Flatness of CR Submanifolds in a Sphere

Shanyu Ji and Yuan Yuan February 4, 2010

Dedicated to Professor Yang, Lo in the Occasion of his 70th Birthday

1 Introduction

The Cartan-Janet theorem asserted that for any analytic Riemannian manifold (M^n,g) , there exist local isometric embeddings of M^n into Euclidean space \mathbb{E}^N as N is sufficiently large. The CR analogue of Cartan-Janet theorem is not true in general. In fact, Forstneric [F086] and Faran [Fa88] proved the existence of real analytic strictly pseudoconvex hypersurfaces $M^{2n+1} \subset \mathbb{C}^{n+1}$ which do not admit any germ of holomorphic mapping taking M into sphere $\partial \mathbb{B}^{N+1}$ for any N.

There are recent progress on CR submanifolds in sphere $\partial \mathbb{B}^{N+1}$. Zaitsev [Za08] constructed explicit examples for the Forstneric and Faran phenomenon above. Ebenfelt, Huang and Zaitsev [EHZ04] proved rigidity of CR embeddings of general M^{2n+1} into spheres with CR co-dimension $<\frac{n}{2}$, which generalizes a result of Webster [We79] for the case of co-dimension one. S.-Y. Kim and J.-W. Oh [KO06] gave a necessary and sufficient condition for local embeddability into a sphere $\partial \mathbb{B}^{N+1}$ of a generic strictly pseudoconvex psuedohermitian CR manifold (M^{2n+1}, θ) in terms of its Chern-Moser curvature tensors and their derivatives.

In Euclidean geometry, for a real submanifold $M^n \subset \mathbb{E}^{n+a}$, M is a piece of \mathbb{E}^n if and only if its second fundamental form $II_M \equiv 0$. In projective geometry, for a complex submanifold $M^n \subset \mathbb{CP}^{n+a}$, M is a piece of \mathbb{CP}^n if and only if its projective second fundamental form $II_M \equiv 0$ (c.f. [IL03], p.81). In CR geometry, we prove the CR analogue of this fact in this paper as follows:

Theorem 1.1 Let $H: M' \to \partial \mathbb{B}^{N+1}$ be a smooth CR-embedding of a strictly pseudoconvex CR real hypersurface $M' \subset \mathbb{C}^{n+1}$. Denote M:=H(M'). If its CR second fundamental

form $II_M \equiv 0$, then $M \subset F(\partial \mathbb{B}^{n+1}) \subset \partial \mathbb{B}^{N+1}$ where $F : \mathbb{B}^{n+1} \to \mathbb{B}^{N+1}$ is a certain linear fractional proper holomorphic map.

Previously, it was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary 5.5), under the above same hypothese, that M' and hence M are locally CR-equivalent to the unit sphere $\partial \mathbb{B}^{n+1}$ in \mathbb{C}^{n+1} .

There are several definitions of the CR second fundamental forms II_M of M (see Section 3, 4, 5, and 6). The result in [EHZ04] used Definition 1 or 2. However, to prove Theorem 1.1, we need to use Definitions 3 and 4. We'll prove in Section 4 that $II_M \equiv 0$ by any one of the four definitions will imply $II_M \equiv 0$ for all other three definitions. One of the ingredients for our proof of Theorem 1.1 is the result of Ebenfelt-Huang-Zaitsev [EHZ04] so that M can be regarded as the image of a rational CR map $F: \partial \mathbb{H}^{n+1} \to M \subset \partial \mathbb{H}^{N+1}$. Another ingredient is a theorem of Huang ([Hu99]) that such a map F is linear if and only if its geometric rank κ_0 is zero. The idea about special lifts for maps between spheres was also used in [HJY09].

Acknowledgments We would like to thank Professor Xiaojun Huang for the constant encouragement and support. The second author is also grateful to Wanke Yin and Yuan Zhang for helpful discussions.

2 Preliminaries

• Maps between balls We denote by $Prop(\mathbb{B}^n, \mathbb{B}^N)$ the space of all proper holomorphic maps from the unit ball $\mathbb{B}^n \subset \mathbb{C}^n$ to \mathbb{B}^N , denote by $Prop_k(\mathbb{B}^n, \mathbb{B}^N)$ the space $Prop(\mathbb{B}^n, \mathbb{B}^N) \cap C^k(\overline{\mathbb{B}^n})$, and denote by $Rat(\mathbb{B}^n, \mathbb{B}^N)$ the space $Prop(\mathbb{B}^n, \mathbb{B}^N) \cap \{rational\ maps\}$. We say that F and $G \in Prop(\mathbb{B}^n, \mathbb{B}^N)$ are equivalent if there are automorphisms $\sigma \in Aut(\mathbb{B}^n)$ and $\tau \in Aut(\mathbb{B}^N)$ such that $F = \tau \circ G \circ \sigma$.

Write $\mathbb{H}^n := \{(z,w) \in \mathbb{C}^{n-1} \times \mathbb{C} : \operatorname{Im}(w) > |z|^2\}$ for the Siegel upper-half space. Similarly, we can define the space $\operatorname{Prop}(\mathbb{H}^n, \mathbb{H}^N)$, $\operatorname{Prop}_k(\mathbb{H}^n, \mathbb{H}^N)$ and $\operatorname{Rat}(\mathbb{H}^n, \mathbb{H}^N)$ similarly. By the Cayley transformation $\rho_n : \mathbb{H}^n \to \mathbb{B}^n$, $\rho_n(z,w) = (\frac{2z}{1-iw}, \frac{1+iw}{1-iw})$, we can identify a map $F \in \operatorname{Prop}_k(\mathbb{B}^n, \mathbb{B}^N)$ or $\operatorname{Rat}(\mathbb{B}^n, \mathbb{B}^N)$ with $\rho_N^{-1} \circ F \circ \rho_n$ in the space $\operatorname{Prop}_k(\mathbb{H}^n, \mathbb{H}^N)$ or $\operatorname{Rat}(\mathbb{H}^n, \mathbb{H}^N)$, respectively. We say that F and $G \in \operatorname{Prop}(\mathbb{H}^n, \mathbb{H}^N)$ are equivalent if there are automorphisms $\sigma \in \operatorname{Aut}(\mathbb{H}^n)$ and $\tau \in \operatorname{Aut}(\mathbb{H}^N)$ such that $F = \tau \circ G \circ \sigma$.

We denote by $\partial \mathbb{H}^n = \{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} : \operatorname{Im}(w) = |z|^2\}$ for the Heisenberg hypersurface. For any map $F \in \operatorname{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$, by restricting on $\partial \mathbb{H}^n$, we can regard F as a C^2 CR map from $\partial \mathbb{H}^n$ to $\partial \mathbb{H}^N$.

We can parametrize $\partial \mathbb{H}^n$ by (z, \overline{z}, u) through the map $(z, \overline{z}, u) \to (z, u + i|z|^2)$. In what follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-negative

integer m, a function $h(z, \overline{z}, u)$ defined over a small ball U of 0 in $\partial \mathbb{H}^n$ is said to be of quantity $o_{wt}(m)$ if $\frac{h(tz, t\overline{z}, t^2u)}{|t|^m} \to 0$ uniformly for (z, u) on any compact subset of U as $t \in \mathbb{R} \to 0$.

• Partial normalization of F Let $F = (f, \phi, g) = (\widetilde{f}, g) = (f_1, \dots, f_{n-1}, \phi_1, \dots, \phi_{N-n}, g)$ be a non-constant map in $Prop_2(\mathbb{H}^n, \mathbb{H}^N)$ with F(0) = 0. For each $p \in \partial \mathbb{H}^n$, we write $\sigma_p^0 \in \operatorname{Aut}(\mathbb{H}^n)$ with $\sigma_p^0(0) = p$ and $\tau_p^F \in \operatorname{Aut}(\mathbb{H}^N)$ with $\tau_p^F(F(p)) = 0$ for the maps

$$\sigma_p^0(z, w) = (z + z_0, w + w_0 + 2i\langle z, \overline{z_0} \rangle), \tag{1}$$

$$\tau_p^F(z^*, w^*) = (z^* - \widetilde{f}(z_0, w_0), w^* - \overline{g(z_0, w_0)} - 2i\langle z^*, \overline{\widetilde{f}(z_0, w_0)} \rangle). \tag{2}$$

F is equivalent to $F_p = \tau_p^F \circ F \circ \sigma_p^0 = (f_p, \phi_p, g_p)$. Notice that $F_0 = F$ and $F_p(0) = 0$. The following is basic for the understanding of the geometric properties of F.

Lemma 2.1 (§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a non-constant map in $Prop_2(\mathbb{H}^n, \mathbb{H}^N)$, $2 \le n \le N$ with F(0) = 0. For each $p \in \partial \mathbb{H}^n$, there is an automorphism $\tau_p^{**} \in Aut_0(\mathbb{H}^N)$ such that $F_p^{**} := \tau_p^{**} \circ F_p$ satisfies the following normalization:

$$f_p^{**} = z + \frac{i}{2} a_p^{**(1)}(z) w + o_{wt}(3), \quad \phi_p^{**} = \phi_p^{**(2)}(z) + o_{wt}(2), \quad g_p^{**} = w + o_{wt}(4),$$

$$\langle \overline{z}, a_p^{**(1)}(z) \rangle |z|^2 = |\phi_p^{**(2)}(z)|^2.$$
(3)

Let $\mathcal{A}(p) = -2i(\frac{\partial^2 (f_p)_{l}^{**}}{\partial z_j \partial w}|_0)_{1 \leq j,l \leq n-1}$. We call the rank of $\mathcal{A}(p)$, which we denote by $Rk_F(p)$, the geometric rank of F at p. $Rk_F(p)$ depends only on p and F, and is a lower semi-continuous function on p. We define the geometric rank of F to be $\kappa_0(F) = max_{p \in \partial \mathbb{H}^n}Rk_F(p)$. Notice that we always have $0 \leq \kappa_0 \leq n-1$. We define the geometric rank of $F \in \operatorname{Prop}_2(\mathbb{B}^n, \mathbb{B}^N)$ to be the one for the map $\rho_N^{-1} \circ F \circ \rho_n \in \operatorname{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$.

Lemma 2.2 (ct. [Hu99], theorem 4.3) $F \in Prop_2(\mathbb{B}^n, \mathbb{B}^N)$ has geometric rank 0 if and only if F is equivalent to a linear map.

Denote by $S_0 = \{(j,l) : 1 \le j \le \kappa_0, 1 \le l \le (n-1), j \le l\}$ and write $S := \{(j,l) : (j,l) \in S_0, \text{ or } j = \kappa_0 + 1, l \in \{\kappa_0 + 1, \dots, \kappa_0 + N - n - \frac{(2n - \kappa_0 - 1)\kappa_0}{2}\}\}.$

Lemma 2.3 ([Lemma 3.2, Hu03]): Let F be a C^2 -smooth CR map from an open piece $M \subset \partial \mathbb{H}^n$ into $\partial \mathbb{H}^N$ with F(0) = 0 and $Rk_F(0) = \kappa_0$. Let $P(n, \kappa_0) = \frac{\kappa_0(2n - \kappa_0 - 1)}{2}$. Then $N \geq n + P(n, \kappa_0)$ and there are $\sigma \in Aut_0(\partial \mathbb{H}^n)$ and $\tau \in Aut_0(\partial \mathbb{H}^N)$ such that $F_p^{***} = \tau \circ F \circ \sigma := (f, \phi, g)$ satisfies the following normalization conditions:

$$\begin{cases}
f_{j} = z_{j} + \frac{i\mu_{j}}{2}z_{j}w + o_{wt}(3), & \frac{\partial^{2}f_{j}}{\partial w^{2}}(0) = 0, \ j = 1 \cdots, \kappa_{0}, \ \mu_{j} > 0, \\
f_{j} = z_{j} + o_{wt}(3), & j = \kappa_{0} + 1, \cdots, n - 1 \\
g = w + o_{wt}(4), \\
\phi_{jl} = \mu_{jl}z_{j}z_{l} + o_{wt}(2), & where \ (j, l) \in \mathcal{S} \ with \ \mu_{jl} > 0 \ for \ (j, l) \in \mathcal{S}_{0} \\
and \mu_{jl} = 0 \ otherwise
\end{cases}$$
(4)

where $\mu_{jl} = \sqrt{\mu_j + \mu_l}$ for $j, l \le \kappa_0$ $j \ne l$, $\mu_{jl} = \sqrt{\mu_j}$ if $j \le \kappa_0$ and $l > \kappa_0$ or if $j = l \le \kappa_0$.

