Spherical CR Submanifolds of a Sphere

Shanyu Ji

January 19, 2010

Contents

Preface 2
1 Real Hypersurfaces 7
1.1 Domains and Their Boundaries 7
1.2 Levi nondegenerate real hypersurfaces 11
1.3 Segre family and Segre variety 15
1.4 CR manifolds 17
1.5 Levi forms 23
1.6 Holomorphic extension of CR functions 24
1.7 Hopf Lemma 27
1.8 Three classes of CR submanifolds 28
1.9 Proper Holomorphic Maps Between Balls 30
2 Earlier Result: The First Gap Theorem 33
2.1 The First Gap Theorem 33
2.2 Passing from $\partial \mathbb{B}^{n}$ to $\partial \mathbb{H}^{n}$ 35
2.3 Differential Operators on $\partial \mathbb{H}^{n}$ 36
2.4 Equations Associated with F 39
2.5 The Associated Map F^{*} of F 40
2.6 The Associated Map $F^{* *}$ of F 43
2.7 The Chern-Moser Operator 46
2.8 The Associated Map F_{p} of F 49
2.9 Geometric Rank of F 56
2.10 Maps with Geometric Rank $\kappa_{0}=0$ 57
2.11 Analytic Proof of the First Gap Theorem 59
3 Construction and Classification of Rational Maps 63
3.1 Gap Phenomenon 63
3.2 Examples of Minimum Maps 65
3.3 Rational and Polynomial Map 68
3.4 Degree of Rational Maps between Balls 72
3.5 Classification of Maps from \mathbb{B}^{2} to \mathbb{B}^{3} 76
3.6 Classification of Maps from \mathbb{B}^{2} With Degree Two 80
3.7 Proof of Theorem 3.6.1 - Part 1 81
3.8 Proof of Theorem 3.6.1 - Part 2 82
3.9 Proof of Theorem 3.6.1 - Part 3 87
3.10 Proof of Theorem 3.6.1 - Part 4 89
4 More Analytic Approaches 91
4.1 Five Facts in a Model Case 91
4.2 Generalization of the Five Facts 92
4.3 How to Construct $F^{* * *}$? 95
4.4 Where is the Condition $\kappa_{0} \leq n-2$ used ? 98
4.5 Structure Theorem For Rank 1 Maps 99
4.6 Proof of the Second Gap Theorem 100
4.7 Rationality Problem 101
5 More Geometric Approaches 105
5.1 Cartan's Moving Frame Theory 105
5.2 Flatness of CR Submanifolds 113
5.3 Definition A, the CR Second Fundamental Form 114
5.4 Definition B, the CR Second Fundamental Form 116
5.5 Definition C, the CR Second Fundamental Form 116
5.6 Definition D, the CR Second Fundamental Form 121
5.7 Geometric Rank And The Second Fundamental Form 124

PREFACE

This lecture notes is an extended version of my lecture series given at the workshop in the Department of Mathematics, Seoul National University, in Seoul in November, 2009.

It surveys the theory of proper holomorphic mappings between balls. This theory was originated from Poincarés work in 1807: any non-constant holomorphic map $f: U \rightarrow V$ satisfying $f\left(U \cap \partial \mathbb{B}^{2}\right) \subset V \partial \mathbb{B}^{2}$ is a map in $\operatorname{Aut}\left(\partial \mathbb{B}^{2}\right)$, where U, V are open subsets of \mathbb{C}^{2}. Over time many mathematicians made contribution to this theory.

In Chapter 1, we introduce some background information.
In Chapter 2 we introduce the first gap theorem, which was initiated from 1979 by Webster, and is an accumulative result by many mathematicians over 20 years.

In Chapter 3, we illustrate a lots of examples of proper holomorphic mappings between balls, from which a general conjecture about gap phenomenon is formulated. All constructed examples seem to be polynomial maps, nevertheless, not every proper rational map between balls can be equivalent to polynomial maps. A criterion, which tells when a proper rational map can be equivalent to a polynomial one, is introduced. To illustrate the method that used to study the classification problem, we first show a new proof for Faran's theorem on classification of maps from \mathbb{B}^{2} to \mathbb{B}^{3}, and then outline how to find complete classification for proper holomorphic rational maps from \mathbb{B}^{2} to \mathbb{B}^{N} with degree 2 .

In Chapter 4, we start with a result on maps from \mathbb{B}^{n} to $\mathbb{B}^{2 n-1}$. We list five main facts in the ingredient of the proof, and discuss its generalization for higher codimensional case. As a result, by using analytic approach, we shall demonstrate applications of these generalizations, including the rationality problems, and the proof of the second gap theorem.

In Chapter 5, besides the analytic approach, we also introduce a geometric approach: the Cartan's moving frame theory in differential geometry, as well as its applications.

The author thanks the Department of Mathematics, Seoul National University, for the wonderful hospitality during the workshop. The author is particularly indebted to Professor Chong-Kyu Han for his kind invitation to attend the workshop. The author also thanks Mr. Yao, Lu who helped to correct some typos in the notes when the author gave lectures in the Capital Beijing Normal University in December, 2009.

Chapter 1

Real Hypersurfaces

1.1 Domains and Their Boundaries

Geometry and analysis on domains in \mathbb{C}^{n} and on their boundaries are closely related. We start with several theorems concerning domains in \mathbb{C}^{n} and their boundaries.

Theorem 1.1.1 [Fe74][B43] Let $D_{1}, D_{2} \subset \mathbb{C}^{n}$ be smooth strongly pseudoconvex domains with C^{∞} boundaries. Then the following statements are equivalent:
(i) There exists a biholomorphic map $f: D_{1} \rightarrow D_{2}$.
(ii) There is a $C^{\infty} C R$ isomorphism $F: \partial D_{1} \rightarrow \partial D_{2}$.

Theorem 1.1.2 (i) [CJ96] If Ω is a bounded simply connected domain in \mathbb{C}^{n+1} with connected smooth spherical real analytic boundary, then Ω is globally biholomorphic to the unit ball \mathbb{B}^{n+1}.
(ii) [HJ98] The "simply connected" condition can be dropped if the boundary is defined by a real polynomial.

One could pass problems in domains into the ones in boundaries. Conversely, one could pass problems in boundaries into the ones in domains.

Siegel upper-half space and Heisenberg hypersurfaces For a domain $D \subset \mathbb{C}^{n}$, its boundary ∂D is a real hypersurface in \mathbb{C}^{n}.
[Example 1.1 A]

1. Let

$$
\mathbb{B}^{n}=\left\{z=\left.\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}| | z\right|^{2}=\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}<1\right\}
$$

be the unit ball. Its boundary

$$
\partial \mathbb{B}^{n}=\left\{z=\left.\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}| | z\right|^{2}=1\right\}
$$

is the unit sphere.
2. Let

$$
\mathbb{H}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Im}(w)>|z|^{2}\right\}
$$

be the Siegel upper-half space. Its boundary

$$
\partial \mathbb{H}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Im}(w)=|z|^{2}\right\}
$$

is the Heisenberg hypersurface. When $n=1, \mathbb{H}^{1}$ is the upper-half plane $\{w \in$ $\mathbb{C} \mid \operatorname{Im}(w)>0\}$ and $\partial \mathbb{H}^{1}=\{w \in \mathbb{C} \mid \operatorname{Im}(w)=0\}$ is the x-axis. Among all (nondegenerate) boundaries of domains in \mathbb{C}^{n} with $n \geq 2$, the most simplest one is the $\partial \mathbb{H}^{n}$.

[Example 1.1 B]

1. More generally, we can define

$$
\mathbb{H}_{\ell}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}\left|\operatorname{Im}(w)>|z|_{\ell}^{2}\right\}\right.
$$

where $|z|_{\ell}^{2}:=-\sum_{j=1}^{\ell}\left|z_{j}\right|^{2}+\sum_{j=\ell+1}^{n-1}\left|z_{j}\right|^{2}$. Its boundary

$$
\begin{equation*}
\partial \mathbb{H}_{\ell}^{n}=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}\left|\operatorname{Im}(w)=|z|_{\ell}^{2}, \quad z \in \mathbb{C}^{n-1}\right\}\right. \tag{1.1}
\end{equation*}
$$

is also called the (Levi) nondegenerate hyperquadric.
Notice that the pair ($\ell, n-1-\ell$) is completely determined by ℓ. Hence, in what follows, for brevity, we call ℓ the signature of the above hypersurface M.
When $\ell=0$, we call $\partial \mathbb{H}_{\ell}^{n}$ strongly pseudoconvex. When $\ell>0$, (1.1) is the model example of a real hypersurface which is Levi nondegenerate but is not strongly pseudoconvex.
2. We can also define

$$
\begin{equation*}
\mathbb{B}_{\ell}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times\left.\mathbb{C}| | z\right|_{\ell} ^{2}+|w|^{2}<1\right\} . \tag{1.2}
\end{equation*}
$$

Its boundary is

$$
\begin{equation*}
\partial \mathbb{B}_{\ell}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times\left.\mathbb{C}| | z\right|_{\ell} ^{2}+|w|^{2}=1\right\} \tag{1.3}
\end{equation*}
$$

Cayley transformation By the Cayley transformation, we mean a biholomorphic map

$$
\begin{equation*}
\Psi_{n}: \mathbb{H}_{\ell}^{n} \rightarrow \mathbb{B}_{\ell}^{n}, \quad \Psi_{n}(z, w)=\left(\frac{2 z}{1-i w}, \frac{1+i w}{1-i w}\right) \tag{1.4}
\end{equation*}
$$

With Ψ_{n} we can identify \mathbb{B}_{ℓ}^{n} with \mathbb{H}_{ℓ}^{n} and identify $\partial \mathbb{H}_{\ell}^{n}$ with $\partial \mathbb{B}_{\ell}^{n}$. To verify this, it suffices to show that $\Psi_{n}: \partial \mathbb{H}_{\ell}^{n} \rightarrow \partial \mathbb{B}_{\ell}^{n}$, i.e., to verify

$$
\begin{equation*}
\left|\frac{2 z}{i+w}\right|_{\ell}^{2}+\left|\frac{i-w}{i+w}\right|^{2}=1, \quad \forall \operatorname{Im}(w)=|z|_{\ell}^{2} \tag{1.5}
\end{equation*}
$$

i.e. to verify that $\forall \operatorname{Im}(w)=|z|_{\ell}^{2}$,
i.e., to verify

$$
4|z|_{\ell}^{2}+2 i w-2 i \bar{w}=0, \quad \forall \operatorname{Im}(w)=|z|_{\ell}^{2}
$$

i.e.,

$$
4|z|_{\ell}^{2}-4 \operatorname{Im}(w)=0, \quad \forall \operatorname{Im}(w)=|z|_{\ell}^{2}
$$

which is trivially true.

Automorphism group By an automorphism, we mean a biholomorphic map $F: \mathbb{B}_{\ell}^{n} \rightarrow$ \mathbb{B}_{ℓ}^{n}. Let us denote by $\operatorname{Aut}\left(\mathbb{B}_{\ell}^{n}\right)$ the group of automorphisms of \mathbb{B}_{ℓ}^{n}. Also we define $\operatorname{Aut}\left(\partial \mathbb{B}_{\ell}^{n}\right)$ where $F \in \operatorname{Aut}\left(\partial \mathbb{B}_{\ell}^{n}\right)$ if $F \in A u t\left(\mathbb{B}_{\ell}^{n}\right)$ such that it maps the boundary $\partial \mathbb{B}_{\ell}^{n}$ onto itself.

We can define $\operatorname{Aut}\left(\mathbb{H}_{\ell}^{n}\right)$ and $\operatorname{Aut}\left(\partial \mathbb{H}_{\ell}^{n}\right)$ similarly. By Cayley transformation, we can identify $\operatorname{Aut}\left(\partial \mathbb{B}_{\ell}^{n}\right)$ with $\operatorname{Aut}\left(\mathbb{H}_{\ell}^{n}\right)$, and identify $\operatorname{Aut}\left(\partial \mathbb{B}_{\ell}^{n}\right)$ with $\operatorname{Aut}\left(\partial \mathbb{H}_{\ell}^{n}\right)$.

The group $\operatorname{Aut}\left(\partial \mathbb{H}_{\ell}^{n}\right)$ is transitive, i.e., for any two points $P, Q \in \partial \mathbb{H}_{\ell}^{n}$, there exists a map $F \in \operatorname{Aut}\left(\partial \mathbb{H}^{n}\right)$ such that $F(Q)=P$. To prove this, we can assume $Q=0$. We write $P=\left(z_{0}, w_{0}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}$, and then we can take

$$
\begin{equation*}
F(z, w)=\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle_{\ell}\right) . \tag{1.6}
\end{equation*}
$$

where $\langle z, w\rangle_{\ell}=-\sum_{j=1}^{\ell} z_{j} w_{j}+\sum_{j=\ell+1}^{n} z_{j} w_{j}$.
For simplicity, we only consider the case where $\ell=0$.

Isotropic subgroup We define

$$
A u t_{0}\left(\partial \mathbb{H}^{n}\right)=\left\{F \in \operatorname{Aut}\left(\partial \mathbb{H}^{n}\right) \mid F(0)=0\right\} .
$$

which is called the isotropic subgroup of $\operatorname{Aut}\left(\partial \mathbb{H}^{n}\right)$. It is known that any $F=(f, g) \in$ $A u t_{0}\left(\partial \mathbb{H}^{n}\right)$ is of the form

$$
\begin{aligned}
& f(z, w)=\frac{\lambda(z+\vec{a} w) U}{1-2 i\langle z, \overline{\vec{a}}\rangle-(r+\langle\vec{a}, \overline{\vec{a}}\rangle) w}, \\
& g(z, w)=\frac{\sigma \lambda^{2} w}{1-2 i\langle z, \overline{\vec{a}}\rangle-(r+\langle\vec{a}, \overline{\vec{a}}\rangle) w}
\end{aligned}
$$

where $\sigma= \pm 1, \lambda>0, r \in \mathbb{R}, \vec{a} \in \mathbb{C}^{n-1}, U$ is an $(n-1) \times(n-1)$ matrix satisfying $\langle z U, \bar{z} \bar{U}\rangle=$ $\sigma\langle z, \bar{z}\rangle, \forall z \in \mathbb{C}^{n}$.

Here we verify such $(f, g) \in A u t_{0}\left(\partial \mathbb{H}^{n}\right)$, i.e., to verify

$$
\operatorname{Im}(g)=|f|^{2}, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

i.e. to verify that for any $\operatorname{Im}(w)=|z|^{2}$,

$$
\begin{aligned}
& \frac{\sigma \lambda^{2} w}{1-2 i\langle z, \overline{\vec{a}}\rangle-(r+i\langle\vec{a}, \overline{\vec{a}}\rangle) w}-\frac{\sigma \lambda^{2} \bar{w}}{1+2 i\langle\bar{z}, \vec{a}\rangle-(r-i\langle\vec{a}, \overline{\vec{a}}\rangle) \bar{w}} \\
& =2 i\left|\frac{\lambda(z+\vec{a} w) U}{1-2 i\langle z, \vec{a}\rangle-(r+i\langle\vec{a}, \overline{\vec{a}}\rangle) w}\right|^{2}
\end{aligned}
$$

i.e., to verify

$$
\begin{align*}
& \sigma \lambda^{2} w[1+2 i\langle\bar{z}, \vec{a}\rangle-(r-i\langle\vec{a}, \overline{\vec{a}}\rangle) \bar{w}]-\sigma \lambda^{2} \bar{w}[1-2 i\langle z, \overline{\vec{a}}\rangle-(r+i\langle\vec{a}, \overline{\vec{a}}\rangle) w] \tag{1.7}\\
& =2 i|\lambda(z+\vec{a} w) U|^{2}, \quad \forall \operatorname{Im}(w)=|z|^{2} .
\end{align*}
$$

Notice

$$
|\lambda(z+\vec{a} w) U|^{2}=\langle\lambda(z+\vec{a} w) U, \lambda(\bar{z}+\overline{\bar{a}} \bar{w}) \bar{U}\rangle
$$

Motivated from the equation $\operatorname{Im}(w)=|z|^{2}$, we define the weighted degree:

$$
\begin{equation*}
\operatorname{deg}\left(z^{j}\right)=\operatorname{deg}\left(\bar{z}^{j}\right)=j \quad \text { and } \quad \operatorname{deg}\left(w^{k}\right)=\operatorname{deg}\left(\bar{w}^{k}\right)=2 k . \tag{1.8}
\end{equation*}
$$

To prove the equality in (1.7), we first prove the equality involving all terms of weighted degree 2 (i.e., the $z^{2}, z \bar{z}, \bar{z}^{2}, w$ and \bar{w} terms) in (1.7):

$$
\sigma \lambda^{2} w-\sigma \lambda^{2} \bar{w}=2 i \lambda^{2}\langle z U, \bar{z} \bar{U}\rangle, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

Since U is unitary, we need to show

$$
\sigma \lambda^{2} w-\sigma \lambda^{2} \bar{w}=2 i \lambda^{2} \sigma\langle z, \bar{z}\rangle, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

which is true.
Secondly, we prove the equality involving all terms of weighted degree 3 (i.e., the $z w, \overline{z w}$, $\bar{z} w$ and $z \bar{w}$ terms) in (1.7):

$$
\sigma \lambda^{2} w 2 i\langle\bar{z}, \vec{a}\rangle-\sigma \lambda^{2} \bar{w}(-2 i)\langle z, \overline{\vec{a}}\rangle=2 i\langle\lambda z U, \lambda \overline{\bar{a}} \bar{w} \bar{U}\rangle+2 i\langle\lambda \vec{a} w U, \quad \lambda \bar{z} \bar{U}\rangle, \quad \forall \operatorname{Im}(w)=|z|^{2},
$$

Since U is unitary, the above is equivalent to

$$
\sigma \lambda^{2} w 2 i\langle\bar{z}, \vec{a}\rangle-\sigma \lambda^{2} \bar{w}(-2 i)\langle z, \overline{\vec{a}}\rangle=2 i \lambda^{2} \sigma\langle z, \overline{\vec{a}} \bar{w}\rangle+2 i \lambda^{2} \sigma\langle\vec{a} w, \bar{z}\rangle, \quad \forall \operatorname{Im}(w)=|z|^{2},
$$

which is true.
Finally we prove the equality involving all terms of weighted degree 4(i.e., the $w \bar{w}$ terms) in (1.7), which is the highest weighted degree case:

$$
-\sigma \lambda^{2}\left(r-i|\vec{a}|^{2}\right)|w|^{2}+\sigma \lambda^{2}\left(r+i|\vec{a}|^{2}\right)|w|^{2}=2 i\langle\lambda \vec{a} w U, \lambda \overline{\vec{a}} \bar{w} \bar{U}\rangle, \quad \forall \operatorname{Im}(w)=|z|_{\ell}^{2},
$$

Since U is unitary, divided by $|w|^{2}$, the above is equivalent to

$$
-\sigma \lambda^{2}\left(r-i|\vec{a}|^{2}\right)+\sigma \lambda^{2}\left(r+i|\vec{a}|^{2}\right)=2 i \sigma \lambda^{2}|\vec{a}|^{2} \quad \forall \operatorname{Im}(w)=|z|^{2},
$$

which is true.

1.2 Levi nondegenerate real hypersurfaces

Defining functions Let M be a smooth real hypersurface of \mathbb{C}^{n}, i.e., M is a subset of \mathbb{C}^{n} such that for any point $p \in M$ there exists a neighborhood U of p and a smooth real-valued function r defined in U such that

$$
M \cap U=\left\{(z, w) \in U \cap\left(\mathbb{C}^{n-1} \times \mathbb{C}\right) \mid r(z, w, \bar{z}, \bar{w})=0\right\}
$$

with $d r \neq 0$ in U. The function r is called a defining function of M at p. Notice that defining function is not unique. Any $h r$ is also a defining function where h is smooth real-valued function without zero.
[Example 1.2 A] For $\partial \mathbb{H}^{n}$, we can take a defining function

$$
r(z, w, \bar{z}, \bar{w})=\operatorname{Im}(w)-|z|^{2}=\frac{w-\bar{w}}{2 i}-\sum_{j=1}^{n-1} z_{j} \overline{z_{j}}
$$

[Example 1.2 B] If $r(z, \bar{z})$ is real analytic near $0 \in \mathbb{C}^{n}$, we can write it as a power series

$$
r(z, \bar{z})=\sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \overline{z^{\beta}}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), z^{\alpha}=z_{1}^{\alpha_{1}} \cdot \ldots \cdot z_{n}^{\alpha_{n}}$, and $\bar{z}^{\alpha}={\overline{z_{1}}}^{\alpha_{1}} \cdot \ldots \cdot{\overline{z_{n}}}^{\alpha_{n}}$. Then r is real-valued if and only if

$$
\sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \overline{z^{\beta}}=\sum_{\alpha, \beta} \overline{c_{\alpha, \beta}} \overline{z^{\alpha}} z^{\beta}, \quad \forall z \text { near } 0
$$

i.e.,

$$
r(z, \bar{z})=\bar{r}(\bar{z}, z), \quad \forall z \text { near } 0,
$$

i.e.,

$$
\begin{equation*}
c_{\alpha \beta}=\overline{c_{\beta, \alpha}}, \quad \forall \alpha, \beta \tag{1.9}
\end{equation*}
$$

We denote by $T M$ the tangent bundle of M, and by $\mathbb{C} T M=\mathbb{C} \otimes T M$ the complexification of the tangent bundle of M. We define

$$
T^{1,0} M=\mathbb{C} T M \cap T^{1,0} \mathbb{C}^{n}
$$

which is called the bundle of $(1,0)$ vectors on M. Similarly we can define $T^{0,1} M=\mathbb{C} T M \cap$ $T^{0,1} \mathbb{C}^{n}$.

First, after a local change of coordinates, we assume that

$$
p=0, T_{0} M=\{v=0\}, T_{0}^{(1,0)} M=\{w=0\}
$$

where we use $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$ for the coordinates of \mathbb{C}^{n} and write $w=u+i v$. Then M near 0 is the graph of the function

$$
v=\rho(z, \bar{z}, u) \quad \text { with } \quad \rho(0)=0 \text { and } d \rho(0)=0 .
$$

Since ρ is real-valued, by (1.9), we can write ρ as Taylor series

$$
\rho=\sum_{k, \ell=1}^{n-1} a_{k \ell} z_{k} \overline{z_{\ell}}+\sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}+\sum_{k, \ell=1}^{n-1} \overline{b_{k \ell}} \overline{\overline{z_{k}} z_{\ell}}+\sum_{k=1}^{n-1} b_{k} z_{k} u+\sum_{k=1}^{n-1} \overline{b_{k} z_{k}} u+c u^{2}+O(3),
$$

where $c \in \mathbb{R}, O(3)=O\left(|(z, w)|^{3}\right)=O\left(|(z, u)|^{3}\right), A:=\left(a_{k \bar{\ell}}\right)$ is a Hermitian matrix. Then $v=\rho(z, \bar{z}, u)$ can be written as:

$$
\operatorname{Im}(w)=2 \operatorname{Re}\left(\sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}+\sum_{k=1}^{n-1} b_{k} z_{k} u\right)+\sum_{k, \ell=1}^{n-1} a_{k \bar{\ell}} z_{k} \overline{z_{\ell}}+c u^{2}+O(3)
$$

Since $\operatorname{Re}(z)=\operatorname{Im}(i z)$, the above becomes

$$
\operatorname{Im}(w)=2 \operatorname{Im}\left(i \sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}+i \sum_{k=1}^{n-1} b_{k} z_{k} u\right)+\sum_{k, \ell=1}^{n-1} a_{k \bar{\ell}} z_{k} \overline{z_{\ell}}+c u^{2}+O(3)
$$

i.e.,

$$
\operatorname{Im}\left(w-2 i \sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}-2 i \sum_{k=1}^{n-1} b_{k} z_{k} u\right)-c u^{2}=\sum_{k, \ell=1}^{n-1} a_{k \bar{\ell}} z_{k} \overline{z_{\ell}}+O(3)
$$

Since $w=u+i v=u+i \rho(z, \bar{z}, u)=u+O(2)$, we have $u=w+O(2)=\bar{w}+O(2)$ and $u^{2}=u(w+O(2))=u w+O(3)=w^{2}+O(3)=\bar{w}^{2}+O(3)$ so that $u^{2}=\frac{w^{2}+\bar{w}^{2}}{2}+O(3)=$ $\operatorname{Re}\left(w^{2}\right)+O(3)=\operatorname{Im}\left(i w^{2}, O(3)\right)$ and that

$$
\operatorname{Im}\left(w-2 i \sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}-2 i \sum_{k=1}^{n-1} b_{k} z_{k} w-i c w^{2}\right)=\sum_{k, \ell=1}^{n-1} a_{k \bar{\ell}} z_{k} \overline{z_{\ell}}+O(3)
$$

Then we define a local holomorphic coordinate change

$$
\left\{\begin{array}{l}
z^{\prime}=z \\
w^{\prime}=w-2 i \sum_{k, \ell=1}^{n-1} b_{k \ell} z_{k} z_{\ell}-2 i \sum_{k=1}^{n-1} b_{k} z_{k} w-c i w^{2},
\end{array}\right.
$$

In the $\left(z^{\prime}, w^{\prime}\right)$ coordinates, M can be expressed as the graph of the following function:

$$
v^{\prime}=\sum a_{\left.k^{\prime}{ }^{\prime} z_{k}^{\prime} \overline{z_{l}^{\prime}}+O\left(\left|\left(z^{\prime}, w^{\prime}\right)\right|^{3}\right)=z^{\prime} A{\overline{z^{\prime}}}^{t}+O\left(\left|\left(z^{\prime}, w^{\prime}\right)\right|^{3}\right)\right) .}
$$

where $A=\left(a_{k^{\prime}} \overline{l^{\prime}}\right)=\bar{A}^{t}$ is a Hermitian $(n-1) \times(n-1)$ matrix and $w^{\prime}=u^{\prime}+i v^{\prime}$. Write

$$
A=\Gamma\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \lambda_{n-1}
\end{array}\right) \bar{\Gamma}^{t}=\Gamma \Lambda \bar{\Gamma}^{t}
$$

where Γ is a certain non-singular $(n-1) \times(n-1)$ matrix and Λ is a diagonal matrix. Then

$$
v^{\prime}=z^{\prime} \Gamma \Lambda{\overline{\left(z^{\prime} \Gamma\right)}}^{t}+O\left(\left|\left(z^{\prime}, w^{\prime}\right)\right|^{3}\right)
$$

Let

$$
\left\{\begin{array}{l}
z^{\prime \prime}=z^{\prime} \Gamma \\
w^{\prime \prime}=w^{\prime}
\end{array}\right.
$$

We have

$$
v^{\prime \prime}=\sum_{j=1}^{n-1} \lambda_{j}\left|z_{j}^{\prime \prime}\right|^{2}+O\left(\left|\left(z^{\prime \prime}, w^{\prime \prime}\right)\right|^{3}\right)
$$

where $w^{\prime \prime}=u^{\prime \prime}+i v^{\prime \prime}$. We say that $p=0$ is a Levi nondegenerate point of M if $\lambda_{j} \neq 0$ for each j (cf. Example 1.2 B). ${ }^{1}$

Assume in what follows that M is Levi nondegenerate at 0 . Then without loss of generality, we can assume that

$$
v^{\prime \prime}=\sum_{j=1}^{n-1} \epsilon_{j}\left|\sqrt{\left|\lambda_{j}\right|} z_{j}^{\prime \prime}\right|^{2}+O\left(\left|\left(z^{\prime \prime}, w^{\prime \prime}\right)\right|^{3}\right)
$$

where $\epsilon_{j}=-1$ if $j \leq \ell$; and $\epsilon_{j}=1$ if $j \geq \ell+1$. Let

$$
\left\{\begin{array}{l}
z_{j}^{\prime \prime \prime}=\sqrt{\mid \lambda_{j}} \mid z_{j}^{\prime \prime} \\
w^{\prime \prime \prime}=w^{\prime \prime}
\end{array}\right.
$$

Then in the $\left(z^{\prime \prime \prime}, w^{\prime \prime \prime}\right)$ coordinates, M is the graph of the following function:

$$
v^{\prime \prime \prime}=\sum_{j=1}^{n-1} \epsilon_{j}\left|z_{j}^{\prime \prime \prime}\right|^{2}+O(3)
$$

Still write z for $z^{\prime \prime \prime}$ and w for $w^{\prime \prime \prime}$. Then by changing some order of indices, M is defined by:

$$
\begin{equation*}
v=|z|_{\ell}^{2}+O\left(|(z, w)|^{3}\right) \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
|z|_{\ell}^{2}:=-\sum_{j=1}^{\ell}\left|z_{j}\right|^{2}+\sum_{j=\ell+1}^{n-1}\left|z_{j}\right|^{2} \tag{1.11}
\end{equation*}
$$

[^0]In the above expression and for the rest of this section, when $\ell=0$, we regard the first term after the equality sign to be zero. Replacing (z, w) by $\left(z_{\ell+1}, \cdots, z_{n-1}, z_{1}, \cdot, z_{\ell},-w\right)$ if necessary, we can assume that $\ell \leq \frac{n-1}{2}$. The integer ℓ (sometimes the pair $(\ell, n-1-\ell)$) is called the signature of M at 0 , which is a holomorphic invariant.

Therefore, among all Levi nondegenerate real hypersurfaces in \mathbb{C}^{n}, the nondegenerate hyperquadrics $\partial \mathbb{H}_{\ell}^{n}$ in Example 1.1 B above are the most simplest one.

1.3 Segre family and Segre variety

Let $M \subset \mathbb{C}^{n}$ be a local real analytic hypersurface containing 0 . Let U be a small neighborhood of 0 in \mathbb{C}^{n}, and $M=\{z \in U \mid r(z, \bar{z})=0\}$, with $d r$ never vanish, where $r(z, \bar{z})$ is a real analytic function defined on U.

Let $\mathcal{M}=\{(z, \zeta) \in U \times \operatorname{Conj}(U) \mid r(z, \zeta)=0\}$ be Segre family of $M —$ the complexification of M-which is also complex manifold of complex dimension $2 n-1$ in $\mathbb{C}^{n} \times \mathbb{C}^{n}$, where $\operatorname{Conj}(U)=\{\bar{z} \mid z \in U\}$. Here we may shrink U if necessary, so that the power series $r(z, \zeta)$ is convergent. Sometimes, we denote it as $\mathcal{M}=\{(z, w) \in U \times U \mid r(z, \bar{w})=0\}$.

Write r as a local power series near 0 :

$$
\begin{equation*}
r(z, \bar{z})=\sum_{I, J} r_{I J} z^{I} \bar{z}^{J} \tag{1.12}
\end{equation*}
$$

Since r is real-valued, we have

$$
\begin{equation*}
r(z, \bar{z})=\overline{r(z, \bar{z})}=\bar{r}(\bar{z}, z), \quad \forall z \tag{1.13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
r_{I J}=\overline{r_{J I}}, \quad \forall I, J \tag{1.14}
\end{equation*}
$$

and then

$$
\begin{equation*}
r(z, \bar{w})=\overline{r(w, \bar{z})}=\bar{r}(\bar{w}, z) . \tag{1.15}
\end{equation*}
$$

Lemma 2.3 (i) \mathcal{M} is independent of the choice of the defining function r of M.
(ii) A function holomorphic on \mathcal{M} which vanishes on M also vanishes on any connected open subset of \mathcal{M} which contains a point of M.
(iii) Let $f: U \rightarrow U^{\prime}$ be a biholomorphic map where $U, U^{\prime} \subset \mathbb{C}^{n+1}$ are open subsets. Suppose f maps M into another real hypersurface M^{\prime} with real analytic defining function r^{\prime}. Denote \mathcal{M} and \mathcal{M}^{\prime} be the corresponding Segre families of M and M^{\prime}, respectively.

Denote $F(z, \bar{w}):=(f(z), \bar{f}(\bar{w}))$, called the analytic continuation. Then $F(\mathcal{M}) \subseteq \mathcal{M}^{\prime}$. When $f(M)=M^{\prime}$, we have $F(\mathcal{M})=\mathcal{M}^{\prime}$.

Proof (i) If r^{\prime} is another defining function of M, then $r^{\prime}(z, \bar{z})=s(z, \bar{z}) r(z, \bar{z})$, where s is some real analytic function on U which never vanish on U, where U is sufficiently small.
(ii) Consider the power series of $r(z, \bar{z})$ and $r(z, \zeta)$ and use the property of real analytic functions.
(iii) We have

$$
\begin{equation*}
r^{\prime}(f(z), \bar{f}(\bar{w}))=s(z, \bar{w}) r(z, \bar{w}) \tag{1.16}
\end{equation*}
$$

with $s \neq 0$ as in the proof of (i). From this (iii) follows.
[Example 1.3 A] Let $\partial \mathcal{H}^{n}$ be the Segre family of $\partial \mathbb{H}^{n}$. Let us consider the automorphism group $\operatorname{Aut}\left(\partial \mathcal{H}^{n}\right)$. It is proved in [HJ07] that if Φ is a local holomorphic Segre selfisomorphism of $\left(\partial \mathcal{H}^{n}, 0\right)$, then Φ is of the following form:

$$
\begin{aligned}
F(z, \xi)=(S(z), T(\xi)= & \left(S_{1}(z), \ldots, S_{n-1}(z), S_{n}(z), T_{1}(\xi), \ldots, T_{n-1}(\xi), T_{n}(\xi)\right) \\
= & \left(\widetilde{S}(z), S_{n}(z), \widetilde{T}(\xi), T_{n}(\xi)\right)
\end{aligned}
$$

where

$$
\begin{align*}
\widetilde{S}(z) & =\frac{\lambda\left(z^{\prime}+\vec{a} w\right) U}{1-2 i\left\langle z^{\prime}, \vec{e}\right\rangle+e_{n} w}, \quad S_{n}(z)=\frac{\lambda w}{1-2 i\left\langle z^{\prime}, \vec{e}\right\rangle+e_{n} w}, \tag{1.17}\\
\widetilde{T}(\xi) & =\frac{\left(\xi^{\prime}+\vec{e} \eta\right) V}{1+2 i\left\langle\xi^{\prime}, \vec{a}\right\rangle+\left(e_{n}+2 i\langle\vec{e}, \vec{a}\rangle\right) \eta}, \tag{1.18}\\
T_{n}(\xi) & =\frac{\lambda \eta}{1+2 i\left\langle\xi^{\prime}, \vec{a}\right\rangle+\left(e_{n}+2 i\langle\vec{e}, \vec{a}\rangle\right) \eta} \tag{1.19}
\end{align*}
$$

where U, V are non-singular $(n-1) \times(n-1)$ matrices of complex numbers with $U \cdot V^{t}=\mathrm{Id}$, $\vec{a}=\left(a_{1}, \ldots, a_{n-1}\right), \vec{e}=\left(e_{1}, \ldots, e_{n-1}\right) \in \mathbb{C}^{n-1}, \lambda \in \mathbb{C}^{*}, e_{n} \in \mathbb{C},\langle\vec{x}, \vec{y}\rangle=\vec{x} \cdot \vec{y}^{t}$ for any $\vec{x}, \vec{y} \in \mathbb{C}^{n-1}$. Also, F is uniquely determined by the data $\lambda, \vec{a}, \vec{e}, e_{n}, U$.

Let $M \subset \mathbb{C}^{n}$ be a local smooth real hypersurface such that $M \cap U=\{z \in U \mid r(z, \bar{z})=0\}$ where r is a defining function. For any $w \in U$, we define its Segre variety with respect to M by

$$
Q_{w}:=\{z \in U \mid r(z, \bar{w})=0\} .
$$

[Example 1.3 B] Consider Heisenberg hypersurface $M=\partial \mathbb{H}^{n}$ which is defined by

$$
r(z, \bar{z}):=\frac{w-\bar{w}}{2 i}-\sum_{j=1}^{n-1}\left|z_{j}\right|^{2} .
$$

Let $p=\left(z_{0}, w_{0}\right) \in \partial \mathbb{H}^{n}$. Then the Segre variety

$$
Q_{p}=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} \left\lvert\, \frac{w-\overline{w_{0}}}{2 i}-\sum_{j=1}^{n-1} z_{j} \overline{z_{0 j}}=0\right.\right\}
$$

Q_{p} is a complex hyperplane, which can be identified with the holomorphic tangent space to $\partial \mathbb{H}^{n}$ at p. When $p=0, Q_{0}=\left\{(z, 0) \in \mathbb{C}^{n-1} \times \mathbb{C}\right\}$. Locally p determines Q_{p}; conversely, Q_{p} determines p uniquely.

The most important property for Q_{w} is its invariance property.
Proposition 3.3 (1) $r(z, \bar{w})=\bar{r}(\bar{w}, z)=\overline{r(w, \bar{z})}$.
(2) $z \in Q_{w} \Leftrightarrow w \in Q_{z}$.
(3) $z \in M \Leftrightarrow z \in Q_{z}$.
(4) Q_{z} is invariant under local biholomorphisms, i.e., if f is biholomorphic map such that $f(M)=M^{\prime}$, then $f\left(Q_{w}\right)=Q_{f(w)}^{\prime}$.

Proof (1) Since r is real, $r(z, \bar{w})=\sum a_{I J} z^{I} \bar{w}^{J}=\sum \overline{a_{I J}} z^{I} w^{J}$, where $a_{I J}=\overline{a_{J I}}, \forall I, J$. Then $\left.\bar{r}(\bar{w}, z)=\sum \overline{a_{I J}} \overline{w^{I}} z^{J}\right)=\sum a_{a_{I I}} z^{J} \overline{w^{I}}=\sum a_{I J} z^{I} \overline{w^{J}}$ and $\overline{r(w, \bar{z})}=\overline{\sum a_{I J} w^{I} \overline{z^{J}}}=$ $\sum \overline{a_{I J} w^{I}} z^{J}=\sum a_{J I} z^{J} \overline{w^{I}}=\sum a_{I J} z^{I} \overline{w^{J}}$.
(2) We apply (1) to see $z \in Q_{w} \Leftrightarrow r(z, \bar{w})=0=\overline{r(w, \bar{z})} \Leftrightarrow w \in Q_{z}$.
(3) $z \in M \Leftrightarrow r(z, \bar{z})=0 \Leftrightarrow z \in Q_{z}$.
(4) Write $M=\{z \mid r(z, \bar{z})=0\}, M^{\prime}=\left\{z^{\prime} \mid r^{\prime}\left(z^{\prime}, \overline{z^{\prime}}\right)=0\right\}, z^{\prime}=f(z)$ and $w^{\prime}=f(w)$. Assume that $r=f \circ r^{\prime}$ is a defining function of M. Then $Q_{f(w)}=\left\{z^{\prime} \mid r^{\prime}\left(z^{\prime}, \overline{f(w)}\right)=0\right\}=$ $\left\{f(z) \mid r^{\prime}(f(z), \overline{f(w)})=0\right\}=f(\{z \mid r(z, \bar{w})=0\})=f\left(Q_{w}\right)$.

1.4 CR manifolds

Foundation of CR geometry CR geometry originated from a work by Poincaré in 1907 below. N. Tanaka [T62] extended this result to high dimensional case.

Theorem 1.4.1 (Poincaré [P07]) Any non-constant holomorphic map $f: U \rightarrow V$ satisfying $f\left(U \cap \partial \mathbb{B}^{2}\right) \subset V \cap \partial \mathbb{B}^{2}$ is a map in Aut $\left(\partial \mathbb{B}^{2}\right)$, where U, V are open subsets of \mathbb{C}^{2}.

Proof:(Sketch) Assume the local map f is biholomorphic, otherwise shrinking U. Since $f\left(Q_{w}\right) \subset Q_{f(w)}$ where Q_{w} is the Segre variety of $\partial \mathbb{B}^{n}, f$ maps hyperplanes into hyperplanes. By the fundamental theorem of classical projective geometry, f must be projective linear transformation between $\mathbb{C P}^{n}$. Therefore f must be linear fractional.

Poincaré-Tanaka theorem could be regarded as a CR analogue of the following classical Liouville's Conformality Theorem. In the Euclidean space \mathbb{E}^{n} with $n \geq 3$, the only conformal mappings are inversions, similarity transformations, and congruence transformations. More precisely, let U, V be open subsets in \mathbb{R}^{n} with $n \geq 3$, equipped with the flat metric ω, and $f: U \rightarrow V$ a smooth map. Then f is conformal (i.e., if $f^{*}(\omega)=e^{u} \omega$ for some continuous function u) if and only if f is a Mobius transformation: A composition of the following type of transformations: (i) translations, (ii) rotations, (iii) scalings and inversions.

By E. Cartan [Ca32]-Chern-Moser[CM74]'s work, complete invariants for local Levi nondegenerate real hypersurfaces are constructed.

These two pieces of work laid down the foundation of CR geometry.

CR manifolds

[Example 1.4 A$] \quad$ Let M be a smooth real hypersurface in \mathbb{C}^{n}. For any $p \in M$, we define a complex vector space

$$
\mathcal{V}_{p}:=\mathbb{C} T_{p} M \cap T_{p}^{0,1} \mathbb{C}^{n}
$$

The complex dimension $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=n-1$ for any point $p \in M$. Then $\mathcal{V}=\cup_{p \in M} \mathcal{V}_{p}$ defines a subbundle of $\mathbb{C} T M$ satisfying $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$ and $\mathcal{V} \cap \overline{\mathcal{V}}=\{0\}$ where $\overline{\mathcal{V}}=: \mathbb{C} T M \cap T^{1,0}$.

Such M is called a CR manifold in \mathbb{C}^{n} with CR dimension $n-1$. The bundle \mathcal{V} is called a $C R$ structure (bundle) on the manifold M . The complex dimension $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}$, independent of p, is called the $C R$ dimension. A section of \mathcal{V} is called a $C R$ vector field over M.

Let us find a basis of CR vectors fields over M as follows.
Recall a real hypersurface M in \mathbb{R}^{n} defined by $\rho(x)=0$. Let $\gamma:[0,1] \rightarrow M, t \mapsto \gamma(t)=$ $\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$, be any curve insider M. Then $\rho(\gamma(t))=0, \forall t \in[0,1]$. By the chain rule, $\sum_{j=1}^{n} \frac{\partial \rho}{\partial x_{j}} \frac{d \gamma_{j}}{d t}=0, \forall t \in[0,1]$. Then the vector $\left(\frac{\partial \rho}{\partial x_{1}}, \ldots, \frac{\partial \rho}{\partial x_{n}}\right) \perp T(M)$, a normal vector. Let $L=\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}$. Then $\sum_{j=1}^{n} b_{j} \frac{\partial \rho}{\partial x_{j}}=0$ iff $\left(b_{1}, \ldots, b_{n}\right) \perp\left(\frac{\partial \rho}{\partial x_{1}}, \ldots, \frac{\partial \rho}{\partial x_{n}}\right)$ iff L is a tangent vector of M.

Now consider a real hypersurface M in \mathbb{C} defined by $\rho(z, \bar{z})=0$. We regard $\mathbb{C}^{n}=\mathbb{R}^{2 n}$ and (z, \bar{z}) as a basis of vectors of $\mathbb{R}^{2 n}$ over the field \mathbb{R}. Let $L=\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial z_{j}}+\sum_{k=1}^{n} c_{k} \frac{\partial}{\partial \bar{z}_{k}}$. Then L is a tangent vector of M if and only if

$$
\sum_{j=1}^{n} b_{j} \frac{\partial \rho}{\partial z_{j}}+\sum_{k=1}^{n} c_{k} \frac{\partial \rho}{\partial \overline{z_{k}}}=0 .
$$

Consequently, for a $(1,0)$-vector $L_{1}=\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial z_{j}}$, it is a tangent vector of M if and only if

$$
\sum_{j=1}^{n} b_{j} \frac{\partial \rho}{\partial z_{j}}=0
$$

For a $(0,1)$-vector $L_{2}=\sum_{k=1}^{n} c_{k} \frac{\partial}{\partial \overline{z_{k}}}$, it is a tangent vector of M if and only if

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k} \frac{\partial \rho}{\partial \overline{z_{k}}}=0 \tag{1.20}
\end{equation*}
$$

Let M locally be defined by $\rho=v-\phi(z, \bar{z}, u)=0$ near 0 where (z, w) is holomorphic coordinates of \mathbb{C}^{n} and $w=u+i v$. Define

$$
\begin{equation*}
\overline{L_{j}}=\frac{\partial}{\partial \bar{z}_{j}}-2 i \frac{\phi_{\overline{z_{j}}}}{1+i \phi_{u}} \frac{\partial}{\partial \bar{w}}, \quad 1 \leq j \leq n \tag{1.21}
\end{equation*}
$$

where we denote $\phi_{\overline{z_{j}}}=\frac{\partial \phi}{\partial \bar{z}_{j}}$ and $\phi_{u}=\frac{\partial \phi}{\partial u}$. In fact, as we did in (1.20), we just need to verify that $\overline{L_{j}}(\rho)=0$ where $\rho=\frac{w-\bar{w}}{2 i}-\phi\left(z, \bar{z}, \frac{w+\bar{w}}{2}\right)$. Then

$$
\begin{aligned}
& \overline{L_{j}}(\rho)=\left(\frac{\partial}{\partial \bar{z}_{j}}-2 i \frac{\phi_{\overline{z_{j}}}}{1+i \phi_{u}} \frac{\partial}{\partial \bar{w}}\right)\left(\frac{w-\bar{w}}{2 i}-\phi\left(z, \bar{z}, \frac{w+\bar{w}}{2}\right)\right) \\
& =-\phi_{\overline{z_{j}}}-2 i \frac{\phi_{\overline{z_{j}}}}{1+i \phi_{u}}\left(-\frac{1}{2 i}-\phi_{u} \frac{1}{2}\right)=0 .
\end{aligned}
$$

$\left\{\bar{L}_{1}, \ldots, \overline{L_{n-1}}\right\}$ form a basis for the CR bundle \mathcal{V}.
A CR manifold is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in \mathbb{C}^{n}. More precisely, a CR manifold is a differentiable manifold M together with a subbundle \mathcal{V} of the complexified tangent bundle $\mathbb{C} T M=T M \otimes \mathbb{C}$ such that

$$
[\mathcal{V}, \mathcal{V}] \subseteq \mathcal{V}, \text { and } \mathcal{V} \cap \overline{\mathcal{V}}=\{0\}
$$

The bundle \mathcal{V} is called a $C R$ structure on the manifold $\mathrm{M} . \mathcal{V} \oplus \overline{\mathcal{V}}$ is called the complex tangent bundle of M. The complex dimension $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}$, independent of p, is called the $C R$ dimension. A section of \mathcal{V} is called a $C R$ vector field over M. A C^{1} - smooth function f is called a $C R$ function if it locally annihilated by any CR vector field. A CR mapping is a smooth mapping F between CR manifolds $\left(M, \mathcal{V}_{M}\right)$ and $\left(N, \mathcal{V}_{N}\right)$ such that $d f\left(\mathcal{V}_{M}\right) \subseteq\left(\mathcal{V}_{N}\right)$.
[Example 1.4 B] Let $M=\partial \mathbb{H}^{n} \subset \mathbb{C}^{n}$ be the Heisenberg hypersurface. We can take a defining function

$$
\rho(z)=\operatorname{Im}(w)-|z|^{2}=\frac{w-\bar{w}}{2 i}-\sum_{j=1}^{n-1}\left|z_{j}\right|^{2}
$$

of $\partial \mathbb{H}^{n}$. From Example 1.4 A, $\phi=|z|^{2}$ so that $\phi_{\overline{z_{j}}}=z_{j}$ and $\phi_{u}=0$, and that

$$
\overline{L_{j}}:=\frac{\partial}{\partial \overline{z_{j}}}-2 i z_{j} \frac{\partial}{\partial \bar{w}}, \quad 1 \leq j \leq n-1
$$

be a basis of $\mathcal{V}=\mathbb{C} T^{0,1}\left(\partial \mathbb{H}{ }^{n}\right)$, and

$$
L_{j}:=\frac{\partial}{\partial z_{j}}+2 i \overline{z_{j}} \frac{\partial}{\partial w}, \quad 1 \leq j \leq n-1
$$

be a basis of $\overline{\mathcal{V}}=\mathbb{C} T^{1,0}\left(\partial \mathbb{H}{ }^{n}\right)$.
Also, from Example 1.4 A, the following vector field

$$
T=\frac{\partial}{\partial w}+\frac{\partial}{\partial \bar{w}}
$$

is a tangent vector field of M. Such T is a real vector, i.e., $\bar{T}=T . T$ is called a Reeb vector field. The vector fields $\left\{L_{j}, \overline{L_{j}}, T\right\}_{1 \leq j \leq n-1}$ form a basis of the tangent vector bundle $T(M)$.
[Example 1.4 C] Let M be a smooth real submanifold in \mathbb{C}^{n} of real codimension d. If $d=1$, it is the hypersurface case (see Example 1.4 A). Let us consider $d>1$. Then for any point $p \in M$, there is an open subset U of \mathbb{C}^{n} such that

$$
M \cap U=\left\{z \in U \mid \rho_{1}(z, \bar{z})=0, \ldots, \rho_{d}(z, \bar{z})=0\right\}
$$

where $\rho=\left(\rho_{1}, \ldots, \rho_{d}\right)$ is a real-valued smooth function defined on U such that $d \rho_{1}(z), \ldots$, $d \rho_{d}(z)$ are linearly independent $\forall z \in U .{ }^{2}$

We define a complex vector space

$$
\mathcal{V}_{p}:=\mathbb{C} T_{p} M \cap T_{p}^{0,1} \mathbb{C}^{n}
$$

[^1]When $d=1$, the complex dimension $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=n-1$ is independent of $p \in M$. However, when $d>1, \operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}$ may depend on $p \in M$. Let us put a condition that $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=$ constant. Then $\mathcal{V}=\cup_{p \in M} \mathcal{V}_{p}$ defines a subbundle of $\mathbb{C} T M$ satisfying $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$ and $\mathcal{V} \cap \overline{\mathcal{V}}=\{0\}$. Then M is a CR manifold in \mathbb{C}^{n} with CR dimension $\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}$.

