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1 Introduction

The Cartan-Janet theorem asserted that for any analytic Riemannian manifold (M™,g),
there exist local isometric embeddings of M™ into Euclidean space EY as N is sufficiently
large. The CR analogue of Cartan-Janet theorem is not true in general. In fact, Forstneric
[F086] and Faran [Fa88] proved the existence of real analytic strictly pseudoconvex hyper-
surfaces M2t c C"*! which do not admit any germ of holomorphic mapping taking M
into sphere OBY*! for any N.

There are recent progress on CR submanifolds in sphere OBV ™. Zaitsev [Za08] con-
structed explicit examples for the Forstneric and Faran phenomenon above. Ebenfelt, Huang
and Zaitsev [EHZ04] proved rigidity of CR embeddings of general M?"™! into spheres with
CR co-dimension < %, which generalizes a result of Webster [We79] for the case of co-
dimension one. S.-Y. Kim and J.-W. Oh [KO06] gave a necessary and sufficient condition
for local embeddability into a sphere OBV ! of a generic strictly pseudoconvex psuedoher-
mitian CR manifold (M?*"*! 6) in terms of its Chern-Moser curvature tensors and their
derivatives.

In Euclidean geometry, for a real submanifold M™ C E"** M is a piece of E" if and only
if its second fundamental form I7,; = 0. In projective geometry, for a complex submanifold
M™ c CP" M is a piece of CP™ if and only if its projective second fundamental form
IIy =0 (c.f. [ILO3], p.81). In CR geometry, we prove the CR analogue of this fact in this
paper as follows:

Theorem 1.1 Let H : M' — OBYN*! be a smooth CR-embedding of a strictly pseudoconvex
CR real hypersurface M' C C""'. Denote M := H(M'). If its CR second fundamental
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form 11y, = 0, then M C F(OB"') C OBN* where F : BT — BNt is a certain linear
fractional proper holomorphic map.

Previously, it was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary
5.5), under the above same hypothese, that M’ and hence M are locally CR-equivalent to
the unit sphere OB"*! in C"*!.

There are several definitions of the CR second fundamental forms 17y, of M (see Section
3, 4, 5, and 6). The result in [EHZ04] used Definition 1 or 2. However, to prove Theorem
1.1, we need to use Definitions 3 and 4. We’ll prove in Section 4 that I1,; = 0 by any one of
the four definitions will imply 17, = 0 for all other three definitions. One of the ingredients
for our proof of Theorem 1.1 is the result of Ebenfelt-Huang-Zaitsev [EHZ04] so that M
can be regarded as the image of a rational CR map F : 0H"*' — M C OH *!. Another
ingredient is a theorem of Huang ([Hu99]) that such a map F is linear if and only if its

geometric rank kg is zero. The idea about special lifts for maps between spheres was also
used in [HJY09].
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2 Preliminaries

e Maps between balls We denote by Prop(B", B") the space of all proper holomorphic
maps from the unit ball B® C C" to BY, denote by Propy(B", B") the space Prop(B™, B")N
C*(B"), and denote by Rat(B",BY) the space Prop(B",BY) N {rational maps}. We say
that I and G € Prop(B",BY) are equivalent if there are automorphisms o € Aut(B") and
7 € Aut(B") such that F =70G oo.

Write H" := {(z,w) € C"! x C : Im(w) > |z|*} for the Siegel upper-half space.
Similarly, we can define the space Prop(H", HY), Prop,(H", H") and Rat(H", HY) similarly.
By the Cayley transformation p, : H* — B", p,(z,w) = (2%, %) we can identify a
map F € Prop,(B",BY) or Rat(B",BY) with py' o F o p, in the space Prop,(H",H") or
Rat(H", HY), respectively. We say that I and G € Prop(H", HY) are equivalent if there
are automorphisms o € Aut(H") and 7 € Aut(H") such that F = 170G o 0.

We denote by OH" = {(z,w) € C""'xC : Im(w) = |z|*} for the Heisenberg hypersurface.
For any map F' € Prop,(H", H”Y), by restricting on H", we can regard F' as a C* CR map
from OH" to OHY.

We can parametrize OH" by (z,Z,u) through the map (z,%,u) — (2,u +4|2|?). In what
follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-negative
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integer m, a function h(z,Z, u) defined over a small ball U of 0 in OH" is said to be of quantity

Owt(m) if %ﬁlﬂ“) — 0 uniformly for (z,u) on any compact subset of U as t(€ R) — 0.

o Partial normalization of F Let F' = (f,¢,9) = (f,9) = (fi,*, fo-1,61,* , N0, 9)
be a non-constant map in Propy(H", HY) with F(0) = 0. For each p € 9H", we write
o) € Aut(H") with 0)(0) = p and 77" € Aut(H") with 77 (F(p)) = 0 for the maps

o2(z,w) = (2 + 20, w + wo + 2i(2, %)), (1)

V(25 w) = (2% — flz0, wo), w* — g(z0, wo) — 2i(2", f(z0, wo))). (2)

F'is equivalent to F, = 7} 0 F 0 0) = (f,, #p. gp). Notice that Fy = F and F,(0) = 0.
The following is basic for the understanding of the geometric properties of F'.

Lemma 2.1 ([§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F' be a non-constant map
in Propo(H", HY), 2 <n < N with F(0) = 0. For each p € OH", there is an automorphism
"€ Auto(HN) such that Fy* =1%o I}, satisfies the following normalization:

)
f;* — 2+ 5a;’;*(l) (Z)w + Owt(3)7 ¢;* = ¢;*(2) (Z) + Owt(2)7 g;* =w+ Owt(4>7 (3)

(z, a5 ()2 = |9 (2) .

sk

Let A(p) = —2@'(8;(2% l0)1<ji<n—1. We call the rank of A(p), which we denote by Rkg(p),
the geometric rank of F' at p. Rkp(p) depends only on p and F', and is a lower semi-continuous
function on p. We define the geometric rank of F' to be ko(F') = maz,comn Rkp(p). Notice
that we always have 0 < kg < n — 1. We define the geometric rank of F' € Prop,(B", BY)

to be the one for the map py' o F o p,, € Prop,(H", HY).

Lemma 2.2 (ct. [Hu99], theorem 4.3) F € Propy(B",BY) has geometric rank 0 if and only
if F'is equivalent to a linear map.

