a). �

The minimum property for W(F ∗∗∗
p ) implies the vanishing of derivatives of the function

W(F ∗∗∗
p ) at p0, which derives the extra equation.

In order to get this extra equation, we have to compute the first order derivatives of the
function W(F ∗∗∗

p ), which is done by the following lemma. The proof of this lemma used the
differential formulas for F ∗

p and F ∗∗
p listed in Chapter 1. Although the computation is long,

since every time it only counts for derivative at 0 so that lots of higher order terms can be
dropped, the calculation is manageable.

Lemma 3.8.2 ([CJX06], lemma 3.1) Let F = Fc1,c3,e1,e2 and F ∗∗∗
p be as above. Then for

p = (z0, w0) = (z0, u0 + i|z0|2) ∈ ∂H2 near 0, we have real analytic functions

b2(p) = b2 − 4b(2e1 + c21)ℑ(z0) + o(1), c21(p) = c21 + 4c1(bc1 + 2c2)ℑ(z0) + o(1),

e2(p) + e1(p) = e2 + e1 + 8b(e1 + e2)ℑ(z0) + o(1),

W(F ∗∗∗
p ) = c21(p) − e1(p) − e2(p) = c21 − e1 − e2 +

(
4c1(bc1 + 2c2) − 8b(e1 + e2)

)
ℑ(z0)

+o(1)

where we denote o(k) = o(|(z0, u0)|k).

If c1 = 0, by the minimum property, it implies that the coefficient of ℑ(z0) must be zero.
Then we obtain

−8b(e1 + e2) = 0.

Since −e1 − e2 = 1
4

+ b2 6= 0, it implies b = 0.

If c1 > 0, by the minimum property of F = F ∗∗∗
0 , it implies that

4c1(c1b+ 2c2) − 8b(e1 + e2) = 0.

Since −e1 − e2 = 1
4

+ b2 + c21 6= 0 and c1, b, c2,−e1,−e2 ≥ 0, it implies b = c2 = 0.
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To study F , we distinguish two cases:

Case (I) c1 = b = 0;
Case (II) c1 6= 0 and b = c2 = 0.

It was proved in [CJX06] that F is equivalent to a new map Fc1,c3.e1,e2 that is of the
form in one of the following types (from Case (I), we obtain (I); from Case (II), we obtain
(IIA)(IIB) and (IIC)):

(I) F0,0,e1,e2 = (f, φ1, φ2, φ3, g) is of the form

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c2w2

1+ie1w+e2w2 , φ3 = 0, g = w+ie1w2

1+ie1w+e2w2

(3.25)

where e1e2 = c22 and −e1 − e2 = 1
4
. Here e2 ∈ [−1

4
, 0) is a parameter. It then corresponds to

the family {Gt}0≤t<π/2 in (3.10). When e2 = −1
4
, F0,0,e1,e2 corresponds to G0, i.e. (z, w) 7→

(z2,
√

2zw, w2, 0); when e2 → 0, F0,0,e1,e2 goes to Gπ/2 = Fπ/2, i.e., (Z,w) 7→ (z, zw, w2).

(IIA) Fc1,0,e1,0 = (f, φ1, φ2, φ3, g) is of the form

f =
z + ( i

2
+ ie1)zw

1 + ie1w
, φ1 =

z2

1 + ie1w
, φ2 =

c1zw

1 + ie1w
, φ3 = 0, g = w (3.26)

where −e1 = 1
4
+ c21 and c1 ∈ [0,∞) is a parameter. It corresponds to the family {Fθ}0<θ≤π/2

in (3.11). When c1 = 0, Fc1,0,e1,0 corresponds to Fπ/2; when c1 → ∞, Fc1,0,e1,0 goes to the
linear map, i.e., (z, w) 7→ (z, w, 0).

(IIB) Fc1,0,0,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z + i

2
zw

1 + e2w2
, φ1 =

z2

1 + e2w2
, φ2 =

c1zw

1 + e2w2
, φ3 = 0, g =

w

1 + e2w2
, (3.27)

where −e2 = 1
4

+ c21 and c1 ∈ (0,∞) is a parameter. Notice that when c1 → 0, the map
Fc1,0,0,e2 goes to the map G0, i.e. the one in type (I) when e2 = −1

4
.

(IIC) Fc1,c3,e1,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c1zw
1+ie1w+e2w2 , φ3 = c3w2

1+ie1w+e2w2 , g = w+ie1w2

1+ie1w+e2w2 ,
(3.28)
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where c1, c3 > 0,−e1,−e2 ≥ 0, e1e2 = c23, −e1 − e2 = 1
4

+ c21.

For any map Fc1,c3,e1,e2 in one of these four types, we denote Fc1,c3,e1,e2, or (c1, c3, e1, e2),
∈ KI , KIIA, KIIB, and KIIC, respectively.

At this moment, it is not clear whether different such maps are not equivalent.

3.9 Proof of Theorem 3.6.1 - Part 3

It is proved by Ji-Zhang [JZ09] that the case (IIB) never occur.
We denote by K the collection of all such maps Fc1,c3,e1,e2. We may identify a map

Fc1,c3,e1,e2 with a point (c1, c3, e1, e2) in R4.
The set K is equal to a disjoint union

K = KI ∪ KII

where KI = {Fc1,c3,e1,e2 ∈ K | Fc1,c2,e1,e2 is of form (I)}, etc. The set K is also equal to a
disjoint union

K = KI,II,1+4e2+2c21>0 ∪ KI,II,1+4e2+2c21>0 ∪ KI,II,1+4e2+2c21>0,

where KI,II,1+4e2+2c21>0 = (KI ∪ KII) ∩ {(c1, c3, e1, e2) | 1 + 4e2 + 2c21 > 0}, etc.

Lemma 3.9.1 ([JZ09], lemma 3.1)
(a) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0, then locally the function W((Fc1,c3,e1,e2)

∗∗∗
p ) is

increasing as p moves along any ray from 0 in ∂H2.
(b) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0, then locally the function W((Fc1,c3,e1,e2)

∗∗∗
p ) is

constant as p moves along any ray from 0 in ∂H2 .
(c) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0, then locally the function W((Fc1,c3,e1,e2)

∗∗∗
p ) is

decreasing as p moves along any ray from 0 in ∂H2 .

Lemma 3.9.2 ([JZ09], lemma 3.2) (i) KII,e1<e2 ⊆ KI,II,1+4e2+2c21>0, and
KII,e1=e2 ⊆ KI,II,1+4e2+2c21>0.

(ii) Let (c1, c3, e1, e2) ∈ KII,e1>e2. Then
(a) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0 if and only if 1

2
c21 + c41 < 4c23 < (1

4
+ c21)

2 holds.

(b) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0 if and only if 1
2
c21 + c41 = 4c23 holds.

(c) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0 if and only if 0 ≤ 4c23 <
1
2
c21 + c41 holds.
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By last section, we can consider Fc1,c3,e1,e2 satisfying the minimum property (3.22). Such
map Fc1,c3,e1,e2 will contradict with the statement in Lemma 3.9.1(c). Therefore, it follows:

Lemma 3.9.3 ([JZ09], lemma 3.4) Let (c1, c3, e1, e2) ∈ KI ∪ KII . Then Fc1,c3,e1,e2 satisfies
(3.22) if and only if Fc1,c3,e1,e2 ∈ K∗ := KI ∪ KII −KI,II,1+4e2+2c21<0.

This proves the part (i) of Theorem 3.6.1. From the definition of K, e1 and e2 are
determined by c1 and c3 through a quadratic equation. This show how we obtain the
domain of the parameters c1 and c3 in Theorem 3.6.1.

We may outline the idea for the proof of Lemma 3.9.1 here. The monotonicity in Lemma
3.9.1 (a) means

dW(F ∗∗∗
Γ(t)))

dt
= lim

∆t→0

W(F ∗∗∗
Γ(t+∆t)) −W(F ∗∗∗

Γ(t))

∆t
≥ 0, ∀t ∈ [0, δ]. (3.29)

For any 0 < t < δ and sufficiently small ∆t > 0, if we can write

F ∗∗∗
Γ(t+∆t) =

(
F ∗∗∗

Γ(t)

)∗∗∗

q(t,∆t)

(3.30)

for some differentiable map q(t,∆t) ∈ ∂H2, then from Lemma 3.8.2 we should have

W(F ∗∗∗
Γ(t+∆t)) = W(F ∗∗∗

Γ(t)) +

[
4c1(bc1 + 2c2) − 8b(e1 + e2)

]
(Γ(t))ℑ(q1(t))∆t+ o(|∆t|),

(3.31)
where we write q(t,∆t) := (q1(t), q2(t))∆t + o(|∆t|). Notice that [4c1(bc1 + 2c2) − 8b(e1 +
e2)](Γ(t)) ≥ 0 always holds because c1, c2,−e1 − e2 ≥ 0. Then (3.29) follows if ℑ(q1(t)) ≥ 0
holds. In particular, if [4c1(bc1 + 2c2) − 8b(e1 + e2)](Γ(t)) 6= 0 for any fixed t ∈ [0, δ), and if
the following condition is satisfied:

ℑ(q1(t)) > 0, ∀t ∈ [0, δ], (3.32)

then the strict inequality (3.29) holds. To prove (3.29), it suffices to prove (3.32). (3.32) is
proved by local calculation of ℑ(q1(t)).
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3.10 Proof of Theorem 3.6.1 - Part 4

As the final step to complete the proof of Theorem 3.6.1, it is proved by Ji-Zhang [JZ09] that
the cases (I)(IIA) and (IIC) indeed give a complete classification for mappings in Rat(B2,BN)
with degree 2, up to equivalent classes.

To solve the classification problem, by Lemma 3.9.3, we need to show: for maps Fc′1,c′3,e′1,e′2
and Fc′′1 ,c′′3 ,e′′1 ,e′′2

in K∗, we have

Fc′1,c′3,e′1,e′2
is equivalent to Fc′′1 ,c′′3 ,e′′1 ,e′′2

⇐⇒ (c′1, c
′
3, e

′
1, e

′
2) = (c′′1, c

′′
3, e

′′
1, e

′′
2). (3.33)

We first prove a local version of (3.33).