Remarks:

1. A CR manifold defined in Example 1.4 A or 1.4 C is called an embedded $C R$ manifold, while a CR manifold (without mention of \mathbb{C}^{n}) is called an abstract $C R$ manifold.
2. For an abstract CR manifold M, when the CR dimension $=n-1$, or codimension 1 , M is called a $C R$ manifold of hypersurface type.
3. For any CR manifold, the complex tangent bundle $\mathcal{V} \oplus \overline{\mathcal{V}}$ is a subbundle of complex codimensional d in $\mathbb{C} T M$.
4. For a CR manifold $M \subset \mathbb{C}^{n}$ as in Example 1.4 A, its CR dimension can be calculated by the following formula:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=n-\operatorname{rank}_{\mathbb{C}}\left(\frac{\partial \rho_{k}}{\partial \overline{z_{j}}}(p, \bar{p})\right)_{1 \leq j \leq n, 1 \leq k \leq d} \tag{1.22}
\end{equation*}
$$

In particular, by the formula above, for a real hypersurface $M=\{\rho(z, \bar{z})=0\}$, its CR dimension

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=n-\operatorname{rank}_{\mathbb{C}}\left(\frac{\partial \rho}{\partial \overline{z_{j}}}(p, \bar{p})\right)_{1 \leq j \leq n}=n-1
$$

always holds.
[Example 1.4 D] Let M be a complex manifold. Let $\mathcal{V}=T^{0,1} M$ be a subbundle of $\mathbb{C} T M$. Then the CR dimension $=n, \mathcal{V}+\overline{\mathcal{V}}=\mathbb{C} T M$ and

1. $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$
2. $\mathcal{V} \cap \overline{\mathcal{V}}=\{0\}$
hold so that M is a CR manifold with CR dimension $n . f$ is a CR function $\Leftrightarrow \bar{T}(f)=0$ for any CR vector filed $T \Leftrightarrow \frac{\partial f}{\partial \bar{z}_{j}}=0 \forall j \Leftrightarrow f$ is a holomorphic function.
[Example 1.4 E] A CR manifold M with CR dimension 0 is called totally real. For example, $M=\mathbb{R} \times \mathbb{R} \subset \mathbb{C}^{2}$. Its defining functions cane taken as

$$
\rho_{1}=y_{1}=\frac{z_{1}-\overline{z_{1}}}{2 i}, \quad \rho_{2}=y_{2}=\frac{z_{2}-\overline{z_{2}}}{2 i} .
$$

Then $\frac{\partial \rho_{1}}{z_{1}}=-\frac{1}{2 i}, \frac{\partial \rho_{1}}{z_{2}}=0, \frac{\partial \rho_{2}}{\partial v z_{1}}=0, \frac{\partial \rho_{2}}{z_{2}}=-\frac{1}{2 i}$ so that its CR dimension can be calculated by

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{V}_{p}=2-\operatorname{rank}_{\mathbb{C}}\left(\begin{array}{cc}
-\frac{1}{2 i} & 0 \\
0 & -\frac{1}{2 i}
\end{array}\right)=2-2=0
$$

By the definition, any C^{1} function over M is CR function.

Contact form and Reeb vector field A real nonvanishing 1-form θ over M is called a contact form if $\theta \wedge(d \theta)^{n} \neq 0$. Let M be as above given by a defining function r. Then the 1 -form $\theta=i \partial r$ is a contact form of M.

Associated with a contact form θ one has the Reeb vector field R_{θ}, defined by the equations: (i) $d \theta\left(R_{\theta}, \cdot\right) \equiv 0$, (ii) $\theta\left(R_{\theta}\right) \equiv 1$. As a skew-symmetric form of maximal rank $2 n$, the form $\left.d \theta\right|_{T_{p} M}$ has a 1- dimensional kernel for each $p \in M^{2 n+1}$. Hence equation (i) defines a unique vector field R_{θ} on M. The unique real vector field is defined by the normalization condition (ii).
[Example 1.4 F] Let $M=\partial \mathbb{H}^{n} \subset \mathbb{C}^{n}$ be the Heisenberg hypersurface with the defining function $\rho(z)=-\operatorname{Im}(w)+|z|^{2}=-\frac{w-\bar{w}}{2 i}+\sum_{j=1}^{n-1}\left|z_{j}\right|^{2}$. We can take a contact form θ to be ${ }^{3}$

$$
\theta=-i \partial \rho=\frac{1}{2} d w-i \sum_{j=1}^{n-1} \overline{z_{j}} d z_{j}
$$

[^2]
1.5 Levi forms

Levi form For a CR manifold (M, \mathcal{V}) and a point $p \in M$, its Levi form at p is a map (cf. [Bog91])

$$
\begin{aligned}
h_{p}: & \overline{\mathcal{V}_{p}} \rightarrow \\
& v_{p}
\end{aligned}>\left\{T_{p}(M) \otimes \mathbb{C}\right\} /\left(\mathcal{V}_{p} \oplus \overline{\mathcal{V}}_{p}\right)
$$

where v is any vector filed in $\overline{\mathcal{V}}$ that equals v_{p} at p, and $\pi_{p}: T_{p}(M) \otimes \mathbb{C} \rightarrow\left\{T_{p}(M) \otimes \mathbb{C}\right\} /(\mathcal{V} \oplus$ $\overline{\mathcal{V}}$) is the natural projection. The definition of h_{p} is independent of choice of v.

If M is an embedded CR manifold, we can take $\overline{\mathcal{V}}=T^{1,0}(M)$ and identify the quotient space $\left\{T_{p}(M) \otimes \mathbb{C}\right\} /\left(\mathcal{V}_{p} \oplus \overline{\mathcal{V}}_{p}\right)$ with X_{p}, the complexified totall real part of the tangent bundle.

$$
\begin{array}{ccc}
h_{p}: \quad H_{p}^{1,0}(M) & \rightarrow & X_{p}(M) \\
v_{p} & \mapsto & \frac{1}{2 i} \pi_{p}\{[v, \bar{v}]\}
\end{array}
$$

It also regard the Levi form of an embedded CR manifold $M \subset \mathbb{C}^{n}$ as

$$
\begin{array}{rlc}
\widetilde{h}_{p}: H_{p}^{1,0}(M) & \rightarrow & N_{p}(M) \\
v_{p} & \mapsto & \left.\frac{1}{2 i} \widetilde{\pi}_{p}(J[\bar{v}, v])_{p}\right)
\end{array}
$$

where v is any $H^{1,0}(M)$-vector field extension of $v_{p}, N_{p}(M)$ is the normal space of M at p, J is the complex structure map for $T_{p}\left(\mathbb{C}^{n}\right)$, and $\widetilde{\pi_{p}}: T_{p}\left(\mathbb{C}^{n}\right) \mapsto N_{p}(M)$ is the orthogonal projection map.

Let $M=\{\rho=0\}$ be a smooth real hypersurface. Let $p \in M$ and, by scaling, $|\nabla \rho(p)|=1$ which is a unit base for $N_{p}(M)$. Then the Levi form is given by

$$
\begin{equation*}
\widetilde{h}_{p}(W)=-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho(p)}{\partial \zeta_{j} \partial \overline{\zeta_{k}}} w_{j} \overline{w_{k}} \nabla \rho(p), \quad \forall W=\sum_{k=1}^{n} w_{k} \frac{\partial}{\partial \zeta_{k}} \in H_{p}^{1,0}(M) \tag{1.23}
\end{equation*}
$$

In this case, M is called strictly pseudoconvex at p if the Levi form at p is either positive definite or negative definite.

Levi form in terms of a contact form We could define Levi form in terms of a contact form θ.

Fixing a contact form θ, for (M, θ), we define the Levi form

$$
\begin{equation*}
h_{\theta}(v, w):=-d \theta(v, \bar{w})=\theta([v, \bar{w}]), \quad \forall v, w \in \mathcal{V} \oplus \overline{\mathcal{V}} \tag{1.24}
\end{equation*}
$$

Here we used the Cartan formula

$$
\langle d \theta, v \wedge \bar{w}\rangle=v\langle\theta, \bar{w}\rangle-\bar{w}\langle\theta, v\rangle-\langle\theta,[v, \bar{w}]\rangle
$$

and the fact that $\langle\theta, T\rangle=0, \forall T \in \mathcal{V} \oplus \overline{\mathcal{V}}$ so that $\langle\theta, \bar{w}\rangle=\langle\theta, v\rangle=0$. The Levi form of M can be regarded as a Hermitian 2-form, or a metric, on $\overline{\mathcal{V}}:=T^{1,0} M$ defined by $h_{\theta}: T^{1,0} M \otimes T^{1,0} M \rightarrow \mathbb{C} .(M, \theta)$ is said to be Levi nondegenerate at p if $h_{\theta}\left(v_{p}, w_{p}\right)=0$ for all w_{p} implies $v_{p}=0 .(M, \theta)$ is said to be Levi nondegenerate if h_{θ} is Levi nondegenerate at every point of $M .(M, \theta)$ is said to be strongly pseudoconvex if h_{θ} is positive definite (or pseudoconvex in case h_{θ} is positive semidefinite).
[Example 1.5] Let $M \subset \mathbb{C}^{n}$ be a smooth real analytic hypersurface. Locally we consider $M \cap U=\{z \in U \mid \rho(z, \bar{z})=0\}$ where U is an open subset of \mathbb{C}^{n}.

We choose a contact form θ to be

$$
\theta:=-i \partial \rho
$$

so that from (1.24) we obtain $h_{\theta}(v, \bar{w})=-\langle d \theta, v \wedge \bar{w}\rangle$, i.e.,

$$
h_{\theta}=-d \theta=-i \bar{\partial} \partial \rho=i \partial \bar{\partial} \rho .
$$

In particular, if $M=\partial \mathbb{H}^{n}$ and $\rho=-\operatorname{Im}(w)+|z|^{2}$, we find

$$
h_{\theta}=i \partial \bar{\partial}\left(-\frac{w-\bar{w}}{2}+\sum_{j=1}^{n-1} z_{j} \overline{z_{j}}\right)=i \partial\left(\frac{1}{2 i} d \bar{w}+\sum_{j=1}^{n} z_{j} d \overline{z_{j}}\right)=i \sum_{j=1}^{n-1} d z_{j} \wedge d \overline{z_{j}} .
$$

Then $\left(\partial \mathbb{H}^{n}, \theta\right)$ is strongly pseudoconvex.

1.6 Holomorphic extension of CR functions

Theorem 1.6.1 (Bochner's Extension Theorem, 1943 [B43]) Let $\Omega \subset \mathbb{C}^{n}$ be a bounded open subset, $n>1$, with C^{∞} boundary $M:=\partial \Omega$ and suppose that $\mathbb{C}^{n}-\bar{\Omega}$ is connected. If $f \in C^{\infty}(M)$ is a CR function, there is a unique function $F \in C^{\infty}(\bar{\Omega})$ such that $\left.F\right|_{M}=f$ and F is holomorphic on Ω.

Bochner's Extension Theorem is global. The first local version was proved by Lewy in 1956 (cf. [Bog91], p.198).

Let $M=\left\{z \in \mathbb{C}^{n} \mid \rho(z)=0\right\}$ be a hypersurface where ρ is a C^{k}-smooth defining function with $d \rho \neq 0$ on M with $2 \leq k \leq \infty$. If ρ is scaled so that $|\nabla(p) \rho|=1, \forall p \in M$. The Levi form of M at p is the map

$$
\left.W \mapsto\left(-\sum_{j, k=1}^{n} \frac{\partial^{2} \rho(p)}{\partial \zeta_{j} \partial \overline{\zeta_{k}}}\right) w_{j} \overline{w_{k}}\right) \nabla \rho(p), \quad \forall W=\sum_{j=1}^{n} w_{j} \frac{\partial}{\partial \zeta_{j}} \in H_{p}^{1,0}(M) .
$$

When we speak of the eigenvalues of the Levi form of M at p, we are referring to the ones of the matrix $\left(\frac{\partial^{2} \rho}{\partial \zeta_{j} \partial \overline{\zeta_{k}}}\right)$. Let $\Omega^{+}=\{\rho>0\}$ and $\Omega^{-}=\{\rho<0\}$.

Theorem 1.6.2 (Lewy extension theorem, [Bog91], p,198-199) Let $M \subset \mathbb{C}^{n}$ be a C^{k}-smooth real hypersurface with $3 \leq k \leq \infty$ and $n \geq 2$. Let $p \in M$ be a point.

1. If the Levi form of M at p has at least one positive eigenvalue, then for each open set ω in M with $p \in \omega$, there is an open set U in \mathbb{C}^{n} with $p \in U$ such that for each C^{1}-smooth $C R$ function f on ω, there is a unique function F which is holomorphic on $U \cap \Omega^{+}$and continuous on $U \cap \overline{\Omega^{+}}$such that $\left.F\right|_{U \cap M}=f$.
2. If the Levi form of M at p has at least one negative eigenvalue, then the conclusion above holds with Ω^{+}replaced by Ω^{-}.
3. If the Levi form of M at p has eigenvalues of opposite sign, then for each open set ω in M with $p \in \omega$, there is an open set U in \mathbb{C}^{n} with $p \in U$ such that for each C^{1}-smooth $C R$ function f on ω, there is a unique function F which is holomorphic on U such that $\left.F\right|_{U \cap M}=f$.

To illustrate the extension problem, we prove the following result.
Theorem 1.6.3 Let $M \subset \mathbb{C}^{n+1}$ be a real analytic hypersurface, $p \in M$ and f a $C R$ function in a neighborhood of p of M. Then the following two statements are equivalent:
(1) f extends to a holomorphic function on a neighborhood of p in \mathbb{C}^{n+1}.
(2) f is real analytic in a neighborhood of p in M.

Proof: Locally we assume that M is given by the equation

$$
v=\phi(z, \bar{z}, u)
$$

where $z=\left(z_{1}, \ldots, z_{n}\right), w=u+i v, \phi$ is real analytic with

$$
\phi(0)=0, d \phi(0)=0
$$

We know that the map

$$
\begin{equation*}
(z, \bar{z}, u) \mapsto(z, w)=(z, u+i \phi(z, \bar{z}, u)) \tag{1.25}
\end{equation*}
$$

is a parametrization of M with parameters $(z, \bar{z}, u) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \times \mathbb{R}$.

From Example 1.4 A, we know that a local basis of CR vector fields is given by

$$
\begin{equation*}
\overline{L_{j}}=\frac{\partial}{\partial \bar{z}_{j}}-2 i \frac{\phi_{\overline{z_{j}}}}{1+i \phi_{u}} \frac{\partial}{\partial \bar{w}}, \quad 1 \leq j \leq n \tag{1.26}
\end{equation*}
$$

where we denote $\phi_{\overline{z_{j}}}=\frac{\partial \phi}{\partial \overline{z_{j}}}$ and $\phi_{u}=\frac{\partial \phi}{\partial u}$.
Now we define

$$
F(z, w)=f(z, \bar{z}, \zeta)
$$

where ζ satisfies $\zeta+i \phi(z, \bar{z}, \zeta)=w$. Hence $\zeta=\zeta(z, \bar{z}, w)$ is uniquely determined by the equation with Implicit function theorem. ${ }^{4}$ Also, by taking differentiation on the both sides of the equation $\zeta+i \phi(z, \bar{z}, \zeta)=w$, we obtain

$$
\begin{equation*}
\frac{\partial \zeta}{\partial \overline{z_{j}}}+i \phi_{\overline{z_{j}}}+i \phi_{\zeta} \frac{\partial \zeta}{\partial \overline{z_{j}}}=0 \tag{1.27}
\end{equation*}
$$

Also, we see $\left.F\right|_{M}=f$ because $F(z, u+i \phi(z, \bar{z}, u))=f(z, \bar{z}, u)$ for any $(z, w) \in M$.
To complete the proof, is suffices to prove that F is a holomorphic function.
Since $\zeta=\zeta(z, \bar{z}, w)$ is real analytic function without \bar{w} terms, F is holomorphic in w. Then it is sufficient to prove that F is holomorphic for each $z_{j}, 1 \leq j \leq n$.

In fact, for any j,

$$
\begin{aligned}
& \frac{\partial F}{\partial \bar{z}_{j}}=\frac{\partial f}{\partial z_{j}}+\frac{\partial f}{\partial \zeta} \frac{\partial \zeta}{\partial \bar{z}_{j}} \\
& =\frac{\partial f}{\partial \overline{z_{j}}}-\frac{i \phi_{\overline{z_{j}}}}{1+i \phi_{\zeta}} \frac{\partial f}{\partial \zeta} \quad(b y(1.27)) \\
& \left.=\overline{L_{j}} f \quad \text { (by the formula of } \overline{L_{j}} \text { above }\right) \\
& =0 . \quad \text { (because } f \text { is a } C R \text { function) }
\end{aligned}
$$

The proof is complete.
Let $F=\left(F_{1}, \ldots, F_{n}\right): M \rightarrow N$ be a real analytic CR map between real analytic hypersurfaces $M, N \subset \mathbb{C}^{n+1}$. Since each F_{j} is CR function, by Theorem above, F extends holomorphically on a neighborhood of M.

[^3]
1.7 Hopf Lemma

Lemma 1.7.1 (Hopf lemma) Let $\Omega \subset \mathbb{C}^{n}$ be a bounded domain with C^{2} boundary, $a \in \Omega$, and $v(a)$ the inward normal to $\partial \Omega$ at a. Then for any subharmonic function u on Ω with $u<0$ on Ω must satisfy

$$
\overline{\lim } \frac{u(z)}{|z-a|} \leq-c
$$

for some constant $c>0$, where the limit superior is as $z \rightarrow a$ along $v(a)$.
Proof: Since $\partial \Omega$ is of C^{2} smoothness, we can take a ball $B_{R}\left(z_{0}\right)$ with center z_{0} and radius R in \mathbb{C}^{n} such that it is tangent to $\partial \Omega$ at a and $B_{R}\left(z_{0}\right) \subset \Omega$. Such z_{0} can be chosen in a fixed compact subset of Ω.

For any $0<r<R$, define a function on $B_{R}\left(z_{0}\right)-\overline{B_{r}\left(z_{0}\right)}$:

$$
g(z):=e^{-\lambda\left|z-z_{0}\right|^{2}}-e^{-\lambda R^{2}} .
$$

When λ is sufficiently large compared to r, this function g is a subharmonic function. In fact, $\frac{\partial^{2}}{\partial \bar{z}_{j} \partial z_{j}} g=\frac{\partial}{\partial \bar{z}_{j}}\left(-\lambda\left(\bar{z}_{j}-\bar{z}_{0 j}\right) e^{-\lambda\left|z-z_{0}\right|^{2}}\right)=\lambda\left(\lambda\left|z_{j}-z_{0 j}\right|^{2}-1\right) e^{-\lambda\left|z-z_{0}\right|^{2}}>0$ holds $B_{R}\left(z_{0}\right)-\overline{B_{r}\left(z_{0}\right)}$ as $\lambda \gg 0$.

Clearly $g=0$ holds for $\left|z-z_{0}\right|=R$.
Since $u<0$ on Ω, by taking sufficiently small $\varepsilon>0, u+\varepsilon g \leq 0$ on the boundary of $B_{R}\left(z_{0}\right)-\overline{B_{r}\left(z_{0}\right)}$. Thus we can apply the maximum principle to conclude $u(z) \leq-\varepsilon g(z)$, i.e., $\frac{u(z)}{g(z)} \leq-\varepsilon$, for $r<\left|z-z_{0}\right|<R$. It remains to show that

$$
\frac{u(z)}{|z-a|} \leq \text { constant } \cdot \frac{u(z)}{g(z)}
$$

as $z \rightarrow a$ along the vector $v(a)$. Since $u<0$, it is enough to prove $g(z) \leq$ constant $\cdot|z-a|$. This can be done by Taylor series expansion of g.

Corollary 1.7.2 Let Ω, a and u be as above. If $u \leq 0$ on $\partial \Omega$ and $\overline{\lim }_{z \rightarrow a} \frac{u(z)}{z-a}=0$, where z goes to a along the normal vector direction, then $u \equiv 0$.

Proof Suppose $u \not \equiv 0$, by applying the maximun principle, $u<0$ holds on Ω. By Hopf lemma above, $\varlimsup \frac{u(z)}{z-a} \leq-\varepsilon<0$, which is a contradiction.

As application, we have the following result.

Theorem 1.7.3 (Burns-Krantz [BK 98]) Let $g(z): \mathbb{H}^{1} \rightarrow \mathbb{H}^{1}$ be a holomorphic function such that $g(w)=w+o\left(|w|^{3}\right)$ as $w \rightarrow 0$. Then $g(w) \equiv w$.

Proof: Consider the harmmonic function $h(w):=\operatorname{Im}\left(\frac{1}{w}-\frac{1}{g(w)}\right)$ defined on \mathbb{H}^{1}. Clearly $h(w)=o(|w|)$ as $w \rightarrow 0$.

We claim

$$
\underline{\lim }_{w \rightarrow x \in\left(\mathbb{R}^{+} \cup \infty\right)} h(w) \geq 0
$$

In fact, when $x \in \mathbb{R}$ with $x \neq 0$, we write $g(w)=U(w)+i V(w)$ and $w=u+i v$. Then

$$
h(w)=\operatorname{Im}\left(\frac{1}{u+i v}-\frac{1}{U+i V}\right)=-\frac{v}{u^{2}+v^{2}}+\frac{V}{U^{2}+V^{2}}
$$

converges to $0+\frac{I m g}{U^{2}+V^{2}} \geq 0$, as $w \rightarrow x \in \mathbb{R}$ with $x \neq 0$.
When $x=0$, we have

$$
\operatorname{Im}\left(\frac{1}{w}-\frac{1}{g(w)}\right)=\operatorname{Im}\left(\frac{g(w)-w}{w g(w)}\right)=\operatorname{Im}\left(\frac{o\left(|w|^{3}\right)}{w g(w)}\right)=o(|w|), \quad \text { as } w \rightarrow 0
$$

When $x=\infty, h(w)=\operatorname{Im}\left(\frac{1}{w}-\frac{1}{g(w)}\right)=-\frac{v}{u^{2}+v^{2}}+\frac{I m g}{U^{2}+V^{2}} \rightarrow 0+\frac{\operatorname{Img}}{U^{2}+V^{2}} \geq 0$ as $w \rightarrow \infty$. Claim is proved.

Take a linear fractional biholomorphic map $f: \mathbb{B}^{1} \rightarrow \mathbb{H}^{1}$. By the maximun principle and the above Claim, the harmonic (hence subharmonic) function $-h \circ f \leq 0$ on \mathbb{B}. By Corollary 1.7.2, since $\lim _{w \rightarrow x} \frac{(-h \circ f)(w)}{w-x}=0$ by above calculation, one concludes $-h \circ f \equiv 0$ so that $h \equiv 0$, i.e., $\frac{1}{w}-\frac{1}{g(w)} \equiv 0$. Hence $g(w) \equiv w$.

1.8 Three classes of CR submanifolds

\{CR submanifolds in hyperquadratic $\} \subsetneq\{$ Embeddable CR manifolds $\} \subsetneq\{\mathrm{CR}$ manifolds $\}$
It has long been known that generic 3-dimensional CR manifolds are locally not embeddable, and that all strictly pseudoconvex CR manifolds of dimension 7 and higher are locally embeddable, but the 5 - dimensional strictly pseudoconvex case remains open.

Forstnerič [Fo86b] and Faran [Fa88] proved the existence of real analytic strictly pseudoconvex hypersurfaces $M^{2 n+1} \subset \mathbb{C}^{n+1}$ which do not admit any germ of holomorphic mapping
taking M into sphere $\partial \mathbb{B}^{N+1}$ for any N. We may compare this with the Cartan-Janet theorem which asserted that for any analytic Riemannian manifold $\left(M^{n}, g\right)$, there exist local isometric embeddings of M^{n} into Euclidean space \mathbb{E}^{N} as N is sufficiently large.

On the other hand, by Webster [W78b], any Levy nondegenerate real-algebraic hypersurface is holomorphically embeddable into a nondegenerate hyperquadric $\partial \mathbb{H}_{\ell}^{n}$.

From above, it leads us to concentrate on a subclass of the set of all CR manifolds:

$$
\left\{\mathrm{CR} \text { submanifolds in a sphere } \partial \mathbb{B}^{N+1}\right\}
$$

S.-Y. Kim and J.-W. Oh [KO06] gave a necessary and sufficient condition for local embeddability into a sphere $\partial \mathbb{B}^{N+1}$ of a generic strictly pseudoconvex pseudohermitian CR manifold $\left(M^{2 n+1}, \theta\right)$ in terms of its Chern-Moser curvature tensors and their derivatives.

Zaitsev [Za08] constructed explicit examples for the Forstnerič and Faran phenomenon above.

Ebenfelt, Huang and Zaitsev [EHZ04] proved rigidity of CR embeddings of general $M^{2 n+1}$ into spheres with CR co-dimension $<\frac{n}{2}$, which generalizes a result of Webster that was for the case of co-dimension 1 [W79]. Here by rigidity, we mean that for any two smooth CR immersions f and $\widetilde{f}: M^{2 n+1} \rightarrow \partial \mathbb{B}^{n+d+1}$ with $d<\frac{n}{2}$, there exists $\phi \in \operatorname{Aut}\left(\partial \mathbb{B}^{n+1+d}\right)$ such that $\tilde{f}=\phi \circ f$.

Very recently, Ji and Yuan [JY09] proved that if a CR submanifold M with hypersurface type of $\partial \mathbb{B}^{N}$ and with zero CR second fundamental form, then M is the image of a sphere by a linear map.

The most basic and non-trivial example of CR submanifolds in a sphere $\partial \mathbb{B}^{N}$ is the image $M=F\left(\partial \mathbb{B}^{n}\right)$ where

$$
F: \partial \mathbb{B}^{n} \rightarrow \partial \mathbb{B}^{N}
$$

is a proper holomorphic map that is C^{2}-smooth up to the closed ball $\overline{\mathbb{B}^{n}}$. Here the C^{2}-smooth condition allows the map F restricted on the sphere to become a CR mapping

$$
F: \partial \mathbb{B}^{n} \rightarrow \partial \mathbb{B}^{N}
$$

1.9 Proper Holomorphic Maps Between Balls

Recall that a continuous map $f: X \rightarrow Y$ where X and Y are topological spaces is called proper if for any compact subset $K \subset Y, f^{-1}(K)$ is compact in X.

Proposition 1.9.1 Let $D, D^{\prime} \subset \mathbb{C}^{n}$ be bounded domains and $f: D \rightarrow D^{\prime}$ a holomorphic map. Then f is proper if and only if for any sequence z_{v} which converges to a point in ∂D, the image sequence $\left\{f\left(z_{v}\right)\right\}$ tends to ∂D^{\prime}.

Proof: $\quad(\Rightarrow)$ Suppose that $\left\{f\left(z_{v}\right)\right\}$ does not tend to ∂D^{\prime}. Then there is a subsequence $\left\{z_{v_{k}}\right\}$ such that $\left\{f\left(z_{v_{k}}\right)\right\}$ is relatively compact in D^{\prime}, which is a contradiction to the properness of f.
(\Leftarrow) Suppose there is a compact subset $K \subset D^{\prime}$ such that $f^{-1}(K)$ is not compact in D. Then there is a sequence $\left\{z_{v}\right\}$ converging to ∂D but $\left\{f\left(z_{v}\right)\right\} \subset K$ does not tend to ∂D^{\prime}.

From the last section, it leads us to concentrate on a subclass of the set of CR submanifolds in a sphere:

$$
\begin{gathered}
\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right):=\left\{\text { proper holomorphic map } F: \mathbb{B}^{n} \rightarrow \mathbb{B}^{N}\right\}, \\
\qquad \operatorname{Prop} k\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right):=\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right) \cap C^{k}\left(\overline{\mathbb{B}^{n}}\right), \\
\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right):=\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right) \cap\{\text { rational maps }\} . \\
\operatorname{Poly}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right):=\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right) \cap\{\text { polynomial maps }\} .
\end{gathered}
$$

We say that $F, G \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ are equivalent, denoted as $F \cong G$, if there are automorphisms $\sigma \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ and $\tau \in \operatorname{Auto}\left(\mathbb{B}^{N}\right)$ such that $F=\tau \circ G \circ \sigma$, i.e., the following diagram commutes

Theorem 1.9.2 (H. Alexander [A77]) Any proper holomorphic map from \mathbb{B}^{n} onto \mathbb{B}^{n} must be an automorphism when $n \geq 2$.

The condition that $n \geq 2$ is crucial. In fact, when $n=1$, we have

Proposition 1.9.3

$$
\operatorname{Prop}\left(\mathbb{B}^{1}, \mathbb{B}^{1}\right)=\left\{F(z)=e^{i \theta} \prod_{j=1}^{m} \frac{z-a_{j}}{1-\overline{a_{j}} z}, \text { with }\left|a_{j}\right|<1\right\} .
$$

Proof: If f is proper, $f^{-1}(0)$ is compact: $f^{-1}(0)=\sum_{j=1}^{N} m_{j}\left[a_{j}\right]$ where $a_{j} \in \mathbb{B}^{1}$ and $m_{j} \in \mathbb{Z}^{+}$. Let

$$
g(z)=\prod_{j=1}^{N}\left(\frac{z-a_{j}}{1-\overline{a_{j}} z}\right)^{m_{j}} .
$$

To show: $\frac{f}{g}=$ constant and $\left|\frac{f}{g}\right| \equiv 1$, which implies $f \equiv e^{i \theta} g$.
In fact, both $\frac{f}{g}$ and $\frac{g}{f}$ are meromorphic and have only removable singularities. Then both

$$
\frac{f}{g}, \frac{g}{f} \text { are holomorphic in } \mathbb{B}^{1} .
$$

We apply Proposition 1.9 .1 to know that for any $\epsilon>0$, there is $\delta>0$ such that

$$
1-\epsilon \leq\left|\frac{f(z)}{g(z)}\right| \leq \frac{1}{1-\epsilon}, \quad \forall|z|>1-\delta .
$$

By applying the maximum principle,

$$
1-\epsilon \leq\left|\frac{f(z)}{g(z)}\right| \leq \frac{1}{1-\epsilon}, \quad \forall|z| \leq 1-\delta .
$$

Hence $\frac{f}{g} \equiv$ constant. By letting $\epsilon \rightarrow 0,\left|\frac{f(z)}{g(z)}\right| \equiv 1$.
Bochner and Martin [BM48] found a necessary and sufficient condition for mappings in $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ in terms of its power series centered at the origin. More precisely, if $F=\left(f_{1}, \ldots, f_{h}\right)$ is written as power series

$$
f_{j}(z)=\sum a_{n_{1} \cdots n_{k}}^{(j)} z_{1}^{n_{1}} \cdots z_{k}^{n_{k}}, \quad j=1, \ldots, h,
$$

then F maps $\partial \mathbb{B}^{k}$ into $\partial \mathbb{B}^{h}$ if and only if

$$
\sum_{j=1}^{h} a_{m_{1} \cdots m_{k}}^{(j)} \overline{a_{n_{1} \cdots n_{k}}^{(j)}}=0, \text { for }\left(m_{1}-n_{1}\right)^{2}+\ldots+\left(m_{k}-n_{k}\right)^{2}>0
$$

and

$$
\sum_{j=1}^{h}\left|a_{n_{1} \cdots n_{k}}^{(j)}\right|^{2}=\frac{\left(n_{1}+\ldots+n_{k}\right)!}{n_{1}!\cdots n_{k}!} A_{n_{1}+\cdots+n_{k}}
$$

where A_{N} are suitable nonnegative numbers.
It was discovered in the early 80's (cf. [Fo93][H99]) that $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is much larger than $\operatorname{Prop}_{k}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ in general. In fact, there are some mappings $F \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{n+1}\right) \cap C^{0}\left(\overline{\mathbb{B}^{n}}\right)$ but they are neither in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{n+1}\right)$ nor in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{n+1}\right)$.

For any $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$, it induces a C^{2} smooth $C R$ map from $\partial \mathbb{B}^{n+1}$ into $\partial \mathbb{B}^{N+1}$.

Webster was the first to investigate the geometric structure of proper holomorphic maps between balls in complex spaces of different dimensions. In 1979, he showed [W79] that a proper holomorphic map $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{n+1}\right)$ with $n>2$ is indeed a linear fractional embedding.

Forstnerič shown [Fo86] that

$$
\operatorname{Prop}_{N-n+1}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)=\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)
$$

Moreover, such F has no poles on $\partial \mathbb{B}^{n}$ by Cima-Suffridge [CS90].
J.P. D'Angelo did lots of work on polynomial and monomial mappings in $\operatorname{Prop}_{k}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ [DA88][DA92][DA93], in particular he found the structure of proper holomorphic polynomial mappings between balls.

Chapter 2

Earlier Result: The First Gap Theorem

2.1 The First Gap Theorem

Theorem 2.1.1 (The First Gap Theorem) For $N<2 n-1$, any map $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is equivalent to the linear map $(z, 0, w)$.

This theorem is a result by many mathematicians over 20 years.
In 1979, S. Webster proved [W79] that any mapping in $\operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{n+1}\right)$ with $n \geq 3$ must be equivalent to a linear map $(z, 0, w)$.

In 1982, J. Faran [Fa82] proved that there are exactly four maps in $\operatorname{Prop}_{3}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$, up to equivalence class.

Next year, A. Cima and T.J. Suffridge [CS83] improved the above results of Webster and Faran by replacing "Prop " with "Prop ${ }_{2}$ ". In the same paper [CS83], A. Cima and T. J. Suffridge conjectured that any mapping in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $n \geq 3$ and $N \leq 2 n-2$ should be equivalent to the linear map $(z, 0, w)$.

In 1986, Faran [Fa86] proved the Cima-Suffridge's conjecture under the assumption that F is holomorphic in a neighborhood of $\overline{\mathbb{B}^{n}}$.

In the same year, F. Forstnerič [Fo86] proved $\operatorname{Prop}_{N-n+1}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)=\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ and later Cima and Suffridge [CS90] shown that any mapping in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ must be holomorphic on the boundary. As a consequence, the First Gap Theorem is proved for any $F \in \operatorname{Prop}_{N-n+1}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $N<2 n-1$.

In 1999 X. Huang [Hu99] proved that any mapping in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $N \leq 2 n-2$ is equivalent to the linear map $(z, 0, w)$.

Outline of the Proof for the First Gap Theorem:

Step 1. if $N<2 n-1$, it implies that its geometric rank $\kappa_{0}=0$.

- (analytic proof) Use Uniqueness theorem (see Corollary 2.11.1 and Theorem 2.11.2 below).
- (geometric proof) Use the formula

$$
N \geq n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}
$$

for any $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with geometric rank κ_{0}. In fact, if $N<2 n-1$, the above inequality forces $\kappa_{0}=0$.

Step 2. Show: $\kappa_{0}=0 \Longleftrightarrow F$ is a linear fractional map.

- (analytic proof) The first order PDE argument (see Theorem 2.10.1 below).
- (geometric proof) $\kappa_{0}=0 \Longleftrightarrow$ the CR second fundamental form $I I_{M}=0 \Longleftrightarrow F$ is a linear fractional map.

We need to explain the following:

1. What is the geometric rank κ_{0} of a map F ? (see (2.74) below, or [HJ01])
2. Why $N \geq n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$? (see Corollary 4.2.2, or [H03])
3. Why κ_{0} if and only if $I I_{M}=0$? (see Corollary 5.7.3, [JY09][HJ09])
4. Why $I I_{M}=0$ if and only if F is a linear fractional map (see Theorem 5.2.1, [JY09]).

2.2 Passing from $\partial \mathbb{B}^{n}$ to $\partial \mathbb{H}^{n}$

Recall the Heisenberg hypersurface

$$
\partial \mathbb{H}^{n}:=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Im}(w)=|z|^{2}\right\}
$$

and the Cayley transformation

$$
\rho_{n}: \mathbb{H}^{n} \rightarrow \mathbb{B}^{n}, \quad \rho_{n}(z, w)=\left(\frac{2 z}{1-i w}, \frac{1+i w}{1-i w}\right)
$$

We can define the space $\operatorname{Prop}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right), \operatorname{Prop}_{k}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ and $\operatorname{Rat}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$.
We can identify a map $F \in \operatorname{Prop}_{k}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ or $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $\rho_{N}^{-1} \circ F \circ \rho_{n}$ in the space $\operatorname{Prop}_{k}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ or $\operatorname{Rat}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$, respectively.

We say that F and $G \in \operatorname{Prop}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ are equivalent if there are automorphisms $\sigma \in$ Aut $\left(\mathbb{H}^{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{H}^{N}\right)$ such that $F=\tau \circ G \circ \sigma$.

2.3 Differential Operators on $\partial \mathbb{H}^{n}$

The vector fields $\left\{L_{1}, \ldots, L_{n-1}\right\}$, where $L_{j}:=2 i \bar{z}_{j} \frac{\partial}{\partial w}+\frac{\partial}{\partial z_{j}}$, form a global basis for the complex tangent bundle $\mathbb{C} T^{1,0} \partial \mathbb{H}^{n}$ over $\partial \mathbb{H}^{n}$, and their conjugates $\left\{\overline{L_{1}}, \ldots, \overline{L_{n-1}}\right\}$, called $C R$ vector fields, form a global basis for the complex tangent bundle $\mathbb{C} T^{0,1} \partial \mathbb{H}^{n}$ over $\partial \mathbb{H}^{n}$. Recall that for $z_{j}=x_{j}+i y_{j}$ and for $w=u+i v$, we have

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) .
$$

and

$$
\frac{\partial}{\partial w}=\frac{1}{2}\left(\frac{\partial}{\partial u}-i \frac{\partial}{\partial v}\right), \frac{\partial}{\partial \bar{w}}=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right) .
$$

There is a real vector field which is transversal to $\mathbb{C} T^{(1,0)} \partial \mathbb{H}^{n}+\mathbb{C} T^{(0,1)} \partial \mathbb{H}^{n}$

$$
\begin{equation*}
T=\frac{\partial}{\partial \operatorname{Re}(w)}=\frac{\partial}{\partial u}=\frac{\partial}{\partial w}+\frac{\partial}{\partial \bar{w}} . \tag{2.1}
\end{equation*}
$$

which is the Reeb vector field.
The vector fields $\left\{L_{1}, \ldots, L_{n-1}, \overline{L_{1}}, \ldots, \overline{L_{n-1}}, T\right\}$ forms a basis of $\mathbb{C} T \partial \mathbb{H}_{n}$.

Lemma 2.3.1 (i) $T L_{j}=L_{j} T, T \overline{L_{j}}=\overline{L_{j}} T$, and $L_{j} L_{k}=L_{k} L_{j}$ for all $1 \leq j, k \leq n-1$.
(ii) For any continuous $C R$ function h over an open subset $M_{1} \subset \partial \mathbb{H}^{n}, T h$ is a $C R$ distribution over M_{1}. For any $1 \leq j, k \leq n-1, \overline{L_{k}}\left(L_{j} h\right)=-\left[L_{j}, \overline{L_{k}}\right] h=2 i \delta_{k j} T h$.
(iii) Let h be a $C^{2} C R$ function over $\partial \mathbb{H}^{n}$ and χ a C^{1} function over $\partial \mathbb{H}^{n}$. Then for any integer $k>0$, we have

$$
\begin{aligned}
& \overline{L_{k}}\left(L_{k}^{2}(h) \chi\right)=4 i L_{k}(T(h)) \chi+L_{k}^{2}(h) \overline{L_{k}}(\chi), \\
& \overline{L_{k}}\left(L_{k}(T(h)) \chi\right)=2 i T^{2}(h) \chi+L_{k}(T(h)) \overline{L_{k}}(\chi)
\end{aligned}
$$

in the sense of distribution.
(iv) For any k, l, j and any $C^{2} C R$ function h, we have

$$
\overline{L_{k}} L_{l} L_{j} h=2 i \delta_{k \ell} T L_{j} h+2 i \delta_{k j} T L_{\ell} h
$$

in the sense of distribution. In particular, we have

$$
\overline{L_{k}} L_{l} L_{j} h=\left\{\begin{array}{l}
0, \quad \text { when } k \neq l \text { and } k \neq j \\
2 i T\left(L_{l} h\right), \quad \text { when } k=j \neq l \\
2 i T\left(L_{j} h\right), \quad \text { when } k=l \neq j \\
4 i T\left(L_{k} h\right), \quad \text { when } k=j=l .
\end{array}\right.
$$

Proof of Lemma 2.3.1: (i) For any differentiable function $f(z, \bar{z}, w, \bar{w})$,

$$
\begin{aligned}
& T\left(L_{j} f\right)=\left(\frac{\partial}{\partial w}+\frac{\partial}{\partial \bar{w}}\right)\left(\frac{\partial f}{\partial z_{j}}+2 i \overline{z_{j}} \frac{\partial f}{\partial w}\right)=\frac{\partial^{2} f}{\partial w \partial z_{j}}+2 i \overline{z_{j}} \frac{\partial^{2} f}{\partial w^{2}}+\frac{\partial^{2} f}{\partial \bar{w} \partial z_{j}}+2 i \overline{z_{j}} \frac{\partial^{2} f}{\partial w \partial \bar{w}} . \\
& L_{j}(T f)=\left(\frac{\partial}{\partial z_{j}}+2 i \overline{z_{j}} \frac{\partial}{\partial w}\right)\left(\frac{\partial f}{\partial w}+\frac{\partial f}{\partial \bar{w}}\right)=\frac{\partial^{2} f}{\partial w \partial z_{j}}+2 i \overline{z_{j}} \frac{\partial^{2} f}{\partial w^{2}}+\frac{\partial^{2} f}{\partial \bar{w} \partial z_{j}}+2 i \overline{z_{j}} \frac{\partial^{2} f}{\partial w \partial \bar{w}} .
\end{aligned}
$$

Then $T L_{j}=L_{j} T$ and hence $T \overline{L_{j}}=\overline{L_{j}} T$. Similarly, $L_{j} L_{k}=L_{k} L_{j}, \forall 1 \leq j, k \leq n-1$.
(ii) The first statement follows from (i): $T h$ is CR because $\overline{L_{j}} T h=T \overline{L_{j}} h=0$. The second statement follows from the following calculation:

$$
\begin{aligned}
& {\left[L_{j}, \overline{L_{k}}\right]=\left(\frac{\partial}{\partial z_{j}}+2 i \overline{z_{j}} \frac{\partial}{\partial w}\right)\left(\frac{\partial}{\partial \bar{z}_{k}}-2 i z_{k} \frac{\partial}{\partial \bar{w}}\right)-\left(\frac{\partial}{\partial \overline{z_{k}}}-2 i z_{k} \frac{\partial}{\partial \bar{w}}\right)\left(\frac{\partial}{\partial z_{j}}+2 i \overline{z_{j}} \frac{\partial}{\partial w}\right)} \\
& =-2 i \delta_{j k} \frac{\partial}{\partial \bar{w}}-2 i \delta_{j k} \frac{\partial}{\partial w}=-2 i \delta_{k j} T .
\end{aligned}
$$

(iii) It is sufficient to prove (iii) for any holomorphic polynomial h by a lemma below.

By (ii), we know that $T h$ is CR and that $\overline{L_{k}} L_{k} h=2 i T h$. This follows the second identity.
To prove the first identity, it is sufficient to prove

$$
\begin{equation*}
\overline{L_{k}} L_{k}^{2} h=4 i L_{k} T h, \quad \forall C^{2} C R \text { function } h . \tag{2.2}
\end{equation*}
$$

In fact, $\overline{L_{k}} L_{k}^{2} h$ equals to
$\left(\left[\overline{L_{k}}, L_{k}\right]+L_{k} \overline{L_{k}}\right) L_{k} h=2 i T L_{k} h+L_{k}\left(\left[\overline{L_{k}}, L_{k}\right]+L_{k} \overline{L_{k}}\right) h=2 i T L_{k} h+2 i L_{k} T h+0=4 i T L_{k} h$.
(iv) It is sufficient to prove (iv) for any holomorphic polynomial h as above.

Consider

$$
\begin{aligned}
& \overline{L_{k}} L_{\ell} L_{j} h=\left(\left[\overline{L_{k}}, L_{\ell}\right]+L_{\ell} \overline{L_{k}}\right) L_{j} h \\
& =2 i \delta_{k \ell} T L_{j} h+L_{\ell}\left(\overline{L_{k}} L_{j}\right) h=2 i \delta_{k \ell} T L_{j} h+L_{\ell}\left(\left[\overline{L_{k}}, L_{j}\right]+L_{j} \overline{L_{k}}\right) h \\
& =2 i \delta_{k \ell} T L_{j} h+L_{\ell} 2 i \delta_{k j} T h+0=2 i \delta_{k \ell} T L_{j} h+2 i \delta_{k j} T L_{\ell} h \\
& = \begin{cases}0, & \text { if } k \neq j, k \neq \ell, \\
2 i T L_{\ell} h & \text { if } k=j, j \neq \ell, \\
2 i T L_{j} h & \text { if } k=\ell \neq j, \\
4 i T L_{k} h \quad & k=j=\ell .\end{cases}
\end{aligned}
$$

by using the similar computation.
Let h be a C^{v}-smooth function and then $D_{1}(h)$ is a C^{0}-smooth function for any differential operator D_{1} of degree v. Let D_{2} be another differential operator. In general $D_{2} D_{1}(h)$ does not make sense. However if $D_{2} D_{1}(h)$ can be written as $D_{3}(h)$ where D_{3} is of degree v. Then $D_{2} D_{1}(h)$ is still a C^{0} function. This fact is presented by a lemma below. As an example, $\overline{L_{j}} L_{l} h=2 i \delta_{j l} T h$. It can also been seen in Lemma 2.3.1 (ii) and (iii).

Lemma 2.3.2 Let h be a C^{v}-smooth $C R$ map from a neighborhood of M in $\partial \mathbb{H}_{n}$ into \mathbb{C}^{N}. Let $D_{1}(h)=H\left(p, \bar{p}, L^{\alpha} \overline{L^{\beta}} T^{\gamma}(h)\right)_{|\alpha|+|\beta|+|\gamma| \leq v}$ with H holomorphic in its argument where $p \in$ $\partial \mathbb{H}_{n}$. Let $D_{2}=L^{\alpha_{1}} \overline{L^{\beta_{1}}} T^{\gamma_{1}}$ be a differential operator along M. Suppose that there is a certain holomorphic function H_{0} in its argument such that for each polynomial map h^{*} from \mathbb{C}^{n} into \mathbb{C}^{N},

$$
D_{2}\left(D_{1}\left(h^{*}\right)\right)=H_{0}\left(p, \bar{p}, L^{\alpha_{2}} \overline{L^{\beta_{2}}} T^{\gamma_{2}}\left(h^{*}\right)\right)_{\left|\alpha_{2}\right|+\left|\beta_{2}\right|+\left|\gamma_{2}\right| \leq v}
$$

Then the distribution $D_{2}\left(D_{1}(h)\right)$, acting on $C_{0}^{\infty}(M)$, coincides with the continuous function $D_{3}(h):=H_{0}\left(p, \bar{p}, L^{\alpha_{2}} \overline{L^{\beta_{2}}} T^{\gamma_{2}}(h)\right)_{\left|\alpha_{2}\right|+\left|\beta_{2}\right|+\left|\gamma_{2}\right| \leq v}$.

Proof of Lemma 2.3.2: It is an immediate application of the Baouendi-Treves approximation theorem. Here we outline the proof. There is a sequence of holomorphic polynomial maps $\left\{h_{m}\right\}_{m=1}^{\infty}$ which converges to h in the C^{v}-norms over \bar{M}. Hence $D_{1}\left(h_{m}\right) \rightarrow D_{1}(h)$ in the C^{0}-norm over \bar{M}, and $D_{2}\left(D_{1}\left(h_{m}\right)\right) \rightarrow D_{2}\left(D_{1}(h)\right)$ in the sense of distribution. By the assumption, $D_{2}\left(D_{1}\left(h_{m}\right)\right)$ converges also to $H_{0}\left(p, \bar{p}, L^{\alpha} \overline{L^{\beta}} T^{\gamma}(G)\right)_{|\alpha|+|\beta|+|\gamma| \leq v}$ in the C^{0}-norm over \bar{M}.