• Pseudohermitian metric and Webster connection Let M be a C^2 smooth real hypersurface in \mathbb{C}^{n+1} . We denote by $T^cM = TM \cap iTM \subset TM$ its maximal complex tangent bundle with the complex structure $J: T^cM \to T^cM$. Here $J(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial y_j}$ and $J(\frac{\partial}{\partial y_j}) = -\frac{\partial}{\partial x_j}$ in terms of holomorphic coordinates. We denote by $\mathcal{V} = T^{0,1}M = \{X + iJX \mid X \in T^cM\} \subset \mathbb{C}TM := TM \otimes \mathbb{C}$ the CR bundle. We also denote $T^{1,0}M = \overline{\mathcal{V}}$. All T^cM , \mathcal{V} and $\overline{\mathcal{V}}$ are complex rank n vector bundles.

Write $T^0M := (T^{1,0}M \oplus T^{0,1}M)^{\perp} \subset \mathbb{C}T^*M$ for its rank one subbundle. Write $T'M := T^{0,1}^{\perp} \subset \mathbb{C}T^*M$ for its rank n+1 holomorphic or (1,0) cotangent bundle of M. Here $T^0 \subset T'M$.

A real nonvanishing 1-form θ over M is called a *contact form* if $\theta \wedge (d\theta)^n \neq 0$. Let M be as above given by a defining function r. Then the 1-form $\theta = i\partial r$ is a contact form of M.

We say that (M, θ) is *strictly pseudoconvex* if the Levi-form L_{θ} is positive definite for all $z \in M$. Here the *Levi-form* L_{θ} with respect to θ is defined by

$$L_{\theta}(\vec{u}, \overline{\vec{v}}) := -id\theta(\vec{u} \wedge \overline{\vec{v}}), \quad \forall \vec{u}, \vec{v} \in T_n^{1,0}(M), \ \forall p \in M.$$

Associated with a contact form θ one has the Reeb vector field R_{θ} , defined by the equations: (i) $d\theta(R_{\theta}, \cdot) \equiv 0$, (ii) $\theta(R_{\theta}) \equiv 1$. As a skew-symmetric form of maximal rank 2n, the form $d\theta|_{T_pM}$ has a 1- dimensional kernel for each $p \in M^{2n+1}$. Hence equation (i) defines a unique line field $\langle R_{\theta} \rangle$ on M. The contact condition $\theta \wedge (d\theta)^n \neq 0$ implies that θ is non-trivial on that line field, so the unique real vector field is defined by the normalization condition (ii).

According Tanaka [T75] and Webester [We78], (M, θ) is called a *strictly pseudoconvex* pseudohermitian manifold if there are n complex 1-forms θ^{α} so that $\{\theta^1, ..., \theta^n\}$ forms a local basis for holomorphic cotangent bundle $H^*(M)$ and

$$d\theta = i \sum_{\alpha,\beta=1}^{n} h_{\alpha\overline{\beta}} \theta^{\alpha} \wedge \theta^{\overline{\beta}}$$
 (5)

where $(h_{\alpha\overline{\beta}})$, called the *Levi form matrix*, is positive definite. Such θ^{α} may not be unique. Following Webster [We78], a coframe $(\theta, \theta^{\alpha})$ is called *admissible* if (5) holds. The admissible coframes are determined up to transformations $\widetilde{\theta}^{\alpha} = u_{\beta}^{\alpha}\theta^{\beta}$ where $(u_{\beta}^{\alpha}) \in GL(\mathbb{C}^n)$.

Theorem 2.4 (Webster, [We78]) Let (M^{2n+1}, θ) be a strictly pseudoconvex pseudohermitian manifold and let θ^j be as in (5). Then there are unique way to write

$$d\theta^{\alpha} = \sum_{\gamma=1}^{n} \theta^{\gamma} \wedge \omega_{\gamma}^{\alpha} + \theta \wedge \tau^{\alpha}, \tag{6}$$

where τ^{α} are (0,1)-forms over M that are linear combination of $\theta^{\overline{\alpha}} = \overline{\theta^{\alpha}}$, and ω_{α}^{β} are 1-forms over M such that

$$0 = dh_{\alpha\overline{\beta}} - h_{\gamma\overline{\beta}}\omega_{\alpha}^{\gamma} - h_{\alpha\overline{\gamma}}\omega_{\overline{\beta}}^{\overline{\gamma}}.$$
 (7)

We may denote $\omega_{\alpha\overline{\beta}} = h_{\gamma\overline{\beta}}\omega_{\alpha}^{\gamma}$ and $\overline{\omega_{\beta\overline{\alpha}}} = h_{\alpha\overline{\gamma}}\omega_{\overline{\beta}}^{\overline{\gamma}}$. In particular, if

$$h_{\alpha\beta} = \delta_{\alpha\beta},$$
 (8)

the identity in (7) becomes $0 = -\omega_{\alpha\overline{\beta}} - \overline{\omega_{\beta\overline{\alpha}}}$, i.e.,

$$0 = \omega_{\alpha}^{\beta} + \omega_{\overline{\beta}}^{\overline{\alpha}}.$$
 (9)

The condition on τ^{β} means:

$$\tau^{\beta} = A^{\beta}_{\overline{\nu}} \theta^{\overline{\nu}}, \quad A^{\alpha\beta} = A^{\beta\alpha}, \tag{10}$$

which holds automatically. The curvature is given by

$$d\omega_{\alpha}^{\ \beta} - \omega_{\alpha}^{\ \gamma} \wedge \omega_{\gamma}^{\ \beta} = R_{\alpha}^{\ \beta}_{\ \mu\overline{\nu}} \theta^{\mu} \wedge \theta^{\overline{\nu}} + W_{\alpha}^{\ \beta}_{\ \mu} \theta^{\mu} \wedge \theta - W^{\beta}_{\ \alpha\overline{\nu}} \theta^{\overline{\nu}} \wedge \theta + i\theta_{\alpha} \wedge \tau^{\beta} - i\tau_{\alpha} \wedge \theta^{\beta}$$
(11)

where the functions $R_{\alpha \mu \overline{\nu}}^{\beta}$ and $W_{\alpha \mu}^{\beta}$ represent the *pseudohermitian curvature* of (M, θ) .

3 CR second fundamental forms — Definition 1

We are going to survey four definitions of the CR second fundamental forms II_M of M in $\partial \mathbb{H}^{N+1}$. We start with Definition 1 which is the intrinsic one in terms of a coframe.

Lemma 3.1 ([EHZ04], corollary 4.2) Let M and \widetilde{M} be strictly pseudoconvex CR-manifolds of dimensions 2n+1 and $2\widetilde{n}+1$ respectively, and of CR dimensions n and \widetilde{n} respectively. Let $F: M \to \widetilde{M}$ be a smooth CR-embedding. If $(\theta, \theta^{\alpha})$ is a admissible coframe on M, then in a neighborhood of a point $\widetilde{p} \in F(M)$ in \widetilde{M} there exists an admissible coframe $(\widetilde{\theta}, \widetilde{\theta}^A) = (\widetilde{\theta}, \widetilde{\theta}^{\alpha}, \widetilde{\theta}^{\mu})$ on \widetilde{M} with $F^*(\widetilde{\theta}, \widetilde{\theta}^{\alpha}, \widetilde{\theta}^{\mu}) = (\theta, \theta^{\alpha}, 0)$. In particular, the Reeb vector field \widetilde{R} is tangent to F(M). If we choose the Levi form matrix of M such that the functions $h_{\alpha\overline{\beta}}$ in (5) with respect to $(\theta, \theta^{\alpha})$ to be $(\delta_{\alpha\overline{\beta}})$, then $(\widetilde{\theta}, \widetilde{\theta}^A)$ can be chosen such that the Levi form matrix of \widetilde{M} relative to it is also $(\delta_{A\overline{B}})$. With this additional property, the coframe $(\widetilde{\theta}, \widetilde{\theta}^A)$ is uniquely determined along M up to unitary transformations in $U(n) \times U(\widetilde{n} - n)$.

If $(\theta, \theta^{\alpha})$ and $(\widetilde{\theta}, \widetilde{\theta}^{A})$ are as above such that the condition on the Levi form matrices in Lemma 3.1 are satisfied, we say that the coframe $(\widetilde{\theta}, \widetilde{\theta}^{A})$ is adapted to the coframe $(\theta, \theta^{\alpha})$. In this case, by (9), we have $\theta = F^*\widetilde{\theta}$, $\theta^{\alpha} = F^*\widetilde{\theta}^{\alpha}$, and

$$d\theta^{\alpha} = \sum_{\gamma=1}^{n} \theta^{\gamma} \wedge \omega_{\gamma}^{\alpha} + \theta \wedge \tau^{\alpha}, \quad 0 = \omega_{\alpha}^{\beta} + \omega_{\overline{\beta}}^{\overline{\alpha}}, \quad \forall 1 \leq \alpha, \beta \leq n,$$

and

$$d\widetilde{\theta}^A = \sum_{R=1}^{\widetilde{n}} \widetilde{\theta}^C \wedge \widetilde{\omega}_C^A + \widetilde{\theta} \wedge \widetilde{\tau}^A, \quad 0 = \ \widetilde{\omega}_A^B + \widetilde{\omega}_{\overline{B}}^{\overline{A}}, \qquad \forall 1 \leq A, B \leq N.$$

For simplicity, we may denote $F^*\widetilde{\omega}_B^A$ by ω_B^A . We also denote $F^*\widetilde{\omega}_{A\overline{B}}$ by $\omega_{A\overline{B}}$ where $\omega_{A\overline{B}} = \omega_A^B$. Write $\omega_{\alpha}^{\ \mu} = \omega_{\alpha\beta}^{\ \mu}\theta^{\beta}$. The matrix of $(\omega_{\alpha\beta}^{\ \mu})$, $1 \le \alpha, \beta \le n, n+1 \le \mu \le \hat{n}$, defines the CR second fundamental form of M. It was used in [We79] and [Fa90].

4 CR second fundamental forms — Definition 2

Definition 2 introduced in [EHZ04] is the extrinsic one in terms of defining function.

Let $F: M \to \widetilde{M}$ be a smooth CR-embedding between $M \subset \mathbb{C}^{n+1}$ and $\widetilde{M} \subset \mathbb{C}^{N+1}$ where M and \widetilde{M} are real strictly pseudoconvex hypersurfaces of dimensions 2n+1 and $2\widetilde{n}+1$, and

CR dimensions n and \widetilde{n} , respectively. Let $p \in M$ and $\widetilde{p} = F(p) \in \widetilde{M}$ be points. Let $\widetilde{\rho}$ be a local defining function for \widetilde{M} near the point \widetilde{p} . Let

$$E_k(p) := span_{\mathbb{C}}\{L^{\bar{J}}(\widetilde{\rho}_{Z'} \circ F)(p) \mid J \in (Z_+)^n, 0 \leq |J| \leq k\} \subset T^{1,0}_{\widetilde{p}}\mathbb{C}^{N+1},$$

where $\widetilde{\rho}_{Z'} := \partial \widetilde{\rho}$ is the complex gradient (i.e., represented by vectors in \mathbb{C}^{N+1} in some local coordinate system Z' near \widetilde{p}). Here we use multi-index notation $L^{\overline{J}} = L_1^{\overline{J_1}} \cdots L_n^{\overline{J_n}}$ and $|J| = J_1 + \ldots + J_n$. It was shown in [La01] that $E_k(p)$ is independent of the choice of local defining function $\widetilde{\rho}$, coordinates Z' and the choice of basis of the CR vector fields $L_{\overline{1}}, \ldots, L_{\overline{n}}$. The CR second fundamental form II_M of M is defined by (cf. [EHZ04], §2)

$$II_{M}(X_{p}, Y_{p}) := \overline{\pi(XY(\widetilde{\rho}_{\overline{Z}'} \circ f)(p))} \in \overline{T'_{\widetilde{p}}M/E_{1}(p)}$$
(12)

where $\widetilde{\rho}_{\overline{Z}'} = \overline{\partial} \widetilde{\rho}$ is represented by vectors in \mathbb{C}^{N+1} in some local coordinate system Z' near $\widetilde{\rho}$, X, Y are any (1,0) vector fields on M extending given vectors $X_p, Y_p \in T_p^{1,0}(M)$, and $\pi: T_{\widetilde{p}}'\widetilde{M} \to T_{\widetilde{p}}'\widetilde{M}/E_1(p)$ is the projection map.