Denote by Sy = {(j,1) : 1 < j < ko, 1 <1 < (n—1),5 <} and write S := {(j,1) :
(j,1) € So, or j=ko+ 1,1 € {ko+1, kog+ N —n— Eirgzlnogy



Lemma 2.3 ([Lemma 3.2, Hu03]): Let F be a C*-smooth CR map from an open piece
M C OH" into OHY with F(0) = 0 and Rkr(0) = ko. Let P(n, ko) = % Then
N > n+ P(n, ko) and there are o € Autg(OH") and 7 € Auty(OH") such that F;** =
ToFoo:=(f ¢,9) satisfies the following normalization conditions:

*f;
ow?
fj :Zj+0wt(3)a j:'%()_‘_]-)”' an_l

( Z . )
fi =2+ Lzt oul3), SH0) =0, j =1+ o, 1 >0,

g =w + Owt (4)a (4)
b1 =pj1zj2 + 0y (2), where (j,1) € S with pjy >0 for (5,1) € Sy
L and pj; = 0 otherwise

where pj = /l; + i for 3,1 < ko 7 # 1, i = /1 if 7 < ko and 1 > ko or if j =1 < K.

e Pseudohermitian metric and Webster connection Let M be a C? smooth real
hypersurface in C"*'. We denote by T°M = TMNiTM C TM its mazimal complex tangent
bundle with the complex structure .J : T°M — T°M. Here J(a%j) = aiyj and J(aiyj) = _a%j
in terms of holomorphic coordinates. We denote by V = T%'M = {X +iJX | X € T°M} C
CTM := TM ® C the CR bundle. We also denote T"OM = V. All T°M, V and V are
complex rank n vector bundles.

Write TOM = (TOM @ T M)+ c CT*M for its rank one subbundle. Write 7'M :=
TOV: < CT*M for its rank n + 1 holomorphic or (1,0) cotangent bundle of M. Here
T CT'M.

A real nonvanishing 1-form 6 over M is called a contact form if O A (df)™ # 0. Let M be
as above given by a defining function r. Then the 1-form 6 = i0r is a contact form of M.

We say that (M, 0) is strictly pseudoconvez if the Levi-form Ly is positive definite for all
z € M. Here the Levi-form Ly with respect to 6 is defined by

Ly(t, ¥) := —id0(i A7), Vi,ve€T,°(M), Vpe M.

Associated with a contact form 6 one has the Reeb vector field Ry, defined by the
equations: (i) df(Rp,-) = 0, (ii) 0(Ry) = 1. As a skew-symmetric form of maximal rank
2n, the form df|r, has a 1- dimensional kernel for each p € M*"*!. Hence equation (i)
defines a unique line field (Ry) on M. The contact condition 6 A (df)™ # 0 implies that 6 is
non-trivial on that line field, so the unique real vector field is defined by the normalization
condition (ii).



According Tanaka [T75] and Webester [WeT78], (M, 0) is called a strictly pseudoconvex
pseudohermitian manifold if there are n complex 1-forms 6 so that {6, ..., 0"} forms a local
basis for holomorphic cotangent bundle H*(M) and

=iy 50" N7 (5)
a,f=1

where (%B)a called the Levi form matriz, is positive definite. Such #* may not be unique.
Following Webster [WeT78], a coframe (0, 6%) is called admissible if (5) holds. The admissible

coframes are determined up to transformations 6% = u36” where (u}) € GL(C").

Theorem 2.4 (Webster, [We78]) Let (M*"*1 0) be a strictly pseudoconvex pseudohermi-
tian manifold and let 67 be as in (5). Then there are unique way to write

6™ =Y 0 AW +ONT, (6)
y=1
where 7 are (0,1)-forms over M that are linear combination of 6% = 0%, and w? are 1-forms

over M such that

0= dhoﬁ — hﬁwg — hoﬁwg. (7)

We may denote w,3 = h_zw] and Wsg = hoﬁwg. In particular, if

haﬁ = 5a6> (8)

the identity in (7) becomes 0 = —w,5 — Wsa, i.e.,

0=w’+ w3 (9)

The condition on 77 means:
= A0, A = AP (10)

which holds automatically. The curvature is given by

do’ —w ANwf =R 0PN+ WP 08 N0 — W 07 N0+ i, A TP — i, AP (11)

a  pv

ﬁ_

where the functions R, and w.p . represent the pseudohermitian curvature of (M, 0).



3 CR second fundamental forms —— Definition 1

We are going to survey four definitions of the CR second fundamental forms I1y; of M in
OHN*1. We start with Definition 1 which is the intrinsic one in terms of a coframe.

Lemma 3.1 ([EHZ04], corollary 4.2) Let M and M be strictly pseudoconver CR-manifolds
of dimensions 2n + 1 and 2n + 1 respectively, and of CR dimensions n and n respectively.
Let - M — M be a smooth CR- embeddzng If (0,0%) is a admissible coframe on M, then

in_a neighborhood of a point p € F(M) in M there exists an admissible coframe (6’ HA) =

(6,6%,6") on M with F*(6,6°,6M) = (8,6,0). In particular, the Reeb vector field R is
tangent to F'(M). If we choose the Levi form matriz of M such that the functions h,z in

(5) with respect to (6,0%) to be (0,3), then (6,6%) can be chosen such that the Levi form

matriz of M relative to it is also (6 \5). With this additional property, the coframe (6, 64)
is uniquely determined along M up to unitary transformations in U(n) x U(n —n).

If (6,6%) and (,6%) are as above such that the condition on the Levi form matrices in
Lemma 3.1 are satisfied, we say that the coframe (,64) is adapted to the coframe (6, 6%).
In this case, by (9), we have § = [0, % = [*0“, and

ZQV/\W +0NTY 0= w —I—w— Vl<a,p<n,

y=1

and

do* = 0°NBE+ONTY, 0= D +Dp,  VI<SABLN.
B=1
For simplicity, we may denote F*5 by wi. We also denote F*@ 5 by w 4,5 where w5 = w5.
Write w /* = wa“ﬁeﬁ. The matrix of (w,” 5), 1 < a,f <n, n+1 < p <, defines the CR
second fundamental form of M. It was used in [We79] and [Fa90].

4 CR second fundamental forms —— Definition 2

Definition 2 introduced in [EHZ04] is the extrinsic one in terms of defining function.