2.4 Equations Associated with F

Let $F=(f, \phi, g)=(\widetilde{f}, g): M_{1} \cap \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{N}$ be a non-constant C^{2} - smooth CR map with $F(0)=0$, where M_{1} is an open subset of $\partial \mathbb{H}^{n}$. We denote $f=\left(f_{1}, \ldots, f_{n-1}\right)$, $\phi=$ $\left(\phi_{1}, \ldots, \phi_{N-n}\right)$ and $\tilde{f}=(f, \phi)$. The basic equation is

$$
\operatorname{Im} g=\tilde{f} \cdot \overline{\tilde{f}}=\langle\widetilde{f}, \overline{\widetilde{f}}\rangle, \quad \forall(z, w) \in M_{1}
$$

i.e.,

$$
\begin{equation*}
\frac{g-\bar{g}}{2 i}=\sum_{j=1}^{n-1}\left|f_{j}\right|^{2}+\sum_{j=1}^{N-n}\left|\phi_{j}\right|^{2}, \quad \forall(z, w) \in M_{1} \text { with } \operatorname{Im}(w)=|z|^{2} \tag{2.3}
\end{equation*}
$$

By the Lewy Extension Theorem (see Theorem 1.6.2), F extends holomorphically to a certain pseudoconvex side of M_{1} denoted.

Let us differentiate (2.3) by L_{j} and T. First we consider the first order differential operators: L_{l} and $T, 1 \leq l \leq n-1: \frac{L_{l} g}{2 i}=L_{l} \tilde{f} \cdot \overline{\widetilde{f}}^{t}$ where we denote by ${ }^{t}$ the transport, i.e.,

$$
\begin{gather*}
\frac{L_{l} g}{2 i}=\sum_{j} L_{l} f_{j} \cdot{\overline{f_{j}}}^{t}+\sum_{j} L_{l} \phi_{j} \cdot{\overline{\phi_{j}}}^{t}=L_{l} \tilde{f} \cdot \overline{\widetilde{f}}^{t}, \forall(z, w) \in M_{1} \tag{2.4}\\
 \tag{2.5}\\
\frac{T g-\overline{T g}}{2 i}=T \widetilde{f} \cdot \overline{\widetilde{f} t}+\widetilde{f} \cdot \overline{T \widetilde{f}}^{t}, \quad \forall(z, w) \in M_{1} .
\end{gather*}
$$

We consider the second order differential operators $L_{k} L_{l}, T L_{l}$ and $T^{2}, 1 \leq k, l \leq n-1$.

$$
\begin{gather*}
\frac{L_{k} L_{l} g}{2 i}=L_{k}\left(L_{l} \tilde{f}\right) \cdot \overline{\widetilde{f}}^{t}, \quad \forall(z, w) \in M_{1} . \tag{2.6}\\
\frac{1}{2 i} T\left(L_{l} g\right)=T\left(L_{l} \tilde{f}\right) \cdot \overline{\widetilde{f}}^{t}+L_{l}(\widetilde{f}) \cdot \overline{T \widetilde{f}^{t}}, \quad \forall(z, w) \in M_{1} \tag{2.7}\\
\operatorname{Im}\left(T^{2} g\right)=2 \operatorname{Im}\left(i T^{2} \widetilde{f} \cdot \overline{\widetilde{f} t}\right)+2|T \widetilde{f}|^{2}, \quad \forall(z, w) \in M_{1} . \tag{2.8}\\
\frac{1}{2 i} \overline{L_{k}} L_{l} g=\overline{L_{k}} L_{l} \tilde{f} \cdot \overline{\widetilde{f} t}+L_{l} \widetilde{f} \cdot \overline{L_{k} \widetilde{f}}, \quad \forall(z, w) \in M_{1} . \tag{2.9}
\end{gather*}
$$

In particular, if $k=l$, by using $\overline{L_{l}} L_{l}=2 i T$, we obtain

$$
\begin{equation*}
T g=2 i\langle T \widetilde{f}, \overline{\widetilde{f}}\rangle+\left|L_{j} \widetilde{f}\right|^{2}, \quad \forall(z, w) \in M_{1} \tag{2.10}
\end{equation*}
$$

Next we consider the third order differential operators $\overline{L_{k}} L_{j} L_{l}, 1 \leq k, j, l \leq n-1$:

$$
\begin{equation*}
\frac{1}{2 i} \overline{L_{k}}\left(L_{j}\left(L_{l} g\right)\right)=\overline{L_{k}}\left(L_{j}\left(L_{l} \widetilde{f}\right)\right) \cdot \overline{\widetilde{f}}^{t}+L_{j}\left(L_{l} \widetilde{f}\right) \cdot \overline{L_{k}} \overline{\widetilde{f}}^{t} \tag{2.11}
\end{equation*}
$$

When $k \neq j$ and $k \neq l$, by Lemma 2.3.1(iv), (2.11) becomes

$$
\begin{equation*}
L_{j}\left(L_{l} \tilde{f}\right) \cdot \overline{L_{k}} \overline{\widetilde{f}} t=0 \tag{2.12}
\end{equation*}
$$

When $k=j \neq l$, by Lemma 2.3.1 (iv), (2.11) becomes

$$
\begin{equation*}
T\left(L_{l} g\right)=2 i T\left(L_{l} \widetilde{f}\right) \cdot \overline{\widetilde{f}}^{t}+L_{j}\left(L_{l} \widetilde{f}\right) \cdot{\overline{L_{j}}}_{\bar{f}^{t}} \tag{2.13}
\end{equation*}
$$

When $k=l \neq j$, by Lemma 2.3.1 (iv), (2.11) becomes

$$
\begin{equation*}
T\left(L_{j} g\right)=2 i T\left(L_{j} \tilde{f}\right) \cdot \overline{\widetilde{f}}^{t}+L_{l}\left(L_{j} \tilde{f}\right) \cdot \overline{L_{l}} \overline{\vec{f}}^{t} \tag{2.14}
\end{equation*}
$$

When $k=j=l$, by Lemma 2.3.1(iv) again, we have

$$
\begin{equation*}
2 T\left(L_{k} g\right)=4 i T\left(L_{k} \tilde{f}\right) \cdot \overline{\widetilde{f}}^{t}+L_{k}\left(L_{k} \tilde{f}\right) \cdot \overline{L_{k}} \overline{\widetilde{f}}^{t} \tag{2.15}
\end{equation*}
$$

Since $F(0)=0$, by (2.4) and (2.6), we obtain

$$
\begin{equation*}
\left.\left.\frac{\partial g}{\partial z_{j}}\right|_{0}=\frac{\partial^{2} g}{\partial z_{k} \partial z_{l}} \right\rvert\, 0=0 . \tag{2.16}
\end{equation*}
$$

2.5 The Associated Map F^{*} of F

From (2.9), since $F(0)=0$, we have

$$
\left.\frac{1}{2 i} \overline{L_{k}} L_{j} g\right|_{0}=\left.\left.L_{j} \widetilde{f}\right|_{0} \cdot \overline{L_{k} \tilde{f}}\right|_{0}
$$

By Lemma 2.3.1, we have

$$
\left.\frac{1}{2 i} \overline{L_{k}} L_{j} g\right|_{0}=\left.\frac{1}{2 i} 2 i \delta_{k j} T g\right|_{0}=\lambda \delta_{k j}
$$

where

$$
\begin{equation*}
\lambda=\left.T g\right|_{0}>0 . \tag{2.17}
\end{equation*}
$$

In fact, by (2.10), $\left.T g\right|_{0}=\left.2 i\langle T \tilde{f}, \bar{f}\rangle\right|_{0}+\left.\left|L_{l} \tilde{f}\right|^{2}\right|_{0}=\left.\left|L_{l} \tilde{f}\right|^{2}\right|_{0}>0$.
Remark Another way to take look at the formula $\left.\operatorname{Tg}\right|_{0}=\lambda>0$ is to use Hopf lemma. We apply the maximum principle to the subharmonic function $-\operatorname{Im}(g)+\sum_{j=1}^{n-1}\left|f_{j}\right|^{2}+\sum_{j=1}^{N-n}\left|\phi_{j}\right|^{2} \leq 0$ over Ω, we conclude $F(\Omega) \subset \mathbb{H}^{N}$. Then we apply Hopf lemma to obtain

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \operatorname{Im}(w)}\left(-\operatorname{Im}(g)+\sum_{j=1}^{n-1}\left|f_{j}\right|^{2}+\sum_{j=1}^{N-n}\left|\phi_{j}\right|^{2}\right)\right|_{0}=\left.\frac{\partial}{\partial \operatorname{Im}(w)}(-\operatorname{Im}(g))\right|_{0} \\
& =-\left.i\left(\frac{\partial}{\partial w}-\frac{\partial}{\partial \bar{w}}\right) \frac{g-\bar{g}}{2 i}\right|_{0}=-\left.T g\right|_{0}=-\lambda<0 .
\end{aligned}
$$

Then we have the orthogonal property:

$$
\left.\left.L_{j} \widetilde{f}\right|_{0} \cdot \overline{L_{k} \tilde{f}}\right|_{0}=\lambda \delta_{j k}
$$

Denoting

$$
E_{l}=\left.\left(\frac{\partial \tilde{f}}{\partial z_{l}}\right)\right|_{0}=\left.\left(\frac{\partial f_{1}}{\partial z_{l}}, \ldots, \frac{\partial f_{n-1}}{\partial z_{l}}, \frac{\partial \phi_{1}}{\partial z_{l}}, \ldots, \frac{\partial \phi_{N-n}}{\partial z_{l}}\right)\right|_{0}
$$

and

$$
E_{w}=\left.\left(\frac{\partial \tilde{f}}{\partial w}\right)\right|_{0}=\left.\left(\frac{\partial f_{1}}{\partial w}, \ldots, \frac{\partial f_{n-1}}{\partial w}, \frac{\partial \phi_{1}}{\partial w}, \ldots, \frac{\partial \phi_{N-n}}{\partial w}\right)\right|_{0}
$$

Then it has orthogonal property:

$$
\begin{equation*}
\frac{E_{j}}{\sqrt{\lambda}} \frac{\overline{E_{k}^{t}}}{\sqrt{\lambda}}=\delta_{j k} \tag{2.18}
\end{equation*}
$$

We extend $\left\{\frac{E_{1}}{\sqrt{\lambda}}, \ldots, \frac{E_{n-1}}{\sqrt{\lambda}}\right\}$ to a certain orthonormal basis of \mathbb{C}^{N-1} :

$$
\begin{equation*}
\left\{\frac{E_{1}}{\sqrt{\lambda}}, \ldots, \frac{E_{n-1}}{\sqrt{\lambda}}, C_{1}, \ldots, C_{N-n}\right\} \tag{2.19}
\end{equation*}
$$

Now we define a new map $F^{*}=\left(f_{l}^{*}, \phi_{k}^{*}, g^{*}\right)=H \circ F$ where $H \in \operatorname{Aut}\left(\mathbb{H}^{N}\right)$, which is equivalent to F, defined by

$$
\begin{equation*}
f_{l}^{*}=\frac{1}{\lambda} \widetilde{f} \cdot{\overline{E_{l}}}^{t}, \quad \phi_{k}^{*}=\frac{1}{\sqrt{\lambda}} \widetilde{f} \cdot{\overline{C_{k}}}^{t}, \quad g^{*}=\frac{1}{\lambda} g . \tag{2.20}
\end{equation*}
$$

F^{*} satisfies some initial conditions at 0 :

$$
\begin{equation*}
F^{*}(0)=0,\left.\frac{\partial f_{j}^{*}}{\partial z_{l}}\right|_{0}=\delta_{j}^{l},\left.\frac{\partial \phi_{j}^{*}}{\partial z_{l}}\right|_{0}=0,\left.\frac{\partial g^{*}}{\partial z_{l}}\right|_{0}=0,\left.\frac{\partial g^{*}}{\partial w}\right|_{0}=1 . \tag{2.21}
\end{equation*}
$$

In fact, for example,

$$
\left.\frac{\partial f_{j}^{*}}{\partial z_{l}}\right|_{0}=\left.L_{l} f_{j}^{*}\right|_{0}=\left.L_{l}\left(\frac{1}{\lambda} \widetilde{f} \cdot \bar{E}_{j}^{t}\right)\right|_{0}=\frac{1}{\lambda} L_{l} \tilde{f} \cdot{\overline{E_{j}}}^{t}=\left.\frac{1}{\lambda} E_{l}\right|_{0} \cdot{\overline{E_{j}}}^{t}=\frac{1}{\lambda} \lambda \delta_{l j}=\delta_{l j} .
$$

It is not good enough because we need to take care of the terms $\left.\frac{\partial f_{j}^{*}}{\partial w}\right|_{0}$ and $\left.\frac{\partial \phi_{j}^{*}}{\partial w}\right|_{0}$. We need further normalization.

Since $\left.L_{j}\right|_{0}=\left.\frac{\partial}{\partial z_{j}}\right|_{0}$ and $\left.T\right|_{0}=\left.\frac{\partial}{\partial w}\right|_{0}$, by taking differential and by the chain rule, we have

$$
\begin{aligned}
& \left.\left(f_{l}^{*}\right)^{\prime}\right|_{z_{k}}=\left.\frac{1}{\lambda} L_{k} \widetilde{f} \cdot \bar{E}_{l}^{t}\right|_{0}=\left.\frac{1}{\lambda} L_{k}(\widetilde{f}) \cdot{\overline{L_{l}(\widetilde{f})}}^{t}\right|_{0}=\delta_{l}^{k}, \\
& \left.\left(f_{l}^{*}\right)^{\prime}\right|_{0}=\left.\frac{1}{\lambda} E_{w} \cdot \bar{E}_{l}^{t}\right|_{0}=\left.\frac{1}{\lambda} T(\widetilde{f}) \cdot{\overline{L_{l}(\widetilde{f})}}^{t}\right|_{0}, \\
& \left.\left(\phi_{l}^{*}\right)_{z_{k}}^{\prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} L_{k} \widetilde{f} \cdot{\overline{C_{l}}}^{t}\right|_{0}=0, \\
& \left.\left(\phi_{k}^{*}\right)_{w}^{\prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} E_{w} \cdot{\overline{C_{k}}}^{t}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} T(\widetilde{f}) \cdot{\overline{C_{k}}}^{t}\right|_{0}, \\
& \left.\left(g^{*}\right)_{z_{l}}^{\prime}\right|_{0}=\left.\frac{1}{\lambda}\left(L_{l} g-2 i L_{l} \widetilde{f} \cdot \bar{f}^{t}\right)\right|_{0}=0, \quad(B y(2.4)) \\
& \left.\left(g^{*}\right)_{w}^{\prime}\right|_{0}=\left.\frac{1}{\lambda}\left(T g-2 i T \widetilde{f} \cdot \bar{\sigma}^{t}\right)\right|_{0}=1, \quad(B y(2.10))
\end{aligned}
$$

Besides, other formulas up to degree 2 are given as follows.

$$
\begin{aligned}
& \left.\left(f_{j}^{*}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda} L_{k} L_{l} \widetilde{f} \cdot{\overline{L_{j}}{ }_{j}}^{t}\right|_{0},\left.\left(f_{l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda} L_{j} T(\widetilde{f}) \cdot{\overline{L_{l}(\widetilde{f})}}^{t}\right|_{0}, \\
& \left.\left(f_{j}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda} T^{2} \widetilde{f} \cdot \overline{L_{j}} \widetilde{f}^{t}\right|_{0},\left.\quad\left(\phi_{j}^{*}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} L_{k} L_{l} \widetilde{f} \cdot{\overline{C_{j}}}^{t}\right|_{0},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(\phi_{j}^{*}\right)_{z_{k} w}^{\prime \prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} T L_{k} \tilde{f} \cdot{\overline{C_{j}}}^{t}\right|_{0},\left.\left(\phi_{j}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} T^{2} \widetilde{f} \cdot{\overline{C_{j}}}^{t}\right|_{0}, \\
& \left.\left(g^{*}\right)_{z_{l} z_{k}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda}\left(L_{l} L_{k} g-2 i L_{l} L_{k} \tilde{f} \cdot \overline{\widetilde{f}}^{t}\right)\right|_{0}=0, \quad(B y(2.6)) \\
& \left.\left(g^{*}\right)_{z_{l} w}^{\prime \prime}\right|_{0}=\frac{1}{\lambda} L_{l}\left(T g-2 i T \tilde{f} \cdot \overline{\vec{f}}^{t}\right)=\left.\frac{2 i}{\lambda} L_{l} \tilde{f} \cdot \overline{T \widetilde{f}}\right|_{0}, \\
& \left.\left(g^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}-2 i T \tilde{f} \cdot \overline{T \widetilde{f}}\right)\right|_{0} .
\end{aligned}
$$

2.6 The Associated Map $F^{* *}$ of F

We want to define $F^{* *}=\left(\tilde{f}^{* *}, g^{* *}\right)=\left(f^{* *}, \phi^{* *}, g^{* *}\right)=\left(f_{l}^{* *}, \phi_{k}^{* *}, g^{* *}\right)=G \circ F^{*}$, for some $G \in \operatorname{Aut}\left(\partial \mathbb{H}^{N}\right)$, such that this normalization $F^{* *}$ satisfies the following properties:

$$
\begin{equation*}
F^{* *}(0)=0,\left.\frac{\partial f_{l}^{* *}}{\partial z_{j}}\right|_{0}=\delta_{l j},\left.\frac{\partial f^{* *}}{\partial w}\right|_{0}=0,\left.\frac{\partial \phi_{k}^{* *}}{\partial z_{l}}\right|_{0}=0,\left.\frac{\partial \phi_{k}^{* *}}{\partial w}\right|_{0}=0,\left.\frac{g^{* *}}{\partial z_{l}}\right|_{0}=0,\left.\frac{g^{* *}}{\partial w}\right|_{0}=1, \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\partial^{2} g^{* *}}{\partial z_{j} \partial z_{k}}\right|_{0}=\left.\frac{\partial^{2} g^{* *}}{\partial w^{2}}\right|_{0}=0 \tag{2.23}
\end{equation*}
$$

This can be done by defining (cf. [H99])

$$
\begin{equation*}
G\left(z^{*}, w^{*}\right)=\frac{\left(z^{*}-\mathbf{a} w^{*}, w^{*}\right)}{1+2 i\left\langle z^{*}, \overline{\mathbf{a}}\right\rangle+\left(r-i|\mathbf{a}|^{2}\right) w^{*}} \in A u t_{0}\left(\partial \mathbb{H}^{N}\right) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{a}:=\left.\left(\widetilde{f}^{*}\right)_{w}^{\prime}\right|_{0}=\left.\left(\cdots, \frac{T \widetilde{f} \cdot{\overline{L_{j}}{ }_{f}^{f}}^{t}}{\lambda}, \cdots ; \cdots, \frac{T \widetilde{f} \cdot \bar{C}_{j}^{t}}{\sqrt{\lambda}}, \cdots\right)\right|_{0}=\left(a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{N-n}\right) \\
r:=\left.\frac{1}{2} \operatorname{Re}\left(g^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\frac{1}{2 \lambda} \operatorname{Re}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}\right)\right|_{0} \tag{2.25}
\end{gather*}
$$

The the normalization is defined by $F^{* *}:=G \circ F^{*}$.

$$
\begin{align*}
f_{j}^{* *} & =\frac{f_{j}^{*}-a_{j} g^{*}}{1+2 i\left\langle\widetilde{f^{*}}, \overline{\mathbf{a}}\right\rangle+\left(r-i|\mathbf{a}|^{2}\right) g^{*}}, \tag{2.26}\\
\phi_{j}^{* *} & =\frac{\phi_{j}^{*}-b_{j} g^{*}}{1+2 i\left\langle\widetilde{f}^{*}, \overline{\mathbf{a}}\right\rangle+\left(r-i|\mathbf{a}|^{2}\right) g^{*}} . \tag{2.27}\\
g^{* *} & =\frac{g^{*}}{1+2 i\left\langle\widetilde{f^{*}}, \overline{\mathbf{a}}\right\rangle+\left(r-i|\mathbf{a}|^{2}\right) g^{*}} . \tag{2.28}
\end{align*}
$$

It implies (2.22).
To prove (2.23), by taking differential and by the chain rule, we continue to calculate

$$
\begin{gather*}
\left.\left(f_{j}^{* *}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\left.\left(f_{j}^{*}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}-2 i \delta_{j}^{k} \overline{a_{l}}-2 i \delta_{j}^{l} \overline{a_{k}} \tag{2.29}\\
=\left.\frac{1}{\lambda} L_{k} L_{l} \widetilde{f} \cdot \overline{L_{j}}\right|_{0}-\left.\frac{2 i \delta_{j}^{k}}{\lambda} \overline{T \widetilde{f}} \cdot L_{l} \widetilde{f}^{t}\right|_{0}-\left.\frac{2 i \delta_{j}^{l}}{\lambda} \overline{T \widetilde{f}} \cdot L_{k} \widetilde{f^{t}}\right|_{0} . \\
\left.\left(f_{l}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(f_{l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.a_{l}\left(g^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.\delta_{j}^{l}\left[\left.2 i\left(\widetilde{f}^{*}\right)_{w}^{\prime}\right|_{0} \cdot \overline{\mathbf{a}}+\left(r-i|\mathbf{a}|^{2}\right)\right]\right|_{0} \\
=\left.\left(f_{l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.a_{l}\left(g^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.\delta_{j}^{l}\left[i|\mathbf{a}|^{2}+r\right]\right|_{0} \\
= \\
\left.\frac{1}{\lambda} L_{j} T \widetilde{f} \cdot \overline{L_{l} \widetilde{f}}\right|_{0} ^{t}-\left.\frac{2 i}{\lambda^{2}}\left(T \widetilde{f} \cdot \overline{L_{l} \tilde{f}}\right)\left(L_{j} \tilde{f} \cdot \overline{T \widetilde{f}} t\right)\right|_{0} \\
-\left.\frac{i \delta_{j l}}{\lambda}|T \widetilde{f}|^{2}\right|_{0}-\left.\frac{\delta_{j l}}{2 \lambda} R e\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}\right)\right|_{0} .
\end{gather*}
$$

We can say more about this important formula which will be used to define geometric rank κ_{0}. Applying T^{2} to the basic equation $\operatorname{Im}(g)=|\widetilde{f}|^{2}$, we get $0=2 i \operatorname{Im}\left(i T^{2} \widetilde{f} \cdot \overline{f^{t}}\right)+$ $2 i|T \widetilde{f}|^{2}-i \operatorname{Im}\left(T^{2} g\right)$ on $\partial \mathbb{H}^{n}$ by (2.8), i.e.,

$$
\begin{equation*}
|T \widetilde{f}|^{2}=\frac{1}{2} \operatorname{Im}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}\right) \tag{2.30}
\end{equation*}
$$

Combining this to the above, we get

$$
\begin{align*}
& \left.\left(f_{l}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\frac{1}{\lambda} L_{j} T \widetilde{f} \cdot \overline{L_{l}} \widetilde{f}^{t}\right|_{0}-\left.\frac{2 i}{\lambda^{2}}\left(T \widetilde{f} \cdot{\overline{L_{l}} \widetilde{f}^{t}}^{t}\right)\left(L_{j} \widetilde{f} \cdot \overline{T \widetilde{f}}{ }^{t}\right)\right|_{0} \tag{2.31}\\
& -\left.\frac{\delta_{j l}}{2 \lambda}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}\right)\right|_{0} . \\
& \left.\left(f_{l}^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\left(f_{l}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}-\left.a_{l}\left(g^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0} \tag{2.32}\\
& =\left.\frac{1}{\lambda} T^{2} \widetilde{f} \cdot \overline{L_{l}} \widetilde{f}^{t}\right|_{0}-\left.\frac{1}{\lambda^{2}}\left(T \widetilde{f} \cdot{\overline{L_{l}} \bar{f}^{t}}^{t}\right)\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \bar{f}^{t}-2 i|T \widetilde{f}|^{2}\right)\right|_{0} . \\
& \left.\left(\phi_{l}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=\left.\left(\phi_{l}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}-b_{l}\left(g^{*}\right)_{z_{j} z_{k}}^{\prime \prime}=\left.\left(\phi_{l}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=\left.\frac{1}{\sqrt{\lambda}} L_{j} L_{k} \widetilde{f} \cdot \bar{C}_{l}^{t}\right|_{0} . \tag{2.33}
\end{align*}
$$

Here we used the fact that $\left.\left(g^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0$.

$$
\begin{align*}
& \left.\left(\phi_{l}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(\phi_{l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.b_{l}\left(g^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0} \\
& =\left.\frac{1}{\sqrt{\lambda}} T L_{j} \tilde{f} \cdot{\overline{C_{l}}}_{l}^{t}\right|_{0}-\left.\frac{1}{\lambda^{3 / 2}}\left(T \tilde{f} \cdot \bar{C}_{l}^{t}\right) L_{j}\left(T g-2 i T \tilde{f} \cdot \bar{न}^{t}\right)\right|_{0} \tag{2.34}\\
& =\left.\frac{1}{\sqrt{\lambda}} T L_{j} \tilde{f} \cdot \bar{C}_{l}^{t}\right|_{0}-\left.\frac{2 i}{\lambda^{3 / 2}}\left(T \tilde{f} \cdot \bar{C}_{l}^{t}\right)\left(L_{j} \tilde{f} \cdot T \bar{f}^{t}\right)\right|_{0} . \\
& \left.\left(\phi_{l}^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\left(\phi_{l}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}-\left.b_{j}\left(g^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0} \tag{2.35}\\
& =\left.\frac{1}{\sqrt{\lambda}} T^{2} \widetilde{f} \cdot \bar{C}_{l}^{t}\right|_{0}-\left.\frac{1}{\lambda^{3 / 2}}\left(T \widetilde{f} \cdot \bar{C}_{l}^{t}\right)\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}-2 i|T \widetilde{f}|^{2}\right)\right|_{0} . \\
& \left.\left(g^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0, \\
& \left.\left(g^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(g^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-2 i \overline{a_{j}}=\left.\frac{2 i}{\lambda} L_{j} \widetilde{f} \cdot \overline{T \widetilde{f}}^{t}\right|_{0}-\left.\frac{2 i}{\lambda} \overline{T \widetilde{f} \cdot \overline{L_{j}}}{ }^{t}\right|_{0},
\end{align*}
$$

$$
\begin{aligned}
& \left.\left(g^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\left(g^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}-\left.2\left[i\left|\mathbf{a}_{\mathbf{j}}\right|^{2}+r\right]\right|_{0} \\
= & \left.\frac{1}{\lambda}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}^{t}\right)\right|_{0}-\left.\frac{2}{\lambda}\left[i|T \widetilde{f}|^{2}+\frac{1}{2} \operatorname{Re}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\widetilde{f}}\right)\right]\right|_{0} \\
= & \left.\frac{1}{\lambda} \operatorname{Im}\left(T^{2} g-2 i T^{2} \widetilde{f} \cdot \overline{\tilde{f}}\right)\right|_{0}=\left.\frac{2}{\lambda}|T \widetilde{f}|^{2}\right|_{0}=0 .
\end{aligned}
$$

This implies $\left.\left(g^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=0$. Here we used (2.30). Then (2.23) are proved.

2.7 The Chern-Moser Operator

If $F=F^{* *} \in \operatorname{Prop}_{2}\left(\partial \mathbb{H}^{n}, \partial \mathbb{H}^{N}\right)$, then we have

$$
\begin{equation*}
f=z+\hat{f}, g=w+\hat{g} \text { with } \hat{f}, \hat{g}, \phi=O\left(|(z, w)|^{2}\right),\left.\frac{\partial^{2} \hat{g}}{\partial z_{l} \partial z_{k}}\right|_{0}=\left.\frac{\partial^{2} \hat{g}}{\partial w^{2}}\right|_{0}=0 \tag{2.36}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\operatorname{Im}(w+\hat{g})=\sum_{j=1}^{n-1}\left|z_{j}+\hat{f}_{j}\right|^{2}+\sum_{j=1}^{N-n}\left|\phi_{j}\right|^{2}, \quad \forall(z, w) \in \partial \mathbb{H}^{n} \tag{2.37}
\end{equation*}
$$

Let $M_{1} \subset \partial \mathbb{H}^{n}$ be an open subset. For a function f on M_{1}, we denote $h \in o_{w t}(s)$ if

$$
\lim _{t \rightarrow 0^{+}} \frac{h\left(t z, t^{2} w, t \bar{z}, t^{2} \bar{w}\right)}{t^{s}} \rightarrow 0
$$

uniformly with respect to $(z, w) \approx\left(0^{\prime}, 0\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}$. In other words, we define weighted degree by (see also (1.8))

$$
\operatorname{deg}_{w t}\left(z^{k} w^{l}\right)=k+2 l .
$$

We write F as

$$
\begin{equation*}
\hat{f}_{j}=\sum_{s=2}^{m-1} f_{j}^{(s)}+o_{w t}(m-1), \hat{g}=\sum_{s=3}^{m} g^{(s)}+o_{w t}(m), \quad \phi_{j}=\sum_{s=l}^{m-l} \phi_{j}^{(s)}+o_{w t}(m-l), \quad l \geq 2 \tag{2.38}
\end{equation*}
$$

where we denote by $h^{(s)}$ the homogeneous polynomial of (z, w) of weighted degree s.

Substituting these into (2.37), we obtain

$$
\begin{aligned}
& \operatorname{Im}(w)+\operatorname{Im}(\hat{g})=\sum_{j}\left(z_{j}+\hat{f}_{j}\right)\left(\overline{z_{j}}+\overline{\hat{f}_{j}}\right)+\sum_{k}\left(\sum_{s} \phi_{k}^{(s)}\right)\left(\sum_{t} \overline{\phi^{(t)}}{ }_{k}\right) \\
& =|z|^{2}+\sum_{j}\left(z_{j} \overline{\hat{f}_{j}}+\hat{f_{j}} \overline{z_{j}}+\left|\hat{f}_{j}\right|^{2}\right)+\sum_{k}\left(\sum_{s} \phi_{k}^{(s)}\right)\left(\sum_{t} \overline{\phi_{k}^{(t)}}\right) \\
& =|z|^{2}+\sum_{j} \operatorname{Im}\left(2 i\left\langle\overline{z_{j}}, \hat{f}_{j}\right\rangle\right)+\sum_{j}\left|\hat{f}_{j}\right|^{2}+\sum_{k}\left(\sum_{s} \phi_{k}^{(s)}\right)\left(\sum_{t} \overline{\phi_{k}^{(t)}}\right), \quad \forall \operatorname{Im}(w)=|z|^{2} .
\end{aligned}
$$

Here we used the fact $a+\bar{a}=\operatorname{Im}(2 i a)$ for any $a \in \mathbb{C}$. Then

$$
\operatorname{Im}(\hat{g})=\operatorname{Im}(2 i\langle\bar{z}, \hat{f}\rangle)+|\hat{f}|^{2}+\sum_{k}\left(\sum_{s} \phi_{k}^{(s)}\right)\left(\sum_{t} \overline{\phi_{k}^{(t)}}\right), \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

Then for any $l \leq s \leq m$, we collect terms in the above equation of weighted degree s to obtain the following equation:

$$
\begin{equation*}
\operatorname{Im}\left(g^{(s)}-2 i\left\langle\bar{z}, f^{(s-1)}\right\rangle\right)=\sum_{j=1}^{N-n} \sum_{p=l}^{s-l} \phi_{j}^{(s-p)} \overline{\phi_{j}^{(p)}}+G^{(s)}, \quad \forall(z, w) \in \partial \mathbb{H}^{n} \tag{2.39}
\end{equation*}
$$

where $G^{(s)}$ is weighted homogeneous polynomial of weighted degree s contributed by $f^{(\sigma-1)}$ and $g^{(\sigma)}, \sigma \leq s-1$. Here we denote $\phi^{(s)} \equiv 0$ if $s<0$. The operator

$$
\mathcal{L}(f, g):=\operatorname{Im}(\hat{g}-2 i\langle\bar{z}, \hat{f}\rangle)
$$

is called the Chern-Moser operator.
We notice $G^{(s)} \equiv 0$ if $f^{(\sigma-1)} \equiv g^{(\sigma)} \equiv 0$ for $\sigma \leq s-1$. Let us consider the following two cases.

Case 1: $s=2 k \quad$ We suppose $s=2 k \leq m$. If the following additional conditions are satisfied

$$
\begin{equation*}
f^{(\sigma-1)} \equiv \phi^{(\sigma)} \equiv 0, \quad \text { for } \sigma \leq 2 k-1, \tag{2.40}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Im}\left(g^{(2 k)}(z, w)-2 i\left\langle\bar{z}, f^{(2 k-1)}(z, w)\right\rangle\right)=\sum_{j=1}^{N-n} \phi_{j}^{(k)} \overline{\phi_{j}^{(k)}}, \quad \forall(z, w) \in M_{1} \tag{2.41}
\end{equation*}
$$

Case 2: $s=2 k+1 \quad$ We suppose $s=2 k+1 \leq m$. If the following conditions are satisfied

$$
\begin{equation*}
f^{(\sigma-1)} \equiv \phi^{(\sigma)} \equiv 0 \quad \text { for } \sigma \leq 2 k \tag{2.42}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Im}\left(g^{(2 k+1)}(z, w)-2 i\left\langle\bar{z}, f^{(2 k)}(z, w)\right\rangle\right)=0, \quad \forall(z, w) \in M_{1} \tag{2.43}
\end{equation*}
$$

Lemma 2.7.1 Let $F=F^{* *} \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ be as above. Then
(i) $f^{(2)} \equiv 0, f^{(3)} \equiv a^{(1)}(z) w, \phi^{(2)}(z, w)=\phi^{(2)}(z), g^{(3)}=g^{(4)} \equiv 0$.
(ii) $-2 i\left\langle a^{(1)}(z), \bar{z}\right\rangle|z|^{2}=\sum_{j=1}^{N-n}\left|\phi_{j}^{(2)}(z)\right|^{2}$.

Proof: Consider $s=2$ and (2.39). Since both sides of the equality are zero, the equation (2.39) is trivially true.

Consider $s=3$ and $m=3$ in the identity (2.43):

$$
\begin{equation*}
\operatorname{Im}\left(g^{(3)}-2 i\left\langle\bar{z}, f^{(2)}\right\rangle\right) \equiv 0 \quad \text { on } \partial \mathbb{H}^{n} . \tag{2.44}
\end{equation*}
$$

We claim

$$
\begin{equation*}
g^{(3)} \equiv 0 \text { and } f^{(2)} \equiv 0 \tag{2.45}
\end{equation*}
$$

In fact, write $f^{(2)}(z, w)=a^{(2)}(z)$ and $g^{(3)}(z, w)=c^{(3)}(z)+c^{(1)}(z) w$. Substituting into (2.43), we have

$$
\operatorname{Im}\left(c^{(3)}(z)+c^{(1)}(z) w-2 i\left\langle\bar{z}, a^{(2)}(z)\right\rangle\right) \equiv 0, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

Since $w=u+i|z|^{2}$, it follows that $c^{(1)}(z) \equiv 0, c^{(3)}(z) \equiv 0$ and $a^{(2)}(z) \equiv 0$. Hence Claim is proved.

Consider $s=4$ and $m=4$ in (2.41):

$$
\begin{equation*}
\operatorname{Im}\left(g^{(4)}-2 i\left\langle\bar{z}, f^{(3)}\right\rangle\right)=\sum_{j=1}^{N-n}\left|\phi_{j}^{(2)}\right|^{2}, \quad \forall \operatorname{Im}(w)=|z|^{2} \tag{2.46}
\end{equation*}
$$

We claim

$$
\begin{gather*}
g^{(4)} \equiv 0, \phi_{j}^{(2)} \equiv \phi_{j}^{(2)}(z), f^{(3)} \equiv a^{(1)}(z) w, \\
-2 i\left\langle a^{(1)}(z), \bar{z}\right\rangle|z|^{2}=\sum_{j=1}^{N-n}\left|\phi_{j}^{(2)}(z)\right|^{2}, \tag{2.47}
\end{gather*}
$$

where $a^{(1)}(z)$ is a certain holomorphic homogeneous polynomial of weighted degree one. In fact, write

$$
f^{(3)}(z, w)=a^{(1)}(z) w+a^{(3)}(z), \quad \phi_{j}^{(2)}(z, w)=b_{j}^{(2)}(z)
$$

and $g^{(4)}(z, w)=c^{(4)}(z)+c^{(2)}(z) w$. Here we used $\left.\frac{\partial^{2} g}{\partial w^{2}}\right|_{0}=0$. Substituting into (2.41),

$$
\operatorname{Im}\left(c^{(4)}(z)+c^{(2)}(z) w-2 i\left\langle\bar{z}, a^{(1)}(z)\right\rangle|z|^{2}-2 i\left\langle\bar{z}, a^{(3)}(z)\right\rangle\right)=\sum_{j=1}^{N-n}\left|b_{j}^{(2)}(z)\right|^{2}, \quad \forall(z, w) \in M_{1}
$$

Since $w=u+i|z|^{2}$ and z, u are independent variables, we consider u^{0} and u terms to get three identities:

$$
\begin{gathered}
\operatorname{Im}\left(c^{(4)}(z)+i c^{(2)}(z)|z|^{2}+2\left\langle\bar{z}, a^{(1)}(z)\right\rangle w-2 i\left\langle\bar{z}, a^{(3)}(z)\right\rangle\right)=\sum_{j=1}^{N-n}\left|b_{j}^{(2)}(z)\right|^{2} \\
\operatorname{Im}\left(c^{(2)}(z)-2 i\left\langle\bar{z}, a^{(1)}(z)\right\rangle\right) u=0
\end{gathered}
$$

Then $c^{(2)}(z) \equiv 0$ and $\operatorname{Im}\left(2 i\left\langle\bar{z}, a^{(1)}(z)\right\rangle\right) \equiv 0$. Thus from the first one, $c^{(4)}(z) \equiv 0$ and $a^{(3)}(z) \equiv 0$ so that the claim is proved.

By Lemma 2.7.1, we obtain:
Theorem 2.7.2 ([H99], Lemma 5.3) Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right), 2 \leq n \leq N$ with $F(0)=0$. Then there is an automorphism $\tau^{* *} \in A u t_{0}\left(\mathbb{H}^{N}\right)$ such that $F^{* *}:=\tau^{* *} \circ F=\left(f^{* *}, \phi^{* *}, g^{* *}\right)$ satisfies the following normalization:

$$
\begin{gather*}
f^{* *}=z+\frac{i}{2} a^{* *(1)}(z) w+o_{w t}(3), \phi^{* *}=\phi^{* *(2)}(z)+o_{w t}(2), g^{* *}=w+o_{w t}(4) \tag{2.48}\\
\left\langle\bar{z}, a^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi^{* *(2)}(z)\right|^{2}
\end{gather*}
$$

2.8 The Associated Map F_{p} of F

Let

$$
F=(f, \phi, g)=(\tilde{f}, g)=\left(f_{1}, \ldots, f_{n-1}, \phi_{1}, \ldots, \phi_{N-n}, g\right)
$$

be a non-constant C^{2} smooth CR map from $M_{1} \subset \partial \mathbb{H}^{n}$ into $M_{2} \subset \partial \mathbb{H}^{N}$ as above.
For any point $p \in M_{1}$, we have an associated CR map F_{p} from a small neighborhood of $0 \in \partial \mathbb{H}^{n}$ to $\partial \mathbb{H}^{N}$ with $F_{p}(0)=0$, defined by

$$
\begin{equation*}
F_{p}=\tau_{p}^{F} \circ F \circ \sigma_{p}^{0} \tag{2.49}
\end{equation*}
$$

$$
\begin{array}{cccc}
p \in \partial \mathbb{H}^{n} & \xrightarrow{F} & \partial \mathbb{H}^{N} \ni F(p) \\
\uparrow \sigma_{p}^{0} & & \downarrow \tau_{p}^{F} \\
0 \in \partial \mathbb{H}^{n} & F_{p}:=\tau_{p}^{F} \circ F \circ \sigma_{p} & & \partial \mathbb{H}^{N} \ni 0
\end{array}
$$

where $\sigma_{p}^{0} \in \operatorname{Aut}\left(\mathbb{H}^{n}\right)$, $p=\left(z_{0}, w_{0}\right)$, given by

$$
\begin{equation*}
\sigma_{p}^{0}(z, w)=\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right) \tag{2.50}
\end{equation*}
$$

and $\tau_{p}^{F} \in \operatorname{Aut}\left(\mathbb{H}^{N}\right)$ is given by

$$
\begin{equation*}
\tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\left.\widetilde{f}\left(z_{0}, w_{0}\right)\right\rangle}\right)\right. \tag{2.51}
\end{equation*}
$$

Notice that $F(0)$ may not be 0 , but we always have $F_{p}(0)=0$. By the similar calculation of F^{*} and $F^{* *}$, w have the following formulas.

$$
\begin{aligned}
& \left.\left(\widetilde{f}_{p}\right)_{z_{l}}^{\prime}\right|_{0}=L_{l}(\widetilde{f})(p):=E_{l}(p), \\
& \left.\left(\widetilde{f}_{p}\right)_{w}^{\prime}\right|_{0}=T(\widetilde{f})(p):=E_{w}(p), \\
& \lambda(p):=\left|L_{j} \widetilde{f}\right|^{2}(p), \text { for any } \mathrm{j} \in\{1, \ldots, n-1\}, \\
& \left.\left(g_{p}\right)_{z_{l}}^{\prime}\right|_{0}=L_{l} g(p)-2 i L_{l} \widetilde{f}(p) \cdot \widetilde{f}(p)^{t}=0 \quad \text { (because (2.4)), } \\
& \left.\left(g_{p}\right)_{w}^{\prime}\right|_{0}=\operatorname{Tg}(p)-2 i T \widetilde{f}(p) \cdot \overline{\widetilde{f}}(p)^{t}=\left|L_{j} \widetilde{f}_{p}(0)\right|^{2}, \quad 1 \leq j \leq n-1, \\
& \left.\left(\widetilde{f}_{p}\right)_{z_{l} z_{k}}^{\prime \prime}\right|_{0}=L_{l} L_{k}(\widetilde{f})(p), \\
& \left.\left(\widetilde{f}_{p}\right)_{z_{l} w}^{\prime \prime}\right|_{0}=T L_{l}(\tilde{f})(p), \\
& \left.\left(\tilde{f}_{p}\right)_{w^{2}}^{\prime \prime}\right|_{0}=T^{2}(\tilde{f})(p), \\
& \left.\left(g_{p}\right)_{z_{l} z_{k}}^{\prime \prime}\right|_{0}=L_{l} L_{k} g(p)-2 i L_{l} L_{k} \tilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}=0, \quad(B y(2.6)) \\
& \left.\left(g_{p}\right)_{w z_{l}}^{\prime \prime}\right|_{0}=L_{l}\left(T g(p)-2 i T \widetilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}\right)=2 i L_{l} \widetilde{f}(p) \cdot \overline{T \widetilde{f}(p)}^{t}, \\
& \left.\left(g_{p}\right)_{w^{2}}^{\prime \prime}\right|_{0}=T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\widetilde{f}}(p)^{t}-2 i T \widetilde{f}(p) \cdot T \overline{\widetilde{f}}(p)^{t} .
\end{aligned}
$$

Here for the second equality about $\left(g_{p}\right)_{w z_{l}}^{\prime \prime}$, we used the fact that $g-\bar{g}=2 i \tilde{f} \cdot \overline{\widetilde{f}}^{t}$ and then $T L_{l} g=2 i T L_{p} \widetilde{f} \cdot \bar{f}^{t}+2 i L_{l} \tilde{f} \cdot T \widetilde{f^{t}}$. Notice that there are two formulas for $\left.\left(g_{p}\right)_{w z_{l}}^{\prime \prime}\right|_{0}$.