Lemma 3.10.1 For any P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗, there is a neighborhood U of P (0)

in K∗ and a constant c > 0 such that for any point (c′1, c
′
3, e

′
1, e

′
2), (c

′′
1, c

′′
3, e

′′
1, e

′′
2) ∈ U with

Fc′′1 ,c′′3 ,e′′1 ,e′′2
= (Fc′1,c′3,e′1,e′2

)∗∗∗p where p = (a, b+ i|a|2) ∈ ∂H2, a ∈ C, b ∈ R, |p| := max{|a|, |b|}
≤ c, we have

(c′′1, c
′′
3, e

′′
1, e

′′
2) = (c′1, c

′
3, e

′
1, e

′
2). (3.34)

To prove this, we use the monotone property in Lemma 3.9.1 to show:

W(Fc′1,c′3,e′1,e′2
) = W((Fc′1,c′3,e′1,e′2

)∗∗∗Γ(0)) ≤ W((Fc′1,c′3,e′1,e′2
)∗∗∗Γ(t∗)) = W(Fc′′1 ,c′′3 ,e′′1 ,e′′2

), (3.35)

and

W(Fc′′1 ,c′′3 ,e′′1 ,e′′2
) = W((Fc′′1 ,c′′3 ,e′′1 ,e′′2

)∗∗∗eΓ(0)
) ≤ W((Fc′′1 ,c′′3 ,e′′1 ,e′′2

)∗∗∗eΓ(et∗)
) = W((Fc′1,c′3,e′1,e′2

). (3.36)

By (3.35) and (3.36), it follows that the function W((Fc′1,c′3,e′1,e′2
)∗∗∗Γ ) = constant. Then it

implies that (Fc′1,c′3,e′1,e′2
)∗∗∗Γ(t) is constant. Since Fc′′1 ,c′′3 ,e′′1 ,e′′2

= (Fc′1,c′3,e′1,e′2
)∗∗∗p , Lemma 3.10.1 is

proved.
Next, we prove the global version of (3.33). We need to show: if F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and

F
ec
(0)
1 ,ec

(0)
3 ,ee

(0)
1 ,ee

(0)
2

in K∗ are equivalent, then

(c̃
(0)
1 , c̃

(0)
3 , ẽ

(0)
1 , ẽ

(0)
2 ) = (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). (3.37)

Let E := {(c1, c3, e1, e2) ∈ KI ∪KII | (Fc1,c3,e1,e2)
∗∗∗
p ≡ Fc1,c3,e1,e2, ∀p ∈ ∂H2 near 0}. We

assume that (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E ; otherwise F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and F
ec
(0)
1 ,ec

(0)
3 ,ee

(0)
1 ,ee

(0)
2

cannot be

equivalent.
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Since F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and F
ec
(0)
1 ,ec

(0)
3 ,ee

(0)
1 ,ee

(0)
2

are equivalent,

F
ec
(0)
1 ,ec

(0)
3 ,ee

(0)
1 ,ee

(0)
2

= Ψ ◦ F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

◦ Θ (3.38)

where Θ ∈ Aut(H2) and Ψ ∈ Aut(H5).
We take a real analytic curve L = L(s) ∈ K∗ − E , 0 ≤ s ≤ 1, where E is a such that

L(0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). In fact, since (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E and E is closed, L could be

taken in a neighborhood of (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ).

We shall use some deformation. By using automorphisms of balls, we can take a real
analytic family of automorphisms Θs ∈ Aut(∂H2), Ψs ∈ Aut(∂H5), s ∈ [0, 1], such that
when s = 0, Θ0 = Θ, Ψ0 = Ψ; when s ∈ (0, 1), Θs(0) 6= ∞, Ψs ◦ FL(s) ◦ Θs(0) = 0; when
s = 1, Θ1 = Id, Ψ1 = Id. Then we define

L̂0(s) := Ψs ◦ FL(s) ◦ Θs ∈ Rat(H2,H5), 0 ≤ s ≤ 1,

such that L̂0(s)(0) = 0 for all s, FL̂0(0) = Ψ ◦ FL(0) ◦ Θ and L̂0(1) = L(1). Our goal is to

show: L̂0(s) = L(s), ∀s ∈ [0, 1], so that L̂0(0) = L(0), i.e., (3.37) holds.
Even though (FL̂0(s))

∗∗∗ is in K for any s ∈ (0, 1], it may not be in K∗ because the
minimum property (3.22) may not be satisfied. We claim that (FL̂0(s))

∗∗∗ is equivalent to

another map FL̂(s) ∈ K∗. More precisely, we want to find q(s) ∈ ∂H2 so that

FL̂(s) := (FL̂0(s))
∗∗∗
q(s) ∈ K∗, ∀s ∈ (0, 1]. (3.39)

As points in K, we show

dist

(
FL̂(s), FL̂0(s)

)
→ 0, as s→ 1, (3.40)

i.e.,

dist

(
FL̂(s), FL(s)

)
→ 0, as s→ 1.

Since both FL̂(s) ∈ K∗ and FL(s) ∈ K∗ − E where s ∈ (s0, 1] for some s0 > 0 such that
0 ≤ 1 − s0 is sufficiently small, by the local version of Theorem 3.6.1, we conclude

FL̂(s) = FL(s), ∀s ∈ (s0, 1].

Repeating this process. Finally by continuity FL̂(s) = FL(s), ∀s ∈ [0, 1]. When restricted at
0, FL̂0(0) = FL̂(0) = FL(0), so that (3.37) is proved.



Chapter 4

More Analytic Approaches

4.1 Five Facts in a Model Case

Theorem 4.1.1 [HJ01] Let F ∈ Prop2(H
n,H2n−1). Then F is equivalent to a map that is

either linear, or Whitney map: Wn,1(z, w) =
(
z, w(z, w)

)
where (z, w) ∈ Cn−1 × C.

Here is the main ingredient of the proof:

1. F ∗∗ can be further normalized into F ∗∗∗ = (f, φ, g):

f1 = z1 +
i

2
z1w + owt(3),

fj = zj + owt(3), 2 ≤ j ≤ n− 1,

φj = z1zj + owt(2), 2 ≤ j ≤ n− 1,

g = w + owt(4),

2. Show: The geometric rank κ0 = 1.

3. Furthermore,

f1 = z1 +
i

2
z1w + owt(3),

fj = zj , 2 ≤ j ≤ n− 1,

φj = z1zj + owt(2), 2 ≤ j ≤ n− 1,

g = w,

91
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4. F is equivalent to a map that satisfies

F = (z1f̃1, z2, ..., zn1, z1φ̃1, ..., z1φ̃n−1, w).

Here Φ = (f̃1, φ̃1, ..., φ̃n−1) defines a biholomorphic map from Hn onto Bn.

5. In particular, the restriction F |{z1=0} is linear fractional.

4.2 Generalization of the Five Facts

The above five facts are generalized into the following results:

1. Theorem 4.2.1 ([H03]) Let F ∈ Prop2(H
n,HN). Then F is equivalent to a map

F ∗∗∗
p = (f ∗∗∗

p , φ∗∗∗
p , g∗∗∗p ) of the following form:





f ∗∗∗
l,p =

∑κ0

j=1 zjf
∗
lj(z, w), f ∗

lj(z, w) = δj
l +

iδj
l µl

2
w +O(|(z, w)|2), l ≤ κ0;

f ∗∗∗
j,p = zj + owt(3), κ0 + 1 ≤ j ≤ n− 1;

φ∗∗∗
lk,p = µlkzlzk + owt(2), ∀ (l, k) ∈ S;

g = w + owt(4),

where
S0 = {(j, l) : 1 ≤ j ≤ κ0, j ≤ l, 1 ≤ l ≤ n− 1}

is the index set for those φlk,p that have non-zero coefficients of the zlzk terms,

S := S0 ∪
{

(j, l) | j = κ0 + 1, κ0 + 1 ≤ l ≤ N − n− (2n− κ0 − 1)κ0

2

}

is the index set for all φlk,p, and

µjl =

{√
µj + µl, for j, l ≤ κ0, j 6= l,

√
µj, if j ≤ κ0 and l > κ0 or if j = l ≤ κ0.

(4.1)

(To see the outline of the proof, see Theorem 4.3.1 and its proof).

2. Due to the existence of the non-zero zlzk terms of φ∗∗∗
lk,p above, which “occupy the room”

in ∂BN , as application of Theorem 4.2.1, we immediately obtain the following result,
which generalizes the second fact of the above five ones.
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Corollary 4.2.2 Let F ∈ Prop2(H
n,HN ) with geometric rank κ0. Then

N ≥ n +
κ0(2n− κ0 − 1)

2
.

This inequality is sharp.

(Its proof will be found in § 4.3.)

[Example] If F ∈ Prop2(B
n,B2n−1) with n ≥ 3, then κ0 ≤ 1. In fact, this follows

from the inequality 2n− 1 ≥ n+ κ0(2n−κ0−1)
2

. �

3. Theorem 4.2.3 ([HJX06], theorem 3.1) Let F ∈ Prop3(H
n,HN) with geometric rank

κ0 ≤ n − 2. Then F is equivalent to a map F ∗∗∗
p = (f ∗∗∗

p , φ∗∗∗
p , g∗∗∗p ) of the following

form:





f ∗∗∗
l,p =

∑κ0

j=1 zjf
∗
lj(z, w), f ∗

lj(z, w) = δj
l +

iδj
l µl

2
w +O(|(z, w)|2), l ≤ κ0;

f ∗∗∗
j,p = zj , κ0 + 1 ≤ j ≤ n− 1;

φ∗∗∗
lk,p = µlkzlzk +

∑κ0

j=1 zjφ
∗
lkj,p, φ∗

lkj,p(z, w) = owt(2), for (l, k) ∈ S0;

φ∗∗∗
lj,p =

∑κ0

j=1 zjφ
∗
lkj,p = O(|(z, w)|3) for (l, k) ∈ S − S0;

g∗∗∗p = w;

Let us outline the idea to prove g∗∗∗p ≡ w and f ∗∗∗
j,p ≡ zj , ∀κ0 + 1 ≤ j ≤ n− 1.

First we consider to prove g∗∗∗p ≡ w. It needs the following lemma:

Lemma 4.2.4 Let F = F ∗∗ ∈ Prop2(H
n,HN). If we further assume that g(0, w) ≡ w,

then g ≡ w.

Proof: Write g =
∑∞

m=1 g
(m) where g(m) is a weighted homogeneous polynomial of

weighted degree m.