Let F : M — M be a smooth CR-embedding between M C C**! and M C C¥*! where
M and M are real strictly pseudoconvex hypersurfaces of dimensions 2n+ 1 and 2n+ 1, and



CR dimensions n and 7, respectively. Let p € M and p = F(p) € M be points. Let p be a
local defining function for M near the point p. Let

Ey(p) = spanc{L’(pz o F)(p) | J € (Z4)",0 < |J| < k} C T;°CV*,

where py = 0p is the complex gradient (i.e., represented by vectors in C¥*! in some

local coordinate system Z' near p). Here we use multi-index notation L7 = LJ1 LI and

|J| = J1 + ... + J,. It was shown in [La0l] that Ej(p) is independent of the choice of local

defining function p, coordinates Z’ and the choice of basis of the CR vector fields L, ..., Lz.
The CR second fundamental form 11y of M is defined by (cf. [EHZ04], §2)

[14(X,,Yy) = (XY (5 o f)(p)) € TLM/Ei(p) (12)

where po = 0p is represented by vectors in CV*! in some local coordinate system Z’ near
p. X,Y are any (1,0) vector fields on M extending given vectors XY, € T,°(M), and

T Téﬁ — Té]f\z/El (p) is the projection map.
Since M and M are strictly pseudoconvex, the Levi form of M (at p) with respect to p
defines an isomorphism

TIM/E\(p) = T3°M/F.(T}°M)

and the CR second fundamental form can be viewed as an C-linear symmetric form
[Ty TROM x THOM — TY°M /F (T M) (13)
that does not depend on the choice of p (cf.[EHZ04], §2).

The relation between Definition 1 and Definition 2 was discussed in [EHZ04]. Let (M, M),
(6,6°), (6,64) be as in Lemma 3.1, and we abuse the structure bundle (6, 6%) on M with
the structure bundle (9 90‘) on M. We can choose a ‘a defining function p of M near a point

p=F(p) € M where p € M such that 6 = i0p on M., ie., in local coordinates Z’ in CN+!,

we have
NAl am

. 0p —-
Gzzzaz; Z,

k=1

where we pull back the forms dZ], ..., dZ} 4 to M. Then we consider the coframe (0,60%) =
(F*0, F*0%) on M near p with F(p) = p. We take its dual frame (T, L4) of (6,6%) and have

Lﬁ(ﬁ?/ @) F) = —iLngH = gﬁ@6’€ = 95797 (14)
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Here we used the definition of the construction, (5) and the dual relationship (Lg, %) =
05 and also notice that gsy = dg,. Applying L, to both sides of (14), we obtain

LoLg(py o F) = gayLasdd” = waus0"  mod(9,0%)

which implies
IIM(LQ,Lﬁ):wa“ﬁL“, n+1<pu<N. (15)

This identity gives the equivalent relation of the intrinsic and extrinsic definitions of I1;.
Notice that we need a right choice of (0,60%), (T, L4) and p.
By using (w,’ ) and (15), as in (13), we can also define

[Ty TROM x THOM — T2 M/ F (T M) (16)

which is independent of the choice of the adapted coframe (6, 64) in case M is locally CR
embeddable in CN*! (cf. [EHZ04], § 4).

5 CR second fundamental forms —— Definition 3

Definition 3 is the one as a tensor with respect to the group GL?(CN*2).

The bundle GL?(CV*?) over JH ! We consider a real hypersurface @ in CN*2 defined
by the homogeneous equation

(2,2):=Y 2477+ %(WZN“ — 707N =, (17)
A

where Z = (Z°, 24, ZN+1)t € CN*2, Let

mo: CNP2 {0} — CPY 'Y, (20, .00, 2n41) & [20 0 e 2 Zn4a, (18)
be the standard projection. For any point # € CPV+!, 75! (z) is a complex line in CN+2—{0}.
For any point v € CN*2 — {0}, mo(v) € CPV*! is a point. The image mo(Q — {0}) is the

Heisenberg hypersurface OHY 1 c CPV*!,
For any element A € GL(CN™?):

(0) (0) (0)

(e aq CI,N+1
S R

A = (CL(], ey CLN+1) = : : :+ c GL(CN+2), (19)
a(()NH) CLgN—H) - ag\]f\f:-ll)

8



where each a; is a column vector in CN*2 0 < j < N+ 1. This A is associated to an
automorphism A* € Aut(CPN*1) given by

N+1 N+1 N+1
A*([zo D2 ZN_H}) = {Zago)zj : Z ag-l)zj S Z ag-NH)zj}. (20)
5=0 5=0 §=0

When ago) # 0, in terms of the non-homogeneous coordinates (wy, ..., w,), A* is a linear
fractional from CN*! which is holomorphic near (0, ..., 0):

N+1 (1 N+1 (N+1
A*(w1 wN+1) _ (ijo a§» )wj ijo a§‘ )wj) where w. — <j (21)
o St aPw, T S P ) T a0

We denote A € GL?(CN*?) if A satisfies A(Q) C @Q where we regard A as a linear
transformation of CN*2. If A € GLY(CN*?), we must have A*(OHN*T!) C 9HN !, so that
A* € Aut(OHN ). Conversely, if A* € Aut(OHNT!), then A € GLP(CN*2).

We define a bundle map:

T GL(CN+2) — CPNH!
A:(a0>a1a~-~>aN+1) = 7To(ao)-

Then by (20), for any map A € GL(CY*?), A € m7'(mo(ag)) < A*([1:0:...:0]) =
mo(ap). In particular, by the restriction, we consider a map

T GLe(CN*2) —  OHNT!

22
A= (ag, a1, ...;any1) = mo(ao). (22)

We get OHNT! ~ GLO(CN+2)/ P, where P is the isotropy subgroup of GL?(CN*2). Then
by (20), for any map A € GL?(C"+?),

A e r N (molag)) <= A*([1:0:..:0]) = mo(ap). (23)

CR submanifolds of OHY™!  Let H : M’ — OHN*! be a CR smooth embedding where
M’ is a strictly pseudoconvex smooth real hypersurface in C"*'. We denote M = H(M’).

Let Ry be the Reeb vector field of M’ with respect to a fixed contact form on M’. Then
the real vector R; generates a real line bundle over M’, denoted by Ryr. Since we can
regard the rank n complex vector bundle T1°M" as the rank 2n real vector bundle, over the
real number field R we have:

TM' =T°M & Ryp ~T"M & Ryp. (24)
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given by
0 0

(ajﬁl’j’ jayj

Since H is a CR embedding, we have

0
) + CRM/ — (aj + 'lb])a—z + CRM/, ‘v’aj, bj, c € R. (25)
J

H,(TYM'Y =T"M c TY(0HN ™), TM ~ H (T*°M") © H,(Ryp) € T(OHN ). (26)

Lifts of the CR submanifolds Let M = H(M') C JHY ™! be as above. Consider the
commutative diagram
GLY(CN+2)
e/ I
M < aHN +1
Any map e satisfying m o e = Id is called a lift of M to GL?(CN*2).