Since \widetilde{M} and M are strictly pseudoconvex, the Levi form of \widetilde{M} (at \widetilde{p}) with respect to $\widetilde{\rho}$ defines an isomorphism

$$\overline{T_{\widetilde{p}}'\widetilde{M}/E_1(p)} \cong T_{\widetilde{p}}^{1,0}\widetilde{M}/F_*(T_p^{1,0}M)$$

and the CR second fundamental form can be viewed as an C-linear symmetric form

$$II_{M,p}: T_p^{1,0}M \times T_p^{1,0}M \to T_{\widetilde{p}}^{1,0}\widetilde{M}/F_*(T_p^{1,0}M)$$
 (13)

that does not depend on the choice of $\widetilde{\rho}$ (cf.[EHZ04], §2).

The relation between Definition 1 and Definition 2 was discussed in [EHZ04]. Let (M, \widetilde{M}) , $(\theta, \theta^{\alpha}), (\widetilde{\theta}, \widetilde{\theta}^{A})$ be as in Lemma 3.1, and we abuse the structure bundle $(\theta, \theta^{\alpha})$ on M with the structure bundle $(\widetilde{\theta}, \widetilde{\theta}^{\alpha})$ on \widetilde{M} . We can choose a defining function $\widetilde{\rho}$ of \widetilde{M} near a point $\widetilde{p} = F(p) \in \widetilde{M}$ where $p \in M$ such that $\theta = i\overline{\partial}\widetilde{\rho}$ on \widetilde{M} , i.e., in local coordinates Z' in \mathbb{C}^{N+1} , we have

$$\theta = i \sum_{k=1}^{N+1} \frac{\partial \widetilde{\rho}}{\partial \overline{Z}'_k} d\overline{Z}'_k,$$

where we pull back the forms $d\overline{Z'_1}, ..., d\overline{Z'_{N+1}}$ to \widetilde{M} . Then we consider the coframe $(\theta, \theta^{\alpha}) = (F^*\widetilde{\theta}, F^*\widetilde{\theta}^{\alpha})$ on M near p with $F(p) = \widetilde{p}$. We take its dual frame (T, L_A) of (θ, θ^A) and have

$$L_{\beta}(\widetilde{\rho}_{\overline{Z}'} \circ F) = -iL_{\beta} d\theta = g_{\beta \overline{C}} \theta^{\overline{C}} = g_{\beta \overline{\gamma}} \theta^{\overline{\gamma}}. \tag{14}$$

Here we used the definition of the construction, (5) and the dual relationship $\langle L_{\beta}, \theta^{\alpha} \rangle = \delta_{\beta}^{\alpha}$ and also notice that $g_{\beta \overline{\gamma}} = \delta_{\beta \gamma}$. Applying L_{α} to both sides of (14), we obtain

$$L_{\alpha}L_{\beta}(\widetilde{\rho}_{\overline{Z}'} \circ F) = g_{\beta\overline{\gamma}}L_{\alpha} d\theta^{\overline{\gamma}} = \omega_{\alpha\overline{\mu}\beta}\theta^{\overline{\mu}} \quad mod(\theta, \theta^{\overline{\alpha}})$$

which implies

$$II_M(L_\alpha, L_\beta) = \omega_{\alpha\beta}^{\mu} L_\mu, \quad n+1 \le \mu \le N.$$
 (15)

This identity gives the equivalent relation of the intrinsic and extrinsic definitions of II_M . Notice that we need a right choice of $(\theta, \theta^{\alpha})$, (T, L_A) and $\tilde{\rho}$.

By using $(\omega_{\alpha\beta}^{b})$ and (15), as in (13), we can also define

$$II_{M,p}: T_p^{1,0}M \times T_p^{1,0}M \to T_{\widetilde{p}}^{1,0}\widetilde{M}/F_*(T_p^{1,0}M)$$
 (16)

which is independent of the choice of the adapted coframe (θ, θ^A) in case \widetilde{M} is locally CR embeddable in \mathbb{C}^{N+1} (cf. [EHZ04], § 4).

5 CR second fundamental forms — Definition 3

Definition 3 is the one as a tensor with respect to the group $GL^Q(\mathbb{C}^{N+2})$.

The bundle $GL^Q(\mathbb{C}^{N+2})$ over $\partial \mathbb{H}^{N+1}$ We consider a real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$\langle Z, Z \rangle := \sum_{A} Z^{A} \overline{Z^{A}} + \frac{i}{2} (\overline{Z^{0}} Z^{N+1} - Z^{0} \overline{Z^{N+1}}) = 0, \tag{17}$$

where $Z = (Z^{0}, Z^{A}, Z^{N+1})^{t} \in \mathbb{C}^{N+2}$. Let

$$\pi_0: \mathbb{C}^{N+2} - \{0\} \to \mathbb{CP}^{N+1}, \quad (z_0, ..., z_{N+1}) \mapsto [z_0: ...: z_{N+1}],$$
 (18)

be the standard projection. For any point $x \in \mathbb{CP}^{N+1}$, $\pi_0^{-1}(x)$ is a complex line in $\mathbb{C}^{N+2} - \{0\}$. For any point $v \in \mathbb{C}^{N+2} - \{0\}$, $\pi_0(v) \in \mathbb{CP}^{N+1}$ is a point. The image $\pi_0(Q - \{0\})$ is the Heisenberg hypersurface $\partial \mathbb{H}^{N+1} \subset \mathbb{CP}^{N+1}$.

For any element $A \in GL(\mathbb{C}^{N+2})$:

$$A = (a_0, ..., a_{N+1}) = \begin{bmatrix} a_0^{(0)} & a_1^{(0)} & ... & a_{N+1}^{(0)} \\ a_0^{(1)} & a_1^{(1)} & ... & a_{N+1}^{(1)} \\ \vdots & \vdots & & \vdots \\ a_0^{(N+1)} & a_1^{(N+1)} & ... & a_{N+1}^{(N+1)} \end{bmatrix} \in GL(\mathbb{C}^{N+2}),$$
(19)

where each a_j is a column vector in \mathbb{C}^{N+2} , $0 \leq j \leq N+1$. This A is associated to an automorphism $A^* \in Aut(\mathbb{CP}^{N+1})$ given by

$$A^{\star} \left(\left[z_0 : z_1 : \dots : z_{N+1} \right] \right) = \left[\sum_{j=0}^{N+1} a_j^{(0)} z_j : \sum_{j=0}^{N+1} a_j^{(1)} z_j : \dots : \sum_{j=0}^{N+1} a_j^{(N+1)} z_j \right]. \tag{20}$$

When $a_0^{(0)} \neq 0$, in terms of the non-homogeneous coordinates $(w_1, ..., w_n)$, A^* is a linear fractional from \mathbb{C}^{N+1} which is holomorphic near (0, ..., 0):

$$A^{\star}(w_1, ..., w_{N+1}) = \left(\frac{\sum_{j=0}^{N+1} a_j^{(1)} w_j}{\sum_{j=0}^{N+1} a_j^{(0)} w_j}, ..., \frac{\sum_{j=0}^{N+1} a_j^{(N+1)} w_j}{\sum_{j=0}^{N+1} a_j^{(0)} w_j}\right), \quad where \ w_j = \frac{z_j}{z_0}.$$
 (21)

We denote $A \in GL^Q(\mathbb{C}^{N+2})$ if A satisfies $A(Q) \subseteq Q$ where we regard A as a linear transformation of \mathbb{C}^{N+2} . If $A \in GL^Q(\mathbb{C}^{N+2})$, we must have $A^*(\partial \mathbb{H}^{N+1}) \subseteq \partial \mathbb{H}^{N+1}$, so that $A^* \in Aut(\partial \mathbb{H}^{N+1})$. Conversely, if $A^* \in Aut(\partial \mathbb{H}^{N+1})$, then $A \in GL^Q(\mathbb{C}^{N+2})$.

We define a bundle map:

$$\pi: GL(\mathbb{C}^{N+2}) \to \mathbb{CP}^{N+1}$$

 $A = (a_0, a_1, ..., a_{N+1}) \mapsto \pi_0(a_0).$

Then by (20), for any map $A \in GL(\mathbb{C}^{N+2})$, $A \in \pi^{-1}(\pi_0(a_0)) \iff A^*([1:0:...:0]) = \pi_0(a_0)$. In particular, by the restriction, we consider a map

$$\pi: GL^{Q}(\mathbb{C}^{N+2}) \to \partial \mathbb{H}^{N+1} A = (a_0, a_1, ..., a_{N+1}) \mapsto \pi_0(a_0).$$
 (22)

We get $\partial \mathbb{H}^{N+1} \simeq GL^Q(\mathbb{C}^{N+2})/P_1$ where P_1 is the isotropy subgroup of $GL^Q(\mathbb{C}^{N+2})$. Then by (20), for any map $A \in GL^Q(\mathbb{C}^{n+2})$,

$$A \in \pi^{-1}(\pi_0(a_0)) \iff A^*([1:0:...:0]) = \pi_0(a_0).$$
 (23)

CR submanifolds of $\partial \mathbb{H}^{N+1}$ Let $H: M' \to \partial \mathbb{H}^{N+1}$ be a CR smooth embedding where M' is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1} . We denote M = H(M').

Let $R_{M'}$ be the Reeb vector field of M' with respect to a fixed contact form on M'. Then the real vector $R_{M'}$ generates a real line bundle over M', denoted by $\mathcal{R}_{M'}$. Since we can regard the rank n complex vector bundle $T^{1,0}M'$ as the rank 2n real vector bundle, over the real number field \mathbb{R} we have:

$$TM' = T^c M' \oplus \mathcal{R}_{M'} \simeq T^{1,0} M' \oplus \mathcal{R}_{M'}. \tag{24}$$

given by

$$(a_j \frac{\partial}{\partial x_j}, b_j \frac{\partial}{\partial y_j}) + cR_{M'} \mapsto (a_j + ib_j) \frac{\partial}{\partial z_j} + cR_{M'}, \quad \forall a_j, b_j, c \in \mathbb{R}.$$
 (25)

Since H is a CR embedding, we have

$$H_*(T^{1,0}M') = T^{1,0}M \subset T^{1,0}(\partial \mathbb{H}^{N+1}), TM \simeq H_*(T^{1,0}M') \oplus H_*(\mathcal{R}_{M'}) \subset T(\partial \mathbb{H}^{N+1}).$$
 (26)

Lifts of the CR submanifolds Let $M = H(M') \subset \partial \mathbb{H}^{N+1}$ be as above. Consider the commutative diagram

$$\begin{array}{ccc} & GL^Q(\mathbb{C}^{N+2}) \\ & e \nearrow & \downarrow \pi \\ M & \hookrightarrow & \partial \mathbb{H}^{N+1} \end{array}$$

Any map e satisfying $\pi \circ e = Id$ is called a *lift* of M to $GL^Q(\mathbb{C}^{N+2})$.