We define $F_{p}^{*}=\left(\widetilde{f_{p}^{*}}, g_{p}^{*}\right)$ given by

$$
\begin{equation*}
F_{p}^{*}=\left(f_{p}^{*}, \phi_{p}^{*}, g_{p}^{*}\right)=\left(f_{p, l}^{*}, \phi_{p, k}^{*}, g_{p}^{*}\right) \tag{2.52}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{p, l}^{*}=\frac{1}{\lambda_{p}} \widetilde{f}_{p} \cdot{\overline{E_{l}(p)}}^{t}, \quad \phi_{p, k}^{*}=\frac{1}{\sqrt{\lambda_{p}}} \widetilde{f}_{p} \cdot{\overline{C_{k}(p)}}^{t}, g_{p}^{*}=\frac{1}{\lambda_{p}} g_{p}, \tag{2.53}
\end{equation*}
$$

where $1 \leq l \leq n-1$ and $1 \leq k \leq N-n . F_{p}^{*}$ satisfies the following properties:

$$
\begin{equation*}
F_{p}^{*}(0)=0,\left.\left(f_{p, j}^{*}\right)_{z_{l}}^{\prime}\right|_{0}=\delta_{j}^{l},\left.\left(\phi_{p, j}^{*}\right)_{z_{l}}^{\prime}\right|_{0}=0,\left.\left(g_{p}^{*}\right)_{z_{l}}^{\prime}\right|_{0}=0,\left.\left(g_{p}^{*}\right)_{w}^{\prime}\right|_{0}=1 . \tag{2.54}
\end{equation*}
$$

As before, we can choose vectors $C_{1}(p), \ldots, C_{N-n}(p) \in \mathbb{C}^{N-1}$ so that

$$
\begin{equation*}
\left\{\frac{E_{1}(p)^{t}}{\sqrt{\lambda}}, \ldots, \frac{E_{n-1}(p)^{t}}{\sqrt{\lambda}}, C_{1}(p)^{t}, \ldots, C_{N-n}(p)^{t}\right\} \tag{2.55}
\end{equation*}
$$

form an $(N-1) \times(N-1)$ unitray matrix.

$$
\begin{aligned}
& \left.\left(f_{p, l}^{*}\right)_{z_{k}}^{\prime}\right|_{0}=\frac{1}{\lambda(p)} L_{k} \widetilde{f(p)} \cdot{\overline{E_{l}(p)}}^{t}=\frac{1}{\lambda(p)} L_{k}(\widetilde{f})(p) \cdot{\overline{L_{l}(\widetilde{f})(p)}}^{t}=\delta_{l}^{k}, \\
& \left.\left(f_{p, l}^{*}\right)_{w}^{\prime}\right|_{0}=\frac{1}{\lambda(p)} E_{w}(p) \cdot{\overline{E_{l}(p)}}^{t}=\frac{1}{\lambda(p)} T(\widetilde{f})(p) \cdot{\overline{L_{l}(\widetilde{f})(p)}}^{t}, \\
& \left.\left(\phi_{p, l}^{*}\right)_{z_{k}}^{\prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} L_{k} \widetilde{f(p)} \cdot{\overline{C_{l}(p)}}^{t}=0, \\
& \left.\left(\phi_{p, k}^{*}\right)_{w}^{\prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} E_{w}(p) \cdot{\overline{C_{k}(p)}}^{t}=\frac{1}{\sqrt{\lambda(p)}} T(\widetilde{f})(p) \cdot{\overline{C_{k}(p)}}^{t}, \\
& \left.\left(g_{p}^{*}\right)_{z_{l}}^{\prime}\right|_{0}=\frac{1}{\lambda(p)}\left(L_{l} g(p)-2 i L_{l} \widetilde{f}(p) \cdot \widetilde{f}(p)^{t}\right)=0, \quad(B y(2.4)) \\
& \left.\left(g_{p}^{*}\right)_{w}^{\prime}\right|_{0}=\frac{1}{\lambda(p)}\left(T g(p)-2 i T \widetilde{f}(p) \cdot \bar{f}(p)^{t}\right)=1, \quad(B y(2.10))
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(f_{p, j}^{*}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)} L_{k} L_{l} \widetilde{f}(p) \cdot{\overline{L_{j} \tilde{f}(p)}}^{t},\left.\left(f_{p, l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)} L_{j} T(\tilde{f})(p) \cdot{\overline{L_{l}(\tilde{f})(p)}}^{t}, \\
& \left.\left(f_{p, j}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)} T^{2} \widetilde{f}(p) \cdot{\overline{L_{j} \tilde{f}(p)}}^{t},\left.\left(\phi_{p, j}^{*}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} L_{k} L_{l} \tilde{f}(p) \cdot{\overline{C_{j}(p)}}^{t}, \\
& \left.\left(\phi_{p, j}^{*}\right)_{z_{k} w}^{\prime \prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} T L_{k} \widetilde{f}(p) \cdot{\overline{C_{j}(p)}}^{t},\left.\quad\left(\phi_{p, j}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} T^{2} \widetilde{f}(p) \cdot{\overline{C_{j}(p)}}^{t}, \\
& \left.\left(g_{p}^{*}\right)_{z_{l} z_{k}}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)}\left(L_{l} L_{k} g(p)-2 i L_{l} L_{k} \widetilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}\right)=0, \quad(B y(2.6)) \\
& \left.\left(g_{p}^{*}\right)_{z_{l} w}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)} L_{l}\left(T g(p)-2 i T \tilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}\right)=\frac{2 i}{\lambda(p)} L_{l} \widetilde{f}(p) \cdot \overline{T \widetilde{f}(p)}^{t}, \\
& \left.\left(g_{p}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}-2 i T \tilde{f}(p) \cdot \overline{T \widetilde{f}(p)}^{t}\right) \text {. }
\end{aligned}
$$

We define

$$
\begin{equation*}
G_{p}=\frac{\left(z^{*}-\mathbf{a}(p) w^{*}, w^{*}\right)}{1+2 i\left\langle z^{*}, \overline{\mathbf{a}(p)}\right\rangle+\left(r(p)-i|\mathbf{a}(p)|^{2}\right) w^{*}} \tag{2.56}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{a}(p):= & \left(\widetilde{f}_{p}^{*}\right)_{w}^{\prime} l_{0}=(a(p), b(p))=\left(a_{1}(p), . ., a_{n-1}(p), b_{1}(p), \ldots, b_{N-n}(p)\right)= \\
& =\left(\cdots, \frac{T \tilde{f}(p) \cdot{\overline{L_{j} \tilde{f}(p)}}^{t}}{\lambda(p)}, \cdots ; \cdots, \frac{T \tilde{f}(p) \cdot{\overline{C_{j}(p)}}^{t}}{\sqrt{\lambda(p)}}, \cdots\right), \tag{2.57}\\
r(p) & :=\left.\frac{1}{2} \operatorname{Re}\left(g_{p}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\frac{1}{2 \lambda(p)} \operatorname{Re}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \bar{f}(p)^{t}\right) . \tag{2.58}
\end{align*}
$$

In particular, because $A=\left(\frac{E_{j}}{\sqrt{\lambda}}, C_{k}\right)$ is a unitary matrix,

$$
\begin{equation*}
|\mathbf{a}(p)|^{2}=\frac{1}{\lambda(p)}\left|E_{w}(p)\right|^{2}=\frac{1}{\lambda(p)}|T \widetilde{f}(p)|^{2} \tag{2.59}
\end{equation*}
$$

We then define the normalization

$$
\begin{align*}
F_{p}^{* *} & =\left(\widetilde{f_{p}^{* *}}, g_{p}^{* *}\right)=\left(f_{p}^{* *}, \phi_{p}^{* *}, g_{p}^{* *}\right):=G_{p} \circ F_{p}^{*} \tag{2.60}\\
f_{p, j}^{* *} & =\frac{f_{p, j}^{*}-a_{j}(p) g_{p}^{*}}{1+2 i\left\langle\widetilde{f_{p}^{*}}, \overline{\mathbf{a}(p)}\right\rangle-\left(-r(p)+i|\mathbf{a}(p)|^{2}\right) g_{p}^{*}}, \tag{2.61}\\
\phi_{p, j}^{* *} & =\frac{\phi_{p, j}^{*}-b_{j}(p) g_{p}^{*}}{1+2 i\left\langle\widetilde{f_{p}^{*}}, \overline{\mathbf{a}(p)}\right\rangle-\left(-r(p)+i|\mathbf{a}(p)|^{2}\right) g_{p}^{*}} . \tag{2.62}\\
g_{p}^{* *} & =\frac{g_{p}^{*}}{\left.1+2 i\left\langle\widetilde{f_{p}^{*}}, \overline{\mathbf{a}(p)}\right\rangle-\left.(-r(p)+i \mid \mathbf{a}(p))\right|^{2}\right) g_{p}^{*}} . \tag{2.63}
\end{align*}
$$

The purpose of this normalization is that $F_{p}^{* *}$ must satisfy the following properties:

$$
\begin{gather*}
F_{p}^{* *},\left(f_{p}^{* *}-z\right)_{z_{l}}^{\prime},\left(f_{p}^{* *}\right)_{w}^{\prime},\left(\phi_{p}^{* *}\right)_{z_{l}}^{\prime},\left(\phi_{p}^{* *}\right)_{w}^{\prime},\left(g_{p}^{* *}\right)_{z_{l}}^{\prime},\left(g_{p}^{* *}-w\right)_{w}^{\prime},\left(g_{p}^{* *}\right)_{z_{l} z_{k}}^{\prime \prime} \\
\text { and }\left(g_{p}^{* *}\right)_{w^{2}}^{\prime \prime} \text { all vanish at }(z, w)=0 \tag{2.64}
\end{gather*}
$$

From (2.61) (2.62) and (2.63), we have

$$
\begin{gather*}
\left.\left(f_{p, j}^{* *}\right)_{z_{l}}^{\prime}\right|_{0}=\delta_{j}^{l},\left.\quad\left(f_{p, j}^{* *,}\right)_{w}^{\prime}\right|_{0}=\left.\left(f_{p, j}^{*}\right)_{w}^{\prime}\right|_{0}-a_{j}(p)=0 \\
\left.\left(\phi_{p, j}^{* *}\right)_{z_{l}}^{\prime}\right|_{0}=0,\left.\quad\left(\phi_{p, j}^{*}\right)_{w}^{\prime}\right|_{0}=\left(\phi_{p, j}^{*}\right)_{w}^{\prime}-b_{j}(p)=0 \\
\left.\left(g_{p}^{*}\right)_{z_{l}}^{\prime}\right|_{0}=0,\left.\quad\left(g_{p}^{*}\right)_{w}^{\prime}\right|_{0}=0 . \\
\left.\left(f_{p, j}^{* *}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0}=\left.\left(f_{p, j}^{*}\right)_{z_{k} z_{k}}^{\prime \prime}\right|_{0}-2 i \delta_{j}^{k} \overline{z_{l}(p)}-2 i \delta_{j}^{l} \overline{a_{k}(p)} \tag{2.65}\\
=\frac{1}{\lambda(p)} L_{k} L_{l} \widetilde{f}(p) \cdot{\overline{L_{j}} \tilde{f}^{\prime}(p)}_{t}^{t}-\frac{2 i \delta_{j}^{k}}{\lambda(p)} \overline{T \widetilde{f}(p)} \cdot L_{l} \widetilde{f}(p)^{t}-\frac{2 i \delta_{j}^{l}}{\lambda(p)} \overline{T \widetilde{f}(p)} \cdot L_{k} \widetilde{f}(p)^{t}=0 .
\end{gather*}
$$

Here we used the fact that $\left.\left(g_{p}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0$. The last equality holds because of Lemma 2.7.1 (i).

$$
\begin{aligned}
& \left.\left(f_{p, l}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(f_{p, l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.a_{l}(p)\left(g_{p}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\delta_{j}^{l}\left[\left.2 i\left(\tilde{f}_{p}^{*}\right)_{w}^{\prime}\right|_{0} \cdot \overline{\mathbf{a}}+\left(r(p)-i|\mathbf{a}(p)|^{2}\right)\right] \\
= & \left.\left(f_{p, l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.a_{l}(p)\left(g_{p}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\delta_{j}^{l}\left[i|\mathbf{a}(p)|^{2}+r(p)\right] \\
= & \frac{1}{\lambda(p)} L_{j} T \widetilde{f}(p) \cdot{\overline{L_{l} \tilde{f}(p)}}^{t}-\frac{2 i}{\lambda(p)^{2}}\left(T \widetilde{f}(p) \cdot{\overline{L_{l} \tilde{f}(p)}}^{t}\right)\left(L_{j} \widetilde{f}(p) \cdot \overline{T \widetilde{f}}(p)^{t}\right) \\
& -\frac{i \delta_{j l}}{\lambda(p)}|T \tilde{f}(p)|^{2}-\frac{\delta_{j l}}{2 \lambda(p)} \operatorname{Re}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\widetilde{f}}(p)^{t}\right) .
\end{aligned}
$$

We can say more about this important formula which will be used to define geometric rank κ_{0}. Applying T^{2} to the basic equation $\operatorname{Im}(g)=|\widetilde{f}|^{2}$, we get $0=2 i \operatorname{Im}\left(i T^{2} \widetilde{f} \cdot \overline{\widetilde{f t}}\right)+$ $2 i|T \widetilde{f}|^{2}-i \operatorname{Im}\left(T^{2} g\right)$ on $\partial \mathbb{H}^{n}$ by (2.8). Combining this to the above, we get

$$
\begin{align*}
& \left(f_{p, l}^{* *}\right)_{z_{j} w}^{\prime \prime} l_{0}=\frac{1}{\lambda(p)} L_{j} T \tilde{f}(p) \cdot{\overline{L_{l} \tilde{f}(p)}}^{t}-\frac{2 i}{\lambda(p)^{2}}\left(T \tilde{f}(p) \cdot{\overline{L_{l} \tilde{f}(p)}}^{t}\right)\left(L_{j} \tilde{f}(p) \cdot \overline{T \tilde{f}(p)}^{t}\right) \tag{2.66}\\
& -\frac{\delta_{j l}}{2 \lambda(p)}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\tilde{f}(p)}^{t}\right) .
\end{align*}
$$

$$
\begin{equation*}
\left.\left(\phi_{p, l}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=\left.\left(\phi_{p, l}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}-b_{l}\left(g_{p}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}=\left.\left(\phi_{p, l}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=\frac{1}{\sqrt{\lambda(p)}} L_{j} L_{k} \tilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t} . \tag{2.68}
\end{equation*}
$$

Here we used the fact that $\left.\left(g_{p}^{*}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0$.

$$
\begin{align*}
& \left.\left(\phi_{p, l}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(\phi_{p, l}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-\left.b_{l}(p)\left(g_{p}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0} \\
& =\frac{1}{\sqrt{\lambda(p)}} T L_{j} \tilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}-\frac{1}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}\right) L_{j}\left(T g(p)-2 i T \widetilde{f}(p) \cdot \overline{\tilde{f}}(p)^{t}\right) \\
& =\frac{1}{\sqrt{\lambda(p)}} T L_{j} \widetilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}-\frac{2 i}{\lambda(p)^{3 / 2}}\left(T \tilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}\right)\left(L_{j} \tilde{f}(p) \cdot T \overline{\tilde{f}}^{t}(p)\right) . \\
& \left.\left(\phi_{p, l}^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\left(\phi_{p, l}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}-\left.b_{j}(p)\left(g_{p}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0} \\
& =\frac{1}{\sqrt{\lambda(p)}} T^{2} \widetilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}-\frac{1}{\lambda(p)^{3 / 2}}\left(T \widetilde{f}(p) \cdot{\overline{C_{l}(p)}}^{t}\right)\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \bar{f}^{t}(p)-2 i|T \widetilde{f}(p)|^{2}\right) . \tag{2.70}\\
& \left.\left(g_{p}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0, \\
& \left.\left(g_{p}^{* *}\right)_{z_{j} w}^{\prime \prime}\right|_{0}=\left.\left(g_{p}^{*}\right)_{z_{j} w}^{\prime \prime}\right|_{0}-2 i \overline{a_{j}(p)}=\frac{2 i}{\lambda(p)} L_{j} \widetilde{f}(p) \cdot \overline{T \widetilde{f}(p)}^{t}-\frac{2 i}{\lambda(p)} \overline{T \widetilde{f}(p) \cdot{\overline{L_{j} \widetilde{f}(p)}}^{t}}=0, \\
& \left.\left(g_{p}^{* *}\right)_{w^{2}}^{\prime \prime}\right|_{0}=\left.\left(g_{p}^{*}\right)_{w^{2}}^{\prime \prime}\right|_{0}-2\left[i\left|a_{j}(p)\right|^{2}+r(p)\right] \\
& =\frac{1}{\lambda(p)}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \overline{\widetilde{f}}(p){ }^{t}\right) \\
& -\frac{2}{\lambda(p)}\left[i|T \widetilde{f}(p)|^{2}+\frac{1}{2} \operatorname{Re}\left(T^{2} g(p)-2 i T^{2} \widetilde{f}(p) \cdot \widetilde{\widetilde{f}(p)}{ }^{t}\right)\right]=0 .
\end{align*}
$$

The above two equalities equal to zero because of Lemma 2.7.1 (i).
By the similar calculation of F^{*} and $F^{* *}$, we can define F_{p}^{*} and $F_{p}^{* *}$ with the following theorem.

Theorem 2.8.1 ([H99], Lemma 5.3) Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right), 2 \leq n \leq N$ with $F(0)=0$. For each $p \in \partial \mathbb{H}^{n}$, there is an automorphism $\tau_{p}^{* *} \in A u t_{0}\left(\mathbb{H}^{N}\right)$ such that $F_{p}^{* *}:=\tau_{p}^{* *} \circ F_{p}=$ $\left(f_{p}^{* *}, \phi_{p}^{* *}, g_{p}^{* *}\right)$ satisfies the following normalization:

$$
\begin{gather*}
f_{p}^{* *}=z+\frac{i}{2} a_{p}^{* *(1)}(z) w+o_{w t}(3), \phi_{p}^{* *}=\phi_{p}^{* *(2)}(z)+o_{w t}(2), g_{p}^{* *}=w+o_{w t}(4), \tag{2.71}\\
\left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2} . \tag{2.72}
\end{gather*}
$$

2.9 Geometric Rank of F

We denote $a_{p}^{* *(1)}(z)=z \mathcal{A}(p)$ where

$$
\mathcal{A}(p)=-2 i\left(\left.\frac{\partial^{2} f_{p, l}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)_{1 \leq j, l \leq n-1}
$$

is an $(n-1) \times(n-1)$ matrix. $\mathcal{A}(p)$ is Hermitian. In fact, (2.72) can be written as $z \mathcal{A}(p) \bar{z}^{t}|z|^{2}=\left|\phi^{* *(2)}(z)\right|^{2}, \forall z$. Then $z \overline{\mathcal{A}}(p)^{t} \bar{z}^{t}|z|^{2}=\left|\phi^{* *(2)}(z)\right|^{2}$ so that $z\left(\mathcal{A}(p)-\overline{\mathcal{A}}(p)^{t}\right)^{t}=$ $0, \forall z$. This implies that $\mathcal{A}(p)=\overline{\mathcal{A}}(p)^{t}$, i.e., $\mathcal{A}(p)$ is Hermitian. Also, from (2.72), the matrix $\mathcal{A}(p)$ is semi-positive.

We define [H03]

$$
\begin{equation*}
R k_{F}(p):=\operatorname{Rank}(\mathcal{A}(p)) \tag{2.73}
\end{equation*}
$$

which is called the geometric rank of F at p and is a lower semi-continuous function on p. We also define

$$
\begin{equation*}
\kappa_{0}=\kappa_{0}(F):=\max _{p \in \partial \mathbb{H}^{n}} R k_{F}(p) \tag{2.74}
\end{equation*}
$$

which is called the geometric rank of F.
Remarks (i) $\kappa_{0}(F)$ is an invariant.
(ii) $0 \leq \kappa_{0}(F) \leq n-1$.
(iii) $\kappa_{0}(F)=\kappa_{0}$ if and only if at a generic point $p \in \partial \mathbb{H}^{n}, F \cong F_{p}^{* *}$ that satisfies

$$
\left\{\begin{array}{l}
f_{j, p}^{* *}=z_{j}+\frac{i \mu_{j}(p)}{2} z_{j} w+o_{w t}(3), \quad 1 \leq j \leq \kappa_{0}, \mu_{j}(p)>0 \\
f_{j, p}^{* * *}=z_{j}+o_{w t}(3), \quad \kappa_{0}+1 \leq j \leq n-1, \\
\phi_{p}^{* *}=\phi_{p}^{(2) * *}(z)+o_{w t}(2) \\
g_{p}^{* *}=w+o_{w t}(4)
\end{array}\right.
$$

(iv) When $\kappa_{0}(F)=n-1$, the image submanifold $F\left(\partial \mathbb{H}^{n}\right)$ "occupies more room" in the target space $\partial \mathbb{H}^{N}$ so that it is the most complicated case. In fact, when $\kappa_{0}(F) \leq n-2, F$ has "semi-linearity" properties.

2.10 Maps with Geometric Rank $\kappa_{0}=0$

Theorem 2.10.1 (Linearity Criterion, [H99])

$$
\kappa_{0}=0 \Longleftrightarrow F \text { is equivalent to the linear map. }
$$

To prove this theorem, let us first prove two lemmas.

Lemma 2.10.2 Let m and n be any positive integers. Let $X=\left(f_{1}, \ldots, f_{m}\right)$ be a vectorvalued differentiable function defined in a neighborhood of 0 in \mathbb{R}^{n} satisfying

$$
D X=A(x) X^{t}, \quad X(0)=0
$$

where $D=\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)$ and $A(x)$ is a matrix of continuous functions. Then $X \equiv 0$ holds in some neighborhood of 0 in \mathbb{R}^{n}.

Proof of Lemma 2.10.2: $\quad \forall p \in \mathbb{R}^{n}$ near 0 , we denote $X_{p}(t):=X(t p)=\left(f_{1}(t p), \ldots, f_{m}(t p)\right)$ for $0 \leq t \leq 1$. Then

$$
\frac{d X_{p}}{d t}=\left(\frac{d}{d t} f_{1}(t p), \ldots, \frac{d}{d t} f_{m}(t p)\right)=\left(\sum_{j=1}^{n} \frac{\partial f_{1}}{\partial x_{j}} p_{j}, \ldots, \sum_{j=1}^{n} \frac{\partial f_{m}}{\partial x_{j}} p_{j}\right)=p D X_{p}=p A(t p) X_{p}(t)^{t}
$$

Since $X_{p}(0)=0$, we get $X_{p}(t)=\int_{0}^{t} p A(\tau p) X_{p}(\tau)^{t} d \tau$. Hence $\left\|X_{p}\right\| \leq C\|p\|\left\|X_{p}\right\|$ for some constant $C>0$ which is independent of p. It follows that $X_{p} \equiv 0$ once $\|p\|<\frac{1}{c}$.

Lemma 2.10.3 We have
(i) For any $p \in \partial \mathbb{H}^{n}$,

$$
L_{k} L_{l} \widetilde{f}(p) \cdot{\overline{L_{j} \tilde{f}(p)}}^{t}=2 \sqrt{-1} \delta_{k}^{j}\left(\overline{T \widetilde{f}(p)} \cdot L_{l} \widetilde{f}(p)^{t}\right)+2 \sqrt{-1} \delta_{l}^{j}\left(\overline{T \widetilde{f}(p)} \cdot L_{k} \widetilde{f}(p)^{t}\right)
$$

(ii) For any fixed j and k, if $\left.\left(\phi_{p}^{* *}\right)_{z_{j} z_{k}}^{\prime}\right|_{0}=0$ for any $p \in \partial \mathbb{H}^{n 1}$, then

$$
L_{j} L_{k} \widetilde{f}(p)=\frac{2 \sqrt{-1}}{\lambda}\left(\overline{T \widetilde{f}(p)} \cdot L_{j} \widetilde{f}(p)^{t}\right) L_{k} \widetilde{f}(p)+\frac{2 \sqrt{-1}}{\lambda}\left(\overline{T \tilde{f}(p)} \cdot L_{k} \widetilde{f}(p)^{t}\right) L_{j} \widetilde{f}(p)
$$

Proof (i) By the construction of $F^{* *}$, we know that $\left.\left(f_{p, l}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0$. By (2.65), we have

$$
\left.\left(f_{p, l}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=\frac{1}{\lambda(p)} L_{k} L_{l} \widetilde{f}(p) \cdot{\overline{L_{j}} \widetilde{f}(p)}^{t}-\frac{2 i \delta_{j}^{k}}{\lambda(p)} \overline{T \widetilde{f}(p)} \cdot L_{l} \widetilde{f}(p)^{t}-\frac{2 i \delta_{j}^{l}}{\lambda(p)} \overline{T \widetilde{f}(p)} \cdot L_{k} \widetilde{f}(p)^{t}=0
$$

Then (i) follows.
(ii) By the formula (2.68), we see that $\left.\left(\phi_{p}^{* *}\right)_{z_{k} z_{l}}^{\prime \prime}\right|_{0} \equiv 0$ if and only if $L_{k} L_{l} \tilde{f}(p) \cdot \overline{C(p)}^{t}=$ 0. Then $L_{k} L_{l} \widetilde{f}(p)$ is perpendicular to the subspace $\operatorname{span}\{C(p)\}$ so that they are linear combination of the vectors $E_{s}(p): L_{k} L_{l} \widetilde{f}(p)=\sum_{s=1}^{n-1} \lambda_{k l}^{s} E_{s}(p)$, and hence $L_{k} L_{l} \widetilde{f}(p) \cdot{\bar{E}{ }_{j}(p)}^{t}=$ $\sum_{s=1}^{n-1} \lambda_{k l}^{s} E_{s}(p) \cdot{\overline{E_{j}(p)}}^{t}=\lambda \lambda_{k l}^{j}$. Here we have used the orthogonal property: $E_{s} \cdot \bar{E}_{j}{ }^{\prime}=\lambda \delta_{s j}$ in (2.18). Finally we use (i) to obtain the desired identity.

Proof of Theorem 2.10.1: By the normalization condition, we assume $F=F^{* *}$.
If we can show $\phi \equiv 0$, then $(f, g): \partial \mathbb{H}^{n} \rightarrow \partial \mathbb{H}^{n}$ is a C^{2}-smooth CR map. By PoincaréTanaka theorem, $(f, g) \in \operatorname{Aut}\left(\partial \mathbb{H}^{n}\right)=\operatorname{Aut}\left(\mathbb{H}^{n}\right)$ so that (f, g) must be linear fractional. This implies that $F(z, w)$ is a linear map.

Since $\phi(0)=0$, it suffices to show $X \phi \equiv 0$ for any tangent vector field X over $\partial \mathbb{H}^{n}$. Since $L_{j}, \overline{L_{j}}$ and T form a basis for $T\left(\partial \mathbb{H}^{n}\right)$ and ϕ is CR, it suffices to show that $L_{j} \phi \equiv 0$ and $T \phi \equiv 0$ for all $1 \leq j \leq n-1$.

By applying Lemma 2.10.2, it is enough for us to prove

$$
\begin{cases}L_{j}\left(L_{k}(\phi)\right) & =A_{j}(z, w) L_{k}(\phi)+A_{k}(z, w) L_{j}(\phi) \tag{2.75}\\ T L_{k} \phi & =B_{k, 1}(z, w) L_{k}(\phi)+B_{k, 2}(z, w) T(\phi) \\ T^{2} \phi & =C_{k, 1}(z, w) L_{k}(\phi)+C_{k, 2}(z, w) T(\phi)\end{cases}
$$

where $A_{k}, B_{k, 1}, B_{k, 2}, C_{k, 1}$ and $C_{k, 2}$ are continuous function defined in a neighborhood of 0 in $\partial \mathbb{H}^{n}$.

[^4]Notice $\kappa_{0}=0 \Longleftrightarrow\left(\phi_{p}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}=0, \forall p \in \partial \mathbb{H}^{n}$. From Lemma 2.10.3(ii), we obtain

$$
\begin{equation*}
L_{j}\left(L_{k}(\phi)\right)=A_{j}(z, w) L_{k}(\phi)+A_{k}(z, w) L_{j}(\phi) \tag{2.76}
\end{equation*}
$$

where $A_{k}:=\frac{2 i \overline{T \tilde{f}}\left(L_{k} \tilde{f}\right)^{t}}{\lambda(z, w)}$ which are $C^{1}\left(\partial \mathbb{H}^{n}\right)$. Then the first equality of (2.75) is proved.
Putting $j=k$ in (2.76), we get $L_{k}^{2}(\phi)=2 A_{k} L_{k}(\phi)$. Applying $\overline{L_{k}}$ and by Lemma 2.3.1(ii)(iii), we have

$$
\begin{equation*}
T L_{k} \phi=\frac{\overline{L_{k}} A_{k}}{2 i} L_{k}(\phi)+A_{k} T(\phi)=B_{k, 1} L_{k}(\phi)+B_{k, 2} T(\phi) \tag{2.77}
\end{equation*}
$$

where $B_{k, 1}:=\frac{\overline{L_{k}} A_{k}}{2 i} \in C^{0}\left(\partial \mathbb{H}^{n}\right)$ and $B_{k, 2}:=A_{k} \in C^{1}\left(\partial \mathbb{H}^{n}\right)$. We have proved the second equality of (2.75).

Applying $\overline{L_{k}}$ again to (2.77), we obtain

$$
\begin{equation*}
2 i T^{2}(\phi)=\left(\overline{L_{k}} B_{k, 1}\right) L_{k}(\phi)+\left(B_{k, 1} 2 i+\overline{L_{k}} B_{k, 2}\right) T(\phi)=C_{k, 1} L_{k}(\phi)+C_{k, 2} T(\phi) \tag{2.78}
\end{equation*}
$$

where $C_{k, 2}:=B_{k, 1} 2 i+\overline{L_{k}} B_{k, 2} \in C^{0}\left(\partial \mathbb{H}^{n}\right)$ because of $B_{k, 2} \in C^{1}\left(\partial \mathbb{H}^{n}\right)$, and $C_{k, 1}:=\overline{L_{k}} B_{k, 1}$.
It remains to prove the following claim: $C_{k, 1}$ is continuous. In fact, when $j=k$, apply Lemma 2.10.2(ii) and take the component f_{k}, as we did for (2.76), we get $A_{k}=\frac{L_{k}^{2}\left(f_{k}\right)}{2 L_{k}\left(f_{k}\right)}$. Then

$$
\begin{align*}
B_{k, 1} & =\frac{1}{2 i} \overline{L_{k}}\left(A_{k}\right)=\frac{1}{4 i} \overline{L_{k}}\left(\frac{1}{L_{k}\left(f_{k}\right)}\right) L_{k}^{2}\left(f_{k}\right)+\frac{1}{L_{k}\left(f_{k}\right)} T L_{k}\left(f_{k}\right) \\
& =-\frac{T\left(f_{k}\right)}{2\left(L_{k}\left(f_{k}\right)\right)^{2}} L_{k}^{2}\left(f_{k}\right)+\frac{1}{L_{k}\left(f_{k}\right)} T L_{k}\left(f_{k}\right) \tag{2.79}\\
& =b_{k, 1} L_{k}^{2}\left(f_{k}\right)+b_{k, 2} T L_{k}\left(f_{k}\right),
\end{align*}
$$

where $b_{k, 1}, b_{k, 2} \in C^{1}\left(\partial \mathbb{H}^{n}\right)$. Thus

$$
\begin{align*}
C_{k, 1} & =\overline{L_{k}} B_{k, 1}=\overline{L_{k}}\left(b_{k, 1} L_{k}^{2}\left(f_{k}\right)+b_{k, 2} T L_{k}\left(f_{k}\right)\right) \\
& =\overline{L_{k}} b_{k, 1} \cdot L_{k}^{2} f_{k}+4 i b_{k, 1} L_{k} T f_{k}+\overline{L_{k}} b_{k, 2} \cdot T L_{k}\left(f_{k}\right)+2 i b_{k, 2} T^{2}\left(f_{k}\right) \tag{2.80}\\
& \in C^{0}\left(\partial \mathbb{H}^{n}\right) .
\end{align*}
$$

Hence the claim is proved so that the third equality in (3.11) is proved.

2.11 Analytic Proof of the First Gap Theorem

By Theorem 2.10.1, in order to complete the proof of the First Gap Theorem, we need to show

Corollary 2.11.1 Let $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $2 \leq n \leq N \leq n-2$. Then F has geometric rank $\kappa_{0}=0$.

Proof: \quad Let $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $2 \leq n \leq N \leq n-2$. Then for any $p \in \partial \mathbb{H}^{n}, F_{p}^{* *}$ satisfies the normalization condition in (2.72) and

$$
\left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2} .
$$

Since $n \leq 2 n-2$, by a uniqueness theorem 2.11.2 below, it implies

$$
\begin{equation*}
\phi_{p}^{* *(2)} \equiv 0 \quad \text { and } \quad a_{p}^{* *(1)} \equiv 0 \tag{2.81}
\end{equation*}
$$

Thus $\kappa_{0}(F)=0$.

Theorem 2.11.2 ([H99], [EHZ05]) Let ϕ_{j}, ψ_{j} be holomorphic function near the origin of $\mathbb{C}^{n}, 1 \leq j \leq k, n>1$. Suppose that $H(z, \bar{z})$ is a real analytic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
H(z, \bar{z})|z|^{2}=\sum_{j=1}^{k} \phi_{j}(z) \overline{\psi_{j}(z)} \quad \text { for } z \in \mathbb{C}^{n} \text { near } 0, \tag{2.82}
\end{equation*}
$$

Suppose $k \leq n-1$. Then $H(z, \bar{z}) \equiv 0$ and $\sum_{j=1}^{k} \phi_{j}(z) \overline{\psi_{j}(z)} \equiv 0$.

Proof: Complexifying the identity, we have

$$
\begin{equation*}
H(z, \bar{\zeta})\langle z, \bar{\zeta}\rangle=\sum_{j=1}^{k} \phi_{j}(z) \overline{\psi_{j}(\zeta)} \tag{2.83}
\end{equation*}
$$

where z, ζ are independent variables. Assume that $\phi_{j} \not \equiv 0$ for each $1 \leq j \leq k$. We can find a point z_{0} near the origin such that $\phi_{j}\left(z_{0}\right)=\epsilon_{j} \neq 0$ for each j.

Consider the complex variety $V_{z_{0}}=\left\{z \mid \phi_{j}(z)=\phi_{j}\left(z_{0}\right), 1 \leq j \leq k\right\}$. Since $k \leq n-1$, this variety $V_{z_{0}}$ has complex dimension at least 1 . For each $z^{*} \in V_{z_{0}}$, there exists a complex hyperplane $K_{z^{*}}=\left\{\zeta \mid\left\langle z^{*}, \bar{\zeta}\right\rangle=0\right\}$. Then for any $\zeta \in K_{z^{*}}$, we have $\sum_{j}^{k} \epsilon_{j} \overline{\psi_{j}(\zeta)}=0$. Since $\operatorname{dim}_{\mathbb{C}} V_{z_{0}} \geq 1$ and $\operatorname{dim}_{\mathbb{C}} K_{z^{*}}=n-1$, such ζ fills in an open subset of \mathbb{C}^{n}. Hence $\sum_{j}^{k} \epsilon_{j} \overline{\psi_{j}(\zeta)}=0$, or $\overline{\psi_{k}(z)}+\sum_{j=1}^{k-1} \frac{\epsilon_{j}}{\epsilon_{k}} \overline{\psi_{j}(z)}=0$. Multiplying with $\psi_{k}(z)$ and subtracting this to (2.82), we obtain

$$
H(z, \bar{z})\langle z, \bar{z}\rangle=\sum_{j=1}^{k-1}\left(\phi_{j}(z)-\frac{\epsilon_{j}}{\epsilon_{k}} \phi_{k}(z)\right) \overline{\psi_{j}(z)} .
$$

Then applying an induction argument, it follows easily that $\sum \phi_{j} \overline{\psi_{j}} \equiv 0$ and $H \equiv 0$.
Theorem 2.11.2 can be extended into a more general version by induction as follows.

Corollary 2.11.3 Let $\phi_{j p}, \psi_{j p}, 1 \leq j \leq n-1,0 \leq p \leq q$, be holomorphic functions near the origin of \mathbb{C}^{n} with $n>1$. Suppose that $H(z, \bar{z})$ is a real analytic function defined in a neighborhood of $0 \in \mathbb{C}^{n}$ such that

$$
H(z, \bar{\zeta})\langle z, \bar{\zeta}\rangle_{\ell}^{q+1}=\sum_{p=0}^{q}\left(\sum_{j=1}^{n-1} \phi_{j p}(z) \overline{\psi_{j p}(\zeta)}\right)\langle z, \bar{\zeta}\rangle_{\ell}^{p}, \quad \text { for } z \sim 0 \text { and } \zeta \sim 0
$$

Then $H(z, \bar{\zeta}) \equiv 0$ and $\sum_{j=1}^{n-1} \phi_{j p}(z) \overline{\psi_{j p}(\zeta)} \equiv 0,1 \leq p \leq q$.

Chapter 3

Construction and Classification of Rational Maps

3.1 Gap Phenomenon

A map $F \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is called minimum if F is not equivalent to a map of the form $(G, 0)$ where $G \in \operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N^{\prime}}\right)$ with $N^{\prime}<N$.

Recall the First Gap Theorem in Lecture 1:
Any $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ where $N<2 n-1$ is equivalent to a linear map $(z, w) \mapsto(z, 0, w)$.

This theorem can be restated as
Theorem 3.1.1 (The First Gap Theorem) There is no minimum map in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ if

$$
N \in \mathcal{I}_{1}=\left\{m \in \mathbb{Z}^{+} \mid n<m<2 n-1\right\} .
$$

Furthermore, it is proved by Huang-Ji-Xu [HJX06] that if $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $2 n<N<3 n-3$, then F is equivalent to another map $(G, 0)$ where $G \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$. As above, this theorem can be rewritten as

Theorem 3.1.2 (The Second Gap Theorem) (Huang-Ji-Xu, [HJX06]) There is no minimum map in $\operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ if $n \geq 4$ and

$$
N \in \mathcal{I}_{2}=\left\{m \in \mathbb{Z}^{+} \mid 2 n<m<3 n-3\right\} .
$$

Theorem 3.1.3 (The Third Gap Theorem, Huang-Ji-Yin, preprint) There is no minimum map in $\operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ if $n \geq 7$ and

$$
N \in \mathcal{I}_{3}=\left\{m \in \mathbb{Z}^{+} \mid 3 n<m<4 n-6\right\} .
$$

In general, we formulate the following: For the integer $n>0$, let

$$
K(n):=\max \left\{t \in \mathbb{Z}^{+} \left\lvert\, \frac{t(t+1)}{2}<n\right.\right\} .
$$

For integer k with $1 \leq k \leq K(n)$, let

$$
\mathcal{I}_{k}:=\left\{m \in \mathbb{Z}^{+} \left\lvert\, k n<m<(k+1) n-\frac{k(k+1)}{2}\right.\right\}
$$

[Example]
If $n \geq 2$, then $K(n) \geq 1$. Take $k=1$ and $\mathcal{I}_{1}=\left\{m \in \mathbb{Z}^{+} \mid n<m<2 n-1\right\}$.
If $n \geq 4$, then $K(n) \geq 2$. Take $k=2$ and $\mathcal{I}_{2}=\left\{m \in \mathbb{Z}^{+} \mid 2 n<m<3 n-3\right\}$.
If $n \geq 7$, then $K(n) \geq 3$. Take $k=3$ and $\mathcal{I}_{3}=\left\{m \in \mathbb{Z}^{+} \mid 3 n<m<4 n-6\right\}$.
Theorem 3.1.4 (Huang-Ji-Yin, [HJY09]) For $n>2$, let $K(n)$ be as above. For each k with $1 \leq k \leq K(n)$, let \mathcal{I}_{k} be as above. Then for each $N>n$ with

$$
N \notin \cup_{k=1}^{K(n)} \mathcal{I}_{k},
$$

there exists a minimum monomial map in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$.
Conjecture: For $n>2$, let $K(n)$ be as above. For each k with $1 \leq k \leq K(n)$, let \mathcal{I}_{k} be as above. Then for each $N>n$, the following two statements are equivalent:
(i) There exists no minimum maps in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$.
(ii) $N \in \mathcal{I}_{k}$ for some k with $1 \leq k \leq K(n)$.

Recently, D'Angelo and Lebl (2007) found out that there is no gap phenomenon for mappings in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ when $N \geq T(n)=n^{2}-2 n+2$.

Based on the above conjecture, it would imply that there is no gap phenomenon for mappings in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ when $N>n^{3 / 2}$.

3.2 Examples of Minimum Maps

Let us survey some important minimum maps.

- $N=n \geq 2$, Alexander's theorem. [A77], any map in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{n}\right)=\operatorname{Aut}\left(\mathbb{B}^{n}\right)$ is equivalent to the identity map $F(z, w)=(z, w)$.
- $n<N<2 n-1$, the first gap theorem, any map in $\operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is equivalent to the linear map $F(z, w)=(z, 0, w)$.
- $N=2 n-1$ with $n \geq 3$, Huang and Ji (2001) [HJ01], F is equivalent to the linear map $F(z, w)=(z, 0, w)$, or F is equivalent to Whitney map:

$$
W_{n, 1}=\left(z^{\prime}, w z\right) \quad \text { where } z=\left(z^{\prime}, w\right) \in \mathbb{C}^{n-1} \times \mathbb{C}
$$

- $N=2 n-1=3$ with $n=2$, Faran (1982) [Fa82], four equivalent classes of maps:

$$
(z, w, 0) ; \quad\left(z, z w, w^{2}\right), \quad\left(z^{2}, \sqrt{2} z w, w^{2}\right) ; \quad\left(z^{3}, \sqrt{3} z w, w^{3}\right)
$$

- $N=2 n, D^{\prime}$ Angelo family [DA88].

$$
F_{\theta}=\left(z, w \cos \theta, z_{1} w \sin \theta, \ldots, z_{n-1} w \sin \theta, w^{2} \sin \theta\right), \text { with } 0 \leq \theta \leq \frac{\pi}{2}
$$

is a family of proper holomorphic monomial maps from \mathbb{B}^{n} into $\mathbb{B}^{2 n}$. Here F_{θ} is equivalent to $F_{\theta^{\prime}}$ if and only if $\theta=\theta^{\prime}$.

Denote $W_{n, 1}(z ; h, \lambda)=\left(z^{\prime}, \lambda z_{n}, \sqrt{1-\lambda^{2}} z_{n} h(z)\right)$ where $z=\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}, \lambda \in[0,1]$ and h is a holomorphic map from $\overline{\mathbb{B}^{n}}$ into $\mathbb{B}^{N^{\prime}}$. In particular, when $h(z)=z$, the maps

$$
W_{n, 1}(z ; z, \lambda)=\left(z^{\prime}, \lambda z_{n}, \sqrt{1-\lambda^{2}} z_{n} z\right)
$$

is the D'Angelo's family.

- $2 n<N<3 n-3$ with $n \geq 4$, by the second gap theorem [HJX06] any $F \in$ $\operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is equivalent to a map $\left(W_{n, 1}(z ; z, \lambda), 0\right)$ where $\lambda \in[0,1]$.

The proof of Theorem 3.1.4 is based on the construction of the following minimum maps.
[Example A][HJY09] Let

$$
\left\{\begin{array}{l}
\psi_{1}=\left(z_{1}, \sqrt{2} z_{2}, \ldots, \sqrt{2} z_{k}, z_{k+1}, \ldots, z_{n}\right) \\
\psi_{2}=\left(z_{2}, \sqrt{2} z_{3}, \ldots, \sqrt{2} z_{k}, z_{k+1}, \ldots, z_{n}\right), \\
\ldots \ldots, \\
\psi_{k-1}=\left(z_{k-1}, \sqrt{2} z_{k}, z_{k+1}, \ldots, z_{n}\right), \\
\psi_{k}=\left(z_{k}, z_{k+1}, \ldots, z_{n}\right) \\
\psi_{k+1}=\left(z_{k+1}, \ldots, z_{n}\right) .
\end{array}\right.
$$

Let

$$
W_{n, k}(z)=W_{n, k}\left(z_{1}, \ldots, z_{n}\right):=\left(z_{1} \psi_{1}, \ldots, z_{k} \psi_{k}, \psi_{k+1}\right)
$$

This map, called generalized Whitney map, is a quadratic polynomial minimum map in $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ where

$$
N=(k+1) n-\frac{k(k+1)}{2} .
$$

When $n=1, W_{n, 1}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{2 n-1}$ is given by

$$
W_{n, 1}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1} \psi_{1}, \psi_{2}\right)=\left(z_{1}\left(z_{1}, \ldots, z_{n}\right),\left(z_{2}, \ldots, z_{n}\right)\right)
$$

We can verify $\left|W_{n, 1}\left(z_{1}, \ldots, z_{n}\right)\right|^{2}=1, \forall\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1$. In fact,

$$
\begin{aligned}
&\left|z_{1}\right|^{2}\left(\left|z_{1}\right|^{2}+. .+\left|z_{n}\right|^{2}\right)+\left(\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right) \quad ? \quad=1, \quad \forall\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1 \\
& \|=1
\end{aligned}
$$

When $n=2, W_{n, 2}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{3 n-3}$ is given by

$$
W_{n, 2}=\left(z_{1} \psi_{1}, z_{2} \psi_{2}, \psi_{3}\right)
$$

where $\psi_{1}=\left(z_{1}, \sqrt{2} z_{2}, z_{3}, \ldots, z_{n}\right), \psi_{2}=\left(z_{2}, \ldots, z_{n}\right)$ and $\psi_{3}=\left(z_{3}, \ldots, z_{n}\right)$. We can verify $\left|W_{n, 2}\left(z_{1}, \ldots, z_{n}\right)\right|^{2}=1, \forall\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1$. In fact, $\forall\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1$, we have

$$
\left|z_{1}\right|^{2}\left(\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right)+\left|z_{2}\right|^{2}\left(\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right)+\left(\left|z_{3}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right) \quad ? \quad=1
$$

$$
\begin{gathered}
\left|z_{1}\right|^{2}\left(1+\left|z_{2}\right|^{2}\right)+\left|z_{2}\right|^{2}\left(\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right)+\left(\left|z_{3}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right) \\
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right)+\left(\left|z_{3}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right) \\
\| \\
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\ldots+\left|z_{n}\right|^{2}
\end{gathered}
$$

$W_{n, 1}$ can also be written as $(z, w) \mapsto(z, w(z, w))$ where $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$, which is the classical Whitney map.
[Example B] [HJY09] Let Let ψ_{j} be defined as above. Let τ be an integer with $1 \leq \tau \leq k$ and $\lambda_{j} \in(0,1)$ with $1 \leq j \leq \tau$. We define

$$
W_{n, k}\left(z ; \lambda_{1}, \ldots, \lambda_{\tau}\right)=\left(z_{1} \widetilde{\psi_{1}}, \ldots, z_{k} \widetilde{\psi_{k}}, \psi_{k+1}, \lambda_{1} z_{1}, \ldots, \lambda_{\tau} z_{\tau}\right)
$$

where

$$
\left\{\begin{array}{l}
\widetilde{\psi}_{1}=\left(\sqrt{1-\lambda_{1}^{2}} z_{1}, \sqrt{1-\lambda_{1}^{2}+\mu_{12}^{2}} z_{2}, \ldots, \sqrt{1-\lambda_{1}^{2}+\lambda_{1 k}^{2}} z_{k}, \sqrt{1-\lambda_{1}^{2}} z_{k+1}, \ldots, \sqrt{1-\lambda_{1}^{2}} z_{n}\right) \\
\widetilde{\psi}_{2}=\left(\sqrt{1-\lambda_{2}^{2}} z_{2}, \sqrt{1-\lambda_{2}^{2}+\mu_{23}^{2}} z_{3}, \ldots, \sqrt{1-\lambda_{2}^{2}+\lambda_{2 k}^{2}} z_{k}, \sqrt{1-\lambda_{2}^{2}} z_{k+1}, \ldots, \sqrt{1-\lambda_{2}^{2}} z_{n}\right), \\
\ldots \ldots, \\
\widetilde{\psi}_{\tau}=\left(\sqrt{1-\lambda_{\tau}^{2}} z_{\tau}, \sqrt{1-\lambda_{\tau}^{2}+\mu_{\tau(\tau+1)}^{2}} z_{\tau+1}, \ldots, \sqrt{1-\lambda_{\tau}^{2}+\lambda_{\tau k}^{2}} z_{k}, \sqrt{1-\lambda_{\tau}^{2}} z_{k+1}, \ldots,\right. \\
\left.\quad, \sqrt{1-\lambda_{\tau}^{2}} z_{n}\right), \quad \text { for } \tau<k \\
\widetilde{\psi}_{\tau}=\left(\sqrt{1-\lambda_{\tau}^{2}} z_{k}, \sqrt{1-\lambda_{\tau}^{2}} z_{k+1}, \ldots, \sqrt{1-\lambda_{\tau}^{2}} z_{n}\right), \quad \text { for } \tau=k, \\
\widetilde{\psi}_{j}=\psi_{j} \text { if } \tau<j \leq k .
\end{array}\right.
$$

where $\mu_{j l}=\sqrt{1-\lambda_{l}^{2}}$ for $j \leq l \leq \tau$ and $\mu_{j l}=1$ for $l>\tau$.
This map is a quadratic polynomial minimum map in $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ where

$$
N=(k+1) n-\frac{k(k+1)}{2}+\tau
$$

[Example C] [HJY09] Let $F: \mathbb{B}^{n} \rightarrow \mathbb{B}^{N^{*}}$ be a proper polynomial minimum map with $F(0)=0$. Then we define a new map $W_{n, k}\left(z ; F, \lambda_{1}, \ldots, \lambda_{\tau}\right)$ by modifying the map $W_{n, k}\left(z ; \underset{\sim}{\lambda}, \ldots, \lambda_{\tau}\right)$ in the following way: while keeping all other components the same, replacing $\widetilde{\psi}_{1}$ with

$$
\widetilde{\psi}_{1}=\left(\sqrt{1-\lambda_{1}^{2}} z_{1} F, \sqrt{1-\lambda_{1}^{2}+\mu_{12}^{2}} z_{2}, \ldots, \sqrt{1-\lambda_{1}^{2}+\lambda_{1 k}^{2}} z_{k}, \sqrt{1-\lambda_{1}^{2}} z_{k+1}, \ldots, \sqrt{1-\lambda_{1}^{2}} z_{n}\right)
$$

This map is a polynomial minimum map in $\operatorname{Prop}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ where

$$
N=N^{*}-1+(k+1) n-\frac{k(k+1)}{2}+\tau
$$

Lemma 3.2.1 [HJY09] Let $F: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n\left(k-k_{0}\right)}$ be a minimum proper polynomial map with $k>k_{0}>0$ and $F(0)=0$. Then a new map

$$
W_{n, k_{0}}\left(z ; F, \lambda_{1}, \ldots, \lambda_{r}\right): \mathbb{B}^{n} \rightarrow \mathbb{B}^{N}
$$

with

$$
N=(k+1) n-\frac{k_{0}\left(k_{0}+1\right)}{2}, \text { and } 0 \leq \tau \leq k_{0} \leq n
$$

is a proper polynomial minimum map.

Proof of Theorem 3.1.4: We need to construct minimum proper monomial map from \mathbb{B}^{n} into \mathbb{B}^{N} under the assumption that either $(k+1) n-k(k+1) / 2 \leq N \leq(k+1) n$ with $k \leq K(n)$ or $N \geq(K(n)+1) n-K(n)(K(n)+1)$. Apparently, $K(n) \leq \sqrt{2 n}$.

Let $k \leq n$. By Example C, we see the existence of minimum proper monomial maps from \mathbb{B}^{n} into \mathbb{B}^{N} when $(k+1) n-k(k+1) / 2 \leq N \leq(k+1) n-k(k-1) / 2$. If $k-1>0$, applying Lemma 3.2.1 with $\kappa_{0}=k-1$ and $\tau=0, \ldots, k-1$, we see the existence of minimum proper monomial maps from \mathbb{B}^{n} into \mathbb{B}^{N} with $(k+1) n-k(k-1) / 2 \leq N \leq(k+1) n-$ $(k-1)(k-2) / 2-1$. Again, applying Lemma 3.2.1 with $\kappa_{0}=k-2$ (if $k-2>0$) and $\tau=0, \ldots, k-2$, we see the existence of minimum proper monomial maps from \mathbb{B}^{n} into \mathbb{B}^{N} with $(k+1) n-(k-1)(k-2) / 2-1 \leq N \leq(k+1) n-(k-2)(k-3) / 2-1$. By an inductive use of Lemma 3.2.1, we see the existence of the required maps for N with $(k+1) n-k(k+1) / 2 \leq N \leq(k+1) n$ for $k \leq n$.

Next, letting $k=n+1$ in Lemma 3.2.1 and inductively applying Lemma 3.2.1 with $\kappa_{0}=n, n-1, \ldots$, , we conclude the existence of the required maps when $(n+2) n-n(n+$ $1) / 2-1 \leq N \leq(n+2) n$. In particular, this would give the existence of the required maps when $(n+1) n \leq N \leq(n+2) n$. Applying an induction argument, we easily conclude the existence of the required maps for any $N \geq(n+1) n$.

3.3 Rational and Polynomial Map

All examples above are polynomial maps. Nevertheless, not every map in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ can be equivalent to a polynomial map.

Let us introduce a criterion which tells whether or not a rational map can be equivalent to a polynomial one as follows.

Let $F=\frac{P}{q}=\frac{\left(P_{1}, \ldots, P_{N}\right)}{q} \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ where $\left(P_{j}\right)_{j=1}^{N}, q$ are holomorphic polynomial functions and $\left(P_{1}, \ldots, P_{N}, q\right)=1$. We define

$$
\operatorname{deg}(F)=\max \left\{\operatorname{deg}\left(P_{j}\right) N_{j=1}, \operatorname{deg}(q)\right\} .
$$

Then F induces a rational map from $\mathbb{C P}^{n}$ into $\mathbb{C P}^{N}$ given by

$$
\hat{F}\left(\left[z_{1}: \ldots: z_{n}: t\right]\right)=\left[t^{k} P\left(\frac{z}{t}\right): t^{k} q\left(\frac{z}{t}\right)\right]
$$

where $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\operatorname{deg}(F)=k>0 . \hat{F}$ may not be holomorphic in general. Denote by $\operatorname{Sing}(\hat{F})$ the singular set of \hat{F}, namely, the collection of points where \hat{F} fails to be (or fails to extend to be) holomorphic. Then $\operatorname{Sing}(\hat{F})$ is an algebraic subvariety of codimension two or more in $\mathbb{C P}^{n}$. We denote $\mathbb{B}_{1}^{n}:=\left\{\left.\left[z_{1}: \ldots: z_{n}: t\right] \in \mathbb{C P}^{n}\left|\sum_{j=1}^{n}\right| z_{j}\right|^{2}<\right.$ $\left.|t|^{2}\right\}$.