In order to define a more specific lifts, we need to give some relationship between geometry
on OHN*! and on CN*2 as follows. For any subset X C dHN*!, we denote X := 75 '(X)
where 7y : CV2 — {0} — CPV ™! is the standard projection map (18). In particular, for any
x € M, # is a complex line and for the real submanifold A/2"!, the real submanifold M2n+3
is of dimension 2n + 3.

For any x € M, we take v € & = m; *(z) € CN*2 — {0}, and we define

T,M =T,M, T°M =T°M, Ru.:=Ry,

where Ry = U, Ryr,- These definitions are independent of choice of v.
Alift e = (e, q, €4, en+1) of M into GLY(CN*2) where 1 <a<nandn+1<p <N,
is called a first-order adapted lift if it satisfies the conditions:

eo(z) € myt(x), span(eg,eq)(z) = THOM, span(eq, eq,ens1)(x) = THOM @ Ryre  (27)
where span(eg, e,)(x) = C® {eg + aneq + beni1 | an € C,b € R}|,, and
span(eg, ey, en1)() := C® {ep + anta + benii |an € C,b € R},. (28)

Here we used (25) and the fact that the Reeb vector is real. Locally first-order adapted lifts
always exist (see Theorem 7.1 below).

We have the restriction bundle FY; := GL?(CN*2)|); over M. The subbundle 7 : Fi, —
M of FY; is defined by

f]%/[ = {(eo, €j, eu, ent1) € ]-“RJ | [eo) € M, (27) are satisfied}.

10



Local sections of F}, are exactly all local first-order adapted lifts of M.
For two first-order adapted lifts s = (e, e;, e,, eny1) and 5 = (g, €j, €., €n11), by (27),
we have

50 = 98607
~ _ 0 k
ej —9j€0+9j€k7 (29)
e = 0 7. v N+1
ﬂ_gueo_'_g“e] +guel/+gu €N+17
ENt1 = GR1€0 + G416 + IN 1N+,
In other words, s = s - g where
9 92 92 99_V+1
0 g. 9, g
g = (9079j79u79N+1) = 0 (;C g!l;t ]\6+1 (30)
0 0 gt gyH

is a smooth map from M into GLY(CN*+2). Then the fiber of 7 : Fi, — M over a point is
isomorphic to the group

9 95 9% 9

G1 =199 = 0 gg glz g?\[f-l-l c GLQ((CN+2) 7
00 g¢o 0
0 0 gN-i-l N+1

m IN+1
where we use the index ranges 1 < o, <nandn+1<pu,v<N.
We pull back the Maurer-Cartan form from GL?(CN*?) to F}, by a first-order adapted
lift e of M as

0 0 0 0

wo wy Wy Wi
(7 o (7 (7

_ Wo Wpa Wy W
e wh wh Wk

Nl MM Nkl N

+ + N+1 +

Wy Wy w? Wi

Since w = e~ !de, i.e., ew = de. Then we have
— 0 o M N+1
dey = egwy + eqw + e Wy +enyiwy T (31)

On the other hand, we have dey = 0 mod{eg, €, en+1) when pullback to Fi,. Then we

conclude wfj = 0, Vu. By the Maurer-Cartan equation dw = —w A w, one gets 0 = dwl =

v a v N+1 _ v a N+1 )
—wl AW — Wi Awy e, 0= —wl Awg, mod(wy' ). Then by Cartan’s lemma,

Wi = GagWy mod(w) ™),
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for some functions g5 = ¢,

The CR second fundamental form In order to define the CR second fundamental
form 11y =113, = qgﬁwgwg ® e, mod(wy ™), let us define e, as follows.

For any first-order adapted lift e = (e, €a, €y, €x41) With mo(eg) = 2, we have e, € THOM.
Recall TgG(k,V) ~ E* ® (V/E) where G(k, V) is the Grassmannian of k-planes that pass
through the origin in a vector space V over R or C and F € G(k, V) ([IL03], p.73). Then
T,M ~ (2)* ® (T, M/#) and hence the vector e, induces eq € THOM by

e, ="' ® (ea mod(eo)),
where we denote by (e, e, e#, e¥*1) the dual basis of (CV*2)*. Similarly, we let
e, =€’ ® (e, mod TIM) e N, M, (32)
where N, M is the CR normal bundle of M defined by N,M = T,(0HN*1) /T, M.
By direct computation, we obtain a tensor
Iy = 11§ = ¢hgwiwy @e, € T(M, S*T20 M @ Ny M) mod(wy™).  (33)
The tensor 11y, is called the CR second fundamental form of M.

Pulling back a lift Let M C OHY*! be as above with a point @)y € M. Let
A € GLR(CN*2) A* € Aut(OHNT) with A*(Qg) = Py and M = A*(M). Let 5 : M —
GL2(CN*2) be a lift. We claim:

s:=A1.-50 A" (34)
is also a lift from M into GL?(CN*2). In fact, in order to prove that s is a lift, it suffices to
prove: ms = Id, i.e., for any point @) € M near Qq, 7s(Q) = Q. In fact,

ms(Q) = m(A™ 50 A)(Q) = (A7 3(P)) = (A1) H(73(P)) = (A)H(P) = Q.

so that our claim is proved. .

If, in addition, 5 is a first-order adapted lift of M into GL?(CN*2), s is also a first-order
adapted lift of M into GL?(CN*?),

Let Q be the Maurer-Cartan form over GL?(CN*2). Then by the invariant property
A*Q) = Q, we have s*Q0 = (A7 - 50 A*)*Q = (A)*(3)* (A7 1)*Q = (A*)*(5)*Q, i.e., it holds
on M that

w=(A")© (35)
where w = s*Q2 and @ = 5" so that wf = (A*)"@§ and wy = (A*)*Wj. The last equality
yields

¢y =q'yo A" (36)
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6 CR second fundamental forms —— Definition 4

Definition 4 will be the one as a tensor with respect to the group SU(N + 1, 1).
As for Definition 3, we consider the real hypersurface ) in CV*2 defined by the homo-
geneous equation

(2,2) =277 + %(ZNHﬁ — 7978+ ) =, (37)
A

where Z = (Z°, 24, ZN*1)t € CN*2. This can be extended to the scalar product

(2,2 =3 777 + %(ZN“?O _ 707N, (38)
A

for any Z = (29,24, ZN+t0t 70 = (7°, 74, 2’V Tt € CN¥2. This product has the prop-
erties: (Z,Z') is linear in Z and anti-linear in Z’; (Z, 7'y = (Z', Z); and @ is defined by
(Z,7Z) = 0.