Considering the weighted 2k order terms in the basic equation Im(g) = |f̃ |2 over
Im(w) = |z|2, we obtain

Im(g(2k)) =
2k−1∑

l=1

n−1∑

j=1

f
(l)
j f

(2k−l)
j +

2k−1∑

l=1

N−n∑

j=1

φ
(l)
j φ

(2k−1)
j (4.2)
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whenever Im(w) = |z|2. Since the right hand side doest not contain the zI terms with
|I| = 2k, g(2k) cannot contain the zI terms with |I| = 2k. Since g(0, w) = w, g(2k)

cannot contain the wk terms. Hence

g(2k) =
k−1∑

p=1

∑

|I|=2k−2p

cIz
Iwp.

Since g(0, w) = w, from the basic equation Im(g) = |f̃ |2 on ∂Hn, it implies f̃(0, w) = 0.

Then f̃ does not contain the wp terms for any p ≥ 1. By comparing the zIup terms in
(4.2) where |I| = 2k−2p, cI = 0. Thus g(2k) ≡ 0. Similarly, we obtain that g(2k+1) ≡ 0
for k ≥ 1. Therefore g(z, w) ≡ w. �

We suppose that F , in addition, is C3-smooth on ∂Hn, and want to show that if the
map F ∗∗∗

p is as constructed in Theorem 4.2.1, then it satisfies g∗∗∗p ≡ w. In fact, by
Hopf lemma 1.7.3 and Lemma 4.2.4, it is sufficient to prove Lemma 4.2.5 below.

Lemma 4.2.5 ([H03]) Let F be a C3-smooth map from M ⊂ ∂Hn into ∂HN satisfying
the condition for F ∗∗∗

p in Theorem 4.2.1 with 1 ≤ κ0 ≤ n− 2. Then

g(0, w) = w + o(|w|3).

Next we show that fj = zj for κ0 + 1 ≤ j ≤ n− 1.

At this moment, we would like to assume the following “semi-linearity” property (see
the fact five, or [H03]):

F (0, ..., 0, zκ0+1, ..., zn−1, w) = (0, ..., 0, zκ0+1, ..., zn−1, 0, ..., 0, w). (4.3)

From (4.3), we can write fj =
∑κ0

l=1 zlf
∗
lj and φ =

∑κ0

l=1 zlφ
∗
l . Then from the above

sections, we can write F ∗∗∗
p = (f̃ , g) as





fl =
∑κo

j=1 zjf
∗
l,j(z), l ≤ κ0;

fk = zk +
∑κ0

j=1 zjf
∗
k,j(z), k ≥ κ0 + 1;

φlk = zlzk +
∑κ0

j=1 zjφ
∗
lk,j(z), (l, k) ∈ S0;

φst =
∑κ0

j=1 zjφ
∗
st,j(z), (s, t) ∈ S − S0;

g ≡ w.



4.3. HOW TO CONSTRUCT F ∗∗∗? 95

Substituting these into the equation Im(g) = |f̃ |2. Fix k ≥ κ0 + 1. Considering the
terms z̄kz

Iui (for arbitrary I and i) in Im(g) = |f̃ |2, we have

0 = z̄k

κ0∑

j=1

zjf
∗
k,j(z, u+ i|z|2).

Hence
∑κ0

j=1 f
∗
k,j(z) ≡ 0. This implies fk ≡ zk for κ0 + 1 ≤ k ≤ n− 1.

4. Theorem 4.2.6 ([HJX06], p.523) Let F ∈ Prop3(B
n,BN ) with 3 ≤ n ≤ N and

geometric rank κ0 ≤ n− 2. Then F is equivalent to a proper holomorphic map of the
form

H = (z1, ..., zn−κ0, H1, ..., HN−n+κ0),

where Hj =
∑n

l=n−κ0+1 zlHj,l with Hj,l holomorphic over Bn. When κ0 = 1, F ∈
Prop3(B

n,BN ) is equivalent to a new map (z, wh) where h ∈ Rat(Bn,BN−n+1).

5. Theorem 4.2.7 [H03] Let F ∈ Prop3(H
n,HN) with geometric rank κ0 ≤ n− 2. The

∀p ∈ Bn, ∃ affine (n− κ0)-dimensional complex subspace Sa
p containing p such that

F |Sa
p

is linear fractional.

4.3 How to Construct F ∗∗∗?

Recall for any F ∈ Prop2(H
n,HN ), F is equivalent to F ∗∗ = (f ∗∗, φ∗∗, g∗∗) such that

f ∗∗ = z +
i

2
a∗∗(1)(z)w + owt(3), φ∗∗ = φ∗∗(2)(z) + owt(2), g∗∗ = w + owt(4), (4.4)

〈z, a∗∗(1)(z)〉|z|2 = |φ∗∗(2)(z)|2.
We can further normalize this map to get more properties while it preserves the above

properties of F ∗∗.
How to define F ∗∗∗ in Theorem 4.2.1 from the map F ∗∗ preserving the property (4.4) ?
Consider σ ∈ Aut0(Hn) and τ ∈ Aut0(HN ):

σ =
(λ(z + aw) · U, λ2w)

1 − 2i〈a, z〉 + (r − i|a|2)w, (4.5)



96 CHAPTER 4. MORE ANALYTIC APPROACHES

where λ > 0, r ∈ R, a is an (n− 1)-tuple and U is an (n− 1)× (n− 1) unitary matrix. Let

τ ∗(z∗, w∗) =
(λ∗(z∗ + a∗w∗) · U∗, λ∗2w∗)

1 − 2i〈a∗, z∗〉 + (r∗ − i|a∗|2)w∗ (4.6)

where λ∗ > 0, r∗ ∈ R, a∗ is an (N −1)-tuple and U∗ is an (N −1)× (N −1) unitary matrix.

Theorem 4.3.1 [H03] (A) Let F = (f, φ, g) and F ∗ = (f ∗, φ∗, g∗) be C2-smooth CR map
from a neighborhood of 0 in ∂Hn into ∂HN (N ≥ n > 1), satisfies the condition (4.4).
Suppose that F ∗ = τ ∗ ◦ F ◦ σ where σ and τ ∗ are as in (4.6) and (4.6). Then it holds that

λ∗ = λ−1, a∗1 = −λ−1a · U, a∗2 = 0, r∗ = −λ−2r, U∗ =

(
U−1 0
0 U∗

22

)
(4.7)

where a∗ = (a∗1, a
∗
2) with a∗1 its first (n−1) components, U∗

22 is an (N −n)× (N −n) unitary
matrix. Conversely, suppose τ ∗ and σ, given as above, are related by (4.7). Suppose that F
satisfies the condition (4.4). Then F ∗ := τ ∗ ◦ F ◦ σ also satisfies the (4.4).

(B) Let F and F ∗ := τ ∗ ◦ F ◦ σ both satisfy the condition (4.4). Let us denote

f(z, w) = z + i
2
zAw + 1

2
∂2f
∂w2 |0w2 + o(|(z, w)|2),

f ∗(z, w) = z + i
2
zA∗w + 1

2
∂2f∗

∂w2 |0w2 + o(|(z, w)|2).

and
φ(z, w) = 1

2
z(B1, ..., , BN−n)zt + zBw + 1

2
∂2φ
∂w2 |0w2 + o(|(z, w)|2),

φ∗(z, w) = 1
2
z(B∗1, ..., , B∗N−n)zt + zB∗w + 1

2
∂2φ∗

∂w2 |0w2 + o(|(z, w)|2),
where

A = −2i




∂2f1

∂z1∂w
· · · ∂2fn−1

∂z1∂w
...

...
∂2f1

∂zn−1∂w
· · · ∂2fn−1

∂zn−1∂w




∣∣∣∣
0

is the (n− 1) × (n− 1) matrix,

Bk =




∂2φ(k)

∂z2
1

∂2φ(k)

∂z1∂z2
· · · ∂2φ(k)

∂z1∂zn−1

∂2φ(k)

∂z2∂z1

∂2φ(k)

∂z2
2

· · · ∂2φ(k)

∂z2∂zn−1

...
...

...
∂2φ(k)

∂zn−1∂z1

∂2φ(k)

∂zn−1∂z2
· · · ∂2φ(k)

∂z2
n−1




∣∣∣∣
0

, 1 ≤ k ≤ N − n,
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are (n− 1) × (n− 1) matrices, and

B =




∂2φ(1)

∂z1∂w
· · · ∂2φ(N−n)

∂z1∂w
...

...
∂2φ(1)

∂zn−1∂w
· · · ∂2φ(N−n)

∂zn−1∂w




∣∣∣∣
0

is an (n− 1) × (N − n) matrix. A∗, B∗k,B∗ are defined similarly. Then

A∗ = λ2UAU−1,

∂2f ∗

∂w2
(0) = iλ2aUAU−1 + λ3 ∂

2f

∂w2
(0)U−1.

z(B∗1, ..., B∗N−n)zt = λzU(B1, ..., BN−n)U tztU∗
22,

B∗ = λU(B1, ..., BN−n)U tatU∗
22 + λ2UBU∗

22,
1
2

∂2φ∗

∂w2 |0 = 1
2
λaU(B1, ..., BN−n)U tatU∗

22 + λ2aUBU∗
22 + 1

2
λ3 ∂2φ

∂w2 |0U∗
22,

(4.8)

(C) Let F1 be a non-constant C2 CR map from M ⊂ ∂Hn into ∂HN . Assume that
F2 = τ ◦ F1 ◦ σ with σ ∈ Aut(Hn) and τ ∈ Aut(HN). Then

RkF2(p) = RkF1(σ(p)).

The normalization F ∗∗∗ in Theorem 4.2.1 is constructed by τ ∗ ◦ F ◦ σ for appropriate
choice of τ ∗ and σ.

Proof of Theorem 4.2.1: (a) (b) By Theorem 4.3.1.

(c) Since fj already are as in (2.8.1), from (2.72), we get
∑κ0

j=1 µj |zj|2|z|2 =
∑

j |φ
(2)
j (z)|2.

Write φ
(2)
j (z) =

∑
k≤l a

(j)
kl zkzl. Then (2.8.1) becomes

κ0∑

j=1

µj|zj |2|z|2 =
∑

j

a
(j)
kl a

(j)
k′l′zkzlzk′zl′.