Theorem 3.3.1 [FHJZ2010] Let F be a non-constant rational holomorphic map from \mathbb{B}^{n} into \mathbb{B}^{N} with $N, n \geq 1$. Then F is equivalent to a holomorphic polynomial map from \mathbb{B}^{n} into \mathbb{B}^{N}, namely, there are $\sigma \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{B}^{N}\right)$ such that $\tau \circ F \circ \sigma$ is a holomorphic polynomial map from \mathbb{B}^{n} into \mathbb{B}^{N}, if and only if there exist (complex) hyperplanes $H \subset \mathbb{C} \mathbb{P}^{n}$ and $H^{\prime} \subset \mathbb{C P}^{N}$ such that $H \cap \overline{\mathbb{B}_{1}^{n}}=\emptyset, H^{\prime} \cap \overline{\mathbb{B}_{1}^{N}}=\emptyset$ and

$$
\hat{F}(H \backslash \operatorname{Sing}(\hat{F})) \subset H^{\prime}, \quad \hat{F}\left(\mathbb{C P}^{n} \backslash(H \cup \operatorname{Sing}(\hat{F}))\right) \subset \mathbb{C P}^{N} \backslash H^{\prime}
$$

Proof: If F is a non-constant holomorphic polynomial map, then $\hat{F}=\left[t^{k} F\left(\frac{z}{t}\right), t^{k}\right]$ with $\operatorname{deg}(F)=k>0$. Let $H=H_{\infty}$ and $H^{\prime}=H_{\infty}^{\prime}$. Then they satisfy the property described in the theorem.

If F is equivalent to a holomorphic polynomial map G, then there exist $\hat{\sigma} \in U(n+$ $1,1), \hat{\tau} \in U(n+1,1)$ such that $\hat{F}=\hat{\tau} \circ \hat{G} \circ \hat{\sigma}$. Let $H=\hat{\sigma}^{-1}\left(H_{\infty}\right)$ and $H^{\prime}=\hat{\tau}\left(H_{\infty}^{\prime}\right)$. Then they are the desired ones.

Conversely, suppose that \hat{F}, H and H^{\prime} are as in the theorem. By a lemma below, we can find $\hat{\sigma} \in U(n+1,1)$ and $\hat{\tau} \in U(n+1,1)$ such that $\hat{\sigma}(H)=H_{\infty}$ and $\hat{\tau}\left(H^{\prime}\right)=H_{\infty}^{\prime}$. Let $\hat{Q}=\hat{\tau} \circ \hat{F} \circ \hat{\sigma}^{-1}$. Then \hat{Q} induces a rational holomorphic map Q from \mathbb{B}^{n} into \mathbb{B}^{N}. If $Q=\frac{P}{q}$ where $(P, q)=1$ and $\operatorname{deg}(Q)=k>0$, then

$$
\hat{Q}=\left[t^{k} P\left(\frac{z}{t}\right): t^{k} q\left(\frac{z}{t}\right)\right] .
$$

Suppose that $q \not \equiv$ constant. Let $z_{0} \in \mathbb{C}^{n}$ be such that $q\left(z_{0}\right)=0$ but $P\left(z_{0}\right) \neq 0$. Then $\left[z_{0}: 1\right] \notin \operatorname{Sing}(\hat{Q}) \cup H_{\infty}$ and $\hat{Q}\left(\left[z_{0}: 1\right]\right) \in H_{\infty}^{\prime}$. Notice that $\hat{Q}\left(H_{\infty} \backslash \operatorname{Sing}(\hat{Q})\right) \subset H_{\infty}^{\prime}$ and $\hat{Q}\left(\mathbb{C P}^{n} \backslash\left(H_{\infty} \cup \operatorname{Sing}(\hat{Q})\right)\right) \subset \mathbb{C P}^{N} \backslash H_{\infty}^{\prime}$. This is a contradiction. Thus, we showed that Q is a polynomial.

Lemma 3.3.2 For any hyperplane $H \subset \mathbb{C P}^{n}$ with $H \cap \overline{\mathbb{B}_{1}^{n}}=\emptyset$, there is a $\sigma \in U(n+1,1)$ such that $\sigma(H)=H_{\infty}=\left\{\left[z_{1}: \cdots: z_{n}: 0\right] \in \mathbb{C P}^{n}\right\}$.

Proof: Assume that $H: \sum_{j=1}^{n} a_{j} z_{j}-a_{n+1} t=0$ with $\vec{a}=\left(a_{1}, \ldots, a_{n+1}\right) \neq 0$. Under the assumption that $H \cap \overline{\mathbb{B}_{1}^{n}}=\emptyset$, we have $a_{n+1} \neq 0$. Without loss of generality, we can assume that $a_{n+1}=1$. Let U be an $n \times n$ unitary matrix such that

$$
\left(a_{1}, \ldots, a_{n}\right) \bar{U}=(\lambda, 0, \ldots, 0)
$$

for some $\lambda \in \mathbb{C}$. Let $\sigma=\left(\begin{array}{cc}U & 0 \\ 0 & I\end{array}\right)$. Then $\sigma(H)=\left\{[z: t] \in \mathbb{C P}^{n} \mid \lambda z_{1}-t=0\right\}$ with $|\lambda|<1$. Let $T \in A u t\left(\mathbb{B}^{n}\right)$ be defined by

$$
T\left(z_{1}, z^{\prime}\right)=\left(\frac{z_{1}-\bar{\lambda}}{1-\lambda z_{1}}, \frac{\sqrt{1-|\lambda|^{2}} z^{\prime}}{1-\lambda z_{1}}\right)
$$

with $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)$. Then $\hat{T} \in U(n+1,1)$ is defined by

$$
\hat{T}\left(\left[z_{1}: z^{\prime}: t\right]\right)=\left[z_{1}-\bar{\lambda} t: \sqrt{1-|\lambda|^{2}} z^{\prime}: t-\lambda z_{1}\right] .
$$

Now, it is easy to see that $\hat{T} \circ \sigma$ maps H to H_{∞}.
Example D[FHJZ2010] Let $G(z, w)=\left(z^{2}, \sqrt{2} z w, w^{2}\left(\frac{z-a}{1-\bar{a} z}, \frac{\sqrt{1-|a|^{2}} w}{1-\bar{a} z}\right)\right),|a|<1$, be a map in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right) . G$ is equivalent to a proper holomorphic polynomial map in $\operatorname{Poly}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ if and only if $a=0$.

In fact, we have

$$
\hat{G}=\left[(t-\bar{a} z) z^{2}:(t-\bar{a} z) \sqrt{2} z w: w^{2}(z-a t): w^{2} \sqrt{1-|a|^{2}} w:\left(t^{3}-\bar{a} t^{2} z\right)\right] .
$$

Suppose there exist hyperplanes $H=\left\{\mu_{1} z_{1}+\mu_{2} w+\mu_{0} t=0\right\} \subset \mathbb{C P}^{2}$ and $H^{\prime}=\left\{\sum_{j=1}^{4} \lambda_{j} z_{j}^{\prime}+\right.$ $\left.\lambda_{0} t^{\prime}=0\right\} \subset \mathbb{C P}^{4}$ such that

$$
H \cap \overline{\mathbb{B}_{1}^{2}}=\emptyset, \quad H^{\prime} \cap \overline{\mathbb{B}_{1}^{4}}=\emptyset, \quad \hat{G}(H \backslash \operatorname{Sing}(\hat{G})) \subset H^{\prime}, \quad \hat{G}\left(\mathbb{C P}^{2} \backslash(H \cup \operatorname{Sing}(\hat{G}))\right) \subset \mathbb{C P}^{4} \backslash H^{\prime}
$$

Then

$$
\begin{array}{r}
\lambda_{1}(t-\bar{a} z) z^{2}+\lambda_{2}(t-\bar{a} z) \sqrt{2} z w+\lambda_{3} w^{2}(z-a t)+\lambda_{4} w^{2} \sqrt{1-|a|^{2}} w \\
+\lambda_{0}\left(t^{3}-\bar{a} t^{2} z\right)=\left(\mu_{1} z+\mu_{2} w+\mu_{0} t\right)^{3} \quad \forall[z: w: t] \in \mathbb{C P}^{2}
\end{array}
$$

Apparently $\lambda_{0} \neq 0$. Hence we can assume that $\lambda_{0}=1, \mu_{0}=1$. By comparing the coefficient of $z^{3}, w^{3}, w t^{2}, z t^{2}, z^{2} t, z w t, z^{2} w, z w^{2}, w^{2} t$, respectively, in the above equation, we get

$$
\begin{array}{r}
\mu_{1}^{3}=-\bar{a} \lambda_{1}, \mu_{2}^{3}=\lambda_{4} \sqrt{1-|a|^{2}}, 3 \mu_{2}=0,3 \mu_{1}=-\bar{a}, 3 \mu_{1}^{2}=\lambda_{1} \\
6 \mu_{1} \mu_{2}=\sqrt{2} \lambda_{2}, 3 \mu_{1}^{2} \mu_{2}=-\sqrt{2} \lambda_{2} \bar{a}, 3 \mu_{1} \mu_{2}^{2}=\lambda_{3}, 3 \mu_{2}^{2}=-a \lambda_{3} .
\end{array}
$$

We then have $\lambda_{2}=\lambda_{3}=\lambda_{4}=\mu_{2}=0$. If $a \neq 0$, then $\mu_{1}, \lambda_{1} \neq 0$. From $\mu_{1}^{3}=-\bar{a} \lambda_{1}$ and $3 \mu_{1}^{2}=\lambda_{1}$, we get $\mu_{1}=-3 \bar{a}$. Since $3 \mu_{1}=-\bar{a}$, we get $\bar{a}=0$. This is a contradiction. Notice that when $a=0, F$ is a polynomial. By Theorem 3.3.1, we see the conclusion.

Example E[FHJZ2010] Let $F\left(z^{\prime}, w\right)=\left(z^{\prime}, w z^{\prime}, w^{2}\left(\frac{\sqrt{1-|a|^{2}} z^{\prime}}{1-\bar{a} w}, \frac{w-a}{1-\bar{a} w}\right)\right)$ with $|a|<1$ be a map in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-2}\right)$. F is equivalent to a proper polynomial map in $\operatorname{Poly}\left(\mathbb{B}^{n}, \mathbb{B}^{3 n-2}\right)$ if and only if $a=0$.

By the criterion in Theorem 3.3.1, it is also proved that
Theorem 3.3.3 [FHJZ2010] A map $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ of degree two is equivalent to a polynomial proper holomorphic map in $\operatorname{Poly}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$.

Recently, J. Lebl claimed in a preprint ([Le09], theorem 1.5):

Theorem 3.3.4 Let $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $n \geq 3$ and $\operatorname{deg}(F)=2$. Then F is equivalent to a monomial map.
[Example $\mathbf{F}]\left[\right.$ FHJZ2010] Let $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ be a rational mapping given by $F=$ $\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ defined as follows:

$$
\begin{gathered}
f(z, w)=\frac{z+\left(\frac{i}{2}-i\right) z w}{1-i w-\frac{1}{3} w^{2}}, \phi_{1}(z, w)=\frac{z^{2}}{1-i w-\frac{1}{3} w^{2}}, \\
\phi_{2}(z, w)=\frac{\sqrt{\frac{13}{12}} z w}{1-i w-\frac{1}{3} w^{2}}, \phi_{3}(z, w)=\frac{\frac{\sqrt{3}}{3} w^{2}}{1-i w-\frac{1}{3} w^{2}}, g(z, w)=\frac{w-i w^{2}}{1-i w-\frac{1}{3} w^{2}} .
\end{gathered}
$$

Then this mapping F is indeed equivalent to the polynomial map

$$
G(z, w)=\left(\frac{\sqrt{3}}{9}\left(-2+4 z+z^{2}\right),-\frac{\sqrt{6}}{9}\left(1+z+z^{2}\right), \frac{\sqrt{3}}{12}(5+3 z) w, \frac{\sqrt{6}}{6} w^{2}, \frac{\sqrt{13}}{12} i(1-z) w\right)
$$

3.4 Degree of Rational Maps between Balls

In order to outline a proof for Faran's theorem (see next section), we need to introduce the degree problems for maps in $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$.

For any rational map $H \not \equiv 0$, write $H=\frac{\left(P_{1}, \cdots, P_{m}\right)}{R}$, where P_{j}, R are holomorphic polynomials and $\left(P_{1}, \cdots, P_{m}, R\right)=1$. We then define

$$
\operatorname{deg}(H)=\max \left(\operatorname{deg}\left(P_{j}\right)_{j=1, \cdots, m}, \operatorname{deg}(R)\right)
$$

(When $H \equiv 0$, we set $\operatorname{deg}(H)=-\infty$).
D'Angelo raised a conjecture [DKR 03]: For any $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$, does it satisfy

$$
\operatorname{deg}(F) \leq \begin{cases}2 N-3, & \text { if } n=2 \tag{3.1}\\ \frac{N-1}{n-1}, & \text { if } n \geq 3\end{cases}
$$

Both of the above bounds are sharp. In fact, when $n=2$, the degree bound $2 N-3$ is achieved (see p. 173 and p. 189 in [DA93]) for the polynomial map $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{2+r}\right)$ defined by $F(z, w)=\left(z^{2 r+1}, \ldots, c_{s} z^{2(r-s)_{1}} w^{s}, \ldots, w^{2 r+1}\right)$ where c_{s} are certain constants. When $n \geq 3$, we consider the Whitney map $h(z, w)=(z, w(z, w)): \mathbb{B}^{n} \rightarrow \mathbb{B}^{2 n-1}$ with degree 2. By letting $(z, w) \mapsto(z, w h)$, we get a proper polynomial map from \mathbb{B}^{n} into \mathbb{B}^{N} with $N=3 n-2$ of degree 3 . Inductively, we can construct a proper polynomial map from \mathbb{B}^{n} into \mathbb{B}^{N} with $N=k n-(k-1)$ of degree k. Hence $\frac{N-1}{n-1}=k$ so that the bound in (3.1) is sharp.
[Example] We can show that any $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ has degree $\operatorname{deg}(F) \leq 7$. We have classified all degree 2 maps in $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$. For higher degree maps, the situation should be very complicated. D'Angelo classified all monomial maps in $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$. He find out

$$
\begin{cases}\text { degree } 3: & 31 \text { isolated maps or continuous families; } \\ \text { degree } 4: & 47 \text { isolated maps or continuous families; } \\ \text { degree } 5: & 24 \text { isolated maps or continuous families; } \\ \text { degree } 6: & 5 \text { isolated maps or continuous families; } \\ \text { degree } 7: & 3 \text { isolated maps; }\end{cases}
$$

For example, maps with degree 7 in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ are

1. $\left(z^{7}, w^{7}, \frac{\sqrt{7}}{\sqrt{2}} w z^{5}, \frac{\sqrt{7}}{\sqrt{2}} w^{5} z, \frac{\sqrt{7}}{\sqrt{2}} w z\right)$
2. $\left(z^{7}, w^{7}, \sqrt{7} w z^{5}, \sqrt{14} w^{2} z^{3}, \sqrt{7} w^{3} z\right)$
3. $\left(z^{7}, w^{7}, \sqrt{7} w^{3} z^{3}, \sqrt{7} w z^{3}, \sqrt{7} w^{3} z\right)$

- Forstnerič proved that for any $F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$, its degree $\operatorname{deg}(F) \leq N^{2}(N-n+1)$ in [Fo86].
- Huang-Ji-Xu proved [HJX06]: Let $F \in \operatorname{Rat}\left(\mathbf{B}^{n}, \mathbf{B}^{N}\right)$ with geometric rank $\kappa_{0}=1$ and $n \geq 3$. Then $\operatorname{deg}(F) \leq \frac{N-1}{n-1}$. For the proof, see $\S 4.2$.

To illustrate the idea how to deal with degree $\operatorname{deg}(F)$, we present a lemma and a theorem below.

Lemma 3.4.1 ([HJ01], lemma 5.4) Let $H=\frac{\left(P_{1}, \cdots, P_{m}\right)}{R}$ be a rational map from \mathbb{C}^{n} into \mathbb{C}^{m}, where P_{j}, R are holomorphic polynomials with $\left(P_{1}, \cdots, P_{m}, R\right)=1(m>n>1)$. Assume for each $p \in \partial \mathbb{H}^{n}$ close to the origin,

$$
\operatorname{deg}\left(\left.H\right|_{Q_{p}}\right) \leq k
$$

with $k>0$ a fixed integer, where $Q_{(\zeta, \eta)}=\left\{(z, w) \left\lvert\, \frac{w-\bar{\eta}}{2 i}=\sum_{j=1}^{n-1} z_{j} \overline{\eta_{j}}\right.\right\}$ is the Segre variety of $\partial \mathbb{H}^{n}$. Then $\operatorname{deg}(H) \leq k$.

Theorem 3.4.2 Let $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$. Then $\operatorname{deg}(F) \leq 3$.
Proof: By Cayley transformation, we consider $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{3}\right)$. By Lemma 3.4.1, it suffices to prove that $\operatorname{deg}\left(\left.F\right|_{Q_{p_{0}}}\right) \leq 3$ for any $p_{0} \in \partial \mathbb{H}^{n}$.

It is equivalent to show that for every $p \in \partial \mathbb{H}_{2}$, we have

$$
\begin{equation*}
\operatorname{deg}\left(\left.F_{p}^{* *}\right|_{Q_{0}}\right) \leq 3 \tag{3.2}
\end{equation*}
$$

Here $Q_{0}=\{w=0\}$. In fact, $\operatorname{deg}\left(\left.F\right|_{Q_{p}}\right)=\operatorname{deg}\left(\left.F\right|_{\sigma_{p}\left(Q_{0}\right)}\right)=\operatorname{deg}\left(\left.\left(F \circ \sigma_{p}\right)\right|_{Q_{0}}\right)=\operatorname{deg}((\sigma \circ$ $\left.\left.\left(F_{p}^{* *}\right) \circ \tau\right)\left.\right|_{Q_{0}}\right)=\operatorname{deg}\left(\left.\left(F_{p}^{* *}\right)\right|_{Q_{0}}\right)$.

Write $F_{p}^{* *}=(f, \phi, g)$ where $f=z+\sum_{j+k \geq 2} a_{j k} z^{j} w^{k}, \phi=\sum_{j+k \geq 2} b_{j k} z^{j} w^{k}$, and $g=$ $w+\sum_{j+k \geq 4} c_{j k} z^{j} w^{k}$.

Applying L and L^{2} to the basic equation $\frac{g-\bar{g}}{2}=f \bar{f}+\phi \bar{\phi}$, we get

$$
\left\{\begin{array}{l}
\frac{1}{2 i} L g=L f \cdot \bar{f}+L \phi \cdot \bar{\phi}, \\
\frac{1}{2 i} L^{2} g=L^{2} f \cdot \bar{f}+L^{2} \phi \cdot \bar{\phi}
\end{array}\right.
$$

i.e.,

$$
\frac{1}{2 i}\left[\begin{array}{c}
L g \\
L^{2} g
\end{array}\right]=\left[\begin{array}{cc}
L f & L \phi \\
L^{2} f & L^{2} \phi
\end{array}\right]\left[\begin{array}{l}
\frac{f}{\phi}
\end{array}\right], \quad \forall(z, w) \in \partial \mathbb{H}^{2}
$$

where $L=\frac{\partial}{\partial z}+2 i \bar{z} \frac{\partial}{\partial w}$.
We complexify this identity so that

$$
\frac{1}{2 i}\left[\begin{array}{c}
\mathcal{L} g(z, w) \\
\mathcal{L}^{2} g(z, w)
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{L} f(z, w) & \mathcal{L} \phi(z, w) \\
\mathcal{L}^{2} f(z, w) & \mathcal{L}^{2} \phi(z, w)
\end{array}\right]\left[\begin{array}{l}
\frac{f}{\phi}(\zeta, \eta) \\
\bar{\phi}(\zeta, \eta)
\end{array}\right]
$$

holds for any point $(z, w, \zeta, \eta) \in \partial \mathcal{H}^{2}$ where $\mathcal{L}=\frac{\partial}{\partial z}+2 i \zeta \frac{\partial}{\partial w}$ and $\partial \mathcal{H}^{2}=\{(z, w, \zeta, \eta) \in$ $\left.\mathbb{C}^{4} \left\lvert\, \frac{w-\eta}{2 i}=z \zeta\right.\right\}$ is the Segre family of $\partial \mathbb{H}^{2}$.

Since $(0,0, \zeta, 0) \in \partial \mathcal{H}^{2}$, we have

$$
\left\{\begin{array}{l}
\left.\mathcal{L} f\right|_{(0,0, \zeta, 0)}=1 \\
\left.\mathcal{L} \phi\right|_{(0,0, \zeta, 0)}=0 \\
\left.\mathcal{L} g\right|_{(0,0, \zeta, 0)}=2 i \zeta \\
\left.\mathcal{L}^{2} f\right|_{(0,0, \zeta, 0)}=-8 a_{02} \zeta^{2}+4 i a_{11} \zeta \\
\left.\mathcal{L}^{2} \phi\right|_{(0,0, \zeta, 0)}=-8 b_{02} \zeta^{2}+4 i b_{11} \zeta+2 b_{02} \\
\left.\mathcal{L}^{2} g\right|_{(0,0, \zeta, 0)}=0
\end{array}\right.
$$

so that

$$
\left.\operatorname{det}\left[\begin{array}{cc}
\mathcal{L} f & \mathcal{L} \phi \\
\mathcal{L}^{2} f & \mathcal{L}^{2} \phi
\end{array}\right]\right|_{(0,0,0,0)}=\operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
0 & 2 b_{20}
\end{array}\right]=2 b_{02} \neq 0
$$

Then we obtain

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{f}{\phi}(\zeta, 0) \\
(\zeta, 0)
\end{array}\right]=\left.\left.\frac{1}{2 i}\left[\begin{array}{cc}
\mathcal{L} f & \mathcal{L} \phi \\
\mathcal{L}^{2} f & \mathcal{L}^{2} \phi
\end{array}\right]^{-1}\right|_{(0,0, \zeta, 0)} \cdot\left[\begin{array}{c}
\mathcal{L} g \\
\mathcal{L}^{2} g
\end{array}\right]\right|_{(0,0, \zeta, 0)}} \\
& \quad=\frac{1}{2 i}\left[\begin{array}{c}
2 i \zeta \\
\frac{2 i \zeta\left(8 a_{02} \zeta^{2}-4 i a_{11} \zeta\right)}{-8 b_{02} \zeta^{2}+4 i b_{11} \zeta+2 b_{02}}
\end{array}\right]=\left[\begin{array}{c}
\zeta \\
\frac{\zeta\left(8 a_{02} \zeta^{2}-4 i a_{11} \zeta\right)}{-8 b_{02} \zeta^{2}+4 i b_{11} \zeta+2 b_{02}}
\end{array}\right]
\end{aligned}
$$

This implies

$$
f(z, 0)=z, \phi(z, 0)=\frac{4 \overline{a_{02}} z^{3}+2 i \overline{a_{11}} z^{2}}{-4 \overline{b_{02}} z^{2}-2 i \overline{b_{11}} z+\overline{b_{02}}}
$$

Also we put $(0,0, \zeta, 0)$ into the identity $\frac{g(z, w)-\bar{g}(\zeta, \eta)}{2 i}=f(z, w) \bar{f}(\zeta, \eta)+\phi(z, w) \bar{\phi}(\zeta, \eta)$ to get $g(z, 0)=0$. Thus (3.2) is proved.

By similar argument, we are able to prove the following.

Theorem 3.4.3 ([HJ01], lemma 5.2) Let $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-1}\right)$ with $n \geq 3$. Then F is rational and $\operatorname{deg}(F) \leq 2$.

Proof: By Cayley transformation, we consider $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{2 n-1}\right)$. By Lemma 3.4.1, it suffices to prove that $\operatorname{deg}\left(\left.F\right|_{Q_{p_{0}}}\right) \leq 2$ for any $p_{0} \in \partial \mathbb{H}^{n}$.

It is equivalent to show that for every $p \in \partial \mathbb{H}_{n}$, we have

$$
\begin{equation*}
\operatorname{deg}\left(\left.F_{p}^{* * *}\right|_{Q_{0}}\right) \leq 2 \tag{3.3}
\end{equation*}
$$

Here $Q_{0}=\{w=0\}$.
By the normalization, for any $F \in \operatorname{Prop}_{2}\left(\mathbb{H}_{n}, \mathbb{H}_{2 n-1}\right)$, we knew that $F_{p}^{* *}=(f, \phi, g)$ satisfies

$$
\begin{align*}
& F_{p}^{* * *}(0, w)=(0, w) \\
& f_{1}=z_{1}+\frac{i}{2} z_{1} w+z_{1} \widetilde{a^{(1)}}(z) w+o_{w t}(4), \\
& f_{l}=z_{l}+o_{w t}(4), 2 \leq l \leq n-1, \tag{3.4}\\
& \phi_{j}=z_{1} z_{j}+b_{j} z_{1} w+b_{j}^{(3)}(z)+o_{w t}(3), \quad 1 \leq j \leq n-1, \\
& g=w+o\left(|(z, w)|^{3}\right) . \\
& \frac{g(z, w)-\overline{g(\zeta, \eta)}}{2 i}=\sum_{l=1}^{n-1} f_{l}(z, w) \overline{f_{l}(\zeta, \eta)}+\sum_{l=1}^{n-1} \phi_{l}(z, w) \overline{\phi_{l}(\zeta, \eta)} . \tag{3.5}
\end{align*}
$$

Applying \mathcal{L}_{j} and $\mathcal{L}_{1} \mathcal{L}_{j}$ to the above equation, using (3.4) and letting $(z, w)=0, \eta=0$, we get

$$
\left(\begin{array}{c}
\overline{\zeta_{1}} \\
\frac{\ldots}{\zeta_{n-1}} \\
0
\end{array}\right)=\left(\begin{array}{cc}
I_{(n-1) \times(n-1)} & 0 \\
A_{(n-1) \times(n-1)} & B_{(n-1) \times(n-1)}
\end{array}\right)\left(\overline{\frac{f(\zeta, 0)}{\phi(\zeta, 0)}}\right) .
$$

Here $I_{(n-1) \times(n-1)}$ is the identical $(n-1) \times(n-1)$ matrix,

$$
\begin{gathered}
A_{(n-1) \times(n-1)}=A=\left(\begin{array}{cccc}
-2 \overline{\zeta_{1}} & 0 & \cdots & 0 \\
-\overline{\zeta_{2}} & 0 & \cdots & 0 \\
\cdots & 0 & \cdots & 0 \\
-\overline{\zeta_{n-1}} & 0 & \cdots & 0
\end{array}\right) \text { and } \\
B_{(n-1) \times(n-1)}=B=\left(\begin{array}{cccc}
2+4 i b_{1} \overline{\zeta_{1}} & 4 i b_{2} \overline{\zeta_{1}} & \cdots & 4 i b_{n-1} \overline{\zeta_{1}} \\
2 i b_{1} \overline{\zeta_{2}} & 1+2 i b_{2} \overline{\zeta_{2}} & \cdots & 2 i b_{n-1} \\
\cdots & \cdots & \cdots & \cdots \\
2 i b_{1} \overline{\zeta_{n-1}} & 2 i b_{2} \overline{\zeta_{n-1}} & \cdots & 1+2 i b_{n-1} \overline{\zeta_{n-1}}
\end{array}\right) .
\end{gathered}
$$

This implies

$$
\begin{equation*}
\widetilde{f}(z, 0)=\left(z, \frac{z_{1} z}{1-2 i \sum_{j \geq 1} \overline{b_{j}} z_{j}}\right) \tag{3.6}
\end{equation*}
$$

Finally, by putting $z=w=\eta=0$, we get $\bar{g}(\zeta, 0)=0$ by (3.4). Hence, it is clear that $F(z, 0)$ can be written as the quotient of a vector-valued quadratic polynomial with a linear function. Hence (3.3) is proved.

By similar method, the following results are proved.
Theorem 3.4.4 (1) [JX04] Let $F \in \operatorname{Rat}\left(\mathbf{B}^{n}, \mathbf{B}^{N}\right)$ with geometric rank $\kappa_{0}, 1 \leq \kappa_{0} \leq n-2$, and with $N=n+\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}$. Then $\operatorname{deg}(F) \leq \kappa_{0}+2$.
(2) $[H J X 05]$ Let $F \in \operatorname{Rat}\left(\mathbb{B}^{3}, \mathbb{B}^{6}\right)$ with geometric rank $\kappa_{0}(F)=2$. Then $\operatorname{deg}(F) \leq 4$.

3.5 Classification of Maps from \mathbb{B}^{2} to \mathbb{B}^{3}

Theorem 3.3.3 is proved based on the classification of maps of $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2 (see Theorem 3.6.1).

To illustrate techniques used to study the classification problem, we first give a proof for the following Faran's theorem [Fa82]:

Theorem 3.5.1 (Faran, 1982) Any map $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$ must be equivalent to one of the following maps:

$$
\left\{\begin{array}{l}
\text { degree } 1:(z, w, 0) \\
\text { degree } 2:\left(z, z w, w^{2}\right), \text { and }\left(z^{2}, \sqrt{2} z w, w^{2}\right) \\
\text { degree } 3:\left(z^{3}, \sqrt{3} z w, w^{3}\right)
\end{array}\right.
$$

The proof here is given in [J09] which is different from Faran's original Proof. The difficulty to study $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$, comparing study $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with high n and N, is that we have less numbers of equations.

We already shown in Theorem 3.4.3) that $\operatorname{deg}(F) \leq 3$. Since maps in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree ≤ 2 can be classified (see Theorem 3.6.1), it suffices to show: there exists exactly one map $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$ with degree 3 .

The normal form $F^{* * *}$ of F^{1}, still denoted as (f, ϕ, g), becomes

$$
\begin{aligned}
& f=\frac{z-2 i \overline{b_{11}} z^{2}+\left(i e_{1}+i / 2\right) z w-4 b_{02} z^{3}+E_{11} z^{2} w+A_{12} z w^{2}+A_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}}, \\
& \phi=\frac{z^{2}+b_{11} z w+b_{02} w^{2}+B_{21} z^{2} w+B_{12} z w^{2}+B_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}}, \\
& g=\frac{w-2 i \overline{b_{11}} z w+i e_{1} w^{2}-4 b_{02} z^{2} w+E_{11} z w^{2}+C_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}},
\end{aligned}
$$

with $b_{02}>0$ and $e_{1} \in \mathbb{R}$.
Consider the basic equation: $\operatorname{Im}(g)=|f|^{2}+|\phi|^{2}, \forall \operatorname{Im}(w)=|z|^{2}$, we obtain all algebraic equations about the parameters. Among these equations, we find

$$
\begin{equation*}
e_{1} \operatorname{Im}\left(b_{11}^{2}\right)=0 . \tag{3.7}
\end{equation*}
$$

By (3.7), we consider

$$
\left\{\begin{array}{l}
\text { Case } A: e_{1} \neq 0 \Rightarrow\left\{\begin{array}{l}
\text { Case } A_{1}: \operatorname{Im}\left(b_{11}\right)=0 \\
\text { Case } A_{2}: \operatorname{Re}\left(b_{11}\right)=0 \\
\text { Case } B: e_{1}=0
\end{array}\right.
\end{array}\right.
$$

In Case A_{1}, we list all the equations about the parameters:

$$
\begin{aligned}
& A_{12}=E_{02}-\frac{1}{8}-\frac{5}{4} e_{1}-\frac{1}{2} b^{2}, \quad b_{11}=b \text { is a real parameter, } \\
& b_{02} \text { determined by } \frac{1}{2} e_{1}+4 e_{1} b^{2}+e_{1}^{2}+12 b_{02}^{2}+4 b_{02} b^{2}=0, \\
& B_{21}=i\left(\frac{1}{4}+\frac{3}{2} e_{1}+b^{2}\right), \quad B_{12}=i\left(\frac{1}{4} b+\frac{3}{2} b e+b^{3}\right), \\
& B_{03}=i b_{02}\left(\frac{1}{4}+\frac{3}{2} e_{1}+b^{2}\right), \quad C_{03}=E_{02}-\frac{e_{1}}{2}, \quad e_{1} \neq 0 \text { is a real parameter, } \\
& E_{11}=\frac{1}{2} b+e_{1} b+2 b^{3}-8 b b_{02}, \quad E_{12}=-i\left(e b+2 b b_{02}\right), \\
& E_{21}=-2 i b_{02}, \quad E_{02}=\frac{1}{16}+\frac{5}{4} e_{1}+\frac{1}{2} b^{2}+2 b_{02}^{2}+3 e_{1} b^{2}+\frac{5}{4} e_{1}^{2}+b^{4}, \\
& E_{03}=i\left(\frac{1}{2} e_{1}^{2}-\left|b_{02}\right|^{2}\right)
\end{aligned}
$$

[^5]From the equation for b_{02} above, we obtain

$$
e_{1}=\frac{-\left(\frac{1}{2}+4 b^{2}\right) \pm \sqrt{\left(\frac{1}{2}+4 b^{2}\right)^{2}-4\left(12 b_{02}^{2}+4 b_{02} b^{2}\right)}}{2}
$$

Since e_{1} is a real number, we must have $\left(\frac{1}{2}+4 b^{2}\right)^{2}-4\left(12 b_{02}^{2}+4 b_{02} b^{2}\right) \geq 0$, i.e.,

$$
\left(\frac{1}{2}+4 b^{2}\right)^{2}+\frac{4}{3} b^{4} \geq 48\left(b_{02}^{2}+\frac{b^{2}}{6}\right)^{2} .
$$

If we consider $F_{p}^{* * *}=\left(f_{p}^{* * *}, \phi_{p}^{* * *}, g_{p}^{* * *}\right)$, it is of the same form

$$
\begin{aligned}
f_{p}^{* * *} & =\frac{z-2 i \overline{b_{11}} z^{2}+\left(i e_{1}+i / 2\right) z w-4 b_{02} z^{3}+E_{11} z^{2} w+A_{12} z w^{2}+A_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}}, \\
\phi_{p}^{* * *} & =\frac{z^{2}+b_{11} z w+b_{02} w^{2}+B_{21} z^{2} w+B_{12} z w^{2}+B_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}}, \\
g_{p}^{* * *} & =\frac{w-2 i \overline{b_{11}} z w+i e_{1} w^{2}-4 b_{02} z^{2} w+E_{11} z w^{2}+C_{03} w^{3}}{1-2 i \overline{b_{11}} z+i e_{1} w-4 b_{02} z^{2}+E_{11} z w+E_{02} w^{2}+E_{21} z^{2} w+E_{12} z w^{2}+E_{03} w^{3}},
\end{aligned}
$$

with $b_{02}>0$ and $e_{1} \in \mathbb{R}$. Here all coefficients, A_{12}, b_{11}, \ldots, are functions of $p \in \partial \mathbb{H}^{2}$. From above calculation, all of the coefficients (as functions of p) of $F_{p}^{* * *}$ are bounded when $\left|b_{11}(p)\right|$ is bounded.

Similar conclusion holds for Case A_{2} and Case B.
Then we take a sequence $p_{m} \in \partial \mathbb{H}^{2}$ so that the associated map $F_{p_{m}}^{* * *}$ satisfies

$$
\lim _{m \rightarrow \infty} b_{11}\left(p_{m}\right)=\inf _{p}\left\{b_{11}(p)\right\} .
$$

Then we show

$$
F \text { is equivalent to } \widetilde{F}=\lim _{m \rightarrow \infty}\left(F_{p_{m}}\right)^{* * *}
$$

Here we have to take care of the facts that p_{m} could go to $\infty:[0: a: b] \in \partial \mathbb{H}^{2}$ and the equivalence is not obvious.

The limit map \widetilde{F} has the minimum property for its parameter b_{11}, namely, if we denote by $b_{11}(p)$ the corresponding coefficient of the map $\left(\widetilde{F}_{p}\right)^{* * *}$ and $p=\left(z_{0}, w_{0}\right)=\left(z_{0}, u_{0}+i\left|z_{0}\right|^{2}\right)$, we find

$$
\begin{aligned}
& \left|b_{11}(p)\right|^{2}=\left|b_{11}\right|^{2}-i\left(\overline{b_{11}}+2 \overline{b_{11}} e_{1}+12 b_{11} b_{02}+4 \overline{b_{11}}\left|b_{11}\right|^{2}\right) z_{0} \\
& +i\left(b_{11}+2 b_{11} e_{1}+12 \overline{b_{11}} b_{02}+4 b_{11}\left|b_{11}\right|^{2}\right) \overline{z_{0}}+32 b_{02} \operatorname{Re}\left(b_{11}\right) \operatorname{Im}\left(b_{11}\right) u_{0}+o(1) .
\end{aligned}
$$

Since the critical point of the function $b_{11}(p)$ is zero by the minimum property, it gives the desired extra equation:

$$
\begin{equation*}
\operatorname{Im}\left(b_{11}\right) R e\left(b_{11}\right)=0, \text { and } \overline{b_{11}}+2 e_{1} \overline{b_{11}}+4 \overline{b_{11}}\left|b_{11}\right|^{2}+12 b_{02} b_{11}=0 . \tag{3.8}
\end{equation*}
$$

It leads us consider Case(C): $b_{11}=0$ and Case(D): $b_{11} \neq 0$.
Finally we consider all cases:

Case A1 C	cannot occur
Case A2 C	cannot occur
Case B C	\exists a unique map
Case A1 D	cannot occur
Case A2 D	cannot occur
Case B D	cannot occur

The only map in $\operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{3}\right)$ of degree 3 is of the normalized form $F=F^{* * *}=(f, \phi, g)$:

$$
\begin{equation*}
f=\frac{z+\frac{i}{2} z w-\frac{1}{16} z w^{2}}{1+\frac{1}{16} w^{2}}, \phi=\frac{z^{2}+\frac{i}{4} z^{2} w}{1+\frac{1}{16} w^{2}}, g=\frac{w+\frac{1}{16} w^{3}}{1+\frac{1}{16} w^{2}} . \tag{3.9}
\end{equation*}
$$

We notice that it is too complicated to find (3.9) directly by the definition of $F^{* * *}$.

3.6 Classification of Maps from \mathbb{B}^{2} With Degree Two

The classification problem for maps in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2 has been solved.

Theorem 3.6.1 [JZ09] (i) Any nonlinear map in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2 is equivalent to a map $(F, 0)$ where $F \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ is of one of the following forms:
$(I): F=\left(G_{t}, 0\right)$ where $G_{t} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ is defined by

$$
\begin{equation*}
G_{t}(z, w)=\left(z^{2}, \sqrt{1+\cos ^{2} t} z w,(\cos t) w^{2},(\sin t) w\right), \quad 0 \leq t<\pi / 2 \tag{3.10}
\end{equation*}
$$

(IIA): $F=\left(F_{\theta}, 0\right)$ where $F_{\theta} \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{4}\right)$ is defined by

$$
\begin{equation*}
F_{\theta}(z, w)=\left(z,(\cos \theta) w,(\sin \theta) z w,(\sin \theta) w^{2}\right), \quad 0<\theta \leq \frac{\pi}{2} \tag{3.11}
\end{equation*}
$$

(IIC): $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}=\rho_{5}^{-1} \circ F \circ \rho_{2}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right) \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ is of the form:

$$
\begin{aligned}
f & =\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
\phi_{2} & =\frac{c_{1} z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, g=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}},
\end{aligned}
$$

where $c_{1}, c_{3}>0,-e_{1},-e_{2} \geq 0, e_{1} e_{2}=c_{3}^{2},-e_{1}-e_{2}=\frac{1}{4}+c_{1}^{2}$, satisfying one of the following conditions: either

$$
\left\{\begin{array}{l}
e_{1}=\frac{-\left(\frac{1}{4}+c_{1}^{2}\right)-\sqrt{\left(\frac{1}{4}+c_{1}^{2}\right)^{2}-4 c_{3}^{2}}}{2}, e_{2}=\frac{-\left(\frac{1}{4}+c_{1}^{2}\right)+\sqrt{\left(\frac{1}{4}+c_{1}^{2}\right)^{2}-4 c_{3}^{2}}}{2}, \tag{3.12}\\
0<4 c_{3}^{2} \leq\left(\frac{1}{4}+c_{1}^{2}\right)^{2},
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
e_{1}=\frac{-\left(\frac{1}{4}+c_{1}^{2}\right)+\sqrt{\left(\frac{1}{4}+c_{1}^{2}\right)^{2}-4 c_{3}^{2}}}{2}, e_{2}=\frac{-\left(\frac{1}{4}+c_{1}^{2}\right)-\sqrt{\left(\frac{1}{4}+c_{1}^{2}\right)^{2}-4 c_{3}^{2}}}{2}, \tag{3.13}\\
\frac{1}{2} c_{1}^{2}+c_{1}^{4} \leq 4 c_{3}^{2} \leq\left(\frac{1}{4}+c_{1}^{2}\right)^{2} .
\end{array}\right.
$$

(ii) Any two maps in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$ in the form of types (I), (IIA), and (IIC) above are equivalent if and only if they are identical.

In Faran's Theorem on $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{3}\right)$, there are four maps, up to automorphisms, which are isolated. Nevertheless, for $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with $N>3$, there exists a continuous family of maps, up to automorphism. For example, D'Angelo constructed $F_{t}=(z, w \cos t,(w \sin t) z) \in$ $\operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ with $t \in\left(0, \frac{\pi}{2}\right)$ satisfies: F_{t} is equivalent to F_{s} if and only if $t=s$. To classify continuous family of maps, we have to use different technique.

3.7 Proof of Theorem 3.6.1-Part 1

As a reduction in the proof of Theorem 3.6.1, Huang-Ji-Xu [HJX06] proved: Any map F in $\operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{N}\right)$ with $\operatorname{deg}(F)=2$ is equivalent to a map $(G, 0)$ where $G=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right) \in$ $\operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ is of the form (see also Lemma 2.3 below)

$$
\begin{aligned}
& f(z, w)=\frac{z-2 i b z^{2}+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \\
& \phi_{1}(z, w)=\frac{z^{2}+b z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \\
& \phi_{2}(z, w)=\frac{c_{2} w^{2}+c_{1} z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \\
& \phi_{3}(z, w)=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}-2 i b z} \\
& g(z, w)=\frac{w+i e_{1} w^{2}-2 i b z w}{1+i e_{1} w+e_{2} w^{2}-2 i b z}
\end{aligned}
$$

where $b,-e_{1},-e_{2}, c_{1}, c_{2}, c_{3}$ are real non-negative numbers satisfying $e_{1} e_{2}=c_{2}^{2}+c_{3}^{2},-e_{1}-e_{2}=$ $\frac{1}{4}+b^{2}+c_{1}^{2},-b e_{2}=c_{1} c_{2}$, and $c_{3}=0$ if $c_{1}=0$.

Since b and c_{2} are determined by c_{1}, c_{3}, e_{1} and e_{2}, a map in the above form is determined by c_{1}, c_{3}, e_{1} and e_{2}. We denote a map of the above form, which is determined by c_{1}, c_{3}, e_{1} and e_{2}, to be

$$
\begin{equation*}
F_{\left(c_{1}, c_{3}, e_{1}, e_{2}\right)} \in \mathcal{K} . \tag{3.14}
\end{equation*}
$$

It was unclear which of the coefficients e_{1}, e_{2}, c_{1} and c_{3} of F are independent parameters.
Let us show why F is equivalent to another map $(G, 0)$ where $G \in \operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{5}\right)$.
Let $F=\left(f, \phi_{1}, \phi_{2}, g\right)$ be a proper rational map of degree two from $\partial \mathbb{H}^{2}$ into $\partial \mathbb{H}^{N}$. Assume that $F(0)=0$ and 0 is a generic point of F, namely, $\kappa_{F}(0)=1$. Without loss of generality, we assume that $N \geq 4$. By Lemma 3.1 in [H03], we have $\sigma \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $\tau \in \partial A u t_{0}\left(\partial \mathbb{H}^{N}\right)$ such that $\tau \circ F \circ \sigma$, still denoted by $F=(f, \phi, g)$, takes the following form:

$$
\begin{align*}
f & =z+\frac{i}{2} z w+o_{w t}(3), \quad \frac{\partial^{2} f}{\partial w^{2}}(0)=0 \\
g & =w+o_{w t}(4) \tag{3.15}\\
\phi_{1} & =z^{2}+A_{1} z w+B_{1} w^{2}+E_{1} z^{3}+\cdots, \\
\phi_{j} & =o_{w t}(2), \quad j \geq 2
\end{align*}
$$

Replacing $\left(\phi_{2}, \cdots, \phi_{N-2}\right)$ by $\left(\phi_{2}, \cdots, \phi_{N-2}\right) \cdot U$ with U a certain $(N-3) \times(N-3)$ unitary matrix, we can assume that $\phi_{j}=A_{j} z w+B_{j} w^{2}+o\left(|(z, w)|^{2}\right)$ for $j \geq 2$ and $A_{j}=0$ for $j \geq 3$.

In a similar manner, we can assume that $B_{j}=0$ for $j \geq 4$ (if $N \geq 6$). Making use of the assumption that F has degree 2, we can thus assume in (3.15) that

$$
\begin{align*}
& \phi_{2}=A_{2} z w+B_{2} w^{2}+o\left(|(z, w)|^{2}\right), \\
& \phi_{3}=B_{3} w^{2}+o\left(|(z, w)|^{2}\right), \tag{3.16}\\
& \phi_{j}=0, \quad j \geq 4 . \quad \square
\end{align*}
$$

3.8 Proof of Theorem 3.6.1 - Part 2

In[CJX06], by obtaining an extra equation, we got a more clearer picture on the maps as above.

Let us describe how to obtain this extra equation.
For any $F \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ with $\operatorname{deg}(F)=2, F$ is equivalent to another map $F^{* * *} \in$ $\operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ of the above form. Also we can associate a family of maps $F_{p} \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right)$ for any $p \in \partial \mathbb{H}^{2}$, as well as the associated maps $\left(F_{p}\right)^{* * *}$ that is of the above form.

We define a real analytic function

$$
\mathcal{W}\left(F_{p}^{* * *}\right)=c_{1}(p)^{2}-e_{1}(p)-e_{2}(p)
$$

where $c_{1}(p), e_{1}(p)$ and $e_{2}(p)$ are the coefficients of $F_{p}^{* * *}$:

$$
\begin{align*}
f_{p}^{* * *}(z, w) & =\frac{z-2 i b(p) z^{2}+\left(\frac{i}{2}+i e_{1}(p)\right) z w}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z} \tag{3.17}\\
\phi_{1, p}^{* *}(z, w) & =\frac{z^{2}+b(p) z w}{1+i e_{1}(p) w+e_{2} w^{2}-2 i b(p) z} \tag{3.18}\\
\phi_{2, p}^{* *}(z, w) & =\frac{c_{2}(p) w^{2}+c_{1}(p) z w}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z} \tag{3.19}\\
\phi_{3, p}^{* *}(z, w) & =\frac{c_{3}(p) w^{2}}{1+i e_{1}(p) w+e_{2}(p) w^{2}-2 i b(p) z} \tag{3.20}\\
g_{p}^{* * *}(z, w) & =\frac{w+i e_{1}(p) w^{2}-2 i b(p) z w}{1+i e_{1}(p) w+e_{2} w^{2}-2 i b(p) z} \tag{3.21}
\end{align*}
$$

Here $b(p), e_{1}(p), e_{2}(p), c_{1}(p), c_{2}(p), c_{3}(p)$ satisfy

$$
e_{2}(p) e_{1}(p)=c_{2}^{2}(p)+c_{3}^{2}(p),-e_{2}(p)=\frac{1}{4}+e_{1}(p)+b^{2}(p)+c_{1}^{2}(p)
$$

and $-b(p) e_{2}(p)=c_{1}(p) c_{2}(p), c_{3}(p)=0$ if $c_{1}(p)=0$, with

$$
c_{1}(p), c_{2}(p), b(p) \geq 0, e_{2}(p), e_{1}(p) \leq 0
$$

We observe that as long as $\mathcal{W}\left(F_{p}^{* * *}\right)$ is bounded, all

$$
e_{1}\left(p_{m}\right), e_{2}\left(p_{m}\right), c_{1}\left(p_{m}\right), c_{2}\left(p_{m}\right), c_{3}\left(p_{m}\right), b\left(p_{m}\right)
$$

are uniformly bounded for all m. In fact, since $c_{1}\left(p_{m}\right),-e_{1}\left(p_{m}\right),-e_{2}\left(p_{m}\right)$ are non-negative, $c_{1}\left(p_{m}\right), e_{1}\left(p_{m}\right)$ and $e_{2}\left(p_{m}\right)$ are uniformly bounded for all m. From $-e_{1}\left(p_{m}\right)-e_{2}\left(p_{m}\right)=$ $\frac{1}{4}+b^{2}\left(p_{m}\right)+c_{1}^{2}\left(p_{m}\right), b\left(p_{m}\right)$ is uniformly bounded for any m. Finally, from $e_{1}\left(p_{m}\right) e_{2}\left(p_{m}\right)=$ $c_{2}^{2}\left(p_{m}\right)+c_{3}^{2}\left(p_{m}\right), c_{2}\left(p_{m}\right)$ and $c_{3}\left(p_{m}\right)$ are uniformly bounded.