Let SU(N +1,1) be the group of unimodular linear transformations of C*+2 that leave
the form (Z, Z) invariant (cf. [CM74]).

By a Q-frame is meant an element E = (Ey, Ea, Eny1) € GL(CN™?) satisfying (cf.

[CM74, (1.10)))

det(E) =1, . (39)
(Ea, Ep) = daB, (Eo, Ent1) = —(Eng1, Eo) = —3,

while all other products are zero.
There is exactly one transformation of SU(N + 1,1) which maps a given @Q-frame into
another. By fixing one Q-frame as reference, the group SU(N + 1,1) can be identified

with the space of all Q-frames. Then SU(N + 1,1) C GL?(CN*!) is a subgroup with the
composition operation. By (22) and the restriction, we have the projection

7 SU(N 4+ 1,1) — OHN™ . (Zy, Za, Zn11) — span(Zy). (40)

which is called a Q-frames bundle. We get OHN* ~ SU(N + 1,1)/P, where P, is the
isotropy subgroup of SU(N +1,1). SU(N +1,1) acts on OHY*! effectively.

Consider £ = (Ey, B4, Ent1) € SU(N 4 1,1) as a local lift. Then the Maurer-Cartan
form © on SU(N +1,1) is defined by dE = (dEy,dEs,dEN,1) = EO, or © = E~1-dFE, i.e.,
& 0% Oy,
d(Ey Ex Eny1)=(Ey Ep Enp) | ©F 0% ©%. ], (41)
o)t oy el
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where ©F are 1-forms on SU(N + 1,1). By (39) and (41), the Maurer-Cartan form (O)
satisfies

o) + @%ﬂ =0, Ot = @N+1 O = =001,

N+1 : - A N4+1 (42)

Ot =2i0f, 64,, =—10%, 04+06% =0, 6+ 604 +631 =0,

where 1 < A < N. For example, from (E4, Eg) = 045, by taking differentiation, we obtain
(dE 4, Eg) + (E4,dEg) = 0.

By (41), we have
dEy = Eo@g + EB@(]]B + EN+1@éV+1a
dE, = E,0° + Eg08 + By, 0N+
dEn41 = Eg©% 41 + EpO¥. + En O8N
Then

(Eo©Y + EcOf + En 104", Ep) + (Ea, EeO% + EpOp + En1O5™) =0,
which implies ©F + ©4 = 0. In particular, from (42), 0% = —2i04 . © satisfies
dO = —O A0, (43)

Let M — OHM*! be the image of H : M’ — JHN*! where M’ C C"*! is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M — OHY*! and a lift
e = (eg,€1,...,ens1) = (€0, €a,€n, eny1) Of M where l <a<nandn+1<v <N

SU(N +1,1)
e/ s
M 8HN+1
We call e a first-order adapted lift if for any x € M, (27) is satisfied:
mo(eo(x)) =z, span(e, eq)(z) = THOM, span(eg, eq,eni1)(x) = TOM @ Ryrp.  (44)

Locally first-order adapted lifts always exist (see Theorem 7.1 below). We have the restric-
tion bundle FY, := SU(N + 1,1)|sr over M. The subbundle 7 : Fi, — M of FY; is defined
by

Far = {(eo, 5, eu,ent1) € Fip | [eo] € M, (44) are satisfied}.

14



Local sections of F}, are exactly all local first-order adapted lifts of M. The fiber of 7 :
Fi — M over a point is isomorphic to the group

9 9% 90 9%

0 g3 9, 9Ix
Glz{g: 0 égg“ o eSU(N+1,1)},

0 0 0 gyii
where we use the index ranges 1 < o, <nandn+1<pu,v<N.
By (39), we have (go, gn+1) = —3%, it implies gJ - gyi1 = 1 so that gy = g%. Since
0
(90, 9u) = 0 and gg # 0, it implies g/ ™" = 0. Since (ga, gs) = dag, it implies that the matrix
(92) is unitary. Since deg(g) = 1, it implies g - det(g5) - det(g) - gyt = 1. By (25) and

(44), g1 is areal if g%, = 0; gnT1 /g%, is real if g%, # 0.

By considering all first-order adapted lifts from M into SU(N + 1, 1), as the definition
of I, in Definition 3, we can defined CR second fundamental form 17, as in (33):

Iy =11, = qgﬁwgwg ®e, € T(M, ST M ® Npyeoy M), mod(w' ™), (45)

mo(eo)
which is a well-defined tensor, and is called the CR second fundamental form of M.
We remark that /1), in Definition 4 was studied in [Wa09].

Pulling back a lift Let M C OHY ! be as above with a point Qg € M. Let A € SU(N +
1,1), A* € Aut(OHN ) with A*(Qg) = Py and M = A*(M). Let §: M — SU(N +1,1) be
a lift. We claim:

s:=A"1.50 A", (46)

is also a lift from M into SU(N + 1,1). Similarly as in (35) and (36), we have

w=(A")"w (47)
and
Gy = Qog © A (48)
where w = s*Q, @ = §*Q) and Q is the Maurer-Cartan form over SU(N + 1,1).
[Example] Consider the maps in (1) and (2):

op(z,w) = (2 + 20, w + wo + 2i(2, 7)),

F(2* w*) = (2° — flz0, wo), w* — g(z0,wo) — 2i(z*, f(20,wp)))

Tp
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where p = (20, wo), 2 = C", w = 241, 0) € Aut(OH"™), and 7 € Aut(9HN ).
By (19) and (21), these two maps correspond to two matrices:

1 0 .. 0 0
201 1 0 0
Ay = | oot 1l €eSUMn+1,1) (49)
Zon 0 1 0
|wo 2i%r ... 2%, 1]
and
! 0 0]
—for 1 0 0
Agr = : : . : | eSUN+1,1) (50
— fon—n 0 1 0
| —9(20,w) —2if1 (20, wo) . —2ifn—n(20, wo) 1

where 20 — (201, ey ZOn) and Wy = Zon+-1- ]