In order to define a more specific lifts, we need to give some relationship between geometry on $\partial \mathbb{H}^{N+1}$ and on \mathbb{C}^{N+2} as follows. For any subset $X \subset \partial \mathbb{H}^{N+1}$, we denote $\hat{X} := \pi_0^{-1}(X)$ where $\pi_0 : \mathbb{C}^{N+2} - \{0\} \to \mathbb{CP}^{N+1}$ is the standard projection map (18). In particular, for any $x \in M$, \hat{x} is a complex line and for the real submanifold M^{2n+1} , the real submanifold \hat{M}^{2n+3} is of dimension 2n+3.

For any $x \in M$, we take $v \in \hat{x} = \pi_0^{-1}(x) \subset \mathbb{C}^{N+2} - \{0\}$, and we define

$$\hat{T}_x M = T_v \hat{M}, \quad \hat{T}_x^{1,0} M = T_v^{1,0} \hat{M}, \quad \hat{\mathcal{R}}_{M,x} := \mathcal{R}_{\hat{M},v}$$

where $\mathcal{R}_{\hat{M}} = \bigcup_{v \in \hat{M}} \mathcal{R}_{\hat{M},v}$. These definitions are independent of choice of v.

A lift $e = (e_0, e_\alpha, e_\mu, e_{N+1})$ of M into $GL^Q(\mathbb{C}^{N+2})$, where $1 \le \alpha \le n$ and $n+1 \le \mu \le N$, is called a *first-order adapted lift* if it satisfies the conditions:

$$e_0(x) \in \pi_0^{-1}(x), \quad span(e_0, e_\alpha)(x) = \hat{T}_x^{1,0}M, \quad span(e_0, e_\alpha, e_{N+1})(x) = \hat{T}_x^{1,0}M \oplus \hat{\mathcal{R}}_{M,x}$$
 (27)

where $span(e_0, e_\alpha)(x) = \mathbb{C} \otimes \{e_0 + a_\alpha e_\alpha + b e_{N+1} \mid a_\alpha \in \mathbb{C}, b \in \mathbb{R}\}|_x$, and

$$span(e_0, e_\alpha, e_{N+1})(x) := \mathbb{C} \otimes \{e_0 + a_\alpha e_\alpha + b e_{N+1} \mid a_\alpha \in \mathbb{C}, b \in \mathbb{R}\}|_x.$$
 (28)

Here we used (25) and the fact that the Reeb vector is real. Locally first-order adapted lifts always exist (see Theorem 7.1 below).

We have the restriction bundle $\mathcal{F}_M^0 := GL^Q(\mathbb{C}^{N+2})|_M$ over M. The subbundle $\pi : \mathcal{F}_M^1 \to M$ of \mathcal{F}_M^0 is defined by

$$\mathcal{F}_{M}^{1} = \{(e_0, e_j, e_\mu, e_{N+1}) \in \mathcal{F}_{M}^{0} \mid [e_0] \in M, (27) \text{ are satisfied}\}.$$

Local sections of \mathcal{F}_M^1 are exactly all local first-order adapted lifts of M.

For two first-order adapted lifts $s = (e_0, e_j, e_\mu, e_{N+1})$ and $\tilde{s} = (\tilde{e}_0, \tilde{e}_j, \tilde{e}_\mu, \tilde{e}_{N+1})$, by (27), we have

$$\begin{cases}
\widetilde{e}_{0} = g_{0}^{0} e_{0}, \\
\widetilde{e}_{j} = g_{j}^{0} e_{0} + g_{j}^{k} e_{k}, \\
\widetilde{e}_{\mu} = g_{\mu}^{0} e_{0} + g_{\mu}^{j} e_{j} + g_{\mu}^{\nu} e_{\nu} + g_{\mu}^{N+1} e_{N+1}, \\
\widetilde{e}_{N+1} = g_{N+1}^{0} e_{0} + g_{N+1}^{j} e_{j} + g_{N+1}^{N+1} e_{N+1},
\end{cases}$$
(29)

In other words, $\tilde{s} = s \cdot g$ where

$$g = (g_0, g_j, g_\mu, g_{N+1}) = \begin{pmatrix} g_0^0 & g_k^0 & g_\mu^0 & g_{N+1}^0 \\ 0 & g_k^j & g_\mu^j & g_{N+1}^j \\ 0 & 0 & g_\mu^\nu & 0 \\ 0 & 0 & g_\mu^{N+1} & g_{N+1}^{N+1} \end{pmatrix}$$
(30)

is a smooth map from M into $GL^Q(\mathbb{C}^{N+2})$. Then the fiber of $\pi: \mathcal{F}_M^1 \to M$ over a point is isomorphic to the group

$$G_{1} = \left\{ g = \begin{pmatrix} g_{0}^{0} & g_{\beta}^{0} & g_{\mu}^{0} & g_{N+1}^{0} \\ 0 & g_{\beta}^{\alpha} & g_{\mu}^{\alpha} & g_{N+1}^{\alpha} \\ 0 & 0 & g_{\mu}^{\nu} & 0 \\ 0 & 0 & g_{\mu}^{N+1} & g_{N+1}^{N+1} \end{pmatrix} \in GL^{Q}(\mathbb{C}^{N+2}) \right\},\,$$

where we use the index ranges $1 \le \alpha, \beta \le n$ and $n+1 \le \mu, \nu \le N$.

We pull back the Maurer-Cartan form from $GL^Q(\mathbb{C}^{N+2})$ to \mathcal{F}_M^1 by a first-order adapted lift e of M as

$$\omega = \begin{pmatrix} \omega_0^0 & \omega_\beta^0 & \omega_\nu^0 & \omega_{N+1}^0 \\ \omega_0^\alpha & \omega_\beta^\alpha & \omega_\nu^\alpha & \omega_{N+1}^\alpha \\ \omega_0^\mu & \omega_\beta^\mu & \omega_\nu^\mu & \omega_{N+1}^\mu \\ \omega_0^{N+1} & \omega_\beta^{N+1} & \omega_\nu^{N+1} & \omega_{N+1}^{N+1} \end{pmatrix}.$$

Since $\omega = e^{-1}de$, i.e., $e\omega = de$. Then we have

$$de_0 = e_0 \omega_0^0 + e_\alpha \omega_0^\alpha + e_\mu \omega_0^\mu + e_{N+1} \omega_0^{N+1}. \tag{31}$$

On the other hand, we have $de_0 \equiv 0 \mod\{e_0, e_\alpha, e_{N+1}\}$ when pullback to \mathcal{F}_M^1 . Then we conclude $\omega_0^\mu = 0$, $\forall \mu$. By the Maurer-Cartan equation $d\omega = -\omega \wedge \omega$, one gets $0 = d\omega_0^\nu = -\omega_\alpha^\nu \wedge \omega_0^\alpha - \omega_{N+1}^\nu \wedge \omega_0^{N+1}$, i.e., $0 = -\omega_\alpha^\nu \wedge \omega_0^\alpha$, $mod(\omega_0^{N+1})$. Then by Cartan's lemma,

$$\omega^{\nu}_{\beta} = q^{\nu}_{\alpha\beta}\omega^{\alpha}_{0} \mod(\omega^{N+1}_{0}),$$

for some functions $q_{\alpha\beta}^{\nu} = q_{\beta\alpha}^{\nu}$.

The CR second fundamental form In order to define the CR second fundamental form $II_M = II_M^s = q_{\alpha\beta}^{\mu}\omega_0^{\alpha}\omega_0^{\beta}\otimes\underline{e}_{\mu}$, $\operatorname{mod}(\omega_0^{N+1})$, let us define \underline{e}_{μ} as follows.

For any first-order adapted lift $e = (e_0, e_\alpha, e_\nu, e_{N+1})$ with $\pi_0(e_0) = x$, we have $e_\alpha \in \hat{T}^{1,0}_xM$. Recall $T_EG(k,V) \simeq E^* \otimes (V/E)$ where G(k,V) is the Grassmannian of k-planes that pass through the origin in a vector space V over \mathbb{R} or \mathbb{C} and $E \in G(k,V)$ ([IL03], p.73). Then $T_xM \simeq (\hat{x})^* \otimes (\hat{T}_xM/\hat{x})$ and hence the vector e_α induces $\underline{e_\alpha} \in T_x^{1,0}M$ by

$$\underline{e}_{\alpha} = e^{0} \otimes (e_{\alpha} \ mod(e_{0})),$$

where we denote by $(e^0, e^{\alpha}, e^{\mu}, e^{N+1})$ the dual basis of $(\mathbb{C}^{N+2})^*$. Similarly, we let

$$\underline{e}_{\mu} = e^{0} \otimes \left(e_{\mu} \bmod \hat{T}_{x} M \right) \in N_{x} M, \tag{32}$$

where $N_x M$ is the CR normal bundle of M defined by $N_x M = T_x(\partial \mathbb{H}^{N+1})/T_x M$.

By direct computation, we obtain a tensor

$$II_{M} = II_{M}^{e} = q_{\alpha\beta}^{\mu}\omega_{0}^{\alpha}\omega_{0}^{\beta} \otimes \underline{e}_{\mu} \in \Gamma(M, S^{2}T_{\pi_{0}(e_{0})}^{1,0*}M \otimes N_{\pi_{0}(e_{0})}M) \quad mod(\omega_{0}^{N+1}). \tag{33}$$

The tensor II_M is called the CR second fundamental form of M.

Pulling back a lift Let $M \subset \partial \mathbb{H}^{N+1}$ be as above with a point $Q_0 \in M$. Let $A \in GL^Q(\mathbb{C}^{N+2})$, $A^* \in Aut(\partial \mathbb{H}^{N+1})$ with $A^*(Q_0) = P_0$ and $\widetilde{M} = A^*(M)$. Let $\widetilde{s} : \widetilde{M} \to GL^Q(\mathbb{C}^{N+2})$ be a lift. We claim:

$$s := A^{-1} \cdot \widetilde{s} \circ A^{\star}, \tag{34}$$

is also a lift from M into $GL^Q(\mathbb{C}^{N+2})$. In fact, in order to prove that s is a lift, it suffices to prove: $\pi s = Id$, i.e., for any point $Q \in M$ near Q_0 , $\pi s(Q) = Q$. In fact,

$$\pi s(Q) = \pi(A^{-1} \cdot \widetilde{s} \circ A^{\star})(Q) = \pi(A^{-1} \cdot \widetilde{s}(P)) = (A^{\star})^{-1}(\pi \widetilde{s}(P)) = (A^{\star})^{-1}(P) = Q.$$

so that our claim is proved.

If, in addition, \widetilde{s} is a first-order adapted lift of \widetilde{M} into $GL^Q(\mathbb{C}^{N+2})$, s is also a first-order adapted lift of M into $GL^Q(\mathbb{C}^{N+2})$.

Let Ω be the Maurer-Cartan form over $GL^Q(\mathbb{C}^{N+2})$. Then by the invariant property $A^*\Omega = \Omega$, we have $s^*\Omega = (A^{-1} \cdot \widetilde{s} \circ A^*)^*\Omega = (A^*)^*(\widetilde{s})^*(A^{-1})^*\Omega = (A^*)^*(\widetilde{s})^*\Omega$, i.e., it holds on M that

$$\omega = (A^{\star})^* \widetilde{\omega} \tag{35}$$

where $\omega = s^*\Omega$ and $\widetilde{\omega} = \widetilde{s}^*\Omega$ so that $\omega_0^{\alpha} = (A^*)^*\widetilde{\omega}_0^{\alpha}$ and $\omega_{\beta}^{\mu} = (A^*)^*\widetilde{\omega}_{\beta}^{\mu}$. The last equality yields

$$q^{\mu}_{\alpha\beta} = \widetilde{q}^{\mu}_{\alpha\beta} \circ A^{\star}. \tag{36}$$

6 CR second fundamental forms — Definition 4

Definition 4 will be the one as a tensor with respect to the group SU(N+1,1).