Write αjl := (a
(1)
jl , ..., a

(N−n)
jl ). We have

〈akl, ak′l′〉 =





0, if (k, l) 6= (k′, l′),
µk + µl, if k, l ≤ κ0, k 6= l, (k, l) = (k′, l′),
µk, if k ≤ κ0, l > κ0, (k, l) = (k′, l′),
µk, if k = l ≤ κ0, (k, l) = (k′, l′),
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Hence {αjl}(k,l)∈S0
is a linearly independent system. This implies that N − n ≥ |S0|. We

extend { αjl

|αjl|} to an (N−n)× (N−n) unitary matrix U∗
22 and we replace φ by φ ·U∗

22

t
. From

the first identity of (4.8), we are done. �

Proof of Corollary 4.2.2: It follows from N − n ≥ |S0|. �

4.4 Where is the Condition κ0 ≤ n− 2 used ?

In Theorem 4.2.3 above, a very crucial condition is κ0 ≤ n − 2. This condition indeed
produces exact equations for the map F . In fact, by the normalization F ∗∗, we have the
curvature information:

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗
p

(2)(z)|2. (4.9)

Write a
∗∗(1)
p (z) = zAp where

Ap = −2i

(
∂2f ∗∗

l,p

∂zj∂w

∣∣∣∣
0

)

is an (n− 1) × (n− 1) Hermitian matrix.

Remarks

• The matrix Ap is semi-positive because of (4.9).

• (4.9) can be written as

zApz
t|z|2 = |φ∗∗

p
(2)(z)|2.

Then for a non zero vector z, we have

|φ∗∗
p

(2)(z)|2 = 0 ⇐⇒ zApz
t = 0

⇐⇒ zAp = 0 (because Ap ≥ 0)

⇐⇒ φ∗∗
p

(2)(z) = 0

• We define a vector space Ep := {ξ(p) ∈ Cn−1 | ξ(p) · Ap = 0} 6= ∅. Then

ξ(p) ∈ Ep ⇐⇒ φ∗∗
p

(2)(ξ(p)) = 0

From these equations, it derives more equations by taking differentiation that make
Theorem 4.2.3 possible.
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4.5 Structure Theorem For Rank 1 Maps

As an application of Theorem 4.2.3, we have the following structure theorem on maps with
geometric rank one. The key condition here is κ0 ≤ n−2, which allows the maps have more
rigidity property.

Theorem 4.5.1 ([HJX06], theorem 1.2) Let F ∈ Prop3(B
n,BN) with 3 ≤ n ≤ N and

geometric rank 1. Then F is equivalent to a proper holomorphic map of the form

H := (z1, · · · , zn−1, H1, · · · , HN−n+1),

where (H1, · · · , HN−n+1) = w · h with h ∈ Rat(Bn,BN−n+1). Both H and h are affine linear
maps along each hyperplane defined by w = constant.

In fact, from Theorem 4.2.3, when κ0 = 1, we have





f ∗∗∗
1,p = z1f

∗
1 (z, w), f ∗

1 (z, w) = 1 + iµ1

2
w +O(|(z, w)|2),

f ∗∗∗
j,p = zj , 2 ≤ j ≤ n− 1;

φ∗∗∗
1k,p = µ1kz1zk + z1φ

∗
1k,p, φ∗

1k,p(z, w) = owt(2), for 1 ≤ k ≤ n− 1;

φ∗∗∗
2ℓ,p = zℓφ

∗
2ℓ,p = O(|(z, w)|3) for 2 ≤ ℓ ≤ N − 2n+ 1;

g = w.

By Cayley’s transformation to obtain a new map H : Bn → BN :

H = (H1, z2, ..., zn−1, Hn, ..., HN−n, w).

We can make change on variables in the following way:

z1 ↔ zn

{z2, ..., zn−1} ↔ {z1, ..., zn−2}
w ↔ zn−1

so that
H = (z1, ..., zn−1, H1, H2, ..., HN−n+1).

As an application, we show the following result.

Theorem 4.5.2 [HJX06] Let F ∈ Rat(Bn,BN) with geometric rank κ0 = 1 and n ≥ 3.
Then deg(F ) ≤ N−1

n−1
.
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Proof:: For each N ≥ n ≥ 3, there is a unique positive integer k such that k(n− 1) + 1 ≤
N ≤ (k + 1)(n− 1). We use induction on k. When k = 1, F ∈ Rat(Bn,B2n−2), by the first
gap theorem, so that deg(F ) = 1 ≤ N−1

n−1
holds. Assume deg(F ) ≤ N−1

n−1
holds for any k.

Consider k + 1, by Theorem 4.2.6, F is equivalent to (z, wh) where h ∈ Rat(Bn,BN−n+1).

Then by the assumption, deg(F ) ≤ 1 + deg(h) ≤ 1 + (N−n+1)−1
n−1

= N−1
n−1

. �

4.6 Proof of the Second Gap Theorem

The second gap theorem can be restated as

Theorem 4.6.1 [HJX06] Let F ∈ Prop3(B
n,BN) with 4 ≤ n ≤ N ≤ 3n − 4. Then F is

equivalent to (Fθ, 0) where

Fθ = (z, wcos θ, z1wsin θ, ..., zn−1wsin θ, w
2sin θ)

for some θ ∈ [0, π
2
].

• In 2005, Hamada proved that any F ∈ Prop3(B
n,B2n) is equivalent to Fθ for some

θ ∈ [0, π
2
].

• By the inequality N ≥ n+ κ0(2n−κ0−1)
2

, under the condition N ≤ 3n−4, it implies that

the geometric rank κ0 of F is ≤ 1.

• Applying the structure theorem 4.5.1 for rank 1 maps, we can write

H := (z1, · · · , zn−1, H1, · · · , HN−n+1),

where (H1, · · · , HN−n+1) = w · h with h ∈ Rat(Bn,BN−n+1). Here

N − n+ 1 ≤ 3n− 4 − n + 1 = 2n− 3.

Then we can apply the first gap theorem to implies h is linear map.
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4.7 Rationality Problem

In 1989, Forstnerič proved [Fo89] that if F ∈ PropN−n+1(B
n,BN ), then F must be a rational

map with degree deg(F ) ≤ N2(N − n+ 1).

Theorem 4.7.1 ([HJX05], Corollary 1.3) If F ∈ Prop3(B
n,BN) with either κ0 < n− 1 or

N ≤ n(n+1)
2

, then F must be rational.

• In order to prove that F is rational, by a theorem of Frostnerič, it suffices to prove
that F is smooth on ∂Hn.

• Under the hypothesis, F has partial k-linear property: for any point Z ∈ Bn − E
where E is an affine subvariety, there is a unique k dimensional complex subspace SZ

on which F is linear fractional.

• Assume that 0 ∈ Bn −E and S0 = {z | zk+1 = ... = zn = 0}.

• Construct a holomorphic map Ψ from a neighborhood of a rectangle (−1− ǫ, 1 + ǫ)×
(−ǫ, ǫ) in Ck ×Cn−k to a neighborhood of (−1− ǫ, 1+ ǫ)×{0} in Ck ×Cn−k such that

– Ψ|S0 ≡ Id. (=⇒ Ψ is locally biholomorphic when ǫ is small)

– For each line segment L(t,τ) that (i) passes through the point (t, τ) and (ii) L(t,τ)

and S0 are parallel, we have

Ψ(L(t,τ)) ⊂ S(0,τ).

-Ck

6
Cn−k

−→ F
s

(0, τ) S(0,τ)
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-Ck
s

6

↑ Ψ

(t, τ)

• For each fixed τ , since
F |S(0,τ)

= linear fractional,

we have

F ◦ Ψ(t, τ) =
F (τ) +

∑k
j=1Aj(τ)tj

1 +
∑k

j=1 bj(τ)tj
.

On the other hand, we take a power series at the origin:

F ◦ Ψ(t, τ) =
∑

α

Cα(τ)tα is holomorphic near (0, 0).

Cα(τ) is holomorphic
=⇒ Aj(τ), bj(τ) and F (τ) are holomorphic of τ near 0.

• F ◦ Ψ(t, τ) is holomorphic of (t, τ) whenever τ ∼ 0 and for any t.

• By the construction, F ◦Ψ(t, τ) is holomorphic is holomorphic of (t, τ) whenever (t, τ)
in the rectangle (−1 − ǫ, 1 + ǫ) × (ǫ, ǫ).

• Choose Z0 in the rectangle such that F (Z0) ∈ ∂Bn. Then

F = (F ◦ Ψ) ◦ (Ψ−1)

is holomorphic near F (Z0).
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• F is C∞ near F (Z0), so is on ∂Bn.

• By Forstnerič Theorem, F is rational.
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Chapter 5

More Geometric Approaches

5.1 Cartan’s Moving Frame Theory

Invariants of a surface in E3 at a point[IL03] Let us consider (S, p) where S is a
smooth surface in E3 and p ∈ S is a point. To study (S, p), we could put (S, p) into a better
position (normalized position). Namely, by taking a rotation and a translation, we can move
S so that p = (0, 0, 0) is the origin and the real surface S as a graph of a function f and
that the tangent plane of S at 0 is the xy-plane:

z = f(x, y), f(0, 0) = 0, fx(0, 0) = fy(0, 0) = 0. (5.1)

Geometrically, we moved the (S, p) into a “normalized position”. Analytically, we have
chosen a special coordinate system. Such normalization position for S is not unique; in fact,
the above properties are preserved if we take any rotation in the xy-plane.

Suppose

z = f(x, y) =
∑

j,k

ajkx
jyk,

where a10 = fx(0) = ∂f
∂x
|0, a20 = 1

2
fxx(0) = 1

2
∂2f
∂x2 |0, etc.

If a function h(ajk) is invariant under any rotation in the xy-plane, h(ajk) is called a
differential invariant.

For example, we consider Hessian

Hess(0, 0) =

[
fxx fyx

fxy fyy

]
(0, 0)

to define {
K(0, 0) = det(Hess(0, 0)) = (fxxfyy − fxyfyx)(0, 0),

H(0, 0) = 1
2
Trace(Hess(0, 0)) = 1

2
(fxx + fyy)(0, 0).

(5.2)

105
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We can verify that K(0, 0) and H(0, 0) are differential invariant. In fact, they are the value
of theGaussian and mean curvatures at the origin.

In the above, we fix a coordinate system (i.e., x-y-z ) and the origin, which may be called
a frame. Roughly speaking, a “frame” means: a choice of coordinate system, or a better
position, or a normalized position, or an orthonormal basis of the tangent plane with the
origin. In other words, we fix a frame at 0 of S.

Moving frames Consider a curve C in the space E3. Recall the Frénét-Serret frame: at
any point at C, it has three vectors T,N and B, where T is the unit vector tangent to the
curve, pointing in the direction of motion, N = dT

ds
/‖dT

ds
‖ is the derivative of T with respect

to the arclength parameter s of the curve, and B = T×N is the cross product of T and N.
It has 




dT
ds

= κN,
dN
ds

= −κT + τB,
dB
ds

= −τN,
where κ is the curvature of the curve and τ is the torsion of the curve.