[Example] Consider the map Fy, a0 = (f,g) € Auto(OH" )

Mz + dw)U 2w

708 Jp—" G L) U —— S P — s —
1 —2i(z,a) — (r +i||d]|*)w 1= 2i(z,d) — (r + 1]|a@|]*)w

where A > 0,7 € R,d € C" and U = (uqp) is an (n — 1) x (n — 1) unitary matrix. By (19)

and (21), its corresponding matrix,

(1 —2iay ... —2ia, —(r+i||d@|?
0 )\ull )\Uln )\0,1
AFA,T,&’,U: . , (51)
0 )\Unl )\u,m )\a,n
0 0 .. 0 2

is not in SU(n + 1,1) in general. In fact, we can write
Fyrav = Fxo014° 10000 Firar1d- (52)

or AF)x,T',L_i,U = AFA,O,O,Id ’ AFI,O,O,U ’ AFl,rﬁ,Id' Here AF1,0,0,U and AFM-, are 11 SU(N + 1, 1);

while A, ., is in SU(N +1,1) if and only if A = 1. Therefore

Apyap 180 SUM+1,1) if and only if A = 1. (53)

a,ld
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7 Existence of First-order Adapted Lifts from M into
SU(N +1,1) or into GL%(CN*?)

Existence of first-order adapted lifts. Let (M',0) be a germ of smooth real hyper-
surface in C"*! defined by the defining function

r= Zz]zj (w —w) + o(2). (54)

We take

- 1
0 =ior =1 Zjdz; — =d 1).
ior z(j;zj 5= w))—i—o()
as a contact form of M.
Write w = u +iv. Here v = 37", [2]* 4+ 0(2). Take (2;,u) as a coordinates system of
M'. By considering the coordinate map: h: C" x R — M, (zj,u) — (zj,u +i|z|* + 0(2)),
we get the pushforward

9 L= o +i(z + 0(1))6% e

0 0
8zj 82]' u %) N RM’ T (1 + 0( ))

fia ou

for j =1,2,...,n. Then {L;},<;<, form a basis of the complex tangent bundle 7"° M’ of M’.
Since da = —i Z?:l dzj N\ dzj, we see that R is the Reeb vector field of M’. In particular,
as the restriction at 0, we have

0 0
Ljlo = 8—zj|0’ Ryprlo = %|0~ (55)

Theorem 7.1 Let M — OHN*! be the image of H : M’ — OHN*! where M' C C**! is
a smooth strictly pseudoconver CR-hypersurface. Then for any point in M, the first-order
adapted lift E = (Ey, Ey, E,,, Ex+1) of M into SU(N +1,1) ( hence into GL?(CN*?)) exists
in some neighborhood of the point in M.

Proof: Step 1. Without of loss of generality, we assume that 0 € M so that it suffices to
construct a lift £ = (Ey, E,, E,, En4+1) in a neighborhood of the point 0. Here we denote
[1:0:...:0] by 0.
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Assume that M’ is defined by the equation Im w = |z|*> + o(|z]*) in (z,w) € C" x C
where w = u + iv. Assume that H = (1, fo, ¢,, g) is the smooth CR embedding of M’ into
OHN* with H(0) = 0 and

f=2+0((zw)*),¢=0((z,w)]*), g=w+O0((zw)) (56)

Let L,,a = 1,2,...,n be a basis of the CR vector fields and R is the Reeb vector field on
M’. Then as in (55) with (56), we have

0

Lalo = — o.
b Sl

and Rly = (57)

o
aZj 05
It follows that L,H = 0 as H is a CR map. By the Lewy extension theorem, H extends
holomorphically to one side of M’, denoted by D, where D is obtained by attaching the
holomorphic discs. By applying the maximum principle and the Hopf lemma to the sub-
harmonic function Y- |fa|? + 3 [¢.> + 4(g — ) on D, it follows that 22-2(0) # 0. Since

29 — 0 and 2229(0) = 0, we have Rg(0) = 92(0) = Z222(0) # 0.

Step 2. Direct construction of Ey, £, and Ey,; We define

1
_ | fa(z,w)
Eo = gbu(z,w) (58)
9(z,w)

which can be regarded as a point in JHY*. Then (Ey, Ey) = 0 holds:

_ g B
D fafat ) bubut (g —9) =0, on M. (59)
Apply the CR vector field Lg to Ey, we define

Ep = (0, L fu, Lsdu, Lsg)",

which form the basis of the complex tangent bundle T;(;(z EO)(M ). Then in a neighborhood of
0 in M, we have as in (27)

span(Ey, Ey) = Tii’((go)M.

Now, we have (Ey, E,) = 0 by applying Lg to (59):
- - 1
> foLofat+ Y buLstu+ 5169 =0. (60)
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By the Gram-Schmid orthonormalization procedure, we can obtain, from {Eﬁ}, an or-
thonormal set with respect to the usual Hermitian inner product (, )o; we denote it by {Es}.
By the definition (38), we notice that for any Z = (Z°, Z4, Z¥*1) and Z' = (20, 2'4, Z/N+1),

(Z, Z') = <(%ZN+1,ZA,—%ZO), (Zg,Z’A,Z’N+1)> =(Z,2'). (61)
0

where (, )¢ is the usual Hermitian inner product and 7 = (%ZNH, Z4, —%ZO). Then we
see from (60) that

<E0a Eﬁ) = <(%gafa>¢u>_%)> (OaLﬁfaaLﬁ¢uaLﬁg)> = 0.
0

Also we observe (E,, Eg) = (Ea, Eg)o = 0ap. Then (Ey, Ey) = 0, (Ey, E) = 0 and
<Ea, Eg) = 5aﬁ hold.
Applying the Reeb vector field R, we define another vector

Ey1:=(0,R fa, R ¢, R g)'
over a neighborhood of 0 in M such that
span(Ey, Eu, Ex11) = TWO(EO)M
as in (27). We want to construct

Eny1 = AEy 4 BoE, + CEyyy

such that ,
)
<EN+17 E0> - 57 <EQ7EN+1> = 07 and <EN+17 EN+1> == O
From (En.1, Eo) = %, we get (AEy + BoFo + CENH, Ey) = % so that
7
C=—7c——. (62)
2(En 41, Eo)

By (57), we notice that

Ofa

- ~ 0 - X0)
(En+1, Eo)lo = Z %|Ofa(0) + Z %M%(O) + o

20u"
and therefore (Ey41, Eo)(0) = £R ¢(0) # 0.