As for Definition 3, we consider the real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$\langle Z, Z \rangle := \sum_{A} Z^{A} \overline{Z^{A}} + \frac{i}{2} (Z^{N+1} \overline{Z^{0}} - Z^{0} \overline{Z^{N+1}}) = 0, \tag{37}$$

where $Z = (Z^0, Z^A, Z^{N+1})^t \in \mathbb{C}^{N+2}$. This can be extended to the scalar product

$$\langle Z, Z' \rangle := \sum_{A} Z^{A} \overline{Z'^{A}} + \frac{i}{2} (Z^{N+1} \overline{Z'}^{0} - Z^{0} \overline{Z'^{N+1}}), \tag{38}$$

for any $Z = (Z^0, Z^A, Z^{N+1})^t$, $Z' = (Z'^0, Z'^A, Z'^{N+1})^t \in \mathbb{C}^{N+2}$. This product has the properties: $\langle Z, Z' \rangle$ is linear in Z and anti-linear in Z'; $\overline{\langle Z, Z' \rangle} = \langle Z', Z \rangle$; and Q is defined by $\langle Z, Z \rangle = 0$.

Let SU(N+1,1) be the group of unimodular linear transformations of \mathbb{C}^{N+2} that leave the form $\langle Z, Z \rangle$ invariant (cf. [CM74]).

By a *Q-frame* is meant an element $E = (E_0, E_A, E_{N+1}) \in GL(\mathbb{C}^{N+2})$ satisfying (cf. [CM74, (1.10)])

$$\begin{cases}
det(E) = 1, \\
\langle E_A, E_B \rangle = \delta_{AB}, \ \langle E_0, E_{N+1} \rangle = -\langle E_{N+1}, E_0 \rangle = -\frac{i}{2},
\end{cases}$$
(39)

while all other products are zero.

There is exactly one transformation of SU(N+1,1) which maps a given Q-frame into another. By fixing one Q-frame as reference, the group SU(N+1,1) can be identified with the space of all Q-frames. Then $SU(N+1,1) \subset GL^Q(\mathbb{C}^{N+1})$ is a subgroup with the composition operation. By (22) and the restriction, we have the projection

$$\pi: SU(N+1,1) \to \partial \mathbb{H}^{N+1}, \ (Z_0, Z_A, Z_{N+1}) \mapsto span(Z_0).$$
 (40)

which is called a *Q-frames bundle*. We get $\partial \mathbb{H}^{N+1} \simeq SU(N+1,1)/P_2$ where P_2 is the isotropy subgroup of SU(N+1,1). SU(N+1,1) acts on $\partial \mathbb{H}^{N+1}$ effectively.

Consider $E = (E_0, E_A, E_{N+1}) \in SU(N+1, 1)$ as a local lift. Then the Maurer-Cartan form Θ on SU(N+1, 1) is defined by $dE = (dE_0, dE_A, dE_{N+1}) = E\Theta$, or $\Theta = E^{-1} \cdot dE$, i.e.,

$$d(E_0 E_A E_{N+1}) = (E_0 E_B E_{N+1}) \begin{pmatrix} \Theta_0^0 & \Theta_A^0 & \Theta_{N+1}^0 \\ \Theta_0^B & \Theta_A^B & \Theta_{N+1}^B \\ \Theta_0^{N+1} & \Theta_A^{N+1} & \Theta_{N+1}^{N+1} \end{pmatrix}, (41)$$

where Θ_A^B are 1-forms on SU(N+1,1). By (39) and (41), the Maurer-Cartan form (Θ) satisfies

$$\Theta_0^0 + \overline{\Theta_{N+1}^{N+1}} = 0, \ \Theta_0^{N+1} = \overline{\Theta_0^{N+1}}, \ \Theta_{N+1}^0 = \overline{\Theta_{N+1}^0},
\Theta_A^{N+1} = 2i\overline{\Theta_0^A}, \ \Theta_{N+1}^A = -\frac{i}{2}\overline{\Theta_A^0}, \ \Theta_B^A + \overline{\Theta_A^B} = 0, \ \Theta_0^0 + \Theta_A^A + \Theta_{N+1}^{N+1} = 0,$$
(42)

where $1 \leq A \leq N$. For example, from $\langle E_A, E_B \rangle = \delta_{AB}$, by taking differentiation, we obtain

$$\langle dE_A, E_B \rangle + \langle E_A, dE_B \rangle = 0.$$

By (41), we have

$$\begin{cases} dE_0 = E_0 \Theta_0^0 + E_B \Theta_0^B + E_{N+1} \Theta_0^{N+1}, \\ dE_A = E_0 \Theta_A^0 + E_B \Theta_A^B + E_{N+1} \Theta_A^{N+1}, \\ dE_{N+1} = E_0 \Theta_{N+1}^0 + E_B \Theta_{N+1}^B + E_{N+1} \Theta_{N+1}^{N+1}. \end{cases}$$

Then

$$\langle E_0 \Theta_A^0 + E_C \Theta_A^C + E_{N+1} \Theta_A^{N+1}, E_B \rangle + \langle E_A, E_0 \Theta_B^0 + E_D \Theta_B^D + E_{N+1} \Theta_B^{N+1} \rangle = 0,$$

which implies $\Theta_A^B + \overline{\Theta_B^A} = 0$. In particular, from (42), $\Theta_A^0 = -2i\overline{\Theta_{N+1}^A}$. Θ satisfies

$$d\Theta = -\Theta \wedge \Theta. \tag{43}$$

Let $M \hookrightarrow \partial \mathbb{H}^{N+1}$ be the image of $H: M' \to \partial \mathbb{H}^{N+1}$ where $M' \subset \mathbb{C}^{n+1}$ is a CR strictly pseudoconvex smooth hypersurface. Consider the inclusion map $M \hookrightarrow \partial \mathbb{H}^{N+1}$ and a lift $e = (e_0, e_1, ..., e_{N+1}) = (e_0, e_\alpha, e_\nu, e_{N+1})$ of M where $1 \le \alpha \le n$ and $n+1 \le \nu \le N$

$$\begin{array}{ccc} & SU(N+1,1) \\ & e \nearrow & \downarrow \pi \\ M & \hookrightarrow & \partial \mathbb{H}^{N+1} \end{array}$$

We call e a first-order adapted lift if for any $x \in M$, (27) is satisfied:

$$\pi_0(e_0(x)) = x$$
, $span(e_0, e_\alpha)(x) = \hat{T}_x^{1,0}M$, $span(e_0, e_\alpha, e_{N+1})(x) = \hat{T}_x^{1,0}M \oplus \hat{\mathcal{R}}_{M,x}$. (44)

Locally first-order adapted lifts always exist (see Theorem 7.1 below). We have the restriction bundle $\mathcal{F}_M^0 := SU(N+1,1)|_M$ over M. The subbundle $\pi : \mathcal{F}_M^1 \to M$ of \mathcal{F}_M^0 is defined by

$$\mathcal{F}_{M}^{1} = \{(e_{0}, e_{j}, e_{\mu}, e_{N+1}) \in \mathcal{F}_{M}^{0} \mid [e_{0}] \in M, (44) \text{ are satisfied}\}.$$

Local sections of \mathcal{F}_M^1 are exactly all local first-order adapted lifts of M. The fiber of π : $\mathcal{F}_M^1 \to M$ over a point is isomorphic to the group

$$G_{1} = \left\{ g = \begin{pmatrix} g_{0}^{0} & g_{\beta}^{0} & g_{\nu}^{0} & g_{N+1}^{0} \\ 0 & g_{\beta}^{\alpha} & g_{\nu}^{\alpha} & g_{N+1}^{\alpha} \\ 0 & 0 & g_{\nu}^{\mu} & 0 \\ 0 & 0 & 0 & g_{N+1}^{N+1} \end{pmatrix} \in SU(N+1,1) \right\},\,$$

where we use the index ranges $1 \le \alpha, \beta \le n$ and $n+1 \le \mu, \nu \le N$.

By (39), we have $\langle g_0, g_{N+1} \rangle = -\frac{i}{2}$, it implies $g_0^0 \cdot \overline{g_{N+1}^{N+1}} = 1$ so that $g_{N+1}^{N+1} = \frac{1}{g_0^0}$. Since $\langle g_0, g_\mu \rangle = 0$ and $g_0^0 \neq 0$, it implies $g_\mu^{N+1} = 0$. Since $\langle g_\alpha, g_\beta \rangle = \delta_{\alpha\beta}$, it implies that the matrix (g_α^β) is unitary. Since deg(g) = 1, it implies $g_0^0 \cdot det(g_\alpha^\beta) \cdot det(g_\mu^\nu) \cdot g_{N+1}^{N+1} = 1$. By (25) and (44), g_{N+1}^{N+1} is a real if $g_{N+1}^0 = 0$; g_{N+1}^{N+1}/g_{N+1}^0 is real if $g_{N+1}^0 \neq 0$.

By considering all first-order adapted lifts from M into SU(N+1,1), as the definition of II_M in Definition 3, we can defined CR second fundamental form II_M as in (33):

$$II_{M} = II_{M}^{e} = q_{\alpha\beta}^{\mu}\omega_{0}^{\alpha}\omega_{0}^{\beta} \otimes \underline{e}_{\mu} \in \Gamma(M, S^{2}T_{\pi_{0}(e_{0})}^{1,0*}M \otimes N_{\pi_{0}(e_{0})}M), \quad mod(\omega_{0}^{N+1}),$$
(45)

which is a well-defined tensor, and is called the CR second fundamental form of M. We remark that II_M in Definition 4 was studied in [Wa09].

Pulling back a lift Let $M \subset \partial \mathbb{H}^{N+1}$ be as above with a point $Q_0 \in M$. Let $A \in SU(N+1,1)$, $A^* \in Aut(\partial \mathbb{H}^{N+1})$ with $A^*(Q_0) = P_0$ and $\widetilde{M} = A^*(M)$. Let $\widetilde{s} : \widetilde{M} \to SU(N+1,1)$ be a lift. We claim:

$$s := A^{-1} \cdot \widetilde{s} \circ A^{\star}, \tag{46}$$

is also a lift from M into SU(N+1,1). Similarly as in (35) and (36), we have

$$\omega = (A^{\star})^* \widetilde{\omega} \tag{47}$$

and

$$q^{\mu}_{\alpha\beta} = \widetilde{q}^{\mu}_{\alpha\beta} \circ A^{\star}. \tag{48}$$

where $\omega = s^*\Omega$, $\widetilde{\omega} = \widetilde{s}^*\Omega$ and Ω is the Maurer-Cartan form over SU(N+1,1).