We see that at every point p of the curve, there exists a frame (T,N,B)p. These frames
are continuous (or differentiable) of p. We call such frames moving frames along the curve.
In this situation, every point is treated equally (no point is more special) and every frame
is treated equally. κ and τ are invariants.

Cartan’s moving frame theory will study submanifolds in which every point and every
frame will be treated equally and that we should obtain some invariants.

Klein’s Erlanger Programn Let G be a Lie group, andH ⊂ G a closed Lie subgroup. Let
X := G/H , the set of left cosets of H , is a homogeneous space with the induced differential
structure from the quotient map. For material in this section, we refer [IL03].

By Klein’s Erlanger Programn, we’ll study geometry of submanifolds M ⊂ X = G/H ,
where two submanifolds M,M ′ ⊂ X are equivalent if there is some g ∈ G such that g(M) =
M ′.

G
sր ↓ π

M →֒ X = G/H

[Example] Let us go back to real surfaces S →֒ E3:

G = ASO(3)
F ր ↓ π

S →֒ E3 = G/H
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Here i : S →֒ E3 is the inclusion map,

G = ASO(3)

= the group of motions in E3

= the space of orientated orthonormal frames of E3

= the bundle of oriented orthonormal bases of E3

= All adapted coordinates in E3

=

{
M =

(
1 0
t B

)
, t ∈ R3, B ∈ SO(3)

}
.

H = SO(3)

= all rotations.

F = A first-order adapted lift (or a section)

= A choice of adapted coordinates

= A normalized position

Write a lift F (p) = (e0(p), e1(p), e2(p), e3(p)) where e0(p) = [1, x, y, z]t where p =
(x, y, z)t ∈ S, (e1, e2, e3)(p) are orthonormal, and span(e1(p), e2(p)) = TpS. We said that F
is a first-order adapted lift.

If we fix one lift F (p) =

[
1 0
p Id

]
, then any other first-order adapted lift F̃ of S is of the

form

F̃ = F




1 0 0
0 R 0
0 0 1


 = Fr (5.3)

where R : U → SO(2) is a smooth function.
For each fixed point, we regard F (p) is a frame (or normalized position) for S, regard

another adapted lift F̃ (p) as another frame (or normalized position) for S, and regard the
matrix-valued map r(p) is a rotations in the xy-plane. A section F is regarded as a family
of frames (moving frames). �

In order to find differential invariants which are independent of choice of any such map
r, we reformulate (5.3) in terms of Cartan’s moving frame theory. One key idea to do this
or to carry out the Klein’s Erlanger Programn is the following theorem.

Theorem 5.1.1 (Cartan’s theorem, [IL03]) Let G be a matrix Lie group with Lie algebra g

and Maurer-Cartan from ω over G. Let M be a manifold on which there exists a g-valued
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1-form φ such that dφ = −φ ∧ φ. Then ∀x ∈ M , there exists a neighborhood U of x and a
map F : U → G such that F ∗ω = φ. Moreover, any two such maps F and F̃ must satisfy
F = La ◦ F̃ for some fixed a ∈ G, where La is a left translation of G.

Lie group and Lie algebra Let V be a real vector space of dimension n. Let GL(V ) ⊂
End(V ) denote the group of all invertible linear maps. Let G be a Lie group. A linear
representation of G is a group homomorphism ρ : G → GL(V ). If V is endowed with a
basis, we call the image ρ(G) a matrix Lie group.

Let gl(V ) = End(V ) = V ⊗ V ∗. We identify gl(V ) with the set of n× n matrices where
n = dim(V ). We define a skew-symmetric multiplication [ , ] on gl(V ) by

[X, Y ] = XY − Y X,

where XY is the usual matrix multiplication. One can verify the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, ∀X, Y, Z ∈ gl(V ).

A Lie algebra is a vector space g equipped with a skew-symmetric bilinear operation
[ , ] : g × g → g, called a bracket, that satisfies the Jacobi identity.

Let G be a Lie group. For each g ∈ G, we define the left translation:

Lg : G→ G, h 7→ gh,

which derives
(Lg)∗ : ThG→ TghG.

A left-invariant vector field is a vector field X over G such that

(Lg)∗X = X, ∀g ∈ G.

Since Lie bracket of two left-invariant vector fields is also left-invariant, the space of left-
invariant vector fields ΓL(TG) is a Lie algebra of Γ(TG).

A left-invariant vector field is determined by its value at just one point (say, at the
identity element e ∈ G) because it is given at all other points by pushforward under left-
translation. Thus we may identify ΓL(TG) with TeG. We define g = ΓL(TG) ≃ TeG to be
the Lie algebra of G.

If G ⊆ GL(V ) is a matrix Lie group, then g ≃ TeG ⊆ gl(V ) = End(V ) is a matrix Lie
algebra.
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Maurer-Cartan form —– the intrinsic definition Maurer-Cartan form is defined
over a Lie group G. It is not a standard one-form, but rather a g-valued one-form. If V is a
vector space and M is a manifold, then a V -valued one-form is a collection of smooth maps:
TxM → V . In other words, it is a smooth section of T ∗M ⊗ V . (If V = R or C, it is the
standard one-form. In our case, V = TeG where e is the identity element of G.)

The Maurer-Cartan form ω is a g-valued one-form on G defined by

ω : TgG → TeG
v 7→ ω(v) = (dLg−1)∗v

.

In other words, given an arbitrary Lie group G, we let g denote its Lie algebra, which
may be identified with TeG (i.e., with the space of left-invariant vector fields). The Maurer-
Cartan form ω of G is the unique left-invariant g-valued 1-form on G such that ωe : TeG→ g

is the identity map.

Maurer-Cartan form —– the extrinsic definition If G ⊂ GL(n) by a matrix valued
inclusion g = (gi,j), then one can write ω explicitly as

ω = g−1dg,

where dg : TgG→ gl(V ) is the inclusion.

When G is a matrix Lie group, since ω = g−1dg is a left-invariant g-valued 1-form such
that ωe : TeG → g is the identity map, then by the uniqueness, these two definitions of
Maurer-Cartan form are the same.

We have the Maurer-Cartan equation:

dω = −ω ∧ ω. (5.4)

In fact, 0 = d(Id) = d(g · g−1) = dg · g−1 + gdg−1. Then dg−1 = −g−1dg · g−1 so that

dω = d(g−1dg) = dg−1 ∧ dg = −g−1dg · g−1 ∧ dg = −ω ∧ ω.

Transformation formula We consider the following diagram commutes:

G
F ր ↓ π

M →֒ G/H
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Given a lift F of f , any other lift F̃ : M → G must be of the form

F̃ (x) = F (x)a(x) (5.5)

for some map a : M → H . It satisfies

F̃ ∗(ω) = a−1F ∗(ω)a+ a−1da. (5.6)

[Example] Going back to a surface S ⊂ E3.

G = ASO(3)
F ր ↓ π

S →֒ E3 = G/H

Here G = ASO(3) =

{
M =

(
1 0
t B

)
, t ∈ R3, B ∈ SO(3)

}
, H = SO(3) and F is a

first-order adapted lift.

Write a lift

F (p) = (e0(p), e1(p), e2(p), e3(p)) =

[
1 0
p B(p)

]

where e0(p) = [1, x, y, z]t, p = (x, y, z)t = (x, y, z(x, y))t ∈ S, (e1, e2, e3)(p) are orthonormal,
and span(e1(p), e2(p)) = TpS.

Since φ := F−1dF is a g-valued one-form satisfying the equation dφ = −φ ∧ φ, as in
Theorem 5.1.1. Then F ∗ω = φ, where ω is the Maurer-Cartan form over G.

We calculate φ = F−1dF which equals to

[
1 0
p B

]−1 [
0 0
dp dB

]
=

[
0 0

B−1dp B−1dB

]
=




0 0 0 0
φ1 φ1

1 φ1
2 φ1

3

φ2 φ2
1 φ2

2 φ2
3

φ3 φ3
1 φ3

2 φ3
3


 =




0 0 0 0
φ1 0 −φ2

1 −φ3
1

φ2 φ2
1 0 −φ3

2

φ3 φ3
1 φ3

2 0


 .

Then dF = Fφ, i.e.,

(de0, de1, de2, e3) = (e0, e1, e2, e3)




0 0 0 0
φ1 0 −φ1

2 −φ3
1

φ2 φ2
1 0 −φ3

2

φ3 φ3
1 φ3

2 0



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Hence de0 = e1φ
1 + e2φ

2 + e3φ
3. On the other hand, de0 = (0, dx, dy, dz(x, y))t is in the

tangent space, i.e., in span(e1, e2). Therefore, we have de0 = e1φ
1 + e2φ

2, i.e., de0 =
e1F

∗(ω1) + e2F
∗(ω2) so that

φ3 = F ∗(ω3) = 0, and φ1 ∧ φ2 = F ∗(ω1 ∧ ω2) 6= 0, ∀p ∈ S. (5.7)

By (5.7), 0 = F ∗(ω3) implies
0 = F ∗(dω3).

By dω = −ω ∧ ω, we get 0 = −F ∗(ω3
1 ∧ ω1 + ω3

2 ∧ ω2). By (5.7) F ∗ω1 and F ∗ω2 are linearly
independent, we apply Cartan lemma 1 to obtain

F ∗
(
ω3

1

ω3
2

)
= F ∗

(
h11 h12

h21 h22

)
F ∗

(
ω1

ω2

)
,

where hij = hji are some functions. We denote by hF = F ∗(hij) the matrix-valued function:

F ∗
(
ω3

1

ω3
2

)
= hFF

∗
(
ω1

ω2

)
.

If F̃ is another adapted lift, we must have

F̃ = F




1 0 0
0 R 0
0 0 1


 = Fr,

where R : U → SO(2) is a smooth function. Then from F̃ ∗(ω) = F̃−1dF̃ and F ∗(ω) =
F−1dF , we have

F̃−1dF̃ = (Fr)−1d(Fr) = r−1(F 1dF )r + r−1F−1Fdr

=




1
R−1

1


F ∗




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0







1
R

1


 +




0
R−1dR

0


 .