The desired extra equation is obtained by moving up p to the extremal value as follows. We choose a sequence of $p_{m} \in \partial \mathbb{H}^{2}$ such that

$$
\begin{equation*}
p_{m} \rightarrow p_{0} \in \overline{\partial \overline{\mathbb{H}^{2}}} \text { and } \lim _{m} \mathcal{W}\left(F_{p_{m}}^{* * *}\right)=\inf _{p \in \partial \mathbb{H}^{2}-\Xi_{F}}\left\{\mathcal{W}\left(F_{p}^{* * *}\right)\right\} \tag{3.22}
\end{equation*}
$$

where Ξ_{F} is a proper real analytic variety such that $\forall p \in \partial \mathbb{H}^{2}-\Xi_{F}, F_{p}$ has geometric rank one at 0 so that $\mathcal{W}\left(F_{p}^{* *}\right)$ is well defined.

Then F is equivalent to $F_{p_{0}}^{* * *}$ which is of the above form and with the minimum property $\mathcal{W}\left(F_{p_{0}}^{* * *}\right)=\inf _{p \in \partial \mathbb{H}^{2}-\Xi_{F}} \mathcal{W}\left(F_{p}^{* * *}\right)$.

A key lemma used to prove convergence of the limit map is the following result.
Lemma 3.8.1 ([CJXX06] lemma 2.5) Let $F \in \operatorname{Rat}\left(\partial \mathbb{H}^{2}, \partial \mathbb{H}^{5}\right)$ with $F(0)=0$ and $\operatorname{deg}(F)=$ 2. Suppose that $p_{m} \in \partial \mathbb{H}^{2}$ is a sequence converging to $0, F_{p_{m}}$ is of rank 1 at 0 for any m
 Then
(a) F is of geometric rank 1 at $0: R k_{F}(0)=1$, and hence $F^{* * *}$ is well-defined.
(b) $F_{p_{m}}^{* * *} \rightarrow F^{* * *}$.
(c) If we write $F_{p_{m}}^{* * *}=\widetilde{G}_{2, m} \circ \tau_{p_{m}} \circ F \circ \sigma_{p_{m}} \circ \widetilde{G}_{1, m}$ where $\sigma_{p_{m}}$ and $\tau_{p_{m}}:=\tau_{p_{m}}^{F}$ are as in [CJX06, (3)], $\widetilde{G}_{1, m}$ and $\widetilde{G}_{2, m}$ are as in [CJX06, (7)], then $\widetilde{G}_{1, m}$ and $\widetilde{G}_{2, m}$ are convergent to some $\widetilde{G}_{1} \in A u t_{0}\left(\partial \mathbb{H}^{2}\right)$ and $\widetilde{G}_{2} \in A u t_{0}\left(\partial \mathbb{H}^{5}\right)$ respectively.

Proof:(Sketch) (a) Suppose that F has rank 0 at 0 . We'll seek a contradiction.
Denote $F^{* *}=\left(f^{* *}, \phi^{* *}, g^{* *}\right)$. We only need to prove the following claim:

$$
\begin{equation*}
\frac{\partial^{2} f^{* *}}{\partial w^{2}}(0)=0, \frac{\partial^{2} \phi^{* *}}{\partial z^{2}}(0)=\frac{\partial^{2} \phi^{* *}}{\partial z \partial w}(0)=(0,0,0) . \tag{3.23}
\end{equation*}
$$

In fact, by Lemma 2.4 [CJX06], F must be linear but this is a contradiction with $\operatorname{deg}(F)=2$. Write

$$
\left(F_{p_{m}}\right)^{* * *}=\left(\tilde{f}_{m}, \widetilde{\phi}_{m}, \widetilde{g}_{m}\right)
$$

and also $\left(F_{p_{m}}\right)^{* * *}=\tau^{m} \circ\left((F)_{q_{m}}^{* *}\right)^{* *} \circ \sigma_{m}$ where

$$
\begin{gathered}
\left((F)_{q_{m}}^{* *}\right)^{* *}=\left(\hat{f}_{m}, \hat{\phi}_{m}, \hat{g}_{m}\right), \\
\sigma_{m}(z, w)=\left(\frac{\lambda_{m}\left(z+a_{m} w\right) U_{m}}{1-2 i\left\langle\overline{a_{m}}, z\right\rangle+\left(r_{m}-i\left|a_{m}\right|^{2}\right) w}, \frac{\lambda^{2} w}{1-2 i\left\langle\overline{a_{m}}, z\right\rangle+\left(r_{m}-i\left|a_{m}\right|^{2}\right) w}\right),
\end{gathered}
$$

and

$$
\tau^{m}\left(z^{*}, w^{*}\right)=\left(\frac{\lambda_{m}^{*}\left(z^{*}+a_{m}^{*} w^{*}\right) U_{m}^{*}}{1-2 i\left\langle\overline{a_{m}^{*}}, z^{*}\right\rangle+\left(r_{m}^{*}-i\left|a_{m}^{*}\right|^{2}\right) w}, \frac{\lambda^{* 2} w^{*}}{1-2 i\left\langle\overline{a_{m}^{*}}, z^{*}\right\rangle+\left(r_{m}^{*}-i\left|a_{m}^{*}\right|^{2}\right) w^{*}}\right) .
$$

In order to prove Claim (3.23), it is enough to show that

$$
\begin{equation*}
\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0} \rightarrow 0,\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0} \rightarrow(0,0,0),\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0} \rightarrow(0,0,0), \text { as } m \rightarrow \infty \tag{3.24}
\end{equation*}
$$

Then by the construction of $F^{* * *}$ (see $\S 4.3$), σ_{m} and τ_{m} satisfy the following properties.
(i) $\left.\quad \frac{\partial^{2} \hat{f}_{m}}{\partial z \partial w}\right|_{0}=\left.\lambda_{m}^{2} \frac{\partial^{2} \widetilde{f}_{m}}{\partial z \partial w}\right|_{0}$,
(ii) $\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0}=\left.i \lambda_{m}^{2} a_{m} \frac{\partial^{2} \widetilde{f}_{m}}{\partial z \partial w}\right|_{0} U_{m}^{-1}+\left.\lambda_{m}^{3} \frac{\partial^{2} \widetilde{f}_{m}}{\partial w^{2}}\right|_{0} U_{m}^{-1}$,
(iii) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0}=\left.\lambda_{m} U_{m}^{2} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{22, m}^{*}$,
(iv) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0}=\left.\lambda_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} a_{m} U_{m}^{2} U_{22, m}^{*}+\left.\lambda_{m}^{2} U_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z \partial w}\right|_{0} U_{22, m}^{*}$,
(v) $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial w^{2}}\right|_{0}=\left.\lambda_{m} a_{m}^{2} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{m}^{2} U_{22, m}^{*}+\left.2 \lambda_{m}^{2} a_{m} U_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z \partial w}\right|_{0} U_{22, m}^{*}+\left.\lambda_{m}^{3} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial w^{2}}\right|_{0} U_{22, m}^{*}$.

From (i), since F has rank 0 at 0 , we see $\left.\frac{\partial^{2} \hat{f}_{m}}{\partial z \partial w}\right|_{0} \rightarrow 0$. Recall that \widetilde{F}_{m} has rank one at 0 and is of the form in \S 3.7. Then $\left.\frac{\partial^{2} \widetilde{f}_{m}}{\partial z \partial w}\right|_{0}=\frac{i}{2}$ so that $\lambda_{m} \rightarrow 0$ as m goes to ∞.

From (ii), since $\left.\frac{\partial \widetilde{f}_{m}}{\partial w^{2}}\right|_{0}=0$, we know that $\lambda_{m}^{2} a_{m}$ is bounded.
From (iii), since $\lambda_{m} \rightarrow 0$ and $\left.\frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0}=[1,0,0]$, we see $\left.\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z^{2}}\right|_{0} \rightarrow \frac{\partial^{2} \partial^{* *}}{\partial z^{2}}\right|_{0}=[0,0,0]$.
From (iv), the second term in the right hand side goes to zero for $\lambda_{m} \rightarrow 0$, and the first term in the right hand side is $\left.\lambda_{m} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} a_{m} U_{m}^{2} U_{22, m}^{*}=\frac{\lambda_{m}^{2} a_{m}}{\lambda_{m}}[1,0,0] U_{m}^{2} U_{22, m}^{*}$. Recall from (ii) that $\lambda_{m}^{2} a_{m}$ is bounded. On the other hand, $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0}$ is bounded. All of these imply that $\lambda_{m}^{2} a_{m}$ must go to zero. Then from (ii), $\left.\left.\frac{\partial^{2} \hat{f}_{m}}{\partial w^{2}}\right|_{0} \rightarrow \frac{\partial^{2} f^{* *}}{\partial w^{2}}\right|_{0}=0$.

From (v), the second and the third terms on the right hand side converge to zero because of λ_{m} and $a_{m} \lambda_{m}^{2} \rightarrow 0$. The first term on the right hand side is bounded and can be written as $\left.\frac{\lambda_{m}^{2} a_{m}^{2}}{\lambda_{m}} \frac{\partial^{2} \widetilde{\phi}_{m}}{\partial z^{2}}\right|_{0} U_{m}^{2} U_{22, m}^{*}$. This implies that $\lambda_{m} a_{m} \rightarrow 0$. Then from (iv), it proves $\left.\frac{\partial^{2} \hat{\phi}_{m}}{\partial z \partial w}\right|_{0} \rightarrow \frac{\partial^{2} \hat{\phi}}{\partial z \partial w}=[0,0,0]$. Our claim (3.24), as well as (3.23), is proved.

The part (b) is already included in the above proof. For the part (c), $\widetilde{G}_{1, m}$ is convergent because of the normalization procedure of $F^{* * *}$ from F (cf. [Hu03]) and because of the part (a).

The minimum property for $\mathcal{W}\left(F_{p}^{* * *}\right)$ implies the vanishing of derivatives of the function $\mathcal{W}\left(F_{p}^{* * *}\right)$ at p_{0}, which derives the extra equation.

In order to get this extra equation, we have to compute the first order derivatives of the function $\mathcal{W}\left(F_{p}^{* * *}\right)$, which is done by the following lemma. The proof of this lemma used the differential formulas for F_{p}^{*} and $F_{p}^{* *}$ listed in Chapter 1. Although the computation is long, since every time it only counts for derivative at 0 so that lots of higher order terms can be dropped, the calculation is manageable.

Lemma 3.8.2 ([CJX06], lemma 3.1) Let $F=F_{c_{1}, c_{3}, e_{1}, e_{2}}$ and $F_{p}^{* * *}$ be as above. Then for $p=\left(z_{0}, w_{0}\right)=\left(z_{0}, u_{0}+i\left|z_{0}\right|^{2}\right) \in \partial \mathbb{H}^{2}$ near 0 , we have real analytic functions

$$
\begin{aligned}
& b^{2}(p)=b^{2}-4 b\left(2 e_{1}+c_{1}^{2}\right) \Im\left(z_{0}\right)+o(1), \quad c_{1}^{2}(p)=c_{1}^{2}+4 c_{1}\left(b c_{1}+2 c_{2}\right) \Im\left(z_{0}\right)+o(1) \\
& e_{2}(p)+e_{1}(p)=e_{2}+e_{1}+8 b\left(e_{1}+e_{2}\right) \Im\left(z_{0}\right)+o(1) \\
& \mathcal{W}\left(F_{p}^{* * *}\right)=c_{1}^{2}(p)-e_{1}(p)-e_{2}(p)=c_{1}^{2}-e_{1}-e_{2}+\left(4 c_{1}\left(b c_{1}+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)\right) \Im\left(z_{0}\right) \\
& \quad+o(1)
\end{aligned}
$$

where we denote $o(k)=o\left(\left|\left(z_{0}, u_{0}\right)\right|^{k}\right)$.

If $c_{1}=0$, by the minimum property, it implies that the coefficient of $\Im\left(z_{0}\right)$ must be zero. Then we obtain

$$
-8 b\left(e_{1}+e_{2}\right)=0
$$

Since $-e_{1}-e_{2}=\frac{1}{4}+b^{2} \neq 0$, it implies $b=0$.
If $c_{1}>0$, by the minimum property of $F=F_{0}^{* * *}$, it implies that

$$
4 c_{1}\left(c_{1} b+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)=0
$$

Since $-e_{1}-e_{2}=\frac{1}{4}+b^{2}+c_{1}^{2} \neq 0$ and $c_{1}, b, c_{2},-e_{1},-e_{2} \geq 0$, it implies $b=c_{2}=0$.

To study F, we distinguish two cases:
Case (I) $c_{1}=b=0$;
Case (II) $c_{1} \neq 0$ and $b=c_{2}=0$.
It was proved in [CJX06] that F is equivalent to a new map $F_{c_{1}, c_{3} . e_{1}, e_{2}}$ that is of the form in one of the following types (from Case (I), we obtain (I); from Case (II), we obtain (IIA)(IIB) and (IIC)):
(I) $F_{0,0, e_{1}, e_{2}}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ is of the form

$$
\begin{align*}
& f=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \tag{3.25}\\
& \phi_{2}=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}=0, g=\frac{1+i e_{1} w+e_{2} w^{2}}{1+i}
\end{align*}
$$

where $e_{1} e_{2}=c_{2}^{2}$ and $-e_{1}-e_{2}=\frac{1}{4}$. Here $e_{2} \in\left[-\frac{1}{4}, 0\right)$ is a parameter. It then corresponds to the family $\left\{G_{t}\right\}_{0 \leq t<\pi / 2}$ in (3.10). When $e_{2}=-\frac{1}{4}, F_{0,0, e_{1}, e_{2}}$ corresponds to G_{0}, i.e. $(z, w) \mapsto$ $\left(z^{2}, \sqrt{2} z w, w^{2}, 0\right)$; when $e_{2} \rightarrow 0, F_{0,0, e_{1}, e_{2}}$ goes to $G_{\pi / 2}=F_{\pi / 2}$, i.e., $(Z, w) \mapsto\left(z, z w, w^{2}\right)$.
(IIA) $F_{c_{1}, 0, e_{1}, 0}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ is of the form

$$
\begin{equation*}
f=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w}, \phi_{1}=\frac{z^{2}}{1+i e_{1} w}, \phi_{2}=\frac{c_{1} z w}{1+i e_{1} w}, \phi_{3}=0, g=w \tag{3.26}
\end{equation*}
$$

where $-e_{1}=\frac{1}{4}+c_{1}^{2}$ and $c_{1} \in[0, \infty)$ is a parameter. It corresponds to the family $\left\{F_{\theta}\right\}_{0<\theta \leq \pi / 2}$ in (3.11). When $c_{1}=0, F_{c_{1}, 0, e_{1}, 0}$ corresponds to $F_{\pi / 2}$; when $c_{1} \rightarrow \infty, F_{c_{1}, 0, e_{1}, 0}$ goes to the linear map, i.e., $(z, w) \mapsto(z, w, 0)$.
(IIB) $F_{c_{1}, 0,0, e_{2}}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ is of the form:

$$
\begin{equation*}
f=\frac{z+\frac{i}{2} z w}{1+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+e_{2} w^{2}}, \quad \phi_{2}=\frac{c_{1} z w}{1+e_{2} w^{2}}, \quad \phi_{3}=0, g=\frac{w}{1+e_{2} w^{2}}, \tag{3.27}
\end{equation*}
$$

where $-e_{2}=\frac{1}{4}+c_{1}^{2}$ and $c_{1} \in(0, \infty)$ is a parameter. Notice that when $c_{1} \rightarrow 0$, the map $F_{c_{1}, 0,0, e_{2}}$ goes to the map G_{0}, i.e. the one in type (I) when $e_{2}=-\frac{1}{4}$.
(IIC) $F_{c_{1}, c_{3}, e_{1}, e_{2}}=\left(f, \phi_{1}, \phi_{2}, \phi_{3}, g\right)$ is of the form:

$$
\begin{align*}
& f=\frac{z+\left(\frac{i}{2}+i e_{1}\right) z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{1}=\frac{z^{2}}{1+i e_{1} w+e_{2} w^{2}}, \\
& \phi_{2}=\frac{c_{3} z w}{1+i e_{1} w+e_{2} w^{2}}, \quad \phi_{3}=\frac{c_{3} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, g=\frac{w+i e_{1} w^{2}}{1+i e_{1} w+e_{2} w^{2}}, \tag{3.28}
\end{align*}
$$

where $c_{1}, c_{3}>0,-e_{1},-e_{2} \geq 0, \quad e_{1} e_{2}=c_{3}^{2}, \quad-e_{1}-e_{2}=\frac{1}{4}+c_{1}^{2}$.
For any map $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ in one of these four types, we denote $F_{c_{1}, c_{3}, e_{1}, e_{2}}$, or $\left(c_{1}, c_{3}, e_{1}, e_{2}\right)$, $\in \mathcal{K}_{I}, \mathcal{K}_{I I A}, \mathcal{K}_{I I B}$, and $\mathcal{K}_{I I C}$, respectively.

At this moment, it is not clear whether different such maps are not equivalent.

3.9 Proof of Theorem 3.6.1-Part 3

It is proved by Ji-Zhang [JZ09] that the case (IIB) never occur.
We denote by \mathcal{K} the collection of all such maps $F_{c_{1}, c_{3}, e_{1}, e_{2}}$. We may identify a map $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ with a point $\left(c_{1}, c_{3}, e_{1}, e_{2}\right)$ in \mathbb{R}^{4}.

The set \mathcal{K} is equal to a disjoint union

$$
\mathcal{K}=\mathcal{K}_{I} \cup \mathcal{K}_{I I}
$$

where $\mathcal{K}_{I}=\left\{F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K} \mid F_{c_{1}, c_{2}, e_{1}, e_{2}}\right.$ is of form $\left.(I)\right\}$, etc. The set \mathcal{K} is also equal to a disjoint union

$$
\mathcal{K}=\mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0} \cup \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0} \cup \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0},
$$

where $\mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0}=\left(\mathcal{K}_{I} \cup \mathcal{K}_{I I}\right) \cap\left\{\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \mid 1+4 e_{2}+2 c_{1}^{2}>0\right\}$, etc.
Lemma 3.9.1 ([JZ09], lemma 3.1)
(a) If $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0}$, then locally the function $\mathcal{W}\left(\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}\right)_{p}^{* * *}\right)$ is increasing as p moves along any ray from 0 in $\partial \mathbb{H}^{2}$.
(b) If $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}=0}$, then locally the function $\mathcal{W}\left(\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}\right)_{p}^{* * *}\right)$ is constant as p moves along any ray from 0 in $\partial \mathbb{H}^{2}$.
(c) If $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}<0}$, then locally the function $\mathcal{W}\left(\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}\right)_{p}^{* * *}\right)$ is decreasing as p moves along any ray from 0 in $\partial \mathbb{H}^{2}$.

Lemma 3.9.2 ([JZ09], lemma 3.2) (i) $\mathcal{K}_{I I, e_{1}<e_{2}} \subseteq \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0}$, and
$\mathcal{K}_{I I, e_{1}=e_{2}} \subseteq \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0}$.
(ii) Let $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I I, e_{1}>e_{2}}$. Then
(a) $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}>0}$ if and only if $\frac{1}{2} c_{1}^{2}+c_{1}^{4}<4 c_{3}^{2}<\left(\frac{1}{4}+c_{1}^{2}\right)^{2}$ holds.
(b) $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}=0}$ if and only if $\frac{1}{2} c_{1}^{2}+c_{1}^{4}=4 c_{3}^{2}$ holds.
(c) $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}<0}$ if and only if $0 \leq 4 c_{3}^{2}<\frac{1}{2} c_{1}^{2}+c_{1}^{4}$ holds.

By last section, we can consider $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ satisfying the minimum property (3.22). Such $\operatorname{map} F_{c_{1}, c_{3}, e_{1}, e_{2}}$ will contradict with the statement in Lemma 3.9.1(c). Therefore, it follows:

Lemma 3.9.3 ([JZ09], lemma 3.4) Let $\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I} \cup \mathcal{K}_{I I}$. Then $F_{c_{1}, c_{3}, e_{1}, e_{2}}$ satisfies (3.22) if and only if $F_{c_{1}, c_{3}, e_{1}, e_{2}} \in \mathcal{K}^{*}:=\mathcal{K}_{I} \cup \mathcal{K}_{I I}-\mathcal{K}_{I, I I, 1+4 e_{2}+2 c_{1}^{2}<0}$.

This proves the part (i) of Theorem 3.6.1. From the definition of \mathcal{K}, e_{1} and e_{2} are determined by c_{1} and c_{3} through a quadratic equation. This show how we obtain the domain of the parameters c_{1} and c_{3} in Theorem 3.6.1.

We may outline the idea for the proof of Lemma 3.9.1 here. The monotonicity in Lemma 3.9.1 (a) means

$$
\begin{equation*}
\frac{\left.d \mathcal{W}\left(F_{\Gamma(t)}^{* * *}\right)\right)}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\mathcal{W}\left(F_{\Gamma(t+\Delta t)}^{* * *}\right)-\mathcal{W}\left(F_{\Gamma(t)}^{* * *}\right)}{\Delta t} \geq 0, \forall t \in[0, \delta] \tag{3.29}
\end{equation*}
$$

For any $0<t<\delta$ and sufficiently small $\Delta t>0$, if we can write

$$
\begin{equation*}
F_{\Gamma(t+\Delta t)}^{* * *}=\left(F_{\Gamma(t)}^{* * *}\right)_{q(t, \Delta t)}^{* * *} \tag{3.30}
\end{equation*}
$$

for some differentiable map $q(t, \Delta t) \in \partial \mathbb{H}^{2}$, then from Lemma 3.8.2 we should have

$$
\begin{equation*}
\mathcal{W}\left(F_{\Gamma(t+\Delta t)}^{* * *}\right)=\mathcal{W}\left(F_{\Gamma(t)}^{* * *}\right)+\left[4 c_{1}\left(b c_{1}+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)\right](\Gamma(t)) \Im\left(q_{1}(t)\right) \Delta t+o(|\Delta t|) \tag{3.31}
\end{equation*}
$$

where we write $q(t, \Delta t):=\left(q_{1}(t), q_{2}(t)\right) \Delta t+o(|\Delta t|)$. Notice that $\left[4 c_{1}\left(b c_{1}+2 c_{2}\right)-8 b\left(e_{1}+\right.\right.$ $\left.\left.e_{2}\right)\right](\Gamma(t)) \geq 0$ always holds because $c_{1}, c_{2},-e_{1}-e_{2} \geq 0$. Then (3.29) follows if $\Im\left(q_{1}(t)\right) \geq 0$ holds. In particular, if $\left[4 c_{1}\left(b c_{1}+2 c_{2}\right)-8 b\left(e_{1}+e_{2}\right)\right](\Gamma(t)) \neq 0$ for any fixed $t \in[0, \delta)$, and if the following condition is satisfied:

$$
\begin{equation*}
\Im\left(q_{1}(t)\right)>0, \quad \forall t \in[0, \delta], \tag{3.32}
\end{equation*}
$$

then the strict inequality (3.29) holds. To prove (3.29), it suffices to prove (3.32). (3.32) is proved by local calculation of $\Im\left(q_{1}(t)\right)$.

3.10 Proof of Theorem 3.6.1 - Part 4

As the final step to complete the proof of Theorem 3.6.1, it is proved by Ji-Zhang [JZ09] that the cases (I) (IIA) and (IIC) indeed give a complete classification for mappings in $\operatorname{Rat}\left(\mathbb{B}^{2}, \mathbb{B}^{N}\right)$ with degree 2, up to equivalent classes.

To solve the classification problem, by Lemma 3.9.3, we need to show: for maps $F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}$ and $F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}$ in \mathcal{K}^{*}, we have

$$
\begin{equation*}
F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}} \text { is equivalent to } F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}} \Longleftrightarrow\left(c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right)=\left(c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}\right) . \tag{3.33}
\end{equation*}
$$

We first prove a local version of (3.33).
Lemma 3.10.1 For any $P^{(0)}=\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right) \in \mathcal{K}^{*}$, there is a neighborhood U of $P^{(0)}$ in \mathcal{K}^{*} and a constant $c>0$ such that for any point $\left(c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right),\left(c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}\right) \in U$ with $F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}=\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}^{* * * *}\right.$ where $p=\left(a, b+i|a|^{2}\right) \in \partial \mathbb{H}^{2}, a \in \mathbb{C}, b \in \mathbb{R},|p|:=\max \{|a|,|b|\}$ $\leq c$, we have

$$
\begin{equation*}
\left(c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}\right)=\left(c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right) \tag{3.34}
\end{equation*}
$$

To prove this, we use the monotone property in Lemma 3.9.1 to show:

$$
\begin{equation*}
\mathcal{W}\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}\right)=\mathcal{W}\left(\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}\right)_{\Gamma(0)}^{* * *}\right) \leq \mathcal{W}\left(\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}^{*}\right)_{\Gamma\left(t^{*}\right)}^{* * *}\right)=\mathcal{W}\left(F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}\right) \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{W}\left(F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}\right)=\mathcal{W}\left(\left(F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}\right)_{\Gamma}^{* * *}\right) \leq \mathcal{W}\left(\left(F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}\right)_{\Gamma}^{* *\left(t^{*}\right)}\right)=\mathcal{W}\left(\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}\right) .\right. \tag{3.36}
\end{equation*}
$$

By (3.35) and (3.36), it follows that the function $\mathcal{W}\left(\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}\right)_{\Gamma}^{* * *}\right)=$ constant. Then it implies that $\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}^{* * *}\right)_{\Gamma(t)}^{* *}$ is constant. Since $F_{c_{1}^{\prime \prime}, c_{3}^{\prime \prime}, e_{1}^{\prime \prime}, e_{2}^{\prime \prime}}=\left(F_{c_{1}^{\prime}, c_{3}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}}^{*}\right)_{p}^{* * *}$, Lemma 3.10.1 is proved.

Next, we prove the global version of (3.33). We need to show: if $F_{c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}}$ and $F_{\widetilde{c}_{1}^{(0)}, \widetilde{c}_{3}^{(0)}, \widetilde{e}_{1}^{(0)}, \widetilde{e}_{2}^{(0)}}$ in \mathcal{K}^{*} are equivalent, then

$$
\begin{equation*}
\left(\widetilde{c}_{1}^{(0)}, \widetilde{c}_{3}^{(0)}, \widetilde{e}_{1}^{(0)}, \widetilde{e}_{2}^{(0)}\right)=\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right) \tag{3.37}
\end{equation*}
$$

Let $\mathcal{E}:=\left\{\left(c_{1}, c_{3}, e_{1}, e_{2}\right) \in \mathcal{K}_{I} \cup \mathcal{K}_{I I} \mid\left(F_{c_{1}, c_{3}, e_{1}, e_{2}}\right)_{p}^{* * *} \equiv F_{c_{1}, c_{3}, e_{1}, e_{2}}, \quad \forall p \in \partial \mathbb{H}^{2}\right.$ near 0$\}$. We assume that $\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right) \notin \mathcal{E}$; otherwise $F_{c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}}$ and $F_{\widetilde{c}_{1}^{(0)}, \tilde{c}_{3}^{(0)}, \tilde{e}_{1}^{(0)}, \tilde{e}_{2}^{(0)}}$ cannot be equivalent.

Since $F_{c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}}$ and $F_{\widetilde{c}_{1}^{(0)}, \widetilde{c}_{3}^{(0)}, \widetilde{e}_{1}^{(0)}, \widetilde{e}_{2}^{(0)}}$ are equivalent,

$$
\begin{equation*}
F_{\widetilde{c}_{1}^{(0)}, \widetilde{c}_{3}^{(0)},,_{1}^{(0)}, \widetilde{e}_{2}^{(0)}}=\Psi \circ F_{c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}}^{(0)} \circ \Theta \tag{3.38}
\end{equation*}
$$

where $\Theta \in A u t\left(\mathbb{H}^{2}\right)$ and $\Psi \in \operatorname{Aut}\left(\mathbb{H}^{5}\right)$.
We take a real analytic curve $L=L(s) \in \mathcal{K}^{*}-\mathcal{E}, 0 \leq s \leq 1$, where \mathcal{E} is a such that $L(0)=\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right)$. In fact, since $\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right) \notin \mathcal{E}$ and \mathcal{E} is closed, L could be taken in a neighborhood of $\left(c_{1}^{(0)}, c_{3}^{(0)}, e_{1}^{(0)}, e_{2}^{(0)}\right)$.

We shall use some deformation. By using automorphisms of balls, we can take a real analytic family of automorphisms $\Theta_{s} \in \operatorname{Aut}\left(\partial \mathbb{H}^{2}\right), \Psi_{s} \in \operatorname{Aut}\left(\partial \mathbb{H}^{5}\right), s \in[0,1]$, such that when $s=0, \Theta_{0}=\Theta, \Psi_{0}=\Psi$; when $s \in(0,1), \Theta_{s}(0) \neq \infty, \Psi_{s} \circ F_{L(s)} \circ \Theta_{s}(0)=0$; when $s=1, \Theta_{1}=I d, \Psi_{1}=I d$. Then we define

$$
\hat{L}_{0}(s):=\Psi_{s} \circ F_{L(s)} \circ \Theta_{s} \in \operatorname{Rat}\left(\mathbb{H}^{2}, \mathbb{H}^{5}\right), \quad 0 \leq s \leq 1
$$

such that $\hat{L}_{0}(s)(0)=0$ for all $s, F_{\hat{L}_{0}(0)}=\Psi \circ F_{L(0)} \circ \Theta$ and $\hat{L}_{0}(1)=L(1)$. Our goal is to show: $\hat{L}_{0}(s)=L(s), \forall s \in[0,1]$, so that $\hat{L}_{0}(0)=L(0)$, i.e., (3.37) holds.

Even though $\left(F_{\hat{L}_{0}(s)}\right)^{* * *}$ is in \mathcal{K} for any $s \in(0,1]$, it may not be in \mathcal{K}^{*} because the minimum property (3.22) may not be satisfied. We claim that $\left(F_{\hat{L}_{0}(s)}\right)^{* * *}$ is equivalent to another map $F_{\hat{L}(s)} \in \mathcal{K}^{*}$. More precisely, we want to find $q(s) \in \partial \mathbb{H}^{2}$ so that

$$
\begin{equation*}
F_{\hat{L}(s)}:=\left(F_{\hat{L}_{0}(s)}\right)_{q(s)}^{* * *} \in \mathcal{K}^{*}, \quad \forall s \in(0,1] . \tag{3.39}
\end{equation*}
$$

As points in \mathcal{K}, we show

$$
\operatorname{dist}\left(\begin{array}{ll}
F_{\hat{L}(s)}, & \left.F_{\hat{L}_{0}(s)}\right) \rightarrow 0, \tag{3.40}\\
\text { as } s \rightarrow 1,
\end{array}\right.
$$

i.e.,

$$
\operatorname{dist}\left(F_{\hat{L}(s)}, \quad F_{L(s)}\right) \rightarrow 0, \quad \text { as } s \rightarrow 1
$$

Since both $F_{\hat{L}(s)} \in \mathcal{K}^{*}$ and $F_{L(s)} \in \mathcal{K}^{*}-\mathcal{E}$ where $s \in\left(s_{0}, 1\right]$ for some $s_{0}>0$ such that $0 \leq 1-s_{0}$ is sufficiently small, by the local version of Theorem 3.6.1, we conclude

$$
F_{\hat{L}(s)}=F_{L(s)}, \quad \forall s \in\left(s_{0}, 1\right] .
$$

Repeating this process. Finally by continuity $F_{\hat{L}(s)}=F_{L(s)}, \forall s \in[0,1]$. When restricted at $0, F_{\hat{L}_{0}(0)}=F_{\hat{L}(0)}=F_{L(0)}$, so that (3.37) is proved.

Chapter 4

More Analytic Approaches

4.1 Five Facts in a Model Case

Theorem 4.1.1 [HJ01] Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{2 n-1}\right)$. Then F is equivalent to a map that is either linear, or Whitney map: $W_{n, 1}(z, w)=(z, w(z, w))$ where $(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C}$.

Here is the main ingredient of the proof:

1. $F^{* *}$ can be further normalized into $F^{* * *}=(f, \phi, g)$:

$$
\begin{aligned}
& f_{1}=z_{1}+\frac{i}{2} z_{1} w+o_{w t}(3) \\
& f_{j}=z_{j}+o_{w t}(3), \quad 2 \leq j \leq n-1 \\
& \phi_{j}=z_{1} z_{j}+o_{w t}(2), 2 \leq j \leq n-1 \\
& g=w+o_{w t}(4)
\end{aligned}
$$

2. Show: The geometric rank $\kappa_{0}=1$.
3. Furthermore,

$$
\begin{aligned}
& f_{1}=z_{1}+\frac{i}{2} z_{1} w+o_{w t}(3) \\
& f_{j}=z_{j}, \quad 2 \leq j \leq n-1 \\
& \phi_{j}=z_{1} z_{j}+o_{w t}(2), 2 \leq j \leq n-1 \\
& g=w
\end{aligned}
$$

4. F is equivalent to a map that satisfies

$$
F=\left(z_{1} \widetilde{f}_{1}, z_{2}, \ldots, z_{n 1}, z_{1} \widetilde{\phi}_{1}, \ldots, z_{1} \widetilde{\phi}_{n-1}, w\right)
$$

Here $\Phi=\left(\widetilde{f}_{1}, \widetilde{\phi}_{1}, \ldots, \widetilde{\phi}_{n-1}\right)$ defines a biholomorphic map from \mathbb{H}^{n} onto \mathbb{B}^{n}.
5. In particular, the restriction $\left.F\right|_{\left\{z_{1}=0\right\}}$ is linear fractional.

4.2 Generalization of the Five Facts

The above five facts are generalized into the following results:

1. Theorem 4.2.1 ([H03]) Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$. Then F is equivalent to a map $F_{p}^{* * *}=\left(f_{p}^{* * *}, \phi_{p}^{* * *}, g_{p}^{* * *}\right)$ of the following form:

$$
\left\{\begin{array}{l}
f_{l, p}^{* * *}=\sum_{j=1}^{\kappa_{0}} z_{j} f_{l j}^{*}(z, w), \quad f_{l j}^{*}(z, w)=\delta_{l}^{j}+\frac{i \delta_{l}^{j} \mu_{l}}{2} w+O\left(|(z, w)|^{2}\right), l \leq \kappa_{0} \\
f_{j, p}^{* * *}=z_{j}+o_{w t}(3), \quad \kappa_{0}+1 \leq j \leq n-1 ; \\
\phi_{l k, p}^{* * *}=\mu_{l k} z_{l} z_{k}+o_{w t}(2), \quad \forall(l, k) \in \mathcal{S} \\
g=w+o_{w t}(4),
\end{array}\right.
$$

where

$$
\mathcal{S}_{0}=\left\{(j, l): 1 \leq j \leq \kappa_{0}, j \leq l, 1 \leq l \leq n-1\right\}
$$

is the index set for those $\phi_{l k, p}$ that have non-zero coefficients of the $z_{l} z_{k}$ terms,

$$
\mathcal{S}:=\mathcal{S}_{0} \cup\left\{(j, l) \quad \mid j=\kappa_{0}+1, \kappa_{0}+1 \leq l \leq N-n-\frac{\left(2 n-\kappa_{0}-1\right) \kappa_{0}}{2}\right\}
$$

is the index set for all $\phi_{l k, p}$, and

$$
\mu_{j l}= \begin{cases}\sqrt{\mu_{j}+\mu_{l}}, & \text { for } j, l \leq \kappa_{0}, j \neq l, \tag{4.1}\\ \sqrt{\mu_{j}}, & \text { if } j \leq \kappa_{0} \text { and } l>\kappa_{0} \text { or if } j=l \leq \kappa_{0}\end{cases}
$$

(To see the outline of the proof, see Theorem 4.3.1 and its proof).
2. Due to the existence of the non-zero $z_{l} z_{k}$ terms of $\phi_{l k, p}^{* * *}$ above, which "occupy the room" in $\partial \mathbb{B}^{N}$, as application of Theorem 4.2.1, we immediately obtain the following result, which generalizes the second fact of the above five ones.

Corollary 4.2.2 Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ with geometric rank κ_{0}. Then

$$
N \geq n+\frac{\kappa_{0}\left(2 n-\kappa_{0}-1\right)}{2}
$$

This inequality is sharp.
(Its proof will be found in § 4.3.)
[Example] If $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-1}\right)$ with $n \geq 3$, then $\kappa_{0} \leq 1$. In fact, this follows from the inequality $2 n-1 \geq n+\frac{\kappa_{0}\left(2 n-\kappa_{0}-1\right)}{2}$.
3. Theorem 4.2.3 ([HJX06], theorem 3.1) Let $F \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ with geometric rank $\kappa_{0} \leq n-2$. Then F is equivalent to a map $F_{p}^{* * *}=\left(f_{p}^{* * *}, \phi_{p}^{* * *}, g_{p}^{* * *}\right)$ of the following form:

$$
\left\{\begin{array}{l}
f_{l, p}^{* * *}=\sum_{j=1}^{\kappa_{0}} z_{j} f_{l j}^{*}(z, w), \quad f_{l j}^{*}(z, w)=\delta_{l}^{j}+\frac{i \delta_{l}^{j} \mu_{l}}{2} w+O\left(|(z, w)|^{2}\right), \quad l \leq \kappa_{0} ; \\
f_{j, p}^{* * *}=z_{j}, \quad \kappa_{0}+1 \leq j \leq n-1 ; \\
\phi_{l k, p}^{* * *}=\mu_{l k} z_{l} z_{k}+\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j, p}^{*}, \quad \phi_{l k j, p}^{*}(z, w)=o_{w t}(2), \quad \text { for }(l, k) \in \mathcal{S}_{0} \\
\phi_{l, p}^{* * *}=\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k j, p}^{*}=O\left(|(z, w)|^{3}\right) \quad \text { for }(l, k) \in \mathcal{S}-\mathcal{S}_{0} ; \\
g_{p}^{* * *}=w ;
\end{array}\right.
$$

Let us outline the idea to prove $g_{p}^{* * *} \equiv w$ and $f_{j, p}^{* * *} \equiv z_{j}, \forall \kappa_{0}+1 \leq j \leq n-1$.
First we consider to prove $g_{p}^{* * *} \equiv w$. It needs the following lemma:
Lemma 4.2.4 Let $F=F^{* *} \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$. If we further assume that $g(0, w) \equiv w$, then $g \equiv w$.

Proof: Write $g=\sum_{m=1}^{\infty} g^{(m)}$ where $g^{(m)}$ is a weighted homogeneous polynomial of weighted degree m.
Considering the weighted $2 k$ order terms in the basic equation $\operatorname{Im}(g)=|\widetilde{f}|^{2}$ over $\operatorname{Im}(w)=|z|^{2}$, we obtain

$$
\begin{equation*}
\operatorname{Im}\left(g^{(2 k)}\right)=\sum_{l=1}^{2 k-1} \sum_{j=1}^{n-1} f_{j}^{(l)} \overline{f_{j}^{(2 k-l)}}+\sum_{l=1}^{2 k-1} \sum_{j=1}^{N-n} \phi_{j}^{(l)} \overline{\phi_{j}^{(2 k-1)}} \tag{4.2}
\end{equation*}
$$

whenever $\operatorname{Im}(w)=|z|^{2}$. Since the right hand side doest not contain the z^{I} terms with $|I|=2 k, g^{(2 k)}$ cannot contain the z^{I} terms with $|I|=2 k$. Since $g(0, w)=w, g^{(2 k)}$ cannot contain the w^{k} terms. Hence

$$
g^{(2 k)}=\sum_{p=1}^{k-1} \sum_{|I|=2 k-2 p} c_{I} z^{I} w^{p} .
$$

Since $g(0, w)=w$, from the basic equation $\operatorname{Im}(g)=|\widetilde{f}|^{2}$ on $\partial \mathbb{H}_{n}$, it implies $\widetilde{f}(0, w)=0$. Then \tilde{f} does not contain the w^{p} terms for any $p \geq 1$. By comparing the $z^{I} u^{p}$ terms in (4.2) where $|I|=2 k-2 p, c_{I}=0$. Thus $g^{(2 k)} \equiv 0$. Similarly, we obtain that $g^{(2 k+1)} \equiv 0$ for $k \geq 1$. Therefore $g(z, w) \equiv w$.

We suppose that F, in addition, is C^{3}-smooth on $\partial \mathbb{H}^{n}$, and want to show that if the map $F_{p}^{* * *}$ is as constructed in Theorem 4.2.1, then it satisfies $g_{p}^{* * *} \equiv w$. In fact, by Hopf lemma 1.7.3 and Lemma 4.2.4, it is sufficient to prove Lemma 4.2 .5 below.

Lemma 4.2.5 ([H03]) Let F be a C^{3}-smooth map from $M \subset \partial \mathbb{H}_{n}$ into $\partial \mathbb{H}_{N}$ satisfying the condition for $F_{p}^{* * *}$ in Theorem 4.2.1 with $1 \leq \kappa_{0} \leq n-2$. Then

$$
g(0, w)=w+o\left(|w|^{3}\right)
$$

Next we show that $f_{j}=z_{j}$ for $\kappa_{0}+1 \leq j \leq n-1$.
At this moment, we would like to assume the following "semi-linearity" property (see the fact five, or [H03]):

$$
\begin{equation*}
F\left(0, \ldots, 0, z_{\kappa_{0}+1}, \ldots, z_{n-1}, w\right)=\left(0, \ldots, 0, z_{\kappa_{0}+1}, \ldots, z_{n-1}, 0, \ldots, 0, w\right) \tag{4.3}
\end{equation*}
$$

From (4.3), we can write $f_{j}=\sum_{l=1}^{\kappa_{0}} z_{l} f_{l j}^{*}$ and $\phi=\sum_{l=1}^{\kappa_{0}} z_{l} \phi_{l}^{*}$. Then from the above sections, we can write $F_{p}^{* * *}=(\widetilde{f}, g)$ as

$$
\left\{\begin{array}{l}
f_{l}=\sum_{j=1}^{\kappa_{o}} z_{j} f_{l, j}^{*}(z), \quad l \leq \kappa_{0} ; \\
f_{k}=z_{k}+\sum_{j=1}^{k_{0}^{*}} z_{j} f_{k, j}^{*}(z), \quad k \geq \kappa_{0}+1 ; \\
\phi_{l k}=z_{l} z_{k}+\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{l k, j}^{*}(z), \quad(l, k) \in \mathcal{S}_{0} \\
\phi_{s t}=\sum_{j=1}^{\kappa_{0}} z_{j} \phi_{s t, j}^{*}(z), \quad(s, t) \in \mathcal{S}-\mathcal{S}_{0} \\
g \equiv w .
\end{array}\right.
$$

Substituting these into the equation $\operatorname{Im}(g)=|\widetilde{f}|^{2}$. Fix $k \geq \kappa_{0}+1$. Considering the terms $\bar{z}_{k} z^{I} u^{i}$ (for arbitrary I and i) in $\operatorname{Im}(g)=|\tilde{f}|^{2}$, we have

$$
0=\bar{z}_{k} \sum_{j=1}^{\kappa_{0}} z_{j} f_{k, j}^{*}\left(z, u+i|z|^{2}\right)
$$

Hence $\sum_{j=1}^{\kappa_{0}} f_{k, j}^{*}(z) \equiv 0$. This implies $f_{k} \equiv z_{k}$ for $\kappa_{0}+1 \leq k \leq n-1$.
4. Theorem 4.2.6 ([HJX06], p.523) Let $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $3 \leq n \leq N$ and geometric rank $\kappa_{0} \leq n-2$. Then F is equivalent to a proper holomorphic map of the form

$$
H=\left(z_{1}, \ldots, z_{n-\kappa_{0}}, H_{1}, \ldots, H_{N-n+\kappa_{0}}\right),
$$

where $H_{j}=\sum_{l=n-\kappa_{0}+1}^{n} z_{l} H_{j, l}$ with $H_{j, l}$ holomorphic over $\overline{\mathbb{B}^{n}}$. When $\kappa_{0}=1, F \in$ $\operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ is equivalent to a new map $(z, w h)$ where $h \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N-n+1}\right)$.
5. Theorem 4.2.7 [H03] Let $F \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$ with geometric rank $\kappa_{0} \leq n-2$. The $\forall p \in \mathbb{B}^{n}, \exists$ affine $\left(n-\kappa_{0}\right)$-dimensional complex subspace S_{p}^{a} containing p such that

$$
\left.F\right|_{S_{p}^{a}} \text { is linear fractional. }
$$

4.3 How to Construct $F^{* * *}$?

Recall for any $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right), F$ is equivalent to $F^{* *}=\left(f^{* *}, \phi^{* *}, g^{* *}\right)$ such that

$$
\begin{gather*}
f^{* *}=z+\frac{i}{2} a^{* *(1)}(z) w+o_{w t}(3), \phi^{* *}=\phi^{* *(2)}(z)+o_{w t}(2), g^{* *}=w+o_{w t}(4), \tag{4.4}\\
\left\langle\bar{z}, a^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi^{* *(2)}(z)\right|^{2} .
\end{gather*}
$$

We can further normalize this map to get more properties while it preserves the above properties of $F^{* *}$.