[Example] Consider the maps in (1) and (2):

$$\sigma_p^0(z, w) = (z + z_0, w + w_0 + 2i\langle z, \overline{z_0} \rangle),$$

$$\tau_p^F(z^*, w^*) = (z^* - \widetilde{f}(z_0, w_0), w^* - \overline{g(z_0, w_0)} - 2i\langle z^*, \overline{\widetilde{f}(z_0, w_0)} \rangle)$$

where $p = (z_0, w_0)$, $z = \mathbb{C}^n$, $w = z_{n+1}$, $\sigma_p^0 \in Aut(\partial \mathbb{H}^{n+1})$, and $\tau_p^F \in Aut(\partial \mathbb{H}^{N+1})$. By (19) and (21), these two maps correspond to two matrices:

$$A_{\sigma_p^0} = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ z_{01} & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ z_{0n} & 0 & \dots & 1 & 0 \\ w_0 & 2i\overline{z_{01}} & \dots & 2i\overline{z_{0n}} & 1 \end{bmatrix} \in SU(n+1,1)$$

$$(49)$$

and

$$A_{\sigma_p^F} = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ -\widetilde{f}_{01} & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -\widetilde{f}_{0N-n} & 0 & \dots & 1 & 0 \\ -\overline{g}(z_0, w) & -2i\widetilde{f}_1(z_0, w_0) & \dots & -2i\widetilde{f}_{N-n}(z_0, w_0) & 1 \end{bmatrix} \in SU(N+1, 1)$$
 (50)

where $z_0 = (z_{01}, ..., z_{0n})$ and $w_0 = z_{0n+1}$. \square

[**Example**] Consider the map $F_{\lambda,r,\vec{a},U} = (f,g) \in Aut_0(\partial \mathbb{H}^{n+1})$

$$f(z) = \frac{\lambda(z + \overrightarrow{a}w)U}{1 - 2i\langle z, \overline{\overrightarrow{a}} \rangle - (r + i\|\overrightarrow{a}\|^2)w}, \ g(z) = \frac{\lambda^2 w}{1 - 2i\langle z, \overline{\overrightarrow{a}} \rangle - (r + i\|\overrightarrow{a}\|^2)w}$$

where $\lambda > 0, r \in \mathbb{R}, \vec{a} \in \mathbb{C}^n$ and $U = (u_{\alpha\beta})$ is an $(n-1) \times (n-1)$ unitary matrix. By (19) and (21), its corresponding matrix,

$$A_{F_{\lambda,r,\vec{a},U}} = \begin{bmatrix} 1 & -2i\overline{a_1} & \dots & -2i\overline{a_n} & -(r+i||\vec{a}||^2) \\ 0 & \lambda u_{11} & \dots & \lambda u_{1n} & \lambda a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \lambda u_{n1} & \dots & \lambda u_{nn} & \lambda a_n \\ 0 & 0 & \dots & 0 & \lambda^2 \end{bmatrix},$$
(51)

is not in SU(n+1,1) in general. In fact, we can write

$$F_{\lambda,r,\vec{a},U} = F_{\lambda,0,0,Id} \circ F_{1,0,0,U} \circ F_{1,r,\vec{a},Id}. \tag{52}$$

or $A_{F_{\lambda,r,\vec{a},U}} = A_{F_{\lambda,0,0,Id}} \cdot A_{F_{1,0,0,U}} \cdot A_{F_{1,r,\vec{a},Id}}$. Here $A_{F_{1,0,0,U}}$ and $A_{F_{1,r,\vec{a},Id}}$ are in SU(N+1,1); while $A_{F_{\lambda,0,0,Id}}$ is in SU(N+1,1) if and only if $\lambda = 1$. Therefore

$$A_{F_{\lambda,r,\vec{a},U}}$$
 is in $SU(n+1,1)$ if and only if $\lambda = 1$. (53)

7 Existence of First-order Adapted Lifts from M into SU(N+1,1) or into $GL^Q(\mathbb{C}^{N+2})$

Existence of first-order adapted lifts. Let (M', 0) be a germ of smooth real hypersurface in \mathbb{C}^{n+1} defined by the defining function

$$r = \sum_{j=1}^{n} z_j \overline{z}_j + \frac{i}{2} (w - \overline{w}) + o(2).$$
 (54)

We take

$$\theta = i\partial r = i\left(\sum_{j=1}^{n} \overline{z_j} dz_j - \frac{1}{2} dw\right) + o(1).$$

as a contact form of M'.

Write w = u + iv. Here $v = \sum_{j=1}^{n} |z_j|^2 + o(2)$. Take (z_j, u) as a coordinates system of M'. By considering the coordinate map: $h : \mathbb{C}^n \times \mathbb{R} \to M'$, $(z_j, u) \mapsto (z_j, u + i|z|^2 + o(2))$, we get the pushforward

$$h_*(\frac{\partial}{\partial z_j}) = L_j := \frac{\partial}{\partial z_j} + i(\overline{z_j} + o(1))\frac{\partial}{\partial u}, \quad h_*(\frac{\partial}{\partial u}) = R_{M'} := (1 + o(1))\frac{\partial}{\partial u}$$

for j = 1, 2, ..., n. Then $\{L_j\}_{1 \le j \le n}$ form a basis of the complex tangent bundle $T^{1,0}M'$ of M'. Since $d\alpha = -i \sum_{j=1}^n dz_j \wedge d\overline{z_j}$, we see that R is the Reeb vector field of M'. In particular, as the restriction at 0, we have

$$L_j|_0 = \frac{\partial}{\partial z_j}|_0, \quad R_{M'}|_0 = \frac{\partial}{\partial u}|_0.$$
 (55)

Theorem 7.1 Let $M \hookrightarrow \partial \mathbb{H}^{N+1}$ be the image of $H: M' \to \partial \mathbb{H}^{N+1}$ where $M' \subset \mathbb{C}^{n+1}$ is a smooth strictly pseudoconvex CR-hypersurface. Then for any point in M, the first-order adapted lift $E = (E_0, E_\alpha, E_\mu, E_{N+1})$ of M into SU(N+1,1) (hence into $GL^Q(\mathbb{C}^{N+2})$) exists in some neighborhood of the point in M.

Proof: Step 1. Without of loss of generality, we assume that $0 \in M$ so that it suffices to construct a lift $E = (E_0, E_\alpha, E_\mu, E_{N+1})$ in a neighborhood of the point 0. Here we denote [1:0:...:0] by 0.

Assume that M' is defined by the equation $Im\ w = |z|^2 + o(|z|^2)$ in $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ where w = u + iv. Assume that $H = (1, f_{\alpha}, \phi_{\mu}, g)$ is the smooth CR embedding of M' into $\partial \mathbb{H}^{N+1}$ with H(0) = 0 and

$$f = z + O(|(z, w)|^2), \phi = O(|(z, w)|^2), \ g = w + O(|(z, w)|^2).$$
 (56)

Let L_{α} , $\alpha = 1, 2, ..., n$ be a basis of the CR vector fields and R is the Reeb vector field on M'. Then as in (55) with (56), we have

$$L_{\alpha}|_{0} = \frac{\partial}{\partial z_{j}}|_{0}, \quad and \quad R|_{0} = \frac{\partial}{\partial u}|_{0}.$$
 (57)

It follows that $\bar{L}_{\alpha}H=0$ as H is a CR map. By the Lewy extension theorem, H extends holomorphically to one side of M', denoted by D, where D is obtained by attaching the holomorphic discs. By applying the maximum principle and the Hopf lemma to the subharmonic function $\sum |f_{\alpha}|^2 + \sum |\phi_{\mu}|^2 + \frac{i}{2}(g - \bar{g})$ on D, it follows that $\frac{\partial Im \ g}{\partial v}(0) \neq 0$. Since $\frac{\partial g}{\partial \bar{w}} = 0$ and $\frac{\partial Im \ g}{\partial u}(0) = 0$, we have $Rg(0) = \frac{\partial g}{\partial u}(0) = \frac{\partial Im \ g}{\partial v}(0) \neq 0$.

Step 2. Direct construction of E_0, E_α and E_{N+1} We define

$$E_0 := \begin{bmatrix} 1\\ f_{\alpha}(z, w)\\ \phi_{\mu}(z, w)\\ g(z, w) \end{bmatrix}$$

$$(58)$$

which can be regarded as a point in $\partial \mathbb{H}^{N+1}$. Then $\langle E_0, E_0 \rangle = 0$ holds:

$$\sum f_{\alpha}\bar{f}_{\alpha} + \sum \phi_{\mu}\bar{\phi}_{\mu} + \frac{i}{2}(g - \bar{g}) = 0, \quad on \ M.$$
 (59)

Apply the CR vector field L_{β} to E_0 , we define

$$\widetilde{E}_{\beta} = (0, L_{\beta} f_{\alpha}, L_{\beta} \phi_{\mu}, L_{\beta} g)^{t},$$

which form the basis of the complex tangent bundle $T_{\pi_0(E_0)}^{1,0}(M)$. Then in a neighborhood of 0 in M, we have as in (27)

$$span(E_0, \widetilde{E}_{\alpha}) = \hat{T}_{\pi_0(E_0)}^{(1,0)} M.$$

Now, we have $\langle E_0, \widetilde{E}_{\alpha} \rangle = 0$ by applying L_{β} to (59):

$$\sum \bar{f}_{\alpha} L_{\beta} f_{\alpha} + \sum \bar{\phi}_{\mu} L_{\beta} \phi_{\mu} + \frac{i}{2} L_{\beta} g = 0.$$
 (60)

By the Gram-Schmid orthonormalization procedure, we can obtain, from $\{\widetilde{E}_{\beta}\}$, an orthonormal set with respect to the usual Hermitian inner product \langle , \rangle_0 ; we denote it by $\{E_{\beta}\}$. By the definition (38), we notice that for any $Z = (Z^0, Z^A, Z^{N+1})$ and $Z' = (Z'^0, Z'^A, Z'^{N+1})$,

$$\langle Z, Z' \rangle = \left\langle \left(\frac{i}{2} Z^{N+1}, Z^A, -\frac{i}{2} Z^0 \right), (Z'_0, Z'^A, Z'^{N+1}) \right\rangle_0 = \langle \hat{Z}, Z' \rangle_0,$$
 (61)

where \langle , \rangle_0 is the usual Hermitian inner product and $\hat{Z} := (\frac{i}{2}Z^{N+1}, Z^A, -\frac{i}{2}Z^0)$. Then we see from (60) that

$$\langle E_0, E_\beta \rangle = \left\langle \left(\frac{i}{2}g, f_\alpha, \phi_\mu, -\frac{i}{2}\right), (0, L_\beta f_\alpha, L_\beta \phi_\mu, L_\beta g) \right\rangle_0 = 0.$$

Also we observe $\langle E_{\alpha}, E_{\beta} \rangle = \langle E_{\alpha}, E_{\beta} \rangle_0 = \delta_{\alpha\beta}$. Then $\langle E_0, E_0 \rangle = 0, \langle E_0, E_{\beta} \rangle = 0$ and $\langle E_{\alpha}, E_{\beta} \rangle = \delta_{\alpha\beta}$ hold.

Applying the Reeb vector field R, we define another vector

$$\widetilde{E}_{N+1} := (0, R f_{\alpha}, R \phi_{\mu}, R g)^t$$

over a neighborhood of 0 in M such that

$$span(E_0, E_\alpha, \widetilde{E}_{N+1}) = \hat{T}_{\pi_0(E_0)} M$$

as in (27). We want to construct

$$E_{N+1} = AE_0 + B_{\alpha}E_{\alpha} + C\widetilde{E}_{N+1}$$

such that

$$\langle E_{N+1}, E_0 \rangle = \frac{i}{2}, \ \langle E_{\alpha}, E_{N+1} \rangle = 0, \ and \ \langle E_{N+1}, E_{N+1} \rangle = 0.$$

From $\langle E_{N+1}, E_0 \rangle = \frac{i}{2}$, we get $\langle AE_0 + B_{\alpha}E_{\alpha} + C\widetilde{E}_{N+1}, E_0 \rangle = \frac{i}{2}$ so that

$$C = \frac{i}{2\langle \widetilde{E}_{N+1}, E_0 \rangle}. (62)$$

By (57), we notice that

$$\langle \widetilde{E}_{N+1}, E_0 \rangle |_0 = \sum \frac{\partial f_\alpha}{\partial u} |_0 \bar{f}_\alpha(0) + \sum \frac{\partial \phi_\mu}{\partial u} |_0 \bar{\phi}_\mu(0) + \frac{i}{2} \frac{\partial g}{\partial u} |_0$$

and therefore $\langle \widetilde{E}_{N+1}, E_0 \rangle(0) = \frac{i}{2}R \ g(0) \neq 0.$

From $\langle E_{N+1}, E_{\alpha} \rangle = 0$, we get $\langle AE_0 + B_{\beta}E_{\beta} + C\widetilde{E}_{N+1}, E_{\alpha} \rangle = 0$ so that

$$B_{\alpha} = -C\delta_{\beta\alpha} \langle \widetilde{E}_{N+1}, E_{\beta} \rangle = -C \langle \widetilde{E}_{N+1}, E_{\alpha} \rangle. \tag{63}$$

From $\langle E_{N+1}, E_{N+1} \rangle = 0$, we get $\langle AE_0 + B_{\beta}E_{\beta} + C\widetilde{E}_{N+1}, AE_0 + B_{\beta}E_{\beta} + C\widetilde{E}_{N+1} \rangle = 0$. Since $C\langle \widetilde{E}_{N+1}, E_0 \rangle = \frac{i}{2}, \overline{C}\langle E_0, \widetilde{E}_{N+1} \rangle = -\frac{i}{2}, B_{\alpha} = -C\langle \widetilde{E}_{N+1}, E_{\alpha} \rangle$ and $\overline{B_{\alpha}} = -\overline{C}\langle E_{\alpha}, \widetilde{E}_{N+1} \rangle$ by (62) and (63), we obtain

$$-\frac{i}{2}A + \frac{i}{2}\overline{A} - \sum_{\alpha} |B_{\alpha}|^2 + |C|^2 \langle E_{N+1}, E_{N+1} \rangle = 0,$$

so that

$$Im(A) = \sum_{\alpha} |B_{\alpha}|^2 - |C|^2 \langle E_{N+1}, E_{N+1} \rangle.$$
 (64)

Therefore E_{N+1} is determined.