In particular,

F̃ ∗
(
ω1

ω2

)
= R−1F ∗

(
ω1

ω2

)
, F̃ ∗(ω3

1, ω
3
2) = F ∗(ω3

1, ω
3
2)R. (5.8)

1Cartan’s lemma: Let v1, ..., vk are linearly independent vectors and let w1, ..., wk are vectors such that
w1 ∧ v1 + ... + wk ∧ vk = 0, then wi =

∑
j hijvj where hij = hji, 1 ≤ i, j ≤ k.
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Since R−1 = Rt, we also have

h eF = R−1hFR. (5.9)

Then we obtain two invariants: the mean curvature H := 1
2
trace(hF ) and Gauss curvature

K := det(hF ), which are well defined on U or M .

The case of n-dimensional submanifolds in En+s For high dimensional situation, we
consider

G = ASO(n+ s) =

{
M =

(
1 0
t B

)
, t ∈ Rn+s, B ∈ SO(n+ s)

}

which is the group of Euclidean motions,

H = SO(n+ s),

which is the group of rotation and

X = En+s = ASO(n+ s)/SO(n+ s).

Let M ⊂ En+s be an n-dimensional submanifold.
A map

s = (e0, ej , eb) =

[
1 0
t B

]
: M → G (5.10)

is called a first-order adapted lift if e0 = (1, x)t, x ∈M , (ej , eb) are orthonormal,

span{ej(x)} = TxM

and eb(x) are normal to M . Consequently,

s∗dx ≡ 0 mod{x, ej}. (5.11)

Let F1 denote the subbundle of ASO(n+ s)|M of orientated first-ordered frames for M .
If s̃ is another first-order adapted lift, then s̃ = s · g where

g =




1 0 0
0 gi

j 0
0 0 ua

b




where (gi
j) ∈ SO(n) and (ua

b) ∈ SO(s). In other words, the motions in the fiber of F1 are
given by such g.
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As the same argument in Example above, the Maurer-Cartan form over ASO(n + s) is
of the form

ω =




0 0 0
ωi ωi

j ωi
b

ωa ωa
j ωa

b


 . (5.12)

ds = s(s∗ω). We have

dx = ejω
j + eaω

a.

Then pulling back by s, by (5.11), we obtain s∗ωa = 0 so that

s∗dωa = 0. (5.13)

From dω = −ω ∧ ω:




0 0 0
dωi dωi

j dωi
b

dωa dωa
j dωa

b


 = −




0 0 0
ωi ωi

j ωi
b

ωa ωa
j ωa

b


 ∧




0 0 0
ωi ωi

j ωi
b

ωa ωa
j ωa

b


 . (5.14)

and by (5.13), we obtain

−s∗(ωa
j ∧ ωj) = 0.

By Cartan’s lemma, we write

s∗ωa
j = ha

ijs
∗ωj

where ha
ij = ha

ji. It can be verified that ha
ijs

∗ωis∗ωj ⊗ ea is independent of choice of first
order adapted lifts. Therefore it defines the second fundamental form of M

IIM := ha
ijs

∗ωis∗ωj ⊗ ea ∈ Γ(M,S2T ∗M ⊗NM)

where NM denotes the normal bundle of M .

5.2 Flatness of CR Submanifolds

In Euclidean geometry, for a real submanifold Mn ⊂ En+a, M is a piece of En if and only if
its second fundamental form IIM ≡ 0.

In projective geometry, for a complex submanifold Mn ⊂ CPn+a, M is a piece of CPn if
and only if its projective second fundamental form IIM ≡ 0 (c.f. [IL03], p.81).

In CR geometry, we prove the CR analogue of this fact in this paper as follows:
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Theorem 5.2.1 (Ji-Yuan [JY09]) Let H : M ′ → ∂BN+1 be a smooth CR-embedding of a
strictly pseudoconvex CR real hypersurface M ′ ⊂ Cn+1. Denote M := H(M ′). If its CR
second fundamental form IIM ≡ 0, then M ⊂ F (∂Bn+1) ⊂ ∂BN+1 where F : Bn+1 → BN+1

is a certain linear fractional proper holomorphic map.

It was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary 5.5), under
the above same hypothese, that M ′ and hence M are locally CR-equivalent to the unit
sphere ∂Bn+1 in Cn+1. This result allows us to consider

G = SU(N + 1, 1)
sր ↓ π

F : ∂Hn+1 →M = F (∂Hn+1) →֒ ∂BN+1 = G/H

There are several definitions of the CR second fundamental forms IIM of M . We have
to prove that the above theorem is true for all of these definitions.

• Definition A, intrinsic one (Webster).

• Definition B, extrinsic one (cf. Ebenfelt-Huang-Zaitsev(2004)).

• Definition C, Cartan moving frame theory, with the group G = GLQ(CN + 2).

• Definition D, Cartan moving frame theory, with the group G = SU(N + 1, 1).

5.3 Definition A, the CR Second Fundamental Form

Let (M, θ) be a strictly pseudoconvex pseudohermitian manifold where θ is a contact form.
Associated with a contact form θ one has the Reeb vector field Rθ, defined by the equations:
(i) dθ(Rθ, ·) ≡ 0, (ii) θ(Rθ) ≡ 1.

If there are n complex 1-forms θα so that {θ1, ..., θn} forms a local basis for holomorphic
cotangent bundle and

dθ = i

n∑

α,β=1

hαβθ
α ∧ θβ (5.15)

where (hαβ), called the Levi form matrix, is positive definite. Such θα may not be unique.
Following Webster (1978), a coframe (θ, θα) is called admissible if (5.15) holds.
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Theorem 5.3.1 (Webster, 1978) Let (M2n+1, θ) be a strictly pseudoconvex pseudohermitian
manifold and let θj be as in (5.15). Then there are unique way to write

dθα =
n∑

γ=1

θγ ∧ ωα
γ + θ ∧ τα, (5.16)

where τα are (0, 1)-forms over M that are linear combination of θα = θα, and ωβ
α are 1-forms

over M such that
0 = dhαβ − hγβω

γ
α − hαγω

γ

β
. (5.17)

We may denote ωαβ = hγβω
γ
α and ωβα = hαγω

γ

β
. In particular, if

hαβ = δαβ , (5.18)

the identity in (5.17) becomes 0 = −ωαβ − ωβα, i.e.,

0 = ωβ
α + ωα

β
. (5.19)

Lemma 5.3.2 ([EHZ04], corollary 4.2) Let M and M̃ be strictly pseudoconvex CR mani-
folds of dimensions 2n + 1 and 2ñ + 1 respectively, and of CR dimensions n and ñ respec-
tively. Let F : M → M̃ be a smooth CR-embedding. If (θ, θα) is a admissible coframe on

M , then in a neighborhood of a point p̃ ∈ F (M) in M̃ there exists an admissible coframe

(θ̃, θ̃A) = (θ̃, θ̃α, θ̃µ) on M̃ with F ∗(θ̃, θ̃α, θ̃µ) = (θ, θα, 0). In particular, the Reeb vector field

R̃ is tangent to F (M). If we choose the Levi form matrix of M such that the functions hαβ

in (5.15) with respect to (θ, θα) to be (δαβ), then (θ̃, θ̃A) can be chosen such that the Levi

form matrix of M̃ relative to it is also (δAB). With this additional property, the coframe

(θ̃, θ̃A) is uniquely determined along M up to unitary transformations in U(n) × U(ñ− n).

If (θ, θα) and (θ̃, θ̃A) are as above such that the condition on the Levi form matrices in

Lemma 5.3.2 are satisfied, we say that the coframe (θ̃, θ̃A) is adapted to the coframe (θ, θα).

In this case, by (5.19), we have θ = F ∗θ̃, θα = F ∗θ̃α, and

dθα =

n∑

γ=1

θγ ∧ ωα
γ + θ ∧ τα, 0 = ωβ

α + ωα
β
, ∀1 ≤ α, β ≤ n,

and

dθ̃A =
en∑

B=1

θ̃C ∧ ω̃A
C + θ̃ ∧ τ̃A, 0 = ω̃B

A + ω̃A
B
, ∀1 ≤ A,B ≤ N.
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For simplicity, we may denote F ∗ω̃A
B by ωA

B. We also denote F ∗ω̃AB by ωAB where ωAB = ωB
A .

Write ω µ
α = ω µ

α βθ
β. The matrix of (ω µ

α β), 1 ≤ α, β ≤ n, n+1 ≤ µ ≤ n̂, defines the CR
second fundamental form of M . It was used in [W79] and [Fa90].

5.4 Definition B, the CR Second Fundamental Form

Let F : M → M̃ be a smooth CR-embedding between M ⊂ Cn+1 and M̃ ⊂ CN+1 where M
and M̃ are real strictly pseudoconvex hypersurfaces of dimensions 2n + 1 and 2ñ + 1, and
CR dimensions n and ñ, respectively. Let p ∈ M and p̃ = F (p) ∈ M̃ be points. Let ρ̃ be a

local defining function for M̃ near the point p̃. Let

Ek(p) := spanC{LJ̄(ρ̃Z′ ◦ F )(p) | J ∈ (Z+)n, 0 ≤ |J | ≤ k} ⊂ T 1,0
ep CN+1,

where ρ̃Z′ := ∂ρ̃ is the complex gradient (i.e., represented by vectors in CN+1 in some local
coordinate system Z ′ near p̃). Ek(p) is independent of the choice of local defining function
ρ̃, coordinates Z ′ and the choice of basis of the CR vector fields L1, ..., Ln.

The CR second fundamental form IIM of M is defined by (cf. [EHZ04], §2)

IIM(Xp, Yp) := π
(
XY (ρ̃Z

′ ◦ f)(p)
)
∈ T ′

p̃M̃/E1(p) (5.20)

where ρ̃
Z

′ = ∂ρ̃ is represented by vectors in CN+1 in some local coordinate system Z ′ near
p̃, X, Y are any (1, 0) vector fields on M extending given vectors Xp, Yp ∈ T 1,0

p (M), and

π : T ′
epM̃ → T ′

epM̃/E1(p) is the projection map.

5.5 Definition C, the CR Second Fundamental Form

Groups and geometry In Euclidean geometry, we consider

G = ASO(n+ s)
sր ↓ π

M →֒ En+s = ASO(n+ s)/SO(n+ s)
.

In projective geometry, we consider

G = GL(CN+1)
sր ↓ π

M →֒ CPN
.
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In CR geometry, we will consider

G = GLQ(CN+2)
sր ↓ π

M →֒ ∂HN+1
.

in this section and
G = SU(N + 1, 1)

sր ↓ π
M →֒ ∂HN+1

.

in the next section.

