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1 Introduction

The Cartan-Janet theorem asserted that for any analytic Riemannian manifold (Mn, g),
there exist local isometric embeddings of Mn into Euclidean space EN as N is sufficiently
large. The CR analogue of Cartan-Janet theorem is not true in general. In fact, Forstneric
[F086] and Faran [Fa88] proved the existence of real analytic strictly pseudoconvex hyper-
surfaces M2n+1 ⊂ Cn+1 which do not admit any germ of holomorphic mapping taking M
into sphere ∂B

N+1 for any N .
There are recent progress on CR submanifolds in sphere ∂BN+1. Zaitsev [Za08] con-

structed explicit examples for the Forstneric and Faran phenomenon above. Ebenfelt, Huang
and Zaitsev [EHZ04] proved rigidity of CR embeddings of general M2n+1 into spheres with
CR co-dimension < n

2
, which generalizes a result of Webster [We79] for the case of co-

dimension one. S.-Y. Kim and J.-W. Oh [KO06] gave a necessary and sufficient condition
for local embeddability into a sphere ∂BN+1 of a generic strictly pseudoconvex psuedoher-
mitian CR manifold (M2n+1, θ) in terms of its Chern-Moser curvature tensors and their
derivatives.

In Euclidean geometry, for a real submanifold Mn ⊂ En+a, M is a piece of En if and only
if its second fundamental form IIM ≡ 0. In projective geometry, for a complex submanifold
Mn ⊂ CPn+a, M is a piece of CPn if and only if its projective second fundamental form
IIM ≡ 0 (c.f. [IL03], p.81). In CR geometry, we prove the CR analogue of this fact in this
paper as follows:

Theorem 1.1 Let H : M ′ → ∂BN+1 be a smooth CR-embedding of a strictly pseudoconvex
CR real hypersurface M ′ ⊂ Cn+1. Denote M := H(M ′). If its CR second fundamental
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form IIM ≡ 0, then M ⊂ F (∂Bn+1) ⊂ ∂BN+1 where F : Bn+1 → BN+1 is a certain linear
fractional proper holomorphic map.

Previously, it was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary
5.5), under the above same hypothese, that M ′ and hence M are locally CR-equivalent to
the unit sphere ∂B

n+1 in C
n+1.

There are several definitions of the CR second fundamental forms IIM of M (see Section
3, 4, 5, and 6). The result in [EHZ04] used Definition 1 or 2. However, to prove Theorem
1.1, we need to use Definitions 3 and 4. We’ll prove in Section 4 that IIM ≡ 0 by any one of
the four definitions will imply IIM ≡ 0 for all other three definitions. One of the ingredients
for our proof of Theorem 1.1 is the result of Ebenfelt-Huang-Zaitsev [EHZ04] so that M
can be regarded as the image of a rational CR map F : ∂Hn+1 → M ⊂ ∂HN+1. Another
ingredient is a theorem of Huang ([Hu99]) that such a map F is linear if and only if its
geometric rank κ0 is zero. The idea about special lifts for maps between spheres was also
used in [HJY09].

Acknowledgments We would like to thank Professor Xiaojun Huang for the constant
encouragement and support. The second author is also grateful to Wanke Yin and Yuan
Zhang for helpful discussions.

2 Preliminaries

• Maps between balls We denote by Prop(Bn, BN) the space of all proper holomorphic
maps from the unit ball Bn ⊂ Cn to BN , denote by Propk(B

n, BN) the space Prop(Bn, BN)∩
Ck(Bn), and denote by Rat(Bn, BN ) the space Prop(Bn, BN ) ∩ {rational maps}. We say
that F and G ∈ Prop(Bn, BN) are equivalent if there are automorphisms σ ∈ Aut(Bn) and
τ ∈ Aut(BN) such that F = τ ◦G ◦ σ.

Write Hn := {(z, w) ∈ Cn−1 × C : Im(w) > |z|2} for the Siegel upper-half space.
Similarly, we can define the space Prop(Hn, HN ), Propk(H

n, HN) and Rat(Hn, HN) similarly.
By the Cayley transformation ρn : Hn → Bn, ρn(z, w) = ( 2z

1−iw
, 1+iw

1−iw
), we can identify a

map F ∈ Propk(B
n, BN) or Rat(Bn, BN) with ρ−1

N ◦ F ◦ ρn in the space Propk(H
n, HN) or

Rat(Hn, HN ), respectively. We say that F and G ∈ Prop(Hn, HN ) are equivalent if there
are automorphisms σ ∈ Aut(Hn) and τ ∈ Aut(HN ) such that F = τ ◦G ◦ σ.

We denote by ∂H
n = {(z, w) ∈ C

n−1×C : Im(w) = |z|2} for the Heisenberg hypersurface.
For any map F ∈ Prop2(H

n, HN), by restricting on ∂Hn, we can regard F as a C2 CR map
from ∂Hn to ∂HN .