So far we have $\langle E_0, E_0 \rangle = \langle E_{N+1}, E_{N+1} \rangle = \langle E_0, E_\beta \rangle = \langle E_{N+1}, E_\beta \rangle = 0$, $\langle E_\alpha, E_\beta \rangle = \delta_{\alpha\beta}$ and $\langle E_0, E_{N+1} \rangle = -\frac{i}{2}$ hold.

Step 3. Construction of E From Step 2, at the point 0, we have vectors

$$E_0|_0 = [1:0:...:0], E_1|_0 = [0:1:0:...:0], ..., E_n|_0 = [0:0:...:1:0:...:0],$$
 (65)

and

$$E_{N+1}|_{0} = [0:0:\dots:0:1].$$
(66)

Therefore we can define E at the point 0 by

$$E(0) := Id \in SU(N+1,1). \tag{67}$$

For any other point P in a small neighborhood of 0 in M, we are going to define $E(P) \in SU(N+1,1)$ as follows.

Write H(p) = P for some $p \in M'$. Then we take a map $\Psi_P \in SU(N+1,1)$ such that

$$\Psi_P^{\star}(P) = 0$$
, $T_0^{1,0}\Psi(M) = span(E_0|_0, E_{\alpha}|_0)$, and $T_0\Psi(M) = span(E_0|_0, E_{\alpha}|_0, E_{N+1}|_0)$

as in (27), where $E_0|_0$, $E_\alpha|_0$ and $E_{N+1}|_0$ are defined in (65) and (66). The map Ψ_P can be defined as $A_{F_{1,r,\vec{a},U}} \circ A_{\sigma_p^F}$ where $A_{\sigma_p^F} \in SU(N+1,1)$ as in (50) and $A_{F_{1,r,\vec{a},U}} \in SU(N+1,1)$ as in (51). Notice in the construction of the normalization F^{**} and F^{***} , we can always choose $\lambda = 1$ so that (52) can be used. Ψ_P is smooth as P varies. Then we define

$$E(P) := (\Psi_P^*)^* E(0) = (\Psi_P)^{-1} E(0).$$
(68)

This definition is the same as in (46). Since Ψ_P is invariant for the Hermitian scalar product \langle , \rangle defined in (38) and E(0) satisfies the identities (39), it implies that E(P) satisfies the identities (39), i.e., $E(p) \in SU(N+1,1)$.

As a matrix, we denote $E(P) = (\hat{E}_0, \hat{E}_\alpha, \hat{E}_\mu, \hat{E}_{N+1})$. Since the map Ψ_P preserves the CR structures and the tangent vector spaces of M and $\Psi_P(M)$, we have as in (27)

$$span(\hat{E}_0, \hat{E}_\alpha) = span(E_0, E_\alpha)|_P$$
, $span(\hat{E}_0, \hat{E}_\alpha, \hat{E}_{N+1}) = span(E_0, E_\alpha, E_{N+1})|_P$.

where E_0 , E_{α} and E_{N+1} are constructed in Step 2. We remark that we can replace $(\hat{E}_0, \hat{E}_{\alpha}, \hat{E}_{N+1})$ by $(E_0, E_{\alpha}, E_{N+1})$. \square

Existence of a more special first-order adapted lifts when M is spherical When $M = F(\partial \mathbb{H}^{n+1})$ where $F \in Prop_2(\mathbb{H}^{n+1}, \mathbb{H}^{N+1})$, we can construct a more special first-order adapted lift of M into SU(N+1,1) as follows (cf. [HJY09]).

Let $F = (f, \phi, g) \in Prop_2(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1})$ be any map with $F = F_p^{***}$. Then F(0) = 0. We introduce a local biholomorphic map near the origin

$$F_{fg} := (f, g) : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}, \ (z, z_{N+1}) \mapsto (f, g) = (\hat{z}, \hat{z}_{N+1})$$

with its inverse

$$F_{fg}^{-1}: \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}, \ (\hat{z}, \hat{z}_{N+1}) \mapsto ((F_{fg}^{-1})^{(1)}, ..., (F_{fg}^{-1})^{(n)}, (F_{fg}^{-1})^{(N+1)}) = (z, z_{N+1}).$$

Here we use (\hat{z}, \hat{z}_{N+1}) as a coordinates system of $M = F(\partial \mathbb{H}^{n+1})$ near F(0) = 0. Denote $Proj_{fg} : \mathbb{C}^{N+1} \to \mathbb{C}^{n+1}, (\hat{z}, \hat{z}_{\mu}, \hat{z}_{N+1}) \mapsto (\hat{z}, \hat{z}_{N+1})$. Then we have $Proj_{fg} \circ F = F_{fg}$:

$$F: \partial \mathbb{H}^{n+1} \longrightarrow M$$

$$\searrow F_{fg} \downarrow \underset{\mathbb{C}^{n+1}}{\operatorname{Proj}_{fg}}$$

We also have a pair of inverse maps $F: \partial \mathbb{H}^{n+1} \to M$ and $(F_{fg}^{-1}) \circ Proj_{fg}: M \to \partial \mathbb{H}^{n+1}$. Locally we can regard M as a graph: $F \circ F_{fg}^{-1}: \mathbb{C}^{n+1} \to M \subset \mathbb{C}^{N+2}$:

$$(\hat{z}, \hat{z}_{N+1}) \mapsto (\hat{z}, \phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1})), \hat{z}_{N+1})$$

Now let us define a lift of M into SU(N+1,1)

$$e = (e_0, e_\alpha, e_\mu, e_{N+1}) \in SU(N+1, 1), \quad 1 \le \alpha \le n, \quad n+1 \le \mu \le N$$
 (69)

as follows.

We define $e_0: M \hookrightarrow \mathbb{C}^{N+2}$ be the inclusion:

$$e_0(\hat{z}, \hat{z}_{N+1}) = F \circ F_{fg}^{-1}(\hat{z}, \hat{z}_{N+1}) = \left[1 : \hat{z} : \phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1})) : \hat{z}_{N+1}\right]^t$$
 (70)

 $\forall (\hat{z}, \hat{z}_{N+1}) \in \mathbb{C}^{n+1}$. We define $e_{\alpha} : M \to \mathbb{C}^{N+2}$ for $1 \leq \alpha \leq n$:

$$e_{\alpha} := \frac{1}{\sqrt{|L_{\alpha}f|^2 + |L_{\alpha}\phi|^2}} \left[0 : L_{\alpha}f : L_{\alpha}\phi : L_{\alpha}g \right]^t \circ F_{fg}^{-1}.$$
 (71)

where $L_{\alpha} = \frac{\partial}{\partial z^{\alpha}} + 2i\bar{z}^{\alpha}\frac{\partial}{\partial z^{N+1}}$. By the definition (38), we have $\langle e_0, e_0 \rangle = 0$ because $f \cdot \overline{f} + \phi \cdot \overline{\phi} - \frac{1}{2i}(g - \overline{g}) = \hat{z} \cdot \overline{\hat{z}} + \phi \left((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1}) \right) \overline{\phi \left((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1}) \right)} + \frac{i}{2}(\hat{z}_{N+1} - \overline{\hat{z}}_{N+1}) = 0$ holds on $\partial \mathbb{H}^{n+1}$, and $\langle e_0, e_{\alpha} \rangle = 0$ because $L_{\alpha}f \cdot \overline{f} + L_{\alpha}\phi \cdot \overline{\phi} + \frac{i}{2}L_{\alpha}g = 0$ holds on $\partial \mathbb{H}^{n+1}$, and $\langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha\beta}$ because $L_{\alpha}f \cdot \overline{L_{\beta}f} + L_{\alpha}\phi \cdot \overline{L_{\beta}\phi} = 0$ holds on $\partial \mathbb{H}^{n+1}$ for $\alpha \neq \beta$.

If we define $\tilde{e}_{N+1} := (0, Tf, T\phi, Tg)^t \circ F_{fg}^{-1}$, where $T = \frac{\partial}{\partial u}$ with $z^{N+1} = u + iv$, then $span(e_0, e_\alpha, \tilde{e}_{N+1}) = \hat{T}_{\pi_0(e_0)}M$. We then find coefficient functions A, B_α and C such that $e_{N+1} = Ae_0 + \sum B_\alpha e_\alpha + C\tilde{e}_{N+1}$ satisfies

$$\langle e_0, e_{N+1} \rangle = -\frac{i}{2}, \ \langle e_\alpha, e_{N+1} \rangle = 0, \ \langle e_{N+1}, e_{N+1} \rangle = 0.$$
 (72)

8 Relationship among four definitions of II_M

Lemma 8.1 Let $H: M' \to \partial \mathbb{H}^{N+1}$ be a CR smooth embedding where M' is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1} . We denote M = H(M'). Then the following statements are equivalent:

- (i) The CR second fundamental form II_M by Definition 1 identically vanishes.
- (ii) The CR second fundamental form II_M by Definition 2 identically vanishes.
- (iii) The CR second fundamental form II_M by Definition 3 identically vanishes.
- (iv) The CR second fundamental form II_M by Definition 4 identically vanishes.

Proof (i) \iff (ii) by (15).

(iii) \iff (iv) The equivalence follows by the facts that, for Definition 3 and 4, $II_M^e \equiv 0$ for one first-order adapted lift e if and only if $II_M^s \equiv 0$ for any first-order adapted lift s, that a first-order adapted lift from M to SU(N+1,1) must be a first-order adapted lift from M to $GL^Q(\mathbb{C}^{N+2})$.

(iv) \Longrightarrow (i): Let $M \subset \partial \mathbb{H}^{N+1}$ be a (2n+1) dimensional CR submanifold with CR dimension n that admits a first-order adapted lift e into SU(N+1,1). Consider the pullbacked Maurer-Cartan form over M by e

$$\omega = \begin{pmatrix} \omega_0^0 & \omega_\beta^0 & \omega_\nu^0 & \omega_{N+1}^0 \\ \omega_0^\alpha & \omega_\beta^\alpha & \omega_\nu^\alpha & \omega_{N+1}^\alpha \\ 0 & \omega_\beta^\mu & \omega_\nu^\mu & \omega_{N+1}^\mu \\ \omega_0^{N+1} & \omega_\beta^{N+1} & 0 & \omega_{N+1}^{N+1} \end{pmatrix}.$$

with

$$\omega_0^0 + \overline{\omega_{N+1}^{N+1}} = 0, \ \omega_0^{N+1} = \overline{\omega_0^{N+1}}, \ \omega_{N+1}^0 = \overline{\omega_{N+1}^0},
\omega_A^{N+1} = 2i\overline{\omega_0^A}, \ \omega_{N+1}^A = -\frac{i}{2}\overline{\omega_A^0}, \ \omega_B^A + \overline{\omega_A^B} = 0, \ \omega_0^0 + \omega_A^A + \omega_{N+1}^{N+1} = 0,$$
(73)

where $1 \le A \le N$. Let $\theta = \omega_0^{N+1}$ which is a real 1-form by (73). By $d\omega = -\omega \wedge \omega$ and (73), we obtain

$$d\theta = -\omega_0^{N+1} \wedge \omega_0^0 - \omega_\alpha^{N+1} \wedge \omega_0^\alpha - \omega_{N+1}^{N+1} \wedge \omega_0^{N+1} = 2i\omega_0^\alpha \wedge \overline{\omega_0^\alpha} - \theta \wedge (\omega_0^0 + \overline{\omega_0^0}) = i\theta^\alpha \wedge \overline{\theta^\alpha},$$

where we denote

$$\theta^{\alpha} = \sqrt{2}\omega_0^{\alpha} + c_{\alpha}\theta \tag{74}$$

for some functions c_{α} . Therefore, (8) holds and hence M is a strictly pseudoconvex pseudohermitian manifold with an admissible coframe $(\theta, \theta^{\alpha})$. Hence Definition 4 of $II_M \equiv 0$ implies Definition 1 of $II_M \equiv 0$.