Construction of the group GLQ(CN+2) We consider a real hypersurface Q in CN+2

defined by the homogeneous equation

〈Z,Z〉 :=
∑

A

ZAZA +
i

2
(Z0ZN+1 − Z0ZN+1) = 0, (5.21)

where Z = (Z0, ZA, ZN+1)t ∈ CN+2. Let

π0 : CN+2 − {0} → CPN+1, (z0, ...., zN+1) 7→ [z0 : ... : zN+1], (5.22)

be the standard projection. For any point x ∈ CPN+1, π−1
0 (x) is a complex line in CN+2−{0}.

For any point v ∈ CN+2 − {0}, π0(v) ∈ CPN+1 is a point. The image π0(Q − {0}) is the
Heisenberg hypersurface ∂HN+1 ⊂ CPN+1.

For any element A ∈ GL(CN+2):

A = (a0, ..., aN+1) =




a
(0)
0 a

(0)
1 ... a

(0)
N+1

a
(1)
0 a

(1)
1 ... a

(1)
N+1

...
...

...

a
(N+1)
0 a

(N+1)
1 ... a

(N+1)
N+1


 ∈ GL(CN+2), (5.23)

where each aj is a column vector in CN+2, 0 ≤ j ≤ N + 1. This A is associated to an
automorphism A⋆ ∈ Aut(CPN+1) given by

A⋆

([
z0 : z1 : ... : zN+1

])
=

[ N+1∑

j=0

a
(0)
j zj :

N+1∑

j=0

a
(1)
j zj : ... :

N+1∑

j=0

a
(N+1)
j zj

]
. (5.24)
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When a
(0)
0 6= 0, in terms of the non-homogeneous coordinates (w1, ..., wn), A

⋆ is a linear
fractional from CN+1 which is holomorphic near (0, ..., 0):

A⋆
(
w1, ..., wN+1

)
=

(∑N+1
j=0 a

(1)
j wj

∑N+1
j=0 a

(0)
j wj

, ...,

∑N+1
j=0 a

(N+1)
j wj

∑N+1
j=0 a

(0)
j wj

)
, where wj =

zj

z0
. (5.25)

We denote A ∈ GLQ(CN+2) if A satisfies A(Q) ⊆ Q where we regard A as a linear
transformation of CN+2. If A ∈ GLQ(CN+2), we must have A⋆(∂HN+1) ⊆ ∂HN+1, so that
A⋆ ∈ Aut(∂HN+1). Conversely, if A⋆ ∈ Aut(∂HN+1), then A ∈ GLQ(CN+2).

We define a bundle map:

π : GL(CN+2) → CPN+1

A = (a0, a1, ..., aN+1) 7→ π0(a0).

Then by (5.24), for any map A ∈ GL(CN+2), A ∈ π−1
(
π0(a0)

)
⇐⇒ A⋆([1 : 0 : ... : 0]) =

π0(a0). In particular, by the restriction, we consider a map

π : GLQ(CN+2) → ∂HN+1

A = (a0, a1, ..., aN+1) 7→ π0(a0).
(5.26)

We get ∂HN+1 ≃ GLQ(CN+2)/P1 where P1 is the isotropy subgroup of GLQ(CN+2). Then
by (5.24), for any map A ∈ GLQ(Cn+2),

A ∈ π−1
(
π0(a0)

)
⇐⇒ A⋆([1 : 0 : ... : 0]) = π0(a0). (5.27)

CR submanifolds of ∂HN+1 Let H : M ′ → ∂HN+1 be a CR smooth embedding where
M ′ is a strictly pseudoconvex smooth real hypersurface in Cn+1. We denote M = H(M ′).

Let RM ′ be the Reeb vector field of M ′ with respect to a fixed contact form on M ′. Then
the real vector RM ′ generates a real line bundle over M ′, denoted by RM ′ . Since we can
regard the rank n complex vector bundle T 1,0M ′ as the rank 2n real vector bundle, over the
real number field R we have:

TM ′ = T cM ′ ⊕RM ′ ≃ T 1,0M ′ ⊕RM ′ . (5.28)

given by

(aj
∂

∂xj

, bj
∂

∂yj

) + cRM ′ 7→ (aj + ibj)
∂

∂zj

+ cRM ′ , ∀aj , bj, c ∈ R. (5.29)

Since H is a CR embedding, we have

H∗(T
1,0M ′) = T 1,0M ⊂ T 1,0(∂HN+1), TM ≃ H∗(T

1,0M ′) ⊕H∗(RM ′) ⊂ T (∂HN+1). (5.30)
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Lifts of the CR submanifolds Let M = H(M ′) ⊂ ∂HN+1 be as above. Consider the
commutative diagram

GLQ(CN+2)
eր ↓ π

M →֒ ∂HN+1

Any map e satisfying π ◦ e = Id is called a lift of M to GLQ(CN+2).
In order to define a more specific lifts, we need to give some relationship between geometry

on ∂HN+1 and on CN+2 as follows. For any subset X ∈ ∂HN+1, we denote X̂ := π−1
0 (X)

where π0 : CN+2 − {0} → CPN+1 is the standard projection map (5.22). In particular, for
any x ∈ M , x̂ is a complex line and for the real submanifold M2n+1, the real submanifold
M̂2n+3 is of dimension 2n+ 3.

For any x ∈M , we take v ∈ x̂ = π−1
0 (x) ⊂ CN+2 − {0}, and we define

T̂xM = TvM̂, T̂ 1,0
x M = T 1,0

v M̂, R̂M,x := RM̂ ,v

where RM̂ = ∪v∈M̂RM̂ ,v. These definitions are independent of choice of v.

A lift e = (e0, eα, eµ, eN+1) of M into GLQ(CN+2), where 1 ≤ α ≤ n and n+ 1 ≤ µ ≤ N ,
is called a first-order adapted lift if it satisfies the conditions:

e0(x) ∈ π−1
0 (x), spanC(e0, eα)(x) = T̂ 1,0

x M, span(e0, eα, eN+1)(x) = T̂ 1,0
x M ⊕ R̂M,x (5.31)

where

span(e0, eα, eN+1)(x) := {c0e0 + cαeα + cN+1eN+1 | c0, cα ∈ C, cN+1 ∈ R}. (5.32)

Here we used (5.29) and the fact that the Reeb vector is real. Locally first-order adapted
lifts always exist.

We have the restriction bundle F0
M := GLQ(CN+2)|M over M . The subbundle π : F1

M →
M of F0

M is defined by

F1
M = {(e0, ej , eµ, eN+1) ∈ F0

M | [e0] ∈M, (5.31) are satisfied}.

Local sections of F1
M are exactly all local first-order adapted lifts of M .

For two first-order adapted lifts s = (e0, ej, eµ, eN+1) and s̃ = (ẽ0, ẽj, ẽµ, ẽN+1), by (5.31),
we have 




ẽ0 = g0
0e0,

ẽj = g0
j e0 + gk

j ek,

ẽµ = g0
µe0 + gj

µej + gν
µeν + gN+1

µ eN+1,

ẽN+1 = g0
N+1e0 + gj

N+1ej + gN+1
N+1eN+1,

(5.33)
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Notice that by (5.29), gN+1
N+1 is some real-valued function, while other are complex-valued

functions. In other words, s̃ = s · g where

g = (g0, gj, gµ, gN+1) =




g0
0 g0

k g0
µ g0

N+1

0 gj
k gj

µ gj
N+1

0 0 gν
µ 0

0 0 gN+1
µ gN+1

N+1


 (5.34)

is a smooth map from M into GLQ(CN+2). Then the fiber of π : F1
M → M over a point is

isomorphic to the group

G1 =

{
g =




g0
0 g0

β g0
µ g0

N+1

0 gα
β gα

µ gα
N+1

0 0 gν
µ 0

0 0 gN+1
µ gN+1

N+1


 ∈ GLQ(CN+2)

}
,

where we use the index ranges 1 ≤ α, β ≤ n and n+ 1 ≤ µ, ν ≤ N .
We pull back the Maurer-Cartan form from GLQ(CN+2) to F1

M by a first-order adapted
lift e of M as

ω =




ω0
0 ω0

β ω0
ν ω0

N+1

ωα
0 ωα

β ωα
ν ωα

N+1

ωµ
0 ωµ

β ωµ
ν ωµ

N+1

ωN+1
0 ωN+1

β ωN+1
ν ωN+1

N+1


 .

Since ω = e−1de, i.e., eω = de. Then we have

de0 = e0ω
0
0 + eαω

α
0 + eµω

µ
0 + eN+1ω

N+1
0 . (5.35)

On the other hand, bu considering tangent vectors, we have

de0 = e0ω
0
0 + eαω

α
0 + eN+1ω

N+1
0 . (5.36)

By (5.35) and (5.36), we conclude ωµ
0 = 0, ∀µ. By the Maurer-Cartan equation dω =

−ω∧ω, one gets 0 = dων
0 = −ων

α∧ωα
0 −ων

N+1∧ωN+1
0 , i.e., 0 = −ων

α∧ωα
0 , mod(ω

N+1
0 ). Then

by Cartan’s lemma,
ων

β = qν
αβω

α
0 mod(ωN+1

0 ),

for some functions qν
αβ = qν

βα.

The CR second fundamental form In order to define the CR second fundamental
form IIM = IIs

M = qµ
αβω

α
0ω

β
0 ⊗ eµ, mod(ωN+1

0 ), let us define eµ as follows.
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For any first-order adapted lift e = (e0, eα, eν , eN+1) with π0(e0) = x, we have eα ∈ T̂ 1,0
x M .

Recall TEG(k, V ) ≃ E∗ ⊗ (V/E) where G(k, V ) is the Grassmannian of k-planes that pass
through the origin in a vector space V over R or C and E ∈ G(k, V ) ([IL03], p.73). Then
TxM ≃ (x̂)∗ ⊗ (T̂xM/x̂) and hence the vector eα induces eα ∈ T 1,0

x M by

eα = e0 ⊗
(
eα mod(e0)

)
,

where we denote by (e0, eα, eµ, eN+1) the dual basis of (CN+2)∗. Similarly, we let

eµ = e0 ⊗
(
eµ mod T̂

(1,0)
x M

)
∈ N1,0

x M, (5.37)

where N1,0M is the CR normal bundle of M defined by N1,0
x M = T 1,0

x (∂HN+1)/T 1,0
x M .

By direct computation, we obtain a tensor

IIM = IIe
M = qµ

αβω
α
0ω

β
0 ⊗ eµ ∈ Γ

(
M,S2T 1,0∗

π0(e0)M ⊗N1,0
π0(e0)M

)
mod(ωN+1

0 ). (5.38)

The tensor IIM is called the CR second fundamental form of M .