2
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From (Eniq, Ey) =0, we get (AEy + BgEs + C’ENH, E,) = 0 so that
Bo = —COpo(Eni1, Eg) = —C(Eny1, Ea). (63)

From SEN_H, EN+1> = 0, WeNget <AE0 + BﬁEg + CEVN'H’ AE(] + BﬁEﬁ + CEN—H}V: 0.
Since C(En1, Eo) = 5, C{Eo, Ent1) = —5, Bo = —C(Eny1, Eo) and B, = —C(Eq, Eny1)
by (62) and (63), we obtain

1 71—
—514 + 514 — Za: |Bal? + |C1*(Ens1, Eny1) = 0,

so that
Im(A) = |Bal* = |CI*(Ens1, Ent1). (64)

Therefore Ey,4 is determined.
So far we have <E0,E0> = <EN+1,EN+1> = <E0,E5> = <EN+1,E5> = 0, <Ea,E5> = 0Oag
and <E0,EN+1> = —% hold.

Step 3. Construction of £ From Step 2, at the point 0, we have vectors
Eolo=1[1:0:...:0], B1lo=1[0:1:0:...:0],..; Eplo=[0:0:...:1:0:...:0], (65)

and
Eniilo=1[0:0:...:0:1]. (66)

Therefore we can define E at the point 0 by
E(0):=1d € SU(N +1,1). (67)

For any other point P in a small neighborhood of 0 in M, we are going to define E(P) €
SU(N +1,1) as follows.
Write H(p) = P for some p € M'. Then we take a map Vp € SU(N + 1, 1) such that

U5(P) =0, Ty U(M) = span(Eylo, Eslo), and TyU(M) = span(Eglo, Eqlo, En1lo)

as in (27), where Fylo, Folo and Enyq|o are defined in (65) and (66). The map Wp can be
defined as Ap, , ., 0 Ayr where A,r € SU(N +1,1) as in (50) and Ap, ., € SU(N +1,1)
as in (51). Notice in the construction of the normalization F** and F***, we can always
choose A = 1 so that (52) can be used. Up is smooth as P varies. Then we define

B(P) == (U3)"E(0) = (¥5)" E(0). (68)
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This definition is the same as in (46). Since Vp is invariant for the Hermitian scalar product
(, ) defined in (38) and F(0) satisfies the identities (39), it implies that F(P) satisfies the
identities (39), i.e., E(p) € SU(N + 1,1).

As a matrix, we denote E(P) = (EO, E., Eu, EN+1). Since the map W p preserves the CR
structures and the tangent vector spaces of M and Wp(M), we have as in (27)

span(Ey, o) = span(Ey, Eo)|p, span(Ey, Ea, Ex+1) = span(Ey, Ea, Ex11)|p.

where Ey, E, and Ey are constructed in Step 2. We remark that we can replace (Eo, Ea,
Enii1) by (Eo, Eoy Eny1). O

Existence of a more special first-order adapted lifts when M is spherical When
M = F(OH") where F' € Propy(H"™ HY '), we can construct a more special first-order
adapted lift of M into SU(N + 1,1) as follows (cf. [HIJY09)]).

Let F' = (f,¢,9) € Prop,(9H"t', 0H"*") be any map with F = F**. Then F(0) = 0.
We introduce a local biholomorphic map near the origin

ng = (f> 9) : CM — Cn+1> (Z, ZN+1) = (f> 9) = (5, 2N+1)

with its inverse

Fi )l C = € (220 ) = (FR DY, (R D™ (FH™YY) = (2, 2810).

Here we use (2, 2x41) as a coordinates system of M = F(OH"™) near F(0) = 0. Denote
Projs, : CNTL— C"*1 (2,2, 2n41) — (2, 2n41). Then we have Projr, o F = Fyy:

F : oH" ! — M
\, ng l P’/’Ojfg
Cn—l—l

We also have a pair of inverse maps F : 0H" "' — M and (Ff_gl) o Projs, : M — OH".

Locally we can regard M as a graph: F o F&l :Cvtt — M C CNVFE:
(2721\74—1) = (27 ¢((ng)_1<272]\/+1)>7 2N+1)
Now let us define a lift of M into SU(N + 1,1)
e=(ep,a € ent1) €ESUN+1,1), 1<a<n n+l1<pu<N (69)

as follows.
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We define eq : M — CN*2 be the inclusion:

t
eo(2,2ny41) = Fo Ff_gl(f,fNH) = |1: 2: ¢((Fry) '(2,2n41)) © 2N (70)

V(2,2n41) € C*ML We define e, : M — CVN*2 for 1 < a < n:

1
" VNLaf P+ [Lad]?

where L, = azia + 2@'20‘%. By the definition (38), we have {(eg, ¢g) = 0 because f - f + ¢ -
b= 5:(9-79) =22+ 6((Fry) 7' (2, 2N+1))¢_((ng>_1(2l2N+1)) + 5(2n11 — Zv41) = 0 holds
on JH™™, and (eg,ea) = 0 because Lof - f + La¢ - ¢ + $Lag = 0 holds on JH"*!, and
(€as€p) = 0ap because Lof - Lyf + La¢ - Lsg = 0 holds on 9H"*! for a # f3.

If we define eyyq := (0,Tf,T¢,Tq)" o Ff_gl, where T = a% with 2¥*1 = 4 + 4v, then
span(eg, €q, €nt1) = TAWO(eO)M . We then find coefficient functions A, B, and C such that
eny1 = Aeg + > Baeo + Cey, g satisfies

[0: Laf : Lot : Lag] o F}. (71)

Cq

1
(€0, ent1) = 5 (eaent1) =0, (en+1,en41) =0. (72)

8 Relationship among four definitions of /1,

Lemma 8.1 Let H : M' — OHN*! be a CR smooth embedding where M' is a strictly
pseudoconvex smooth real hypersurface in C"1. We denote M = H(M'). Then the following
statements are equivalent:

(i) The CR second fundamental form IIy; by Definition 1 identically vanishes.

(ii) The CR second fundamental form I1y by Definition 2 identically vanishes.

(iii) The CR second fundamental form 11y by Definition 3 identically vanishes.

(iv) The CR second fundamental form 11y by Definition 4 identically vanishes.

Proof (i) <= (ii) by (15).