(i) \Longrightarrow (iv): Definition 1 of II_M gives a coframe $(\theta, \theta^{\alpha})$ which corresponds to Definition 2 of II_M with respect to a defining function ρ of M in $\partial \mathbb{H}^{N+1}$.

Now take a first-order adapted lift e from M into SU(N+1,1). By (74), it corresponds to a coframe $(\theta, \theta^{\alpha})$ on M and by (16), it corresponds Definition 2 of II_M by some choice of the defining function $\hat{\rho}$ of M in $\partial \mathbb{H}^{N+1}$.

The above ρ and $\hat{\rho}$ may not be the same. But Definition 2 of $II_M \equiv 0$ is independent of choice of defining functions, which gives (i) \Longrightarrow (iv).

9 Proof of Theorem 1.1

Lemma 9.1 (cf. [EHZ04], corollary 5.5) Let $H: M' \to M \hookrightarrow \partial \mathbb{H}^{N+1}$ be a smooth CRembedding of a strictly pseudoconvex smooth real hypersurface $M \subset \mathbb{C}^{n+1}$. Denote by $(\omega_{\alpha\beta}^{\mu})$ the CR second fundamental form matrix of H relative to an admissible coframe (θ, θ^A) on $\partial \mathbb{H}^{N+1}$ adapted to M. If $\omega_{\alpha\beta}^{\ \mu} \equiv 0$ for all α, β and μ , then M' is locally CR-equivalent to $\partial \mathbb{H}^{n+1}$.

Proof of Theorem 1.1 Step 1. Reduction to a problem for geometric rank By Lemma 8.1 and Lemma 9.1 and the hypothesis that the CR second fundamental form identically vanishes, we know that M is locally CR equivalent to $\partial \mathbb{H}^{n+1}$.

Then M is the image of a local smooth CR map $F:U\subset\partial\mathbb{H}^{n+1}\to M\subset\partial\mathbb{H}^{N+1}$ where U is a open set in $\partial\mathbb{H}^{n+1}$. By a result of Forstneric[Fo89], the map F must be a rational map. It suffices to prove that F is equivalent to a linear map. By Lemma 2.2, it is sufficient to prove that the geometric rank of F is zero: $\kappa_0=0$.

Suppose $\kappa_0 > 0$ and we seek a contradiction.

Step 2. Reduction to a lift of $((H \circ \tau_p^F)(M), 0)$ Take any point $p \in U \subset \partial \mathbb{H}^{n+1}$ with $\kappa_0 = \kappa_0(p) > 0$, and consider the associated map (see Lemma 2.1)

$$F_p^{***} = H \circ \tau_p^F \circ F \circ \sigma_p^0 \circ G : \partial \mathbb{H}^{n+1} \to \partial \mathbb{H}^{N+1}, \quad F_p^{***}(0) = 0, \tag{75}$$

where σ_p^0 is defined in (1), τ_p^F is defined in (2), $G \in Aut_0(\mathbb{H}^{n+1})$ and $H \in Aut_0(\mathbb{H}^{N+1})$ are automorphisms. By Theorem 2.3, $F_p^{***} = (f, \phi, g)$ satisfies the following normalization conditions:

$$\begin{cases}
f_{j} = z_{j} + \frac{i\mu_{j}}{2}z_{j}w + o_{wt}(3), & \frac{\partial^{2}f_{j}}{\partial w^{2}}(0) = 0, \ j = 1 \cdots, \kappa_{0}, \ \mu_{j} > 0, \\
f_{j} = z_{j} + o_{wt}(3), & j = \kappa_{0} + 1, \cdots, n - 1 \\
g = w + o_{wt}(4), \\
\phi_{jl} = \mu_{jl}z_{j}z_{l} + o_{wt}(2), \text{ where } (j, l) \in \mathcal{S} \text{ with } \mu_{jl} > 0 \text{ for } (j, l) \in \mathcal{S}_{0} \\
\text{and } \mu_{jl} = 0 \text{ otherwise}
\end{cases}$$
(76)

where $\mu_{jl} = \sqrt{\mu_j + \mu_l}$ for $j, l \leq \kappa_0$ $j \neq l$, $\mu_{jl} = \sqrt{\mu_j}$ if $j \leq \kappa_0$ and $l > \kappa_0$ or if $j = l \leq \kappa_0$. Here the assumption that $\kappa_0 > 0$ is used.

From (75) we obtain

$$(M, F(p)) \xrightarrow{H \circ \tau_p^F} (H \circ \tau_p^F(M), 0)$$

$$\uparrow F \qquad \uparrow F_p^{***}$$

$$(\partial \mathbb{H}^{n+1}, p) \xleftarrow{\sigma_p^0 \circ G} (\partial \mathbb{H}^{n+1}, 0)$$

If we can show that there exists a first-order adapted lift e from the submanifold $H \circ \tau_p^F(M)$ near 0 into SU(N+1,1) such that the corresponding CR second fundamental form

$$II_{H \circ \tau_p^F(M)}^e \neq 0 \text{ at } 0, \tag{77}$$

then we obtain a first-order adapted lift $\widetilde{e} := (H \circ \tau_p^F)^{-1} \circ e \circ H \circ \tau_p^F$ from the submanifold M near F(p) into $GL^Q(\mathbb{C}^{N+1})$ such that the corresponding CR second fundamental form

$$II_M^{\widetilde{e}} \neq 0 \text{ at } F(p).$$
 (78)

Notice that the map $H \circ \tau_p^F \in GL^Q(\mathbb{C}^{N+2})$ but $H \circ \tau_p^F \notin SU(N+1,1)$, so that the lift \widetilde{e} is not from M into SU(N+1,1). This is why we have to introduce Definition 3.

Since we take arbitrary $p \in \partial \mathbb{H}^{n+1}$, from (78) it concludes that $II_M \not\equiv 0$, but this is a desired contradiction.

Step 3. Calculation of the second fundamental form It remains to prove existence of the lift e such that (77) holds.

The lift e constructed in the second half of Section 7 is a first-order adapted lift from $H \circ \tau_p^F(M)$ near 0 into SU(N+1,1) which defines a CR second fundamental form as a tensor $II_{H \circ \tau_p^F(M)}^e = q_{\alpha\beta}^\mu \omega^\alpha \omega^\beta \otimes (\underline{e_\mu})$ in (45). If we can show

$$q_{\alpha\beta}^{\mu}(0) = \frac{\partial^2 \phi_{\mu}}{\partial z_{\alpha} \partial z_{\beta}} \bigg|_{0},\tag{79}$$

where $F_p^{***}=(f,\phi,g)=(f_\alpha,\phi_\mu,g)$. Since we assume that $\kappa_0>0$, by (76) and (79), it implies $q_{\alpha\beta}^{\mu}(0)\neq 0, \forall \alpha,\beta$ and μ , i.e., $II_{H\circ\tau_p^F(M)}^e\neq 0$. This proves (77).

Let $E = (e_0, e_{\alpha}, \hat{E}_{\mu}, e_{N+1})$ be the lift constructed in Theorem 7.1 (see the remark at the end of the proof of Theorem 7.1) and in (70) (71) and (72). Since $E|_0 = Id$, we have

$$\omega|_0 = (E^{-1}|_0)(dE)|_0 = dE|_0$$

so that

$$\omega|_{0} = \begin{bmatrix} 0 & * & \dots & * \\ dz_{1} & * & \dots & * \\ \vdots & \vdots & & \vdots \\ dz_{n} & * & \dots & * \\ * & * & \dots & * \\ \vdots & \vdots & & \vdots \\ * & * & \dots & * \\ dw & * & \dots & * \end{bmatrix}|_{0}.$$

Hence $\omega_0^1|_0 = dz_1$, ..., $\omega_0^n|_0 = dz_n$, $\omega_0^{N+1}|_0 = dz_{N+1}$. Then by applying the chain rule, we obtain

$$\omega_j^{\mu}|_0 = dE_j^{\mu}|_0 = d((L_j\phi_{\mu}) \circ (F_{fg})^{-1})|_0 = \frac{\partial}{\partial z_k} ((L_j\phi_{\mu}) \circ (F_{fg})^{-1})|_0 dz_k = \frac{\partial^2 \phi_{\mu}}{\partial z_k \partial z_j}|_0 \omega_0^k|_0,$$

for any $j,k \in \{1,2,...,n,N+1\}, n+1 \le \mu \le N$. Hence (79) is proved. The proof of Theorem 1.1 is complete. \square

References

- [CM74] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271.
- [EHZ04] P. Ebenfelt, X. Huang and D. Zaitsev, Rigidity of CR-immersions into spheres. Comm. Anal. Geom. 12(2004), no. 3, 631–670.
- [Fa88] J. Faran, The nonembeddability of real hypersurfaces in sphere, Proc. A.M.S. 103(1988), 902-904.
- [Fa90] J. Faran, A reflection principle for proper holomorphic mappings and geometric invariants, Math. Z. 203 (1990), 363-377.
- [F086] F. Forstneric, Embedding strictly pseudoconvex domains into balls, Trans. A.M.S. 295(1986), 347-368.
- [KO06] S.Y. Kim and J.W. Oh, Local embeddability of pseudohermitian manifolds into spheres. Math. Ann. 334 (2006), no. 4, 783–807.
- [Fo89] F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math., 95(1989), 31-62.
- [Hu99] X. Huang, On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions, J. of Diff. Geom. **51**(1999), 13–33.
- [Hu03] X. Huang, On a semi-rigidity property for holomorphic maps, Asian J. Math. Vol(7) No. 4(2003), 463-492.
- [HJY09] X. Huang, S. Ji and W. Yin, The third gap for proper holomorphic maps between balls, preprint.
- [IL03] T.A. Ivey and J.M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems. Graduate Studies in Mathematics, 61. American Mathematical Society, Providence, RI, 2003. xiv+378 pp.

- [La01] B. Lamel, A reflection principle for real-analytic submanifolds of complex spaces, J. Geom. Anal. 11, no. 4, 625-631, (2001).
- [T75] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.
- [Wa09] S.H. Wang, A gap rigidity for proper holomorphic maps from \mathbb{B}^{n+1} to \mathbb{B}^{3n-1} . J. Korean Math. Soc. 46(2009), no. 5, 895-905.
- [We78] S.M. Webster *Pseudo-Hermitian structures on a real hypersurface*. J. Differential Geom. 13 (1978), no. 1, 25–41.
- [We79] S.M. Webster *The rigidity of C-R hypersurfaces in a sphere*. Indiana Univ. Math. J. 28 (1979), no. 3, 405–416.
- [Za08] D. Zaitsev, Obstructions to embeddability into hyperquadrtics and explicit examples. Math Ann, 342(2088), 695-726.
- Shanyu Ji (shanyuji@math.uh.edu), Department of Mathematics, University of Houston, Houston, TX 77204;
- Yuan Yuan (yuanyuan@math.rutgers.edu), Department of Mathematics, Rutgers University, Piscataway, NJ 08854.