How to define $F^{* * *}$ in Theorem 4.2.1 from the map $F^{* *}$ preserving the property (4.4) ? Consider $\sigma \in A u t_{0}\left(\mathbb{H}_{n}\right)$ and $\tau \in A u t_{0}\left(\mathbb{H}_{N}\right)$:

$$
\begin{equation*}
\sigma=\frac{\left(\lambda(z+a w) \cdot U, \lambda^{2} w\right)}{1-2 i\langle\bar{a}, z\rangle+\left(r-i|a|^{2}\right) w}, \tag{4.5}
\end{equation*}
$$

where $\lambda>0, r \in \mathbb{R}, a$ is an $(n-1)$-tuple and U is an $(n-1) \times(n-1)$ unitary matrix. Let

$$
\begin{equation*}
\tau^{*}\left(z^{*}, w^{*}\right)=\frac{\left(\lambda^{*}\left(z^{*}+a^{*} w^{*}\right) \cdot U^{*}, \lambda^{* 2} w^{*}\right)}{1-2 i\left\langle\left\langle a^{*}, z^{*}\right\rangle+\left(r^{*}-i\left|a^{*}\right|^{2}\right) w^{*}\right.} \tag{4.6}
\end{equation*}
$$

where $\lambda^{*}>0, r^{*} \in \mathbb{R}, a^{*}$ is an $(N-1)$-tuple and U^{*} is an $(N-1) \times(N-1)$ unitary matrix.
Theorem 4.3.1 [H03] (A) Let $F=(f, \phi, g)$ and $F^{*}=\left(f^{*}, \phi^{*}, g^{*}\right)$ be C^{2}-smooth CR map from a neighborhood of 0 in $\partial \mathbb{H}^{n}$ into $\partial \mathbb{H}^{N}(N \geq n>1)$, satisfies the condition (4.4). Suppose that $F^{*}=\tau^{*} \circ F \circ \sigma$ where σ and τ^{*} are as in (4.6) and (4.6). Then it holds that

$$
\lambda^{*}=\lambda^{-1}, a_{1}^{*}=-\lambda^{-1} a \cdot U, a_{2}^{*}=0, r^{*}=-\lambda^{-2} r, U^{*}=\left(\begin{array}{cc}
U^{-1} & 0 \tag{4.7}\\
0 & U_{22}^{*}
\end{array}\right)
$$

where $a^{*}=\left(a_{1}^{*}, a_{2}^{*}\right)$ with a_{1}^{*} its first $(n-1)$ components, U_{22}^{*} is an $(N-n) \times(N-n)$ unitary matrix. Conversely, suppose τ^{*} and σ, given as above, are related by (4.7). Suppose that F satisfies the condition (4.4). Then $F^{*}:=\tau^{*} \circ F \circ \sigma$ also satisfies the (4.4).
(B) Let F and $F^{*}:=\tau^{*} \circ F \circ \sigma$ both satisfy the condition (4.4). Let us denote

$$
\begin{aligned}
& f(z, w)=z+\frac{i}{2} z \mathcal{A} w+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial w^{2}}\right|_{0} w^{2}+o\left(|(z, w)|^{2}\right) \\
& f^{*}(z, w)=z+\frac{i}{2} z \mathcal{A}^{*} w+\left.\frac{1}{2} \frac{\partial^{2} f^{*}}{\partial w^{2}}\right|_{0} w^{2}+o\left(|(z, w)|^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \phi(z, w)=\frac{1}{2} z\left(B^{1}, \ldots, B^{N-n}\right) z^{t}+z \mathcal{B} w+\left.\frac{1}{2} \frac{\partial^{2} \phi}{\partial w^{2}}\right|_{0} w^{2}+o\left(|(z, w)|^{2}\right), \\
& \phi^{*}(z, w)=\frac{1}{2} z\left(B^{* 1}, \ldots,, B^{* N-n}\right) z^{t}+z \mathcal{B}^{*} w+\left.\frac{1}{2} \frac{\partial^{2}{ }^{*}}{\partial w^{2}}\right|_{0} w^{2}+o\left(|(z, w)|^{2}\right),
\end{aligned}
$$

where

$$
\mathcal{A}=-\left.2 i\left(\begin{array}{lll}
\frac{\partial^{2} f_{1}}{\partial z_{1} \partial w} & \cdots & \frac{\partial^{2} f_{n-1}}{\partial z_{1} \partial w} \\
\vdots & & \vdots \\
\frac{\partial^{2} f_{1}}{\partial z_{n-1} \partial w} & \cdots & \frac{\partial^{2} f_{n-1}}{\partial z_{n-1} \partial w}
\end{array}\right)\right|_{0}
$$

is the $(n-1) \times(n-1)$ matrix,

$$
B^{k}=\left.\left(\begin{array}{llll}
\frac{\partial^{2} \phi_{(k)}}{\partial z_{1}^{2}} & \frac{\partial^{2} \phi_{(k)}}{\partial z_{1} \partial z_{2}} & \cdots & \frac{\partial^{2} \phi_{(k)}}{\partial z_{1} \partial z_{n-1}} \\
\frac{\partial^{2} \phi(k)}{\partial z_{2} \partial z_{1}} & \frac{\partial^{2} \phi_{(k)}}{\partial z_{2}^{2}} & \cdots & \frac{\partial^{2} \phi_{(k)}}{\partial z_{2} \partial z_{n-1}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} \phi_{(k)}}{\partial z_{n-1} \partial z_{1}} & \frac{\partial^{2} \phi_{(k)}}{\partial z_{n-1} \partial z_{2}} & \cdots & \frac{\partial^{2} \phi_{(k)}}{\partial z_{n-1}^{2}}
\end{array}\right)\right|_{0}, \quad 1 \leq k \leq N-n,
$$

are $(n-1) \times(n-1)$ matrices, and

$$
\mathcal{B}=\left.\left(\begin{array}{lll}
\frac{\partial^{2} \phi_{(1)}}{\partial z_{1} \partial w} & \cdots & \frac{\partial^{2} \phi_{(N-n)}}{\partial z_{1} \partial w} \\
\vdots & & \vdots \\
\frac{\partial^{2} \phi_{(1)}}{\partial z_{n-1} \partial w} & \cdots & \frac{\partial^{2} \phi_{(N-n)}}{\partial z_{n-1} \partial w}
\end{array}\right)\right|_{0}
$$

is an $(n-1) \times(N-n)$ matrix. $\mathcal{A}^{*}, B^{* k}, \mathcal{B}^{*}$ are defined similarly. Then

$$
\begin{gather*}
\mathcal{A}^{*}=\lambda^{2} U \mathcal{A} U^{-1} \\
\frac{\partial^{2} f^{*}}{\partial w^{2}}(0)=i \lambda^{2} a U \mathcal{A} U^{-1}+\lambda^{3} \frac{\partial^{2} f}{\partial w^{2}}(0) U^{-1} \\
z\left(B^{* 1}, \ldots, B^{* N-n}\right) z^{t}=\lambda z U\left(B^{1}, \ldots, B^{N-n}\right) U^{t} z^{t} U_{22}^{*}, \\
\mathcal{B}^{*}=\lambda U\left(B^{1}, \ldots, B^{N-n}\right) U^{t} a^{t} U_{22}^{*}+\lambda^{2} U \mathcal{B} U_{22}^{*}, \tag{4.8}\\
\left.\frac{1}{2} \frac{\partial^{2} \phi^{*}}{\partial w^{2}}\right|_{0}=\frac{1}{2} \lambda a U\left(B^{1}, \ldots, B^{N-n}\right) U^{t} a^{t} U_{22}^{*}+\lambda^{2} a U \mathcal{B} U_{22}^{*}+\left.\frac{1}{2} \lambda^{3} \frac{\partial^{2} \phi}{\partial w^{2}}\right|_{0} U_{22}^{*},
\end{gather*}
$$

(C) Let F_{1} be a non-constant $C^{2} C R$ map from $M \subset \partial \mathbb{H}_{n}$ into $\partial \mathbb{H}_{N}$. Assume that $F_{2}=\tau \circ F_{1} \circ \sigma$ with $\sigma \in \operatorname{Aut}\left(\mathbb{H}_{n}\right)$ and $\tau \in \operatorname{Aut}\left(\mathbb{H}_{N}\right)$. Then

$$
R k_{F_{2}}(p)=R k_{F_{1}(\sigma(p))} .
$$

The normalization $F^{* * *}$ in Theorem 4.2.1 is constructed by $\tau^{*} \circ F \circ \sigma$ for appropriate choice of τ^{*} and σ.

Proof of Theorem 4.2.1: (a) (b) By Theorem 4.3.1.
(c) Since f_{j} already are as in (2.8.1), from (2.72), we get $\sum_{j=1}^{\kappa_{0}} \mu_{j}\left|z_{j}\right|^{2}|z|^{2}=\sum_{j}\left|\phi_{j}^{(2)}(z)\right|^{2}$. Write $\phi_{j}^{(2)}(z)=\sum_{k \leq l} a_{k l}^{(j)} z_{k} z_{l}$. Then (2.8.1) becomes

$$
\sum_{j=1}^{\kappa_{0}} \mu_{j}\left|z_{j}\right|^{2}|z|^{2}=\sum_{j} a_{k l}^{(j)} \overline{a_{k^{\prime} l^{\prime}}^{(j)}} z_{k} z_{l} \overline{z_{k^{\prime}} z_{l^{\prime}}} .
$$

Write $\alpha_{j l}:=\left(a_{j l}^{(1)}, \ldots, a_{j l}^{(N-n)}\right)$. We have

$$
\left\langle a_{k l}, \overline{a_{k^{\prime} l^{\prime}}}\right\rangle=\left\{\begin{array}{l}
0, \text { if }(k, l) \neq\left(k^{\prime}, l^{\prime}\right), \\
\mu_{k}+\mu_{l}, \text { if } k, l \leq \kappa_{0}, k \neq l,(k, l)=\left(k^{\prime}, l^{\prime}\right), \\
\mu_{k}, \text { if } k \leq \kappa_{0}, l>\kappa_{0},(k, l)=\left(k^{\prime}, l^{\prime}\right) \\
\mu_{k}, \text { if } k=l \leq \kappa_{0},(k, l)=\left(k^{\prime}, l^{\prime}\right)
\end{array}\right.
$$

Hence $\left\{\alpha_{j l}\right\}_{(k, l) \in S_{0}}$ is a linearly independent system. This implies that $N-n \geq\left|\mathcal{S}_{0}\right|$. We extend $\left\{\frac{\alpha_{j l}}{\left|\alpha_{j l}\right|}\right\}$ to an $(N-n) \times(N-n)$ unitary matrix U_{22}^{*} and we replace ϕ by $\phi \cdot{\overline{U_{22}^{*}}}^{t}$. From the first identity of (4.8), we are done.

Proof of Corollary 4.2.2: It follows from $N-n \geq\left|\mathcal{S}_{0}\right|$.

4.4 Where is the Condition $\kappa_{0} \leq n-2$ used ?

In Theorem 4.2.3 above, a very crucial condition is $\kappa_{0} \leq n-2$. This condition indeed produces exact equations for the map F. In fact, by the normalization $F^{* *}$, we have the curvature information:

$$
\begin{equation*}
\left\langle\bar{z}, a_{p}^{* *(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2} . \tag{4.9}
\end{equation*}
$$

Write $a_{p}^{* *(1)}(z)=z \mathcal{A}_{p}$ where

$$
\mathcal{A}_{p}=-2 i\left(\left.\frac{\partial^{2} f_{l, p}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)
$$

is an $(n-1) \times(n-1)$ Hermitian matrix.

Remarks

- The matrix \mathcal{A}_{p} is semi-positive because of (4.9).
- (4.9) can be written as

$$
z \mathcal{A}_{p} \bar{z}^{t}|z|^{2}=\left|\phi_{p}^{* *(2)}(z)\right|^{2}
$$

Then for a non zero vector z, we have

$$
\begin{aligned}
\left|\phi_{p}^{* *(2)}(z)\right|^{2}=0 & \Longleftrightarrow \quad z \mathcal{A}_{p} \bar{z}^{t}=0 \\
& \left.\Longleftrightarrow \quad z \mathcal{A}_{p}=0 \quad \text { (because } \mathcal{A}_{p} \geq 0\right) \\
& \Longleftrightarrow \quad \phi_{p}^{* *(2)}(z)=0
\end{aligned}
$$

- We define a vector space $\mathcal{E}_{p}:=\left\{\xi(p) \in \mathbb{C}^{n-1} \mid \xi(p) \cdot \mathcal{A}_{p}=0\right\} \neq \emptyset$. Then

$$
\xi(p) \in \mathcal{E}_{p} \Longleftrightarrow \phi_{p}^{* *(2)}(\xi(p))=0
$$

From these equations, it derives more equations by taking differentiation that make Theorem 4.2.3 possible.

4.5 Structure Theorem For Rank 1 Maps

As an application of Theorem 4.2.3, we have the following structure theorem on maps with geometric rank one. The key condition here is $\kappa_{0} \leq n-2$, which allows the maps have more rigidity property.

Theorem 4.5.1 ([HJX06], theorem 1.2) Let $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $3 \leq n \leq N$ and geometric rank 1. Then F is equivalent to a proper holomorphic map of the form

$$
H:=\left(z_{1}, \cdots, z_{n-1}, H_{1}, \cdots, H_{N-n+1}\right),
$$

where $\left(H_{1}, \cdots, H_{N-n+1}\right)=w \cdot h$ with $h \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N-n+1}\right)$. Both H and h are affine linear maps along each hyperplane defined by $w=$ constant .

In fact, from Theorem 4.2.3, when $\kappa_{0}=1$, we have

$$
\left\{\begin{array}{l}
f_{1, p}^{* * *}=z_{1} f_{1}^{*}(z, w), \quad f_{1}^{*}(z, w)=1+\frac{i \mu_{1}}{2} w+O\left(|(z, w)|^{2}\right) \\
f_{j, p}^{* * *}=z_{j}, \quad 2 \leq j \leq n-1 ; \\
\phi_{1 k, p}^{* * *}=\mu_{1 k} z_{1} z_{k}+z_{1} \phi_{1 k, p}^{*}, \quad \phi_{1 k, p}^{*}(z, w)=o_{w t}(2), \quad \text { for } 1 \leq k \leq n-1 ; \\
\phi_{2 \ell, p}^{* * *}=z_{\ell} \phi_{2 \ell, p}^{*}=O\left(|(z, w)|^{3}\right) \quad \text { for } 2 \leq \ell \leq N-2 n+1 \\
g=w .
\end{array}\right.
$$

By Cayley's transformation to obtain a new map $H: \mathbb{B}^{n} \rightarrow \mathbb{B}^{N}$:

$$
H=\left(H_{1}, z_{2}, \ldots, z_{n-1}, H_{n}, \ldots, H_{N-n}, w\right)
$$

We can make change on variables in the following way:

$$
\begin{array}{ccc}
z_{1} & \leftrightarrow & z_{n} \\
\left\{z_{2}, \ldots, z_{n-1}\right\} & \leftrightarrow & \left\{z_{1}, \ldots, z_{n-2}\right\} \\
w & \leftrightarrow & z_{n-1}
\end{array}
$$

so that

$$
H=\left(z_{1}, \ldots, z_{n-1}, H_{1}, H_{2}, \ldots, H_{N-n+1}\right) .
$$

As an application, we show the following result.
Theorem 4.5.2 [HJX06] Let $F \in \operatorname{Rat}\left(\mathbf{B}^{n}, \mathbf{B}^{N}\right)$ with geometric rank $\kappa_{0}=1$ and $n \geq 3$. Then $\operatorname{deg}(F) \leq \frac{N-1}{n-1}$.

Proof:: For each $N \geq n \geq 3$, there is a unique positive integer k such that $k(n-1)+1 \leq$ $N \leq(k+1)(n-1)$. We use induction on k. When $k=1, F \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n-2}\right)$, by the first gap theorem, so that $\operatorname{deg}(F)=1 \leq \frac{N-1}{n-1}$ holds. Assume $\operatorname{deg}(F) \leq \frac{N-1}{n-1}$ holds for any k. Consider $k+1$, by Theorem $4.2 .6, F$ is equivalent to $(z, w h)$ where $h \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N-n+1}\right)$. Then by the assumption, $\operatorname{deg}(F) \leq 1+\operatorname{deg}(h) \leq 1+\frac{(N-n+1)-1}{n-1}=\frac{N-1}{n-1}$.

4.6 Proof of the Second Gap Theorem

The second gap theorem can be restated as
Theorem 4.6.1 [HJX06] Let $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with $4 \leq n \leq N \leq 3 n-4$. Then F is equivalent to $\left(F_{\theta}, 0\right)$ where

$$
F_{\theta}=\left(z, w \cos \theta, z_{1} w \sin \theta, \ldots, z_{n-1} w \sin \theta, w^{2} \sin \theta\right)
$$

for some $\theta \in\left[0, \frac{\pi}{2}\right]$.

- In 2005, Hamada proved that any $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{2 n}\right)$ is equivalent to F_{θ} for some $\theta \in\left[0, \frac{\pi}{2}\right]$.
- By the inequality $N \geq n+\frac{\kappa_{0}\left(2 n-\kappa_{0}-1\right)}{2}$, under the condition $N \leq 3 n-4$, it implies that the geometric rank κ_{0} of F is ≤ 1.
- Applying the structure theorem 4.5.1 for rank 1 maps, we can write

$$
H:=\left(z_{1}, \cdots, z_{n-1}, H_{1}, \cdots, H_{N-n+1}\right)
$$

where $\left(H_{1}, \cdots, H_{N-n+1}\right)=w \cdot h$ with $h \in \operatorname{Rat}\left(\mathbb{B}^{n}, \mathbb{B}^{N-n+1}\right)$. Here

$$
N-n+1 \leq 3 n-4-n+1=2 n-3
$$

Then we can apply the first gap theorem to implies h is linear map.

4.7 Rationality Problem

In 1989, Forstnerič proved [Fo89] that if $F \in \operatorname{Prop}_{N-n+1}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$, then F must be a rational map with degree $\operatorname{deg}(F) \leq N^{2}(N-n+1)$.

Theorem 4.7.1 ([HJX05], Corollary 1.3) If $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n}, \mathbb{B}^{N}\right)$ with either $\kappa_{0}<n-1$ or $N \leq \frac{n(n+1)}{2}$, then F must be rational.

- In order to prove that F is rational, by a theorem of Frostnerič, it suffices to prove that F is smooth on $\partial \mathbb{H}_{n}$.
- Under the hypothesis, F has partial k-linear property: for any point $Z \in \mathbb{B}^{n}-E$ where E is an affine subvariety, there is a unique k dimensional complex subspace S_{Z} on which F is linear fractional.
- Assume that $0 \in \mathbb{B}^{n}-E$ and $S_{0}=\left\{z \mid z_{k+1}=\ldots=z_{n}=0\right\}$.
- Construct a holomorphic map Ψ from a neighborhood of a rectangle $(-1-\epsilon, 1+\epsilon) \times$ $(-\epsilon, \epsilon)$ in $\mathbb{C}^{k} \times \mathbb{C}^{n-k}$ to a neighborhood of $(-1-\epsilon, 1+\epsilon) \times\{0\}$ in $\mathbb{C}^{k} \times \mathbb{C}^{n-k}$ such that
$-\left.\Psi\right|_{S_{0}} \equiv I d . \quad(\Longrightarrow \Psi$ is locally biholomorphic when ϵ is small $)$
- For each line segment $L_{(t, \tau)}$ that (i) passes through the point (t, τ) and (ii) $L_{(t, \tau)}$ and S_{0} are parallel, we have

$$
\Psi\left(L_{(t, \tau)}\right) \subset S_{(0, \tau)} .
$$

- For each fixed τ, since

$$
\left.F\right|_{S_{(0, \tau)}}=\text { linear fractional, }
$$

we have

$$
F \circ \Psi(t, \tau)=\frac{F(\tau)+\sum_{j=1}^{k} A_{j}(\tau) t_{j}}{1+\sum_{j=1}^{k} b_{j}(\tau) t_{j}} .
$$

On the other hand, we take a power series at the origin:

$$
F \circ \Psi(t, \tau)=\sum_{\alpha} C_{\alpha}(\tau) t^{\alpha} \quad \text { is holomorphic near }(0,0)
$$

$C_{\alpha}(\tau) \stackrel{\text { s }}{ }$ holomorphic

$$
A_{j}(\tau), b_{j}(\tau) \text { and } F(\tau) \text { are holomorphic of } \tau \text { near } 0
$$

- $F \circ \Psi(t, \tau)$ is holomorphic of (t, τ) whenever $\tau \sim 0$ and for any t.
- By the construction, $F \circ \Psi(t, \tau)$ is holomorphic is holomorphic of (t, τ) whenever (t, τ) in the rectangle $(-1-\epsilon, 1+\epsilon) \times(\epsilon, \epsilon)$.
- Choose Z_{0} in the rectangle such that $F\left(Z_{0}\right) \in \partial \mathbb{B}^{n}$. Then

$$
F=(F \circ \Psi) \circ\left(\Psi^{-1}\right)
$$

is holomorphic near $F\left(Z_{0}\right)$.

- F is C^{∞} near $F\left(Z_{0}\right)$, so is on $\partial \mathbb{B}^{n}$.
- By Forstnerič Theorem, F is rational.

Chapter 5

More Geometric Approaches

5.1 Cartan's Moving Frame Theory

Invariants of a surface in \mathbb{E}^{3} at a point[IL03] Let us consider (S, p) where S is a smooth surface in \mathbb{E}^{3} and $p \in S$ is a point. To study (S, p), we could put (S, p) into a better position (normalized position). Namely, by taking a rotation and a translation, we can move S so that $p=(0,0,0)$ is the origin and the real surface S as a graph of a function f and that the tangent plane of S at 0 is the $x y$-plane:

$$
\begin{equation*}
z=f(x, y), f(0,0)=0, f_{x}(0,0)=f_{y}(0,0)=0 \tag{5.1}
\end{equation*}
$$

Geometrically, we moved the (S, p) into a "normalized position". Analytically, we have chosen a special coordinate system. Such normalization position for S is not unique; in fact, the above properties are preserved if we take any rotation in the $x y$-plane.

Suppose

$$
z=f(x, y)=\sum_{j, k} a_{j k} x^{j} y^{k}
$$

where $a_{10}=f_{x}(0)=\left.\frac{\partial f}{\partial x}\right|_{0}, a_{20}=\frac{1}{2} f_{x x}(0)=\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{0}$, etc.
If a function $h\left(a_{j k}\right)$ is invariant under any rotation in the $x y$-plane, $h\left(a_{j k}\right)$ is called a differential invariant.

For example, we consider Hessian

$$
\operatorname{Hess}(0,0)=\left[\begin{array}{ll}
f_{x x} & f_{y x} \\
f_{x y} & f_{y y}
\end{array}\right](0,0)
$$

to define

$$
\left\{\begin{array}{l}
K(0,0)=\operatorname{det}(\operatorname{Hess}(0,0))=\left(f_{x x} f_{y y}-f_{x y} f_{y x}\right)(0,0), \tag{5.2}\\
H(0,0)=\frac{1}{2} \operatorname{Trace}(\operatorname{Hess}(0,0))=\frac{1}{2}\left(f_{x x}+f_{y y}\right)(0,0)
\end{array}\right.
$$

We can verify that $K(0,0)$ and $H(0,0)$ are differential invariant. In fact, they are the value of the Gaussian and mean curvatures at the origin.

In the above, we fix a coordinate system (i.e., $x-y-z$) and the origin, which may be called a frame. Roughly speaking, a "frame" means: a choice of coordinate system, or a better position, or a normalized position, or an orthonormal basis of the tangent plane with the origin. In other words, we fix a frame at 0 of S.

Moving frames Consider a curve C in the space \mathbb{E}^{3}. Recall the Frénét-Serret frame: at any point at C, it has three vectors \mathbf{T}, \mathbf{N} and \mathbf{B}, where \mathbf{T} is the unit vector tangent to the curve, pointing in the direction of motion, $\mathbf{N}=\frac{d \mathbf{T}}{d s} /\left\|\frac{d \mathbf{T}}{d s}\right\|$ is the derivative of T with respect to the arclength parameter s of the curve, and $\mathbf{B}=\mathbf{T} \times \mathbf{N}$ is the cross product of \mathbf{T} and \mathbf{N}. It has

$$
\left\{\begin{array}{l}
\frac{d \mathbf{T}}{d s}=\quad \kappa \mathbf{N} \\
\frac{d \mathbf{N}}{d s}=-\kappa \mathbf{T}+\tau \mathbf{B} \\
\frac{d \mathbf{B}}{d s}=\quad-\tau \mathbf{N}
\end{array}\right.
$$

where κ is the curvature of the curve and τ is the torsion of the curve.
We see that at every point p of the curve, there exists a frame $(\mathbf{T}, \mathbf{N}, \mathbf{B})_{p}$. These frames are continuous (or differentiable) of p. We call such frames moving frames along the curve. In this situation, every point is treated equally (no point is more special) and every frame is treated equally. κ and τ are invariants.

Cartan's moving frame theory will study submanifolds in which every point and every frame will be treated equally and that we should obtain some invariants.

Klein's Erlanger Programn Let G be a Lie group, and $H \subset G$ a closed Lie subgroup. Let $X:=G / H$, the set of left cosets of H, is a homogeneous space with the induced differential structure from the quotient map. For material in this section, we refer [IL03].

By Klein's Erlanger Programn, we'll study geometry of submanifolds $M \subset X=G / H$, where two submanifolds $M, M^{\prime} \subset X$ are equivalent if there is some $g \in G$ such that $g(M)=$ M^{\prime}.

$$
\begin{aligned}
& \text { G } \\
& M \stackrel{s \nearrow}{\hookrightarrow} \quad X \stackrel{\downarrow}{=} \quad G / H
\end{aligned}
$$

[Example] Let us go back to real surfaces $S \hookrightarrow \mathbb{E}^{3}$:

$$
\begin{array}{ccc}
& & G=A S O(3) \\
& F \nearrow & \\
S & & \downarrow \pi \\
\hookrightarrow & \mathbb{E}^{3}=G / H
\end{array}
$$

Here $i: S \hookrightarrow \mathbb{E}^{3}$ is the inclusion map,

$$
\begin{aligned}
G & =A S O(3) \\
& =\text { the group of motions in } \mathbb{E}^{3} \\
& =\text { the space of orientated orthonormal frames of } \mathbb{E}^{3} \\
& =\text { the bundle of oriented orthonormal bases of } \mathbb{E}^{3} \\
& =\text { All adapted coordinates in } \mathbb{E}^{3} \\
& =\left\{M=\left(\begin{array}{ll}
1 & 0 \\
t & B
\end{array}\right), t \in \mathbb{R}^{3}, B \in S O(3)\right\} . \\
H & =S O(3) \\
& =\text { all rotations. } \\
F & =\text { A first-order adapted lift (or a section) } \\
& =\text { A choice of adapted coordinates } \\
& =\text { A normalized position }
\end{aligned}
$$

Write a lift $F(p)=\left(e_{0}(p), e_{1}(p), e_{2}(p), e_{3}(p)\right)$ where $e_{0}(p)=[1, x, y, z]^{t}$ where $p=$ $(x, y, z)^{t} \in S,\left(e_{1}, e_{2}, e_{3}\right)(p)$ are orthonormal, and $\operatorname{span}\left(e_{1}(p), e_{2}(p)\right)=T_{p} S$. We said that F is a first-order adapted lift.

If we fix one lift $F(p)=\left[\begin{array}{cc}1 & 0 \\ p & I d\end{array}\right]$, then any other first-order adapted lift \widetilde{F} of S is of the form

$$
\widetilde{F}=F\left[\begin{array}{ccc}
1 & 0 & 0 \tag{5.3}\\
0 & R & 0 \\
0 & 0 & 1
\end{array}\right]=F r
$$

where $R: U \rightarrow S O(2)$ is a smooth function.
For each fixed point, we regard $F(p)$ is a frame (or normalized position) for S, regard another adapted lift $\widetilde{F}(p)$ as another frame (or normalized position) for S, and regard the matrix-valued map $r(p)$ is a rotations in the $x y$-plane. A section F is regarded as a family of frames (moving frames).

In order to find differential invariants which are independent of choice of any such map r, we reformulate (5.3) in terms of Cartan's moving frame theory. One key idea to do this or to carry out the Klein's Erlanger Programn is the following theorem.

Theorem 5.1.1 (Cartan's theorem, [IL03]) Let G be a matrix Lie group with Lie algebra \mathfrak{g} and Maurer-Cartan from ω over G. Let M be a manifold on which there exists a \mathfrak{g}-valued

1 -form ϕ such that $d \phi=-\phi \wedge \phi$. Then $\forall x \in M$, there exists a neighborhood U of x and a map $F: U_{\mathcal{\sim}} \rightarrow G$ such that $F^{*} \omega=\phi$. Moreover, any two such maps F and \widetilde{F} must satisfy $F=L_{a} \circ \widetilde{F}$ for some fixed $a \in G$, where L_{a} is a left translation of G.

Lie group and Lie algebra Let V be a real vector space of dimension n. Let $G L(V) \subset$ $\operatorname{End}(V)$ denote the group of all invertible linear maps. Let G be a Lie group. A linear representation of G is a group homomorphism $\rho: G \rightarrow G L(V)$. If V is endowed with a basis, we call the image $\rho(G)$ a matrix Lie group.

Let $\mathfrak{g l}(V)=\operatorname{End}(V)=V \otimes V^{*}$. We identify $\mathfrak{g l}(V)$ with the set of $n \times n$ matrices where $n=\operatorname{dim}(V)$. We define a skew-symmetric multiplication [,] on $\mathfrak{g l}(V)$ by

$$
[X, Y]=X Y-Y X
$$

where $X Y$ is the usual matrix multiplication. One can verify the Jacobi identity

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0, \forall X, Y, Z \in \mathfrak{g l}(V)
$$

A Lie algebra is a vector space \mathfrak{g} equipped with a skew-symmetric bilinear operation $[]:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, called a bracket, that satisfies the Jacobi identity.

Let G be a Lie group. For each $g \in G$, we define the left translation:

$$
L_{g}: G \rightarrow G, h \mapsto g h,
$$

which derives

$$
\left(L_{g}\right)_{*}: T_{h} G \rightarrow T_{g h} G
$$

A left-invariant vector field is a vector field X over G such that

$$
\left(L_{g}\right)_{*} X=X, \quad \forall g \in G
$$

Since Lie bracket of two left-invariant vector fields is also left-invariant, the space of leftinvariant vector fields $\Gamma^{L}(T G)$ is a Lie algebra of $\Gamma(T G)$.

A left-invariant vector field is determined by its value at just one point (say, at the identity element $e \in G$) because it is given at all other points by pushforward under lefttranslation. Thus we may identify $\Gamma^{L}(T G)$ with $T_{e} G$. We define $\mathfrak{g}=\Gamma^{L}(T G) \simeq T_{e} G$ to be the Lie algebra of G.

If $G \subseteq G L(V)$ is a matrix Lie group, then $\mathfrak{g} \simeq T_{e} G \subseteq \mathfrak{g l}(V)=\operatorname{End}(V)$ is a matrix Lie algebra.

Maurer-Cartan form - the intrinsic definition Maurer-Cartan form is defined over a Lie group G. It is not a standard one-form, but rather a \mathfrak{g}-valued one-form. If V is a vector space and M is a manifold, then a V-valued one-form is a collection of smooth maps: $T_{x} M \rightarrow V$. In other words, it is a smooth section of $T^{*} M \otimes V$. (If $V=\mathbb{R}$ or \mathbb{C}, it is the standard one-form. In our case, $V=T_{e} G$ where e is the identity element of G.)

The Maurer-Cartan form ω is a \mathfrak{g}-valued one-form on G defined by

$$
\begin{array}{cccc}
\omega: T_{g} G & \rightarrow & T_{e} G \\
v & \mapsto \omega(v)=\left(d L_{g^{-1}}\right)_{*} v .
\end{array}
$$

In other words, given an arbitrary Lie group G, we let \mathfrak{g} denote its Lie algebra, which may be identified with $T_{e} G$ (i.e., with the space of left-invariant vector fields). The MaurerCartan form ω of G is the unique left-invariant \mathfrak{g}-valued 1 -form on G such that $\omega_{e}: T_{e} G \rightarrow \mathfrak{g}$ is the identity map.

Maurer-Cartan form - the extrinsic definition If $G \subset G L(n)$ by a matrix valued inclusion $g=\left(g_{i, j}\right)$, then one can write ω explicitly as

$$
\omega=g^{-1} d g
$$

where $d g: T_{g} G \rightarrow \mathfrak{g l}(V)$ is the inclusion.
When G is a matrix Lie group, since $\omega=g^{-1} d g$ is a left-invariant \mathfrak{g}-valued 1 -form such that $\omega_{e}: T_{e} G \rightarrow \mathfrak{g}$ is the identity map, then by the uniqueness, these two definitions of Maurer-Cartan form are the same.

We have the Maurer-Cartan equation:

$$
\begin{equation*}
d \omega=-\omega \wedge \omega \tag{5.4}
\end{equation*}
$$

In fact, $0=d(I d)=d\left(g \cdot g^{-1}\right)=d g \cdot g^{-1}+g d g^{-1}$. Then $d g^{-1}=-g^{-1} d g \cdot g^{-1}$ so that

$$
d \omega=d\left(g^{-1} d g\right)=d g^{-1} \wedge d g=-g^{-1} d g \cdot g^{-1} \wedge d g=-\omega \wedge \omega
$$

Transformation formula We consider the following diagram commutes:

$$
\begin{array}{cccc}
\\
& & & G \\
& F & \nearrow & \downarrow \pi \\
M & \hookrightarrow & G / H
\end{array}
$$

Given a lift F of f, any other lift $\widetilde{F}: M \rightarrow G$ must be of the form

$$
\begin{equation*}
\widetilde{F}(x)=F(x) a(x) \tag{5.5}
\end{equation*}
$$

for some map $a: M \rightarrow H$. It satisfies

$$
\begin{equation*}
\widetilde{F}^{*}(\omega)=a^{-1} F^{*}(\omega) a+a^{-1} d a \tag{5.6}
\end{equation*}
$$

[Example] Going back to a surface $S \subset \mathbb{E}^{3}$.

$$
\begin{array}{cc}
& G=A S O(3) \\
F \nearrow & \\
& \downarrow \pi \\
\hookrightarrow & \mathbb{E}^{3}=G / H
\end{array}
$$

Here $G=A S O(3)=\left\{M=\left(\begin{array}{ll}1 & 0 \\ t & B\end{array}\right), t \in \mathbb{R}^{3}, B \in S O(3)\right\}, H=S O(3)$ and F is a first-order adapted lift.

Write a lift

$$
F(p)=\left(e_{0}(p), e_{1}(p), e_{2}(p), e_{3}(p)\right)=\left[\begin{array}{cc}
1 & 0 \\
p & B(p)
\end{array}\right]
$$

where $e_{0}(p)=[1, x, y, z]^{t}, p=(x, y, z)^{t}=(x, y, z(x, y))^{t} \in S,\left(e_{1}, e_{2}, e_{3}\right)(p)$ are orthonormal, and $\operatorname{span}\left(e_{1}(p), e_{2}(p)\right)=T_{p} S$.

Since $\phi:=F^{-1} d F$ is a \mathfrak{g}-valued one-form satisfying the equation $d \phi=-\phi \wedge \phi$, as in Theorem 5.1.1. Then $F^{*} \omega=\phi$, where ω is the Maurer-Cartan form over G.

We calculate $\phi=F^{-1} d F$ which equals to

$$
\left[\begin{array}{cc}
1 & 0 \\
p & B
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & 0 \\
d p & d B
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
B^{-1} d p & B^{-1} d B
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\phi^{1} & \phi_{1}^{1} & \phi_{2}^{1} & \phi_{3}^{1} \\
\phi^{2} & \phi_{1}^{2} & \phi_{2}^{2} & \phi_{3}^{2} \\
\phi^{3} & \phi_{1}^{3} & \phi_{2}^{3} & \phi_{3}^{3}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\phi^{1} & 0 & -\phi_{1}^{2} & -\phi_{1}^{3} \\
\phi^{2} & \phi_{1}^{2} & 0 & -\phi_{2}^{3} \\
\phi^{3} & \phi_{1}^{3} & \phi_{2}^{3} & 0
\end{array}\right] .
$$

Then $d F=F \phi$, i.e.,

$$
\left(d e_{0}, d e_{1}, d e_{2}, e_{3}\right)=\left(e_{0}, e_{1}, e_{2}, e_{3}\right)\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\phi^{1} & 0 & -\phi_{2}^{1} & -\phi_{1}^{3} \\
\phi^{2} & \phi_{1}^{2} & 0 & -\phi_{2}^{3} \\
\phi^{3} & \phi_{1}^{3} & \phi_{2}^{3} & 0
\end{array}\right]
$$

Hence $d e_{0}=e_{1} \phi^{1}+e_{2} \phi^{2}+e_{3} \phi^{3}$. On the other hand, $d e_{0}=(0, d x, d y, d z(x, y))^{t}$ is in the tangent space, i.e., in $\operatorname{span}\left(e_{1}, e_{2}\right)$. Therefore, we have $d e_{0}=e_{1} \phi^{1}+e_{2} \phi^{2}$, i.e., de $e_{0}=$ $e_{1} F^{*}\left(\omega^{1}\right)+e_{2} F^{*}\left(\omega^{2}\right)$ so that

$$
\begin{equation*}
\phi^{3}=F^{*}\left(\omega^{3}\right)=0, \text { and } \phi^{1} \wedge \phi^{2}=F^{*}\left(\omega^{1} \wedge \omega^{2}\right) \neq 0, \quad \forall p \in S . \tag{5.7}
\end{equation*}
$$

By (5.7), $0=F^{*}\left(\omega^{3}\right)$ implies

$$
0=F^{*}\left(d \omega^{3}\right)
$$

By $d \omega=-\omega \wedge \omega$, we get $0=-F^{*}\left(\omega_{1}^{3} \wedge \omega^{1}+\omega_{2}^{3} \wedge \omega^{2}\right)$. By (5.7) $F^{*} \omega^{1}$ and $F^{*} \omega^{2}$ are linearly independent, we apply Cartan lemma ${ }^{1}$ to obtain

$$
F^{*}\binom{\omega_{1}^{3}}{\omega_{2}^{3}}=F^{*}\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right) F^{*}\binom{\omega^{1}}{\omega^{2}},
$$

where $h_{i j}=h_{j i}$ are some functions. We denote by $h_{F}=F^{*}\left(h_{i j}\right)$ the matrix-valued function:

$$
F^{*}\binom{\omega_{1}^{3}}{\omega_{2}^{3}}=h_{F} F^{*}\binom{\omega^{1}}{\omega^{2}} .
$$

If \widetilde{F} is another adapted lift, we must have

$$
\widetilde{F}=F\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & R & 0 \\
0 & 0 & 1
\end{array}\right)=F r,
$$

where $R: U \rightarrow S O(2)$ is a smooth function. Then from $\widetilde{F}^{*}(\omega)=\widetilde{F}^{-1} d \widetilde{F}$ and $F^{*}(\omega)=$ $F^{-1} d F$, we have

$$
\begin{aligned}
& \widetilde{F}^{-1} d \widetilde{F}=(F r)^{-1} d(F r)=r^{-1}\left(F^{1} d F\right) r+r^{-1} F^{-1} F d r \\
& =\left(\begin{array}{lll}
1 & & \\
& R^{-1} & \\
& & 1
\end{array}\right) F^{*}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\omega^{1} & 0 & -\omega_{1}^{2} & -\omega_{1}^{3} \\
\omega^{2} & \omega_{1}^{2} & 0 & -\omega_{2}^{3} \\
\omega^{3} & \omega_{1}^{3} & \omega_{2}^{3} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & & \\
& R & \\
& & 1
\end{array}\right)+\left(\begin{array}{llll}
0 & & \\
& R^{-1} d R & \\
& & &
\end{array}\right) .
\end{aligned}
$$

In particular,

$$
\begin{equation*}
\widetilde{F}^{*}\binom{\omega^{1}}{\omega^{2}}=R^{-1} F^{*}\binom{\omega^{1}}{\omega^{2}}, \widetilde{F}^{*}\left(\omega_{1}^{3}, \omega_{2}^{3}\right)=F^{*}\left(\omega_{1}^{3}, \omega_{2}^{3}\right) R . \tag{5.8}
\end{equation*}
$$

[^6]Since $R^{-1}=R^{t}$, we also have

$$
\begin{equation*}
h_{\widetilde{F}}=R^{-1} h_{F} R . \tag{5.9}
\end{equation*}
$$

Then we obtain two invariants: the mean curvature $H:=\frac{1}{2} \operatorname{trace}\left(h_{F}\right)$ and Gauss curvature $K:=\operatorname{det}\left(h_{F}\right)$, which are well defined on U or M.

The case of n-dimensional submanifolds in $\mathbb{E}^{n+s} \quad$ For high dimensional situation, we consider

$$
G=A S O(n+s)=\left\{M=\left(\begin{array}{cc}
1 & 0 \\
t & B
\end{array}\right), t \in \mathbb{R}^{n+s}, B \in S O(n+s)\right\}
$$

which is the group of Euclidean motions,

$$
H=S O(n+s)
$$

which is the group of rotation and

$$
X=\mathbb{E}^{n+s}=A S O(n+s) / S O(n+s)
$$

Let $M \subset \mathbb{E}^{n+s}$ be an n-dimensional submanifold.
A map

$$
s=\left(e_{0}, e_{j}, e_{b}\right)=\left[\begin{array}{ll}
1 & 0 \tag{5.10}\\
t & B
\end{array}\right]: M \rightarrow G
$$

is called a first-order adapted lift if $e_{0}=(1, x)^{t}, x \in M,\left(e_{j}, e_{b}\right)$ are orthonormal,

$$
\operatorname{span}\left\{e_{j}(x)\right\}=T_{x} M
$$

and $e_{b}(x)$ are normal to M. Consequently,

$$
\begin{equation*}
s^{*} d x \equiv 0 \bmod \left\{x, e_{j}\right\} \tag{5.11}
\end{equation*}
$$

Let \mathcal{F}^{1} denote the subbundle of $\left.A S O(n+s)\right|_{M}$ of orientated first-ordered frames for M.
If \widetilde{s} is another first-order adapted lift, then $\widetilde{s}=s \cdot g$ where

$$
g=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & g_{j}^{i} & 0 \\
0 & 0 & u_{b}^{a}
\end{array}\right]
$$

where $\left(g_{j}^{i}\right) \in S O(n)$ and $\left(u_{b}^{a}\right) \in S O(s)$. In other words, the motions in the fiber of \mathcal{F}^{1} are given by such g.

As the same argument in Example above, the Maurer-Cartan form over $A S O(n+s)$ is of the form

$$
\omega=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{5.12}\\
\omega^{i} & \omega_{j}^{i} & \omega_{b}^{i} \\
\omega^{a} & \omega_{j}^{a} & \omega_{b}^{a}
\end{array}\right) .
$$

$d s=s\left(s^{*} \omega\right)$. We have

$$
d x=e_{j} \omega^{j}+e_{a} \omega^{a} .
$$

Then pulling back by s, by (5.11), we obtain $s^{*} \omega^{a}=0$ so that

$$
\begin{equation*}
s^{*} d \omega^{a}=0 . \tag{5.13}
\end{equation*}
$$

From $d \omega=-\omega \wedge \omega$:

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \tag{5.14}\\
d \omega^{i} & d \omega_{j}^{i} & d \omega_{b}^{i} \\
d \omega^{a} & d \omega_{j}^{a} & d \omega_{b}^{a}
\end{array}\right)=-\left(\begin{array}{ccc}
0 & 0 & 0 \\
\omega^{i} & \omega_{j}^{i} & \omega_{b}^{i} \\
\omega^{a} & \omega_{j}^{a} & \omega_{b}^{a}
\end{array}\right) \wedge\left(\begin{array}{ccc}
0 & 0 & 0 \\
\omega^{i} & \omega_{j}^{i} & \omega_{b}^{i} \\
\omega^{a} & \omega_{j}^{a} & \omega_{b}^{a}
\end{array}\right) .
$$

and by (5.13), we obtain

$$
-s^{*}\left(\omega_{j}^{a} \wedge \omega^{j}\right)=0
$$

By Cartan's lemma, we write

$$
s^{*} \omega_{j}^{a}=h_{i j}^{a} s^{*} \omega^{j}
$$

where $h_{i j}^{a}=h_{j i}^{a}$. It can be verified that $h_{i j}^{a} s^{*} \omega^{i} s^{*} \omega^{j} \otimes e_{a}$ is independent of choice of first order adapted lifts. Therefore it defines the second fundamental form of M

$$
I I_{M}:=h_{i j}^{a} s^{*} \omega^{i} s^{*} \omega^{j} \otimes e_{a} \in \Gamma\left(M, S^{2} T^{*} M \otimes N M\right)
$$

where $N M$ denotes the normal bundle of M.

5.2 Flatness of CR Submanifolds

In Euclidean geometry, for a real submanifold $M^{n} \subset \mathbb{E}^{n+a}, M$ is a piece of \mathbb{E}^{n} if and only if its second fundamental form $I I_{M} \equiv 0$.

In projective geometry, for a complex submanifold $M^{n} \subset \mathbb{C P}^{n+a}, M$ is a piece of $\mathbb{C P} \mathbb{P}^{n}$ if and only if its projective second fundamental form $I I_{M} \equiv 0$ (c.f. [IL03], p.81).

In CR geometry, we prove the CR analogue of this fact in this paper as follows:

Theorem 5.2.1 (Ji-Yuan [JY09]) Let $H: M^{\prime} \rightarrow \partial \mathbb{B}^{N+1}$ be a smooth CR-embedding of a strictly pseudoconvex $C R$ real hypersurface $M^{\prime} \subset \mathbb{C}^{n+1}$. Denote $M:=H\left(M^{\prime}\right)$. If its $C R$ second fundamental form $I I_{M} \equiv 0$, then $M \subset F\left(\partial \mathbb{B}^{n+1}\right) \subset \partial \mathbb{B}^{N+1}$ where $F: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{N+1}$ is a certain linear fractional proper holomorphic map.

It was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary 5.5), under the above same hypothese, that M^{\prime} and hence M are locally CR-equivalent to the unit sphere $\partial \mathbb{B}^{n+1}$ in \mathbb{C}^{n+1}. This result allows us to consider

$$
\begin{array}{llc}
& & G=S U(N+1,1) \\
F: \partial \mathbb{H}^{n+1} \rightarrow M=F\left(\partial \mathbb{H}^{n+1}\right) & s \nearrow & \downarrow \pi \\
\hookrightarrow & \partial \mathbb{B}^{N+1}=G / H
\end{array}
$$

There are several definitions of the CR second fundamental forms $I I_{M}$ of M. We have to prove that the above theorem is true for all of these definitions.

- Definition A, intrinsic one (Webster).
- Definition B, extrinsic one (cf. Ebenfelt-Huang-Zaitsev(2004)).
- Definition C, Cartan moving frame theory, with the group $G=G L^{Q}(C N+2)$.
- Definition D, Cartan moving frame theory, with the group $G=S U(N+1,1)$.

5.3 Definition A, the CR Second Fundamental Form

Let (M, θ) be a strictly pseudoconvex pseudohermitian manifold where θ is a contact form. Associated with a contact form θ one has the Reeb vector field R_{θ}, defined by the equations: (i) $d \theta\left(R_{\theta}, \cdot\right) \equiv 0$, (ii) $\theta\left(R_{\theta}\right) \equiv 1$.

If there are n complex 1 -forms θ^{α} so that $\left\{\theta^{1}, \ldots, \theta^{n}\right\}$ forms a local basis for holomorphic cotangent bundle and

$$
\begin{equation*}
d \theta=i \sum_{\alpha, \beta=1}^{n} h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}} \tag{5.15}
\end{equation*}
$$

where $\left(h_{\alpha \bar{\beta}}\right)$, called the Levi form matrix, is positive definite. Such θ^{α} may not be unique. Following Webster (1978), a coframe $\left(\theta, \theta^{\alpha}\right)$ is called admissible if (5.15) holds.

Theorem 5.3.1 (Webster, 1978) Let $\left(M^{2 n+1}, \theta\right)$ be a strictly pseudoconvex pseudohermitian manifold and let θ^{j} be as in (5.15). Then there are unique way to write

$$
\begin{equation*}
d \theta^{\alpha}=\sum_{\gamma=1}^{n} \theta^{\gamma} \wedge \omega_{\gamma}^{\alpha}+\theta \wedge \tau^{\alpha} \tag{5.16}
\end{equation*}
$$

where τ^{α} are $(0,1)$-forms over M that are linear combination of $\theta^{\bar{\alpha}}=\overline{\theta^{\alpha}}$, and ω_{α}^{β} are 1-forms over M such that

$$
\begin{equation*}
0=d h_{\alpha \bar{\beta}}-h_{\gamma \bar{\beta}} \omega_{\alpha}^{\gamma}-h_{\alpha \bar{\gamma}} \omega \overline{\bar{\beta}} . \tag{5.17}
\end{equation*}
$$

We may denote $\omega_{\alpha \bar{\beta}}=h_{\gamma \bar{\beta}} \omega_{\alpha}^{\gamma}$ and $\overline{\omega_{\beta \bar{\alpha}}}=h_{\alpha \bar{\gamma}} \omega_{\bar{\beta}}^{\bar{\gamma}}$. In particular, if

$$
\begin{equation*}
h_{\alpha \beta}=\delta_{\alpha \beta}, \tag{5.18}
\end{equation*}
$$

the identity in (5.17) becomes $0=-\omega_{\alpha \bar{\beta}}-\overline{\omega_{\beta \bar{\alpha}}}$, i.e.,

$$
\begin{equation*}
0=\omega_{\alpha}^{\beta}+\omega_{\bar{\beta}}^{\bar{\alpha}} . \tag{5.19}
\end{equation*}
$$

Lemma 5.3.2 ([EHZ04], corollary 4.2) Let M and \widetilde{M} be strictly pseudoconvex $C R$ manifolds of dimensions $2 n+1$ and $2 \widetilde{n}+1$ respectively, and of $C R$ dimensions n and \widetilde{n} respectively. Let $F: M \rightarrow \widetilde{M}$ be a smooth CR-embedding. If $\left(\theta, \theta^{\alpha}\right)$ is a admissible coframe on M, then in a neighborhood of a point $\widetilde{p} \in F(M)$ in \widetilde{M} there exists an admissible coframe $\left(\widetilde{\theta}, \widetilde{\theta}^{A}\right)=\left(\widetilde{\theta}, \widetilde{\theta}^{\alpha}, \widetilde{\theta}^{\mu}\right)$ on \widetilde{M} with $F^{*}\left(\widetilde{\theta}, \widetilde{\theta}^{\alpha}, \widetilde{\theta}^{\mu}\right)=\left(\theta, \theta^{\alpha}, 0\right)$. In particular, the Reeb vector field \widetilde{R} is tangent to $F(M)$. If we choose the Levi form matrix of M such that the functions $h_{\alpha \bar{\beta}}$ in (5.15) with respect to $\left(\theta, \theta^{\alpha}\right)$ to be $\left(\delta_{\alpha \bar{\beta}}\right)$, then $\left(\widetilde{\theta}, \widetilde{\theta}^{A}\right)$ can be chosen such that the Levi form matrix of \widetilde{M} relative to it is also $\left(\delta_{A \bar{B}}\right)$. With this additional property, the coframe $\left(\widetilde{\theta}, \widetilde{\theta}^{A}\right)$ is uniquely determined along M up to unitary transformations in $U(n) \times U(\widetilde{n}-n)$.

If $\left(\theta, \theta^{\alpha}\right)$ and $\left(\widetilde{\theta}, \widetilde{\theta}^{A}\right)$ are as above such that the condition on the Levi form matrices in Lemma 5.3.2 are satisfied, we say that the coframe $\left(\widetilde{\theta}, \widetilde{\theta}^{A}\right)$ is adapted to the coframe $\left(\theta, \theta^{\alpha}\right)$. In this case, by (5.19), we have $\theta=F^{*} \widetilde{\theta}, \theta^{\alpha}=F^{*} \widetilde{\theta}^{\alpha}$, and

$$
d \theta^{\alpha}=\sum_{\gamma=1}^{n} \theta^{\gamma} \wedge \omega_{\gamma}^{\alpha}+\theta \wedge \tau^{\alpha}, \quad 0=\omega_{\alpha}^{\beta}+\omega_{\bar{\beta}}^{\bar{\alpha}}, \quad \forall 1 \leq \alpha, \beta \leq n
$$

and

$$
d \widetilde{\theta}^{A}=\sum_{B=1}^{\widetilde{n}} \widetilde{\theta}^{C} \wedge \widetilde{\omega}_{C}^{A}+\widetilde{\theta} \wedge \widetilde{\tau}^{A}, \quad 0=\widetilde{\omega}_{A}^{B}+\widetilde{\omega} \bar{A}, \quad \forall 1 \leq A, B \leq N
$$

For simplicity, we may denote $F^{*} \widetilde{\omega}_{B}^{A}$ by ω_{B}^{A}. We also denote $F^{*} \widetilde{\omega}_{A \bar{B}}$ by $\omega_{A \bar{B}}$ where $\omega_{A \bar{B}}=\omega_{A}^{B}$.
Write $\omega_{\alpha}{ }^{\mu}=\omega_{\alpha}{ }^{\mu}{ }_{\beta} \theta^{\beta}$. The matrix of $\left(\omega_{\alpha}{ }^{\mu}{ }_{\beta}\right), 1 \leq \alpha, \beta \leq n, n+1 \leq \mu \leq \hat{n}$, defines the $C R$ second fundamental form of M. It was used in [W79] and [Fa90].