5.6 Definition D, the CR Second Fundamental Form

Q-frames We consider the real hypersurface Q in CN+2 defined by the homogeneous
equation

〈Z,Z〉 :=
∑

A

ZAZA +
i

2
(ZN+1Z0 − Z0ZN+1) = 0, (5.39)

where Z = (Z0, ZA, ZN+1)t ∈ CN+2. This can be extended to the scalar product

〈Z,Z ′〉 :=
∑

A

ZAZ ′A +
i

2
(ZN+1Z ′0 − Z0Z ′N+1), (5.40)

for any Z = (Z0, ZA, ZN+1)t, Z ′ = (Z ′0, Z ′A, Z ′N+1)t ∈ CN+2. This product has the prop-
erties: 〈Z,Z ′〉 is linear in Z and anti-linear in Z ′; 〈Z,Z ′〉 = 〈Z ′, Z〉; and Q is defined by
〈Z,Z〉 = 0.

Let SU(N + 1, 1) be the group of unimodular linear transformations of CN+2 that leave
the form 〈Z,Z〉 invariant (cf. [CM74]).

By a Q-frame is meant an element E = (E0, EA, EN+1) ∈ GL(CN+2) satisfying (cf.
[CM74, (1.10)])

{
det(E) = 1,
〈EA, EB〉 = δAB, 〈E0, EN+1〉 = −〈EN+1, E0〉 = − i

2
,

(5.41)
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while all other products are zero.
There is exactly one transformation of SU(N + 1, 1) which maps a given Q-frame into

another. By fixing one Q-frame as reference, the group SU(N + 1, 1) can be identified
with the space of all Q-frames. Then SU(N + 1, 1) ⊂ GLQ(CN+1) is a subgroup with the
composition operation.

We define a bundle map:

π : GL(CN+2) → CPN+1

A = (a0, a1, ..., aN+1) 7→ π0(a0)
.

By taking restriction, we have the projection

π : SU(N + 1, 1) → ∂HN+1, (Z0, ZA, ZN+1) 7→ span(Z0). (5.42)

which is called a Q-frames bundle. We get ∂HN+1 ≃ SU(N + 1, 1)/P2 where P2 is the
isotropy subgroup of SU(N + 1, 1). SU(N + 1, 1) acts on ∂HN+1 effectively.

The Maurer-Cartan Form over SU(N+1, 1) Consider E = (E0, EA, EN+1) ∈ SU(N+
1, 1) as a local lift. Then the Maurer-Cartan form Θ on SU(N + 1, 1) is defined by dE =
(dE0, dEA, dEN+1) = EΘ, or Θ = E−1 · dE, i.e.,

d
(
E0 EA EN+1

)
=

(
E0 EB EN+1

)



Θ0
0 Θ0

A Θ0
N+1

ΘB
0 ΘB

A ΘB
N+1

ΘN+1
0 ΘN+1

A ΘN+1
N+1


 , (5.43)

where ΘB
A are 1-forms on SU(N + 1, 1). By (5.41) and (5.43), the Maurer-Cartan form (Θ)

satisfies

Θ0
0 + ΘN+1

N+1 = 0, ΘN+1
0 = ΘN+1

0 , Θ0
N+1 = Θ0

N+1,

ΘN+1
A = 2iΘA

0 , ΘA
N+1 = − i

2
Θ0

A, ΘA
B + ΘB

A = 0, Θ0
0 + ΘA

A + ΘN+1
N+1 = 0,

(5.44)

where 1 ≤ A ≤ N . For example, from 〈EA, EB〉 = δAB, by taking differentiation, we obtain

〈dEA, EB〉 + 〈EA, dEB〉 = 0.

By (5.43), we have





dE0 = E0Θ
0
0 + EBΘB

0 + EN+1Θ
N+1
0 ,

dEA = E0Θ
0
A + EBΘB

A + EN+1Θ
N+1
A ,

dEN+1 = E0Θ
0
N+1 + EBΘB

N+1 + EN+1Θ
N+1
N+1.
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Then

〈E0Θ
0
A + ECΘC

A + EN+1Θ
N+1
A , EB〉 + 〈EA, E0Θ

0
B + EDΘD

B + EN+1Θ
N+1
B 〉 = 0,

which implies ΘB
A + ΘA

B = 0. In particular, from (5.44), Θ0
A = −2iΘA

N+1. Θ satisfies

dΘ = −Θ ∧ Θ. (5.45)

Let M →֒ ∂HN+1 be the image of H : M ′ → ∂HN+1 where M ′ ⊂ Cn+1 is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M →֒ ∂HN+1 and a lift
e = (e0, e1, ..., eN+1) = (e0, eα, eν , eN+1) of M where 1 ≤ α ≤ n and n + 1 ≤ ν ≤ N

SU(N + 1, 1)
eր ↓ π

M →֒ ∂HN+1

We call e a first-order adapted lift if for any x ∈M ,

π0

(
e0(x)

)
= x, spanC(e0, eα)(x) = T̂ 1,0

x M, span(e0, eα, eN+1)(x) = T̂ 1,0
x M ⊕ R̂M,x. (5.46)

Locally first-order adapted lifts always exist. We have the restriction bundle F0
M := SU(N+

1, 1)|M over M . The subbundle π : F1
M →M of F0

M is defined by

F1
M = {(e0, ej , eµ, eN+1) ∈ F0

M | [e0] ∈M, (5.46) are satisfied}.

Local sections of F1
M are exactly all local first-order adapted lifts of M . The fiber of π :

F1
M →M over a point is isomorphic to the group

G1 =

{
g =




g0
0 g0

β g0
ν g0

N+1

0 gα
β gα

ν gα
N+1

0 0 gµ
ν 0

0 0 0 gN+1
N+1


 ∈ SU(N + 1, 1)

}
,

where we use the index ranges 1 ≤ α, β ≤ n and n + 1 ≤ µ, ν ≤ N .
By the remark below (5.33), gN+1

N+1 is real-valued. By (5.41), we have 〈g0, gN+1〉 = − i
2
,

it implies g0
0 · gN+1

N+1 = 1. In particular, both gN+1
N+1 and g0

0 are real. Since 〈g0, gµ〉 = 0 and
g0
0 6= 0, it implies gN+1

µ = 0. Since 〈gα, gβ〉 = δαβ , it implies that the matrix (gβ
α) is unitary.

Since deg(g) = 1, it implies g0
0 · det(gβ

α) · det(gν
µ) · gN+1

N+1 = 1, i.e., det(gβ
α) · det(gν

µ) = 1.
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By considering all first-order adapted lifts from M into SU(N + 1, 1), as the definition
of IIM in Definition 3, we can defined CR second fundamental form IIM as in (5.38):

IIM = IIe
M = qµ

αβω
α
0ω

β
0 ⊗ eµ ∈ Γ(M,S2T 1,0∗

π0(e0)
M ⊗N1,0

π0(e0)M), mod(ωN+1
0 ), (5.47)

which is a well-defined tensor, and is called the CR second fundamental form of M .
We remark that the notion of IIM in Definition 4 was introduced in a paper by S.H.

Wang [Wa06].

5.7 Geometric Rank And The Second Fundamental

Form

Geometric Rank and IIM

Lemma 5.7.1 (i) ([JY09], theorem 7.1) Let F ∈ Propk(∂Hn+1, ∂HN+1) with k ≥ 2 and
F (0) = 0. Then there exists a neighborhood of 0 in M := F (∂Hn+1) and a Ck−1-smooth
first-order adapted lift e : U → SU(N + 1, 1)

e = (e0, ej, eb, eN+1) ∈ SU(N + 1, 1), 1 ≤ j ≤ n, n+ 1 ≤ b ≤ N − 1. (5.48)

(ii) ([JY09], Step 3 of the proof of Theorem 1.1) Let F = F ∗∗∗ = (f, φ, g), the induced
first-order adapted lift s, and notation be as in Theorem 5.7.1. Then

hµ
j,k|0 =

∂2φµ

∂zj∂zk

∣∣
0
, j, k ∈ {1, 2, ..., n,N + 1} (5.49)

where IIM = hµ
jkω

jωk ⊗ eµ is the CR second fundamental form.

Theorem 5.7.2 [HJ09] Let F ∈ Prop2(∂Hn+1, ∂HN+1). Then its geometric rank κ0 equals
to

κ0 = sup
p∈∂Hn+1

[
n− dimC{ν | IIM,F (p)(ν, ν) = 0}

]

where IIM,F (p) is the CR second fundamental form of the submanifold M at the point F (p).
Here {ν | IIX,F (p)(ν, ν) = 0} is a vector space over C.
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Corollary 5.7.3 Let F ∈ Prop2(H
n,HN ). Then

κ0 = 0 ⇐⇒ IIM = 0.

Going back to Theorem 5.2.1. We have a lemma:

Lemma 5.7.4 Let H : M ′ → ∂HN+1 be a CR smooth embedding where M ′ is a strictly
pseudoconvex smooth real hypersurface in Cn+1. We denote M = H(M ′). Then the following
statements are equivalent:

(i) The CR second fundamental form IIM by Definition A identically vanishes.
(ii) The CR second fundamental form IIM by Definition B identically vanishes.
(iii) The CR second fundamental form IIM by Definition C identically vanishes.
(iv) The CR second fundamental form IIM by Definition D identically vanishes.

Lemma 5.7.5 (cf. [EHZ04], corollary 5.5) Let H : M ′ → M →֒ ∂HN+1 be a smooth CR
embedding of a strictly pseudoconvex smooth real hypersurface M ⊂ Cn+1. Denote by (ω µ

α β)

the CR second fundamental form matrix of H relative to an admissible coframe (θ, θA) on
∂HN+1 adapted to M . If ω µ

α β ≡ 0 for all α, β and µ, then M ′ is locally CR-equivalent to
∂Hn+1.

To prove Theorem 5.2.1, we apply Lemma 5.7.4 and Lemma 5.7.5 and the hypothesis
that the CR second fundamental form identically vanishes to know that M is locally CR
equivalent to ∂Hn+1.

Then M is the image of a local smooth CR map F : U ⊂ ∂Hn+1 → M ⊂ ∂HN+1 where
U is a open set in ∂Hn+1 . By a result of Forstneric[Fo89], the map F must be a rational
map. It suffices to prove that F is equivalent to a linear map. By the fact that F is linear
if and only if its geometric rank is zero, it is sufficient to prove that the geometric rank of
F is zero: κ0 = 0. This can be done by applying Theorem 5.7.2.
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