We can parametrize ∂Hn by (z, z, u) through the map (z, z, u)→ (z, u + i|z|2). In what
follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-negative
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integer m, a function h(z, z, u) defined over a small ball U of 0 in ∂Hn is said to be of quantity

owt(m) if h(tz,tz,t2u)
|t|m

→ 0 uniformly for (z, u) on any compact subset of U as t(∈ R)→ 0.

• Partial normalization of F Let F = (f, φ, g) = (f̃ , g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g)
be a non-constant map in Prop2(H

n, HN ) with F (0) = 0. For each p ∈ ∂Hn, we write
σ0

p ∈ Aut(Hn) with σ0
p(0) = p and τF

p ∈ Aut(HN) with τF
p (F (p)) = 0 for the maps

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉), (1)

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉). (2)

F is equivalent to Fp = τF
p ◦ F ◦ σ0

p = (fp, φp, gp). Notice that F0 = F and Fp(0) = 0.
The following is basic for the understanding of the geometric properties of F .

Lemma 2.1 ([§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a non-constant map
in Prop2(H

n, HN), 2 ≤ n ≤ N with F (0) = 0. For each p ∈ ∂Hn, there is an automorphism
τ ∗∗
p ∈ Aut0(H

N) such that F ∗∗
p := τ ∗∗

p ◦ Fp satisfies the following normalization:

f ∗∗
p = z +

i

2
a∗∗(1)

p (z)w + owt(3), φ∗∗
p = φ∗∗

p
(2)(z) + owt(2), g∗∗

p = w + owt(4), (3)

〈z, a∗∗(1)
p (z)〉|z|2 = |φ∗∗

p
(2)(z)|2.

LetA(p) = −2i(
∂2(fp)∗∗

l

∂zj∂w
|0)1≤j,l≤n−1. We call the rank ofA(p), which we denote by RkF (p),

the geometric rank of F at p. RkF (p) depends only on p and F , and is a lower semi-continuous
function on p. We define the geometric rank of F to be κ0(F ) = maxp∈∂HnRkF (p). Notice
that we always have 0 ≤ κ0 ≤ n − 1. We define the geometric rank of F ∈ Prop2(B

n, BN)
to be the one for the map ρ−1

N ◦ F ◦ ρn ∈ Prop2(H
n, HN).

Lemma 2.2 (ct. [Hu99], theorem 4.3) F ∈ Prop2(B
n, BN) has geometric rank 0 if and only

if F is equivalent to a linear map.

Denote by S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ (n − 1), j ≤ l} and write S := {(j, l) :

(j, l) ∈ S0, or j = κ0 + 1, l ∈ {κ0 + 1, · · · , κ0 + N − n− (2n−κ0−1)κ0

2
}}.
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Lemma 2.3 ([Lemma 3.2, Hu03]): Let F be a C2-smooth CR map from an open piece

M ⊂ ∂Hn into ∂HN with F (0) = 0 and RkF (0) = κ0. Let P (n, κ0) = κ0(2n−κ0−1)
2

. Then
N ≥ n + P (n, κ0) and there are σ ∈ Aut0(∂Hn) and τ ∈ Aut0(∂HN ) such that F ∗∗∗

p =
τ ◦ F ◦ σ := (f, φ, g) satisfies the following normalization conditions:





fj =zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj =zj + owt(3), j = κ0 + 1, · · · , n− 1

g =w + owt(4),

φjl =µjlzjzl + owt(2), where (j, l) ∈ S with µjl > 0 for (j, l) ∈ S0

and µjl = 0 otherwise

(4)

where µjl =
√

µj + µl for j, l ≤ κ0 j 6= l, µjl =
√

µj if j ≤ κ0 and l > κ0 or if j = l ≤ κ0.

• Pseudohermitian metric and Webster connection Let M be a C2 smooth real
hypersurface in C

n+1. We denote by T cM = TM∩iTM ⊂ TM its maximal complex tangent
bundle with the complex structure J : T cM → T cM . Here J( ∂

∂xj
) = ∂

∂yj
and J( ∂

∂yj
) = − ∂

∂xj

in terms of holomorphic coordinates. We denote by V = T 0,1M = {X + iJX | X ∈ T cM} ⊂
CTM := TM ⊗ C the CR bundle. We also denote T 1,0M = V. All T cM , V and V are
complex rank n vector bundles.

Write T 0M := (T 1,0M ⊕ T 0,1M)⊥ ⊂ CT ∗M for its rank one subbundle. Write T ′M :=

T 0,1⊥ ⊂ CT ∗M for its rank n + 1 holomorphic or (1,0) cotangent bundle of M . Here
T 0 ⊂ T ′M .

A real nonvanishing 1-form θ over M is called a contact form if θ ∧ (dθ)n 6= 0. Let M be
as above given by a defining function r. Then the 1-form θ = i∂r is a contact form of M .