5.4 Definition B, the CR Second Fundamental Form

Let $F: M \rightarrow \widetilde{M}$ be a smooth CR-embedding between $M \subset \mathbb{C}^{n+1}$ and $\widetilde{M} \subset \mathbb{C}^{N+1}$ where M and \widetilde{M} are real strictly pseudoconvex hypersurfaces of dimensions $2 n+1$ and $2 \widetilde{n}+1$, and CR dimensions n and \widetilde{n}, respectively. Let $p \in M$ and $\widetilde{p}=F(p) \in \widetilde{M}$ be points. Let $\widetilde{\rho}$ be a local defining function for \widetilde{M} near the point \widetilde{p}. Let

$$
E_{k}(p):=\operatorname{span}_{\mathbb{C}}\left\{L^{\bar{J}}\left(\widetilde{\rho}_{Z^{\prime}} \circ F\right)(p)\left|J \in\left(Z_{+}\right)^{n}, 0 \leq|J| \leq k\right\} \subset T_{\widetilde{p}}^{1,0} \mathbb{C}^{N+1}\right.
$$

where $\widetilde{\rho}_{Z^{\prime}}:=\partial \widetilde{\rho}$ is the complex gradient (i.e., represented by vectors in \mathbb{C}^{N+1} in some local coordinate system Z^{\prime} near $\left.\widetilde{p}\right) . E_{k}(p)$ is independent of the choice of local defining function $\widetilde{\rho}$, coordinates Z^{\prime} and the choice of basis of the CR vector fields $L_{\overline{1}}, \ldots, L_{\bar{n}}$.

The $C R$ second fundamental form $I I_{M}$ of M is defined by (cf. [EHZ04], §2)

$$
\begin{equation*}
I I_{M}\left(X_{p}, Y_{p}\right):=\overline{\pi\left(X Y\left(\widetilde{\rho}_{\bar{Z}^{\prime}} \circ f\right)(p)\right)} \in \overline{T_{\tilde{p}}^{\prime} \widetilde{M} / E_{1}(p)} \tag{5.20}
\end{equation*}
$$

where $\widetilde{\rho}_{\bar{Z}^{\prime}}=\bar{\partial} \widetilde{\rho}$ is represented by vectors in \mathbb{C}^{N+1} in some local coordinate system Z^{\prime} near \widetilde{p}, X, Y are any $(1,0)$ vector fields on M extending given vectors $X_{p}, Y_{p} \in T_{p}^{1,0}(M)$, and $\pi: T_{\widetilde{p}}^{\prime} \widetilde{M} \rightarrow T_{\widetilde{p}}^{\prime} \widetilde{M} / E_{1}(p)$ is the projection map.

5.5 Definition C, the CR Second Fundamental Form

Groups and geometry In Euclidean geometry, we consider

$$
\begin{aligned}
& G=A S O(n+s) \\
& M \stackrel{s \nearrow}{\hookrightarrow} \quad \mathbb{E}^{n+s}=A S O(n+s) / S O(n+s)
\end{aligned}
$$

In projective geometry, we consider

In CR geometry, we will consider

in this section and

$$
\begin{array}{ccc}
& & G=S U(N+1,1) \\
& s \nearrow & \downarrow \pi \\
M & \hookrightarrow & \partial \mathbb{H}^{N+1}
\end{array} .
$$

in the next section.

Construction of the group $G L^{Q}\left(\mathbb{C}^{N+2}\right) \quad$ We consider a real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$
\begin{equation*}
\langle Z, Z\rangle:=\sum_{A} Z^{A} \overline{Z^{A}}+\frac{i}{2}\left(\overline{Z^{0}} Z^{N+1}-Z^{0} \overline{Z^{N+1}}\right)=0 \tag{5.21}
\end{equation*}
$$

where $Z=\left(Z^{0}, Z^{A}, Z^{N+1}\right)^{t} \in \mathbb{C}^{N+2}$. Let

$$
\begin{equation*}
\pi_{0}: \mathbb{C}^{N+2}-\{0\} \rightarrow \mathbb{C P}^{N+1}, \quad\left(z_{0}, \ldots, z_{N+1}\right) \mapsto\left[z_{0}: \ldots: z_{N+1}\right], \tag{5.22}
\end{equation*}
$$

be the standard projection. For any point $x \in \mathbb{C} \mathbb{P}^{N+1}, \pi_{0}^{-1}(x)$ is a complex line in $\mathbb{C}^{N+2}-\{0\}$. For any point $v \in \mathbb{C}^{N+2}-\{0\}, \pi_{0}(v) \in \mathbb{C P}^{N+1}$ is a point. The image $\pi_{0}(Q-\{0\})$ is the Heisenberg hypersurface $\partial \mathbb{H}^{N+1} \subset \mathbb{C P}^{N+1}$.

For any element $A \in G L\left(\mathbb{C}^{N+2}\right)$:

$$
A=\left(a_{0}, \ldots, a_{N+1}\right)=\left[\begin{array}{cccc}
a_{0}^{(0)} & a_{1}^{(0)} & \ldots & a_{N+1}^{(0)} \tag{5.23}\\
a_{0}^{(1)} & a_{1}^{(1)} & \ldots & a_{N+1}^{(1)} \\
\vdots & \vdots & & \vdots \\
a_{0}^{(N+1)} & a_{1}^{(N+1)} & \ldots & a_{N+1}^{(N+1)}
\end{array}\right] \in G L\left(\mathbb{C}^{N+2}\right)
$$

where each a_{j} is a column vector in $\mathbb{C}^{N+2}, 0 \leq j \leq N+1$. This A is associated to an automorphism $A^{\star} \in A u t\left(\mathbb{C P}^{N+1}\right)$ given by

$$
\begin{equation*}
A^{\star}\left(\left[z_{0}: z_{1}: \ldots: z_{N+1}\right]\right)=\left[\sum_{j=0}^{N+1} a_{j}^{(0)} z_{j}: \sum_{j=0}^{N+1} a_{j}^{(1)} z_{j}: \ldots: \sum_{j=0}^{N+1} a_{j}^{(N+1)} z_{j}\right] . \tag{5.24}
\end{equation*}
$$

When $a_{0}^{(0)} \neq 0$, in terms of the non-homogeneous coordinates $\left(w_{1}, \ldots, w_{n}\right), A^{\star}$ is a linear fractional from \mathbb{C}^{N+1} which is holomorphic near $(0, \ldots, 0)$:

$$
\begin{equation*}
A^{\star}\left(w_{1}, \ldots, w_{N+1}\right)=\left(\frac{\sum_{j=0}^{N+1} a_{j}^{(1)} w_{j}}{\sum_{j=0}^{N+1} a_{j}^{(0)} w_{j}}, \ldots, \frac{\sum_{j=0}^{N+1} a_{j}^{(N+1)} w_{j}}{\sum_{j=0}^{N+1} a_{j}^{(0)} w_{j}}\right), \quad \text { where } w_{j}=\frac{z_{j}}{z_{0}} \tag{5.25}
\end{equation*}
$$

We denote $A \in G L^{Q}\left(\mathbb{C}^{N+2}\right)$ if A satisfies $A(Q) \subseteq Q$ where we regard A as a linear transformation of \mathbb{C}^{N+2}. If $A \in G L^{Q}\left(\mathbb{C}^{N+2}\right)$, we must have $A^{\star}\left(\partial \mathbb{H}^{N+1}\right) \subseteq \partial \mathbb{H}^{N+1}$, so that $A^{\star} \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right)$. Conversely, if $A^{\star} \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right)$, then $A \in G L^{Q}\left(\mathbb{C}^{N+2}\right)$.

We define a bundle map:

$$
\begin{aligned}
& \pi: G L\left(\mathbb{C}^{N+2}\right) \\
& A=\left(a_{0}, a_{1}, \ldots, a_{N+1}\right) \mapsto \mathbb{C P}^{N+1} \\
& \pi_{0}\left(a_{0}\right) .
\end{aligned}
$$

Then by (5.24), for any map $A \in G L\left(\mathbb{C}^{N+2}\right), A \in \pi^{-1}\left(\pi_{0}\left(a_{0}\right)\right) \Longleftrightarrow A^{\star}([1: 0: \ldots: 0])=$ $\pi_{0}\left(a_{0}\right)$. In particular, by the restriction, we consider a map

$$
\begin{array}{ccc}
\pi: & G L^{Q}\left(\mathbb{C}^{N+2}\right) & \rightarrow \partial \mathbb{H}^{N+1} \\
& A=\left(a_{0}, a_{1}, \ldots, a_{N+1}\right) & \mapsto \pi_{0}\left(a_{0}\right) . \tag{5.26}
\end{array}
$$

We get $\partial \mathbb{H}^{N+1} \simeq G L^{Q}\left(\mathbb{C}^{N+2}\right) / P_{1}$ where P_{1} is the isotropy subgroup of $G L^{Q}\left(\mathbb{C}^{N+2}\right)$. Then by (5.24), for any map $A \in G L^{Q}\left(\mathbb{C}^{n+2}\right)$,

$$
\begin{equation*}
A \in \pi^{-1}\left(\pi_{0}\left(a_{0}\right)\right) \Longleftrightarrow A^{\star}([1: 0: \ldots: 0])=\pi_{0}\left(a_{0}\right) \tag{5.27}
\end{equation*}
$$

CR submanifolds of $\partial \mathbb{H}^{N+1}$ Let $H: M^{\prime} \rightarrow \partial \mathbb{H}^{N+1}$ be a CR smooth embedding where M^{\prime} is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1}. We denote $M=H\left(M^{\prime}\right)$.

Let $R_{M^{\prime}}$ be the Reeb vector field of M^{\prime} with respect to a fixed contact form on M^{\prime}. Then the real vector $R_{M^{\prime}}$ generates a real line bundle over M^{\prime}, denoted by $\mathcal{R}_{M^{\prime}}$. Since we can regard the rank n complex vector bundle $T^{1,0} M^{\prime}$ as the rank $2 n$ real vector bundle, over the real number field \mathbb{R} we have:

$$
\begin{equation*}
T M^{\prime}=T^{c} M^{\prime} \oplus \mathcal{R}_{M^{\prime}} \simeq T^{1,0} M^{\prime} \oplus \mathcal{R}_{M^{\prime}} \tag{5.28}
\end{equation*}
$$

given by

$$
\begin{equation*}
\left(a_{j} \frac{\partial}{\partial x_{j}}, b_{j} \frac{\partial}{\partial y_{j}}\right)+c R_{M^{\prime}} \mapsto\left(a_{j}+i b_{j}\right) \frac{\partial}{\partial z_{j}}+c R_{M^{\prime}}, \quad \forall a_{j}, b_{j}, c \in \mathbb{R} \tag{5.29}
\end{equation*}
$$

Since H is a CR embedding, we have

$$
\begin{equation*}
H_{*}\left(T^{1,0} M^{\prime}\right)=T^{1,0} M \subset T^{1,0}\left(\partial \mathbb{H}^{N+1}\right), T M \simeq H_{*}\left(T^{1,0} M^{\prime}\right) \oplus H_{*}\left(\mathcal{R}_{M^{\prime}}\right) \subset T\left(\partial \mathbb{H}^{N+1}\right) \tag{5.30}
\end{equation*}
$$

Lifts of the CR submanifolds Let $M=H\left(M^{\prime}\right) \subset \partial \mathbb{H}^{N+1}$ be as above. Consider the commutative diagram

Any map e satisfying $\pi \circ e=I d$ is called a lift of M to $G L^{Q}\left(\mathbb{C}^{N+2}\right)$.
In order to define a more specific lifts, we need to give some relationship between geometry on $\partial \mathbb{H}^{N+1}$ and on \mathbb{C}^{N+2} as follows. For any subset $X \in \partial \mathbb{H}^{N+1}$, we denote $\hat{X}:=\pi_{0}^{-1}(X)$ where $\pi_{0}: \mathbb{C}^{N+2}-\{0\} \rightarrow \mathbb{C P}^{N+1}$ is the standard projection map (5.22). In particular, for any $x \in M, \hat{x}$ is a complex line and for the real submanifold $M^{2 n+1}$, the real submanifold $\hat{M}^{2 n+3}$ is of dimension $2 n+3$.

For any $x \in M$, we take $v \in \hat{x}=\pi_{0}^{-1}(x) \subset \mathbb{C}^{N+2}-\{0\}$, and we define

$$
\hat{T}_{x} M=T_{v} \hat{M}, \quad \hat{T}_{x}^{1,0} M=T_{v}^{1,0} \hat{M}, \quad \hat{\mathcal{R}}_{M, x}:=\mathcal{R}_{\hat{M}, v}
$$

where $\mathcal{R}_{\hat{M}}=\cup_{v \in \hat{M}} \mathcal{R}_{\hat{M}, v}$. These definitions are independent of choice of v.
A lift $e=\left(e_{0}, e_{\alpha}, e_{\mu}, e_{N+1}\right)$ of M into $G L^{Q}\left(\mathbb{C}^{N+2}\right)$, where $1 \leq \alpha \leq n$ and $n+1 \leq \mu \leq N$, is called a first-order adapted lift if it satisfies the conditions:

$$
\begin{equation*}
e_{0}(x) \in \pi_{0}^{-1}(x), \quad \operatorname{span}_{\mathbb{C}}\left(e_{0}, e_{\alpha}\right)(x)=\hat{T}_{x}^{1,0} M, \quad \operatorname{span}\left(e_{0}, e_{\alpha}, e_{N+1}\right)(x)=\hat{T}_{x}^{1,0} M \oplus \hat{\mathcal{R}}_{M, x} \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{span}\left(e_{0}, e_{\alpha}, e_{N+1}\right)(x):=\left\{c_{0} e_{0}+c_{\alpha} e_{\alpha}+c_{N+1} e_{N+1} \mid c_{0}, c_{\alpha} \in \mathbb{C}, c_{N+1} \in \mathbb{R}\right\} \tag{5.32}
\end{equation*}
$$

Here we used (5.29) and the fact that the Reeb vector is real. Locally first-order adapted lifts always exist.

We have the restriction bundle $\mathcal{F}_{M}^{0}:=\left.G L^{Q}\left(\mathbb{C}^{N+2}\right)\right|_{M}$ over M. The subbundle $\pi: \mathcal{F}_{M}^{1} \rightarrow$ M of \mathcal{F}_{M}^{0} is defined by

$$
\mathcal{F}_{M}^{1}=\left\{\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right) \in \mathcal{F}_{M}^{0} \mid\left[e_{0}\right] \in M, \text { (5.31) are satisfied }\right\} .
$$

Local sections of \mathcal{F}_{M}^{1} are exactly all local first-order adapted lifts of M.
For two first-order adapted lifts $s=\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right)$ and $\widetilde{s}=\left(\widetilde{e}_{0}, \widetilde{e}_{j}, \widetilde{e}_{\mu}, \widetilde{e}_{N+1}\right)$, by (5.31), we have

$$
\left\{\begin{array}{l}
\widetilde{e}_{0}=g_{0}^{0} e_{0} \tag{5.33}\\
\widetilde{e}_{j}=g_{j}^{0} e_{0}+g_{j}^{k} e_{k} \\
\widetilde{e}_{\mu}=g_{\mu}^{0} e_{0}+g_{\mu}^{j} e_{j}+g_{\mu}^{\nu} e_{\nu}+g_{\mu}^{N+1} e_{N+1} \\
\widetilde{e}_{N+1}=g_{N+1}^{0} e_{0}+g_{N+1}^{j} e_{j}+g_{N+1}^{N+1} e_{N+1}
\end{array}\right.
$$

Notice that by (5.29), g_{N+1}^{N+1} is some real-valued function, while other are complex-valued functions. In other words, $\widetilde{s}=s \cdot g$ where

$$
g=\left(g_{0}, g_{j}, g_{\mu}, g_{N+1}\right)=\left(\begin{array}{cccc}
g_{0}^{0} & g_{k}^{0} & g_{\mu}^{0} & g_{N+1}^{0} \tag{5.34}\\
0 & g_{k}^{j} & g_{\mu}^{j} & g_{N+1}^{j} \\
0 & 0 & g_{\mu}^{\nu} & 0 \\
0 & 0 & g_{\mu}^{N+1} & g_{N+1}^{N+1}
\end{array}\right)
$$

is a smooth map from M into $G L^{Q}\left(\mathbb{C}^{N+2}\right)$. Then the fiber of $\pi: \mathcal{F}_{M}^{1} \rightarrow M$ over a point is isomorphic to the group

$$
G_{1}=\left\{g=\left(\begin{array}{cccc}
g_{0}^{0} & g_{\beta}^{0} & g_{\mu}^{0} & g_{N+1}^{0} \\
0 & g_{\beta}^{\alpha} & g_{\mu}^{\alpha} & g_{N+1}^{\alpha} \\
0 & 0 & g_{\mu}^{\nu} & 0 \\
0 & 0 & g_{\mu}^{N+1} & g_{N+1}^{N+1}
\end{array}\right) \in G L^{Q}\left(\mathbb{C}^{N+2}\right)\right\}
$$

where we use the index ranges $1 \leq \alpha, \beta \leq n$ and $n+1 \leq \mu, \nu \leq N$.
We pull back the Maurer-Cartan form from $G L^{Q}\left(\mathbb{C}^{N+2}\right)$ to \mathcal{F}_{M}^{1} by a first-order adapted lift e of M as

$$
\omega=\left(\begin{array}{cccc}
\omega_{0}^{0} & \omega_{\beta}^{0} & \omega_{\nu}^{0} & \omega_{N+1}^{0} \\
\omega_{0}^{\alpha} & \omega_{\beta}^{\alpha} & \omega_{\nu}^{\alpha} & \omega_{N+1}^{\alpha} \\
\omega_{0}^{\mu} & \omega_{\beta}^{\mu} & \omega_{\nu}^{\mu} & \omega_{N+1}^{\mu} \\
\omega_{0}^{N+1} & \omega_{\beta}^{N+1} & \omega_{\nu}^{N+1} & \omega_{N+1}^{N+1}
\end{array}\right) .
$$

Since $\omega=e^{-1} d e$, i.e., $e \omega=d e$. Then we have

$$
\begin{equation*}
d e_{0}=e_{0} \omega_{0}^{0}+e_{\alpha} \omega_{0}^{\alpha}+e_{\mu} \omega_{0}^{\mu}+e_{N+1} \omega_{0}^{N+1} \tag{5.35}
\end{equation*}
$$

On the other hand, bu considering tangent vectors, we have

$$
\begin{equation*}
d e_{0}=e_{0} \omega_{0}^{0}+e_{\alpha} \omega_{0}^{\alpha}+e_{N+1} \omega_{0}^{N+1} \tag{5.36}
\end{equation*}
$$

By (5.35) and (5.36), we conclude $\omega_{0}^{\mu}=0, \forall \mu$. By the Maurer-Cartan equation $d \omega=$ $-\omega \wedge \omega$, one gets $0=d \omega_{0}^{\nu}=-\omega_{\alpha}^{\nu} \wedge \omega_{0}^{\alpha}-\omega_{N+1}^{\nu} \wedge \omega_{0}^{N+1}$, i.e., $0=-\omega_{\alpha}^{\nu} \wedge \omega_{0}^{\alpha}, \bmod \left(\omega_{0}^{N+1}\right)$. Then by Cartan's lemma,

$$
\omega_{\beta}^{\nu}=q_{\alpha \beta}^{\nu} \omega_{0}^{\alpha} \quad \bmod \left(\omega_{0}^{N+1}\right),
$$

for some functions $q_{\alpha \beta}^{\nu}=q_{\beta \alpha}^{\nu}$.
The CR second fundamental form In order to define the CR second fundamental form $I I_{M}=I I_{M}^{s}=q_{\alpha \beta}^{\mu} \omega_{0}^{\alpha} \omega_{0}^{\beta} \otimes \underline{e}_{\mu}, \bmod \left(\omega_{0}^{N+1}\right)$, let us define \underline{e}_{μ} as follows.

For any first-order adapted lift $e=\left(e_{0}, e_{\alpha}, e_{\nu}, e_{N+1}\right)$ with $\pi_{0}\left(e_{0}\right)=x$, we have $e_{\alpha} \in \hat{T}_{x}^{1,0} M$. Recall $T_{E} G(k, V) \simeq E^{*} \otimes(V / E)$ where $G(k, V)$ is the Grassmannian of k-planes that pass through the origin in a vector space V over \mathbb{R} or \mathbb{C} and $E \in G(k, V)$ ([IL03], p.73). Then $T_{x} M \simeq(\hat{x})^{*} \otimes\left(\hat{T}_{x} M / \hat{x}\right)$ and hence the vector e_{α} induces $\underline{e_{\alpha}} \in T_{x}^{1,0} M$ by

$$
\underline{e}_{\alpha}=e^{0} \otimes\left(e_{\alpha} \bmod \left(e_{0}\right)\right),
$$

where we denote by $\left(e^{0}, e^{\alpha}, e^{\mu}, e^{N+1}\right)$ the dual basis of $\left(\mathbb{C}^{N+2}\right)^{*}$. Similarly, we let

$$
\begin{equation*}
\underline{e}_{\mu}=e^{0} \otimes\left(e_{\mu} \bmod \hat{T}_{x}^{(1,0)} M\right) \in N_{x}^{1,0} M \tag{5.37}
\end{equation*}
$$

where $N^{1,0} M$ is the CR normal bundle of M defined by $N_{x}^{1,0} M=T_{x}^{1,0}\left(\partial \mathbb{H}^{N+1}\right) / T_{x}^{1,0} M$.
By direct computation, we obtain a tensor

$$
\begin{equation*}
I I_{M}=I I_{M}^{e}=q_{\alpha \beta}^{\mu} \omega_{0}^{\alpha} \omega_{0}^{\beta} \otimes \underline{e}_{\mu} \in \Gamma\left(M, S^{2} T_{\pi_{0}\left(e_{0}\right)}^{1,0 *} M \otimes N_{\pi_{0}\left(e_{0}\right)}^{1,0} M\right) \quad \bmod \left(\omega_{0}^{N+1}\right) \tag{5.38}
\end{equation*}
$$

The tensor $I I_{M}$ is called the $C R$ second fundamental form of M.

5.6 Definition D, the CR Second Fundamental Form

Q-frames We consider the real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$
\begin{equation*}
\langle Z, Z\rangle:=\sum_{A} Z^{A} \overline{Z^{A}}+\frac{i}{2}\left(Z^{N+1} \overline{Z^{0}}-Z^{0} \overline{Z^{N+1}}\right)=0 \tag{5.39}
\end{equation*}
$$

where $Z=\left(Z^{0}, Z^{A}, Z^{N+1}\right)^{t} \in \mathbb{C}^{N+2}$. This can be extended to the scalar product

$$
\begin{equation*}
\left\langle Z, Z^{\prime}\right\rangle:=\sum_{A} Z^{A} \overline{Z^{\prime A}}+\frac{i}{2}\left(Z^{N+1}{\overline{Z^{\prime}}}^{0}-Z^{0} \overline{Z^{\prime N+1}}\right), \tag{5.40}
\end{equation*}
$$

for any $Z=\left(Z^{0}, Z^{A}, Z^{N+1}\right)^{t}, Z^{\prime}=\left(Z^{\prime 0}, Z^{\prime A}, Z^{N+1}\right)^{t} \in \mathbb{C}^{N+2}$. This product has the properties: $\left\langle Z, Z^{\prime}\right\rangle$ is linear in Z and anti-linear in $Z^{\prime} ; \overline{\left\langle Z, Z^{\prime}\right\rangle}=\left\langle Z^{\prime}, Z\right\rangle$; and Q is defined by $\langle Z, Z\rangle=0$.

Let $S U(N+1,1)$ be the group of unimodular linear transformations of \mathbb{C}^{N+2} that leave the form $\langle Z, Z\rangle$ invariant (cf. [CM74]).

By a Q-frame is meant an element $E=\left(E_{0}, E_{A}, E_{N+1}\right) \in G L\left(\mathbb{C}^{N+2}\right)$ satisfying (cf. [CM74, (1.10)])

$$
\left\{\begin{array}{l}
\operatorname{det}(E)=1 \tag{5.41}\\
\left\langle E_{A}, E_{B}\right\rangle=\delta_{A B},\left\langle E_{0}, E_{N+1}\right\rangle=-\left\langle E_{N+1}, E_{0}\right\rangle=-\frac{i}{2}
\end{array}\right.
$$

while all other products are zero.
There is exactly one transformation of $S U(N+1,1)$ which maps a given Q-frame into another. By fixing one Q-frame as reference, the group $S U(N+1,1)$ can be identified with the space of all Q-frames. Then $S U(N+1,1) \subset G L^{Q}\left(\mathbb{C}^{N+1}\right)$ is a subgroup with the composition operation.

We define a bundle map:

$$
\begin{array}{lll}
\pi: & G L\left(\mathbb{C}^{N+2}\right) & \rightarrow \mathbb{C P}^{N+1} \\
A=\left(a_{0}, a_{1}, \ldots, a_{N+1}\right) & \mapsto \pi_{0}\left(a_{0}\right)
\end{array}
$$

By taking restriction, we have the projection

$$
\begin{equation*}
\pi: S U(N+1,1) \rightarrow \partial \mathbb{H}^{N+1},\left(Z_{0}, Z_{A}, Z_{N+1}\right) \mapsto \operatorname{span}\left(Z_{0}\right) \tag{5.42}
\end{equation*}
$$

which is called a Q-frames bundle. We get $\partial \mathbb{H}^{N+1} \simeq S U(N+1,1) / P_{2}$ where P_{2} is the isotropy subgroup of $S U(N+1,1)$. $S U(N+1,1)$ acts on $\partial \mathbb{H}^{N+1}$ effectively.

The Maurer-Cartan Form over $\operatorname{SU}(N+1,1) \quad$ Consider $E=\left(E_{0}, E_{A}, E_{N+1}\right) \in S U(N+$ $1,1)$ as a local lift. Then the Maurer-Cartan form Θ on $S U(N+1,1)$ is defined by $d E=$ $\left(d E_{0}, d E_{A}, d E_{N+1}\right)=E \Theta$, or $\Theta=E^{-1} \cdot d E$, i.e.,

$$
d\left(\begin{array}{lll}
E_{0} & E_{A} & E_{N+1}
\end{array}\right)=\left(\begin{array}{lll}
E_{0} & E_{B} & E_{N+1}
\end{array}\right)\left(\begin{array}{ccc}
\Theta_{0}^{0} & \Theta_{A}^{0} & \Theta_{N+1}^{0} \tag{5.43}\\
\Theta_{0}^{B} & \Theta_{A}^{B} & \Theta_{N+1}^{B} \\
\Theta_{0}^{N+1} & \Theta_{A}^{N+1} & \Theta_{N+1}^{N+1}
\end{array}\right),
$$

where Θ_{A}^{B} are 1-forms on $S U(N+1,1)$. By (5.41) and (5.43), the Maurer-Cartan form (Θ) satisfies

$$
\begin{align*}
& \Theta_{0}^{0}+\overline{\Theta_{N+1}^{N+1}}=0, \Theta_{0}^{N+1}=\overline{\Theta_{0}^{N+1}}, \Theta_{N+1}^{0}=\overline{\Theta_{N+1}^{0}}, \tag{5.44}\\
& \Theta_{A}^{N+1}=2 \overline{\Theta_{0}^{A}}, \Theta_{N+1}^{A}=-\frac{i}{2} \overline{\Theta_{A}^{0}}, \quad \Theta_{B}^{A}+\overline{\Theta_{A}^{B}}=0, \Theta_{0}^{0}+\Theta_{A}^{A}+\Theta_{N+1}^{N+1}=0,
\end{align*}
$$

where $1 \leq A \leq N$. For example, from $\left\langle E_{A}, E_{B}\right\rangle=\delta_{A B}$, by taking differentiation, we obtain

$$
\left\langle d E_{A}, E_{B}\right\rangle+\left\langle E_{A}, d E_{B}\right\rangle=0
$$

By (5.43), we have

$$
\left\{\begin{array}{l}
d E_{0}=E_{0} \Theta_{0}^{0}+E_{B} \Theta_{0}^{B}+E_{N+1} \Theta_{0}^{N+1} \\
d E_{A}=E_{0} \Theta_{A}^{0}+E_{B} \Theta_{A}^{B}+E_{N+1} \Theta_{A}^{N+1} \\
d E_{N+1}=E_{0} \Theta_{N+1}^{0}+E_{B} \Theta_{N+1}^{B}+E_{N+1} \Theta_{N+1}^{N+1} .
\end{array}\right.
$$

Then

$$
\left\langle E_{0} \Theta_{A}^{0}+E_{C} \Theta_{A}^{C}+E_{N+1} \Theta_{A}^{N+1}, E_{B}\right\rangle+\left\langle E_{A}, E_{0} \Theta_{B}^{0}+E_{D} \Theta_{B}^{D}+E_{N+1} \Theta_{B}^{N+1}\right\rangle=0
$$

which implies $\Theta_{A}^{B}+\overline{\Theta_{B}^{A}}=0$. In particular, from (5.44), $\Theta_{A}^{0}=-2 i \overline{\Theta_{N+1}^{A}} . \Theta$ satisfies

$$
\begin{equation*}
d \Theta=-\Theta \wedge \Theta \tag{5.45}
\end{equation*}
$$

Let $M \hookrightarrow \partial \mathbb{H}^{N+1}$ be the image of $H: M^{\prime} \rightarrow \partial \mathbb{H}^{N+1}$ where $M^{\prime} \subset \mathbb{C}^{n+1}$ is a CR strictly pseudoconvex smooth hypersurface. Consider the inclusion map $M \hookrightarrow \partial \mathbb{H}^{N+1}$ and a lift $e=\left(e_{0}, e_{1}, \ldots, e_{N+1}\right)=\left(e_{0}, e_{\alpha}, e_{\nu}, e_{N+1}\right)$ of M where $1 \leq \alpha \leq n$ and $n+1 \leq \nu \leq N$

We call e a first-order adapted lift if for any $x \in M$,

$$
\begin{equation*}
\pi_{0}\left(e_{0}(x)\right)=x, \operatorname{span}_{\mathbb{C}}\left(e_{0}, e_{\alpha}\right)(x)=\hat{T}_{x}^{1,0} M, \operatorname{span}\left(e_{0}, e_{\alpha}, e_{N+1}\right)(x)=\hat{T}_{x}^{1,0} M \oplus \hat{\mathcal{R}}_{M, x} \tag{5.46}
\end{equation*}
$$

Locally first-order adapted lifts always exist. We have the restriction bundle $\mathcal{F}_{M}^{0}:=S U(N+$ $1,1)\left.\right|_{M}$ over M. The subbundle $\pi: \mathcal{F}_{M}^{1} \rightarrow M$ of \mathcal{F}_{M}^{0} is defined by

$$
\mathcal{F}_{M}^{1}=\left\{\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right) \in \mathcal{F}_{M}^{0} \mid\left[e_{0}\right] \in M, \text { (5.46) are satisfied }\right\}
$$

Local sections of \mathcal{F}_{M}^{1} are exactly all local first-order adapted lifts of M. The fiber of π : $\mathcal{F}_{M}^{1} \rightarrow M$ over a point is isomorphic to the group

$$
G_{1}=\left\{g=\left(\begin{array}{cccc}
g_{0}^{0} & g_{\beta}^{0} & g_{\nu}^{0} & g_{N+1}^{0} \\
0 & g_{\beta}^{\alpha} & g_{\nu}^{\alpha} & g_{N+1}^{\alpha} \\
0 & 0 & g_{\nu}^{\mu} & 0 \\
0 & 0 & 0 & g_{N+1}^{N+1}
\end{array}\right) \in S U(N+1,1)\right\}
$$

where we use the index ranges $1 \leq \alpha, \beta \leq n$ and $n+1 \leq \mu, \nu \leq N$.
By the remark below (5.33), g_{N+1}^{N+1} is real-valued. By (5.41), we have $\left\langle g_{0}, g_{N+1}\right\rangle=-\frac{i}{2}$, it implies $g_{0}^{0} \cdot \overline{g_{N+1}^{N+1}}=1$. In particular, both g_{N+1}^{N+1} and g_{0}^{0} are real. Since $\left\langle g_{0}, g_{\mu}\right\rangle=0$ and $g_{0}^{0} \neq 0$, it implies $g_{\mu}^{N+1}=0$. Since $\left\langle g_{\alpha}, g_{\beta}\right\rangle=\delta_{\alpha \beta}$, it implies that the matrix $\left(g_{\alpha}^{\beta}\right)$ is unitary. Since $\operatorname{deg}(g)=1$, it implies $g_{0}^{0} \cdot \operatorname{det}\left(g_{\alpha}^{\beta}\right) \cdot \operatorname{det}\left(g_{\mu}^{\nu}\right) \cdot g_{N+1}^{N+1}=1$, i.e., $\operatorname{det}\left(g_{\alpha}^{\beta}\right) \cdot \operatorname{det}\left(g_{\mu}^{\nu}\right)=1$.

By considering all first-order adapted lifts from M into $S U(N+1,1)$, as the definition of $I I_{M}$ in Definition 3, we can defined CR second fundamental form $I I_{M}$ as in (5.38):

$$
\begin{equation*}
I I_{M}=I I_{M}^{e}=q_{\alpha \beta}^{\mu} \omega_{0}^{\alpha} \omega_{0}^{\beta} \otimes \underline{e}_{\mu} \in \Gamma\left(M, S^{2} T_{\pi_{0}\left(e_{0}\right)}^{1,0 *} M \otimes N_{\pi_{0}\left(e_{0}\right)}^{1,0} M\right), \quad \bmod \left(\omega_{0}^{N+1}\right), \tag{5.47}
\end{equation*}
$$

which is a well-defined tensor, and is called the $C R$ second fundamental form of M.
We remark that the notion of $I I_{M}$ in Definition 4 was introduced in a paper by S.H. Wang [Wa06].

5.7 Geometric Rank And The Second Fundamental Form

Geometric Rank and $I I_{M}$

Lemma 5.7.1 (i) ([JYO0], theorem 7.1) Let $F \in \operatorname{Prop}_{k}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ with $k \geq 2$ and $F(0)=0$. Then there exists a neighborhood of 0 in $M:=F\left(\partial \mathbb{H}^{n+1}\right)$ and a C^{k-1}-smooth first-order adapted lift $e: U \rightarrow S U(N+1,1)$

$$
\begin{equation*}
e=\left(e_{0}, e_{j}, e_{b}, e_{N+1}\right) \in S U(N+1,1), \quad 1 \leq j \leq n, n+1 \leq b \leq N-1 \tag{5.48}
\end{equation*}
$$

(ii) ([JY09], Step 3 of the proof of Theorem 1.1) Let $F=F^{* * *}=(f, \phi, g)$, the induced first-order adapted lift s, and notation be as in Theorem 5.7.1. Then

$$
\begin{equation*}
\left.h_{j, k}^{\mu}\right|_{0}=\left.\frac{\partial^{2} \phi_{\mu}}{\partial z_{j} \partial z_{k}}\right|_{0}, \quad j, k \in\{1,2, \ldots, n, N+1\} \tag{5.49}
\end{equation*}
$$

where $I I_{M}=h_{j k}^{\mu} \omega^{j} \omega^{k} \otimes \underline{e_{\mu}}$ is the $C R$ second fundamental form.

Theorem 5.7.2 [HJO9] Let $F \in \operatorname{Prop}_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$. Then its geometric rank κ_{0} equals to

$$
\kappa_{0}=\sup _{p \in \partial \mathbb{H}^{n+1}}\left[n-\operatorname{dim}_{\mathbb{C}}\left\{\nu \mid I I_{M, F(p)}(\nu, \nu)=0\right\}\right]
$$

where $I I_{M, F(p)}$ is the $C R$ second fundamental form of the submanifold M at the point $F(p)$. Here $\left\{\nu \mid I I_{X, F(p)}(\nu, \nu)=0\right\}$ is a vector space over \mathbb{C}.

Corollary 5.7.3 Let $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n}, \mathbb{H}^{N}\right)$. Then

$$
\kappa_{0}=0 \quad \Longleftrightarrow \quad I I_{M}=0
$$

Going back to Theorem 5.2.1. We have a lemma:
Lemma 5.7.4 Let $H: M^{\prime} \rightarrow \partial \mathbb{H}^{N+1}$ be a $C R$ smooth embedding where M^{\prime} is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1}. We denote $M=H\left(M^{\prime}\right)$. Then the following statements are equivalent:
(i) The $C R$ second fundamental form $I I_{M}$ by Definition A identically vanishes.
(ii) The $C R$ second fundamental form $I I_{M}$ by Definition B identically vanishes.
(iii) The $C R$ second fundamental form $I I_{M}$ by Definition C identically vanishes.
(iv) The $C R$ second fundamental form $I I_{M}$ by Definition D identically vanishes.

Lemma 5.7.5 (cf. [EHZ04], corollary 5.5) Let $H: M^{\prime} \rightarrow M \hookrightarrow \partial \mathbb{H}^{N+1}$ be a smooth $C R$ embedding of a strictly pseudoconvex smooth real hypersurface $M \subset \mathbb{C}^{n+1}$. Denote by $\left(\omega_{\alpha}{ }^{\mu}{ }_{\beta}\right)$ the $C R$ second fundamental form matrix of H relative to an admissible coframe $\left(\theta, \theta^{A}\right)$ on $\partial \mathbb{H}^{N+1}$ adapted to M. If $\omega_{\alpha}^{\mu}{ }_{\beta} \equiv 0$ for all α, β and μ, then M^{\prime} is locally $C R$-equivalent to $\partial \mathbb{H}^{n+1}$.

To prove Theorem 5.2.1, we apply Lemma 5.7.4 and Lemma 5.7.5 and the hypothesis that the CR second fundamental form identically vanishes to know that M is locally CR equivalent to $\partial \mathbb{H}^{n+1}$.

Then M is the image of a local smooth CR map $F: U \subset \partial \mathbb{H}^{n+1} \rightarrow M \subset \partial \mathbb{H}^{N+1}$ where U is a open set in $\partial \mathbb{H}^{n+1}$. By a result of Forstneric[Fo89], the map F must be a rational map. It suffices to prove that F is equivalent to a linear map. By the fact that F is linear if and only if its geometric rank is zero, it is sufficient to prove that the geometric rank of F is zero: $\kappa_{0}=0$. This can be done by applying Theorem 5.7.2.

Bibliography

[A77] H. Alexander, Proper holomorphic maps in \mathbb{C}^{n}, Indiana Univ. Math. Journal, 26(1977), 137 - 146.
[B43] Bochner, S. Analytic and meromorphic continuation by means of Green's formula. Ann. of Math. (2) 44, (1943). 652-673.
[BM48] S. Bochner and W.T. Martin, Several complex variables, Princeton University Press, 1948.
[Bo75] Boutet de Monvel, L., Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974-1975; quations aux derivées partielles linéaires et non lináires, pp. Exp. No. 9, 14 pp.
[Bog91] A. Boggess, CR manifolds and the Tangential Cauchy-Riemann Complex, CRC PRESS, 1991.
[Ca32] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl., (4)11: 17-29, 1932; II. Ann. Scuola Norm. Sup. Pisa, (2) 1: 333-354, 1932.
[CJX06] Z. Chen, S. Ji and D. Xu, Rational proper holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N} with degree 2, Science in China: Series A Mathematics, 2006 Vol. 49 No. 11, 1504-1522.
[CJ96] S. S. Chern and S. Ji, On the Riemann mapping theorem, Annl. of Math., 144(1996), 421-439.
[CM74] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219-271.
[CS83] J.A. Cima, and T.J. Suffridge, A reflection principle with applications to proper holomorphic mappings, Math. Ann. 265(1983), no. 4, 489-500.
[CS90] J.A. Cima and T. J. Suffridge, Boundary behavior of rational proper maps, Duke Math. J. 60(1990), 135-138.
[DA88] J. P. D'Angelo, Proper holomorphic mappings between balls of different dimensions, Mich. Math. J. 35(1988), 83-90.
[DA92] J. P. D'Angelo, Polynomial proper holomorphic mappings between balls, II. Michigan Math. J. 38(1991), no. 1, 53-65.
[DA93] J. P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, 1993.
[DA93b] J. P. D'Angelo, The structure of proper rational holomorphic maps between balls, Several complex variables (Stockholm, 1987/1988), 227-244, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993.
[DKR 03] D'Angelo, John P.; Kos Šimon and Riehl, Emily, A sharp bound for the degree of proper monomial mappings between balls. J. Geom. Anal. 13(2003), no. 4, 581-593.
[EHZ04] P. Ebenfelt, X. Huang and D. Zaitsev, Rigidity of CR-immersions into spheres. Comm. Anal. Geom. 12(2004), no. 3, 631-670.
[EHZ05] P. Ebenfelt, X. Huang and D. Zaitsev, The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. Jour. Math. 127, 1(2005), 169-192.
[Fa82] J. Faran, Maps from the two ball to the three ball, Invent. Math. 68(1982), 441 - 475.
[Fa86] J. Faran, The linearity of proper holomorphic maps between balls in the low codimension case, J. Differential Geom. 24 (1986), 15-17.
[Fa88] J. Faran, The nonembeddability of real hypersurfaces in sphere, Proc. A.M.S. 103(1988), 902-904.
[Fa90] J. Faran, A reflection principle for proper holomorphic mappings and geometric invariants, Math. Z. 203 (1990), 363-377.
[FHJZ2010] J. Faran, X. Huang, S. Ji, and Y. Zhang, Rational and polynomial maps between balls, Pure and Applied Mathematics Quarterly, vol. 6, num. 3 (2010), p.829-842.
[Fe74] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26, 1-65, 1974.
[Fo86] [Fo86] F. Forstnerič, Proper holomorphic maps from balls, Duke Math. J. 53(1986), no. 2, 427-441.
[Fo86b] F. Forstnerič, Embedding strictly pseudoconvex domains into balls, Trans. A.M.S. 295(1986), 347-368.
[Fo89] F. Forstnerič, Extending proper holomorphic mappings of positive codimension, Invent. Math., 95(1989), 31-62.
[Fo93] F. Forstnerič, Proper holomorphic mappings: a survey. Several complex variables (Stockholm, 1987/1988), 297-363, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993.
[KO06] S.Y. Kim and J.W. Oh, Local embeddability of pseudohermitian manifolds into spheres. Math. Ann. 334 (2006), no. 4, 783-807.
[H99] X. Huang, On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions, J. of Diff. Geom. 51(1999), 13-33.
[H03] X. Huang, On a semi-rigidity property for holomorphic maps, Asian J. Math. Vol(7) No. 4(2003), 463-492.
[HJ98] X. Huang and S. Ji, Global holomorphic extension of a local map and a Riemann mapping theorem for algebraic domains, Math. Research Letter, 5(1998), 247-260.
[HJ01] X. Huang and S. Ji, Mapping \mathbb{B}^{n} into $\mathbb{B}^{2 n-1}$, Invent Math, 145(2001), 219-250.
[HJ07] X. Huang and S. Ji, On some rigidity problems in Cauchy-Riemann Geometry, AMS/IP Studies in Advanced Mathematics, Volume 39, 2007, 89-107.
[HJ09] X. Huang and S. Ji, A linearity criterion for maps from \mathbb{B}^{n+1} to $\mathbb{B}^{4 n-3}$, preprint.
[HJX05] X. Huang, S. Ji, and D. Xu, Several results for holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N}, Geometric analysis of PDE and several complex variables, 267-292, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005.
[HJX06] X. Huang, S. Ji and D. Xu, A new gap phenomenon for proper holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N}, Math. Research Letter, 13(2006), no.4, 509-523.
[HJY09] X. Huang, S. Ji and W. Yin, Recent prograss on two problems in several complex variables, ICCM Proceeding (International Congress of Chinese Mathematicians), vol. I, 563-575, 2009.
[HJY09] X. Huang, S. Ji and W. Yin, The third gap for proper holomorphic maps between balls, preprint.
[IL03] T.A. Ivey and J.M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems. Graduate Studies in Mathematics, 61. American Mathematical Society, Providence, RI, 2003. xiv+378 pp.
[J09] S. Ji, A new proof for Faran's Theorem, to appear in: Recent Advancs in Geometric Analysis, ALM 11, p.101-127, 2009.
[JX04] S. Ji and D. Xu, Maps between \mathbb{B}^{n} and \mathbb{B}^{N} with Geometric Rank κ_{0} less than $n-1$ and Minimum N, Asian J. Math, Vol.8, No.2(2004), 233-258.
[JY09] S. Ji and Y. Yuan, Flatness of CR submanifolds in a sphere, submitted.
[JZ09] S. Ji and Y. Zhang, Classification of rational proper holomorphic mappings from B2 into $B N$ with degree 2, to appear in: Science in China: Series A Mathematics, vol.52, 2009.
[La01] B. Lamel, A reflection principle for real-analytic submanifolds of complex spaces, J. Geom. Anal. 11, no. 4, 625-631, (2001).
[Le09] J. Lebl, Normal forms, Hermitian operators, and CR maps of sphere and hyperquadrics, preprint, 2009.
[P07] H. Poincaré, Les fonctions analytiques de deux variables et la representation conforme, Ren. Cire. Mat. Palermo. II. Ser. 23 (1907), 185-220.
[T62] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14(1962), 397-429.
[T75] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.
[Wa06] S.H. Wang, A gap rigidity for proper holomorphic maps from \mathbb{B}^{n+1} to $\mathbb{B}^{3 n-1}$. arXiv.math/0604382v1 [math.DC], 2006.
[W78] S.M. Webster Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), no. 1, 25-41.
[W78b] Webster, S. M. Some birational invariants for algebraic real hypersurfaces. Duke Math. J. 45 (1978), no. 1, 39-46.
[W79] S.M. Webster The rigidity of CR hypersurfaces in a sphere. Indiana Univ. Math. J. 28 (1979), no. 3, 405-416.
[Za08] D. Zaitsev, Obstructions to embeddability into hyperquadrtics and explicit examples. Math Ann, 342(2088), 695-726.

Shanyu Ji (shanyuji@math.uh.edu), Department of Mathematics, University of Houston, Houston, TX 77204;

[^0]: ${ }^{1}$ The most simplest real hypersurface is a hyperplane $M=\left\{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} \mid \operatorname{Im}(w)=0\right\}$, but it is not interesting. We will focus on Levi nondegenerate real hypersurfaces.

[^1]: ${ }^{2}$ To apply the Implicit Function Theorem, one needs the condition " $d \rho_{1}(z), \ldots, d \rho_{d}(z)$ are linearly independent", i.e., $d \rho_{1}(z) \wedge \ldots \wedge d \rho_{d}(z) \neq 0, \forall z$. Notice

 $$
 d \rho_{1} \wedge \ldots \wedge d \rho_{d} \neq 0 \Leftarrow \text { but } \nRightarrow \partial \rho_{1} \wedge \ldots \wedge \partial \rho_{d} \neq 0
 $$

 If $\partial \rho_{1} \wedge \ldots \wedge \partial \rho_{d} \neq 0$ holds, we say that M is generic.

[^2]: ${ }^{3}$ The defining function ρ can have two choices with \pm signs, and we chose it so that $\mathbb{H}^{n}=\{\rho<0\}$. Also contact form θ can have two choices with \pm signs, and we choose it so that $d \theta=i h_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \overline{z^{\beta}}$ where ($h_{\alpha \bar{\beta}}$) is positive definite.

[^3]: ${ }^{4}$ In general ζ may not be real-valued. But when $w \in M$, then $\zeta=\operatorname{Re}(w)$ is real-valued.

[^4]: ${ }^{1}$ Notice that the geometric rank $\kappa_{0}=0$ if and only if $\left.\left(\phi_{p}^{* *}\right)_{z_{j} z_{k}}^{\prime \prime}\right|_{0}=0, \forall j, k$. In fact, by (2.72), this condition implies $\mathcal{A}(p)=0$.

[^5]: ${ }^{1}$ For the definition of $F^{* * *}$, see $\S 4.1$. It means here that the coefficient of the z^{2} term of ϕ is 1 .

[^6]: ${ }^{1}$ Cartan's lemma: Let v_{1}, \ldots, v_{k} are linearly independent vectors and let w_{1}, \ldots, w_{k} are vectors such that $w_{1} \wedge v_{1}+\ldots+w_{k} \wedge v_{k}=0$, then $w_{i}=\sum_{j} h_{i j} v_{j}$ where $h_{i j}=h_{j i}, 1 \leq i, j \leq k$.