(iii) <= (iv) The equivalence follows by the facts that, for Definition 3 and 4, 11§, =
for one first-order adapted lift e if and only if 113, = 0 for any first-order adapted lift s, that
a first-order adapted lift from M to SU(N + 1,1) must be a first-order adapted lift from M
to GLY(CN+2).
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(iv) = (i): Let M C OHN*! be a (2n + 1) dimensional CR submanifold with CR
dimension n that admits a first-order adapted lift e into SU(N + 1,1). Consider the pull-
backed Maurer-Cartan form over M by e

0 0 0 .0
Wo wg W, Wy
(7 o (7 (7
_ | %o Wg Wy WN+1
W= 0 wh Wt Wk
N+1 Nﬁ 1o %ﬂ
+ + +
Wy o 0 wyiy
with
TN+ N+1 _ N+l 0 0
wg + wN—i—l 0 Wy = u’o ; u’N+1 = u’N+1= (73)
N+1 _ A N+1 _

where 1 < A < N.
Let 6 = wy'™ which is a real 1-form by (73). By dw = —w A w and (73), we obtain

d9 = —w) A W) — W AW — N T AW = 2i05 AWF — O A (W 4 w]) = i A B,

where we denote
= V2wl + c.0 (74)

for some functions ¢,. Therefore, (8) holds and hence M is a strictly pseudoconvex pseu-
dohermitian manifold with an admissible coframe (0,60%). Hence Definition 4 of 1, = 0
implies Definition 1 of I1; = 0.

(i) = (iv): Definition 1 of I1y; gives a coframe (6, 6*) which corresponds to Definition
2 of I1,; with respect to a defining function p of M in OHN*!.

Now take a first-order adapted lift e from M into SU(N + 1,1). By (74), it corresponds
to a coframe (0,0%) on M and by (16), it corresponds Definition 2 of I1,; by some choice of
the defining function p of M in OHN*

The above p and p may not be the same. But Definition 2 of 11, = 0 is independent of
choice of defining functions, which gives (i) = (iv). O

9 Proof of Theorem 1.1

Lemma 9.1 (¢f. [EHZ04], corollary 5.5) Let H : M’ — M — OHN*! be a smooth CR
embedding of a strictly pseudoconvex smooth real hypersurface M C C**t1. Denote by (wWy'5)

the CR second fundamental form matriz of H relative to an admissible coframe (6,04) on
OHN*Y adapted to M. If w}! 5 =0 forall a, 3 and p, then M’ is locally CR-equivalent to
aHn—H‘
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Proof of Theorem 1.1  Step 1. Reduction to a problem for geometric rank By
Lemma 8.1 and Lemma 9.1 and the hypothesis that the CR second fundamental form iden-
tically vanishes, we know that M is locally CR equivalent to OH" !,

Then M is the image of a local smooth CR map F : U C OH""! — M C OHN*! where
U is a open set in OH"" . By a result of Forstneric[Fo89], the map F must be a rational
map. It suffices to prove that F'is equivalent to a linear map. By Lemma 2.2, it is sufficient
to prove that the geometric rank of I is zero: ko = 0.

Suppose ko > 0 and we seek a contradiction.

Step 2. Reduction to a lift of ((H o7/ )(M),0) Take any point p € U C OH"™ with
Ko = Ko(p) > 0, and consider the associated map (see Lemma 2.1)

F;** = HOTIF o F o O'I()) OG . 8Hn+1 — 8HN+1, F;**(O) = 07 (75)

where o) is defined in (1), 7" is defined in (2), G € Auto(H"*') and H € Auto(HV*)

p
are automorphisms. By Theorem 2.3, [;** = (f, ¢, g) satisfies the following normalization

conditions:

( i 82f, .
f] :ZJ_'_?]ZJw—i_OWt(B)? 8—1,0;(0):0’ .]:1 y KO, :uj>07
fj :Zj_'_Owt(B)a j::‘io—l-l,"' ,n—l
_ (76)
g =w + Owt(4)7
b1 =pj1zj2 + 0i(2), where (j,1) € S with pj > 0 for (4,1) € Sy
L and pj = 0 otherwise

where pj = /iy + i for 5,0 < ko j # 1, pj = /15 if j < ko and [ > kg orif j =1 < ky.
Here the assumption that kg > 0 is used.
From (75) we obtain

Horl

(M,F(p)) —2 (Horl'(M),0)
TF T F

O'OO
(OH p) ZZ (gHr o)

If we can show that there exists a first-order adapted lift e from the submanifold H o 7" (M)
near 0 into SU(N + 1, 1) such that the corresponding CR second fundamental form

o r iy # 0 at 0, (77)
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then we obtain a first-order adapted lift ¢ := (H o 7.\ )_1 oeo H ot} from the submanifold
M near F(p) into GL?(CN*1) such that the corresponding CR second fundamental form

II5, # 0 at F(p). (78)

Notice that the map H o7} € GL?(CY*?) but Ho 7l ¢ SU(N +1,1), so that the lift ¢ is
not from M into SU(N + 1,1). This is why we have to introduce Definition 3.

Since we take arbitrary p € OH""!, from (78) it concludes that 11y, # 0, but this is a
desired contradiction.

Step 3. Calculation of the second fundamental form It remains to prove existence
of the lift e such that (77) holds.

The lift e constructed in the second half of Section 7 is a first-order adapted lift from
H o1l (M) near 0 into SU(N + 1,1) which defines a CR second fundamental form as a

tensor 115 po\py = qgﬁwo‘wﬁ ® (eu) in (45). If we can show
D¢
" o(0) = - 79
s(0) = o) (79)

where [ = (f,¢,9) = (fa, ®u,g9). Since we assume that ko > 0, by (76) and (79), it
implies ¢},4(0) # 0,Va, 3 and p, i.e., Iy # 0. This proves (77).

Let E = (eg, €q, By, en41) be the lift constructed in Theorem 7.1 (see the remark at the
end of the proof of Theorem 7.1) and in (70) (71) and (72). Since E|y = Id, we have

wlo = (E~o)(dE)|o = dElq

so that
0 x ... %]
le
wlo = dz,
0=, ;
*
| dw i
Hence wilo = dz1, ..., wilo = d2z,, w) o = dzny1. Then by applying the chain rule, we
obtain
Ao = ALl = d((Ls0y) o (Fr) )y = e (L) o (Fro) ™o = Al
J J 3Pp fg 0 021 J¥Pu fg 0zkazj 0105
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for any 5,k € {1,2,...n, N+ 1}, n+1 < p < N. Hence (79) is proved. The proof of
Theorem 1.1 is complete. [
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