We say that (M, θ) is strictly pseudoconvex if the Levi-form Lθ is positive definite for all
z ∈M . Here the Levi-form Lθ with respect to θ is defined by

Lθ(~u,~v) := −idθ(~u ∧ ~v), ∀~u,~v ∈ T 1,0
p (M), ∀p ∈M.

Associated with a contact form θ one has the Reeb vector field Rθ, defined by the
equations: (i) dθ(Rθ, ·) ≡ 0, (ii) θ(Rθ) ≡ 1. As a skew-symmetric form of maximal rank
2n, the form dθ|TpM has a 1- dimensional kernel for each p ∈ M2n+1. Hence equation (i)
defines a unique line field 〈Rθ〉 on M . The contact condition θ ∧ (dθ)n 6= 0 implies that θ is
non-trivial on that line field, so the unique real vector field is defined by the normalization
condition (ii).
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According Tanaka [T75] and Webester [We78], (M, θ) is called a strictly pseudoconvex
pseudohermitian manifold if there are n complex 1-forms θα so that {θ1, ..., θn} forms a local
basis for holomorphic cotangent bundle H∗(M) and

dθ = i
n∑

α,β=1

hαβθα ∧ θβ (5)

where (hαβ), called the Levi form matrix, is positive definite. Such θα may not be unique.
Following Webster [We78], a coframe (θ, θα) is called admissible if (5) holds. The admissible

coframes are determined up to transformations θ̃α = uα
βθβ where (uα

β) ∈ GL(Cn).

Theorem 2.4 (Webster, [We78]) Let (M2n+1, θ) be a strictly pseudoconvex pseudohermi-
tian manifold and let θj be as in (5). Then there are unique way to write

dθα =
n∑

γ=1

θγ ∧ ωα
γ + θ ∧ τα, (6)

where τα are (0, 1)-forms over M that are linear combination of θα = θα, and ωβ
α are 1-forms

over M such that
0 = dhαβ − hγβωγ

α − hαγω
γ

β
. (7)

We may denote ωαβ = hγβω
γ
α and ωβα = hαγω

γ

β
. In particular, if

hαβ = δαβ, (8)

the identity in (7) becomes 0 = −ωαβ − ωβα, i.e.,

0 = ωβ
α + ωα

β
. (9)

The condition on τβ means:
τβ = Aβ

νθ
ν , Aαβ = Aβα, (10)

which holds automatically. The curvature is given by

dω β
α − ω γ

α ∧ ω β
γ = R β

α µνθ
µ ∧ θν + W β

α µθ
µ ∧ θ −W β

ανθ
ν ∧ θ + iθα ∧ τβ − iτα ∧ θβ (11)

where the functions R β
α µν and W β

α µ represent the pseudohermitian curvature of (M, θ).
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3 CR second fundamental forms —– Definition 1

We are going to survey four definitions of the CR second fundamental forms IIM of M in
∂HN+1. We start with Definition 1 which is the intrinsic one in terms of a coframe.

Lemma 3.1 ([EHZ04], corollary 4.2) Let M and M̃ be strictly pseudoconvex CR-manifolds
of dimensions 2n + 1 and 2ñ + 1 respectively, and of CR dimensions n and ñ respectively.
Let F : M → M̃ be a smooth CR-embedding. If (θ, θα) is a admissible coframe on M , then

in a neighborhood of a point p̃ ∈ F (M) in M̃ there exists an admissible coframe (θ̃, θ̃A) =

(θ̃, θ̃α, θ̃µ) on M̃ with F ∗(θ̃, θ̃α, θ̃µ) = (θ, θα, 0). In particular, the Reeb vector field R̃ is
tangent to F (M). If we choose the Levi form matrix of M such that the functions hαβ in

(5) with respect to (θ, θα) to be (δαβ), then (θ̃, θ̃A) can be chosen such that the Levi form

matrix of M̃ relative to it is also (δAB). With this additional property, the coframe (θ̃, θ̃A)
is uniquely determined along M up to unitary transformations in U(n)× U(ñ− n).

If (θ, θα) and (θ̃, θ̃A) are as above such that the condition on the Levi form matrices in

Lemma 3.1 are satisfied, we say that the coframe (θ̃, θ̃A) is adapted to the coframe (θ, θα).

In this case, by (9), we have θ = F ∗θ̃, θα = F ∗θ̃α, and

dθα =

n∑

γ=1

θγ ∧ ωα
γ + θ ∧ τα, 0 = ωβ

α + ωα
β
, ∀1 ≤ α, β ≤ n,

and

dθ̃A =
en∑

B=1

θ̃C ∧ ω̃A
C + θ̃ ∧ τ̃A, 0 = ω̃B

A + ω̃A
B
, ∀1 ≤ A, B ≤ N.

For simplicity, we may denote F ∗ω̃A
B by ωA

B. We also denote F ∗ω̃AB by ωAB where ωAB = ωB
A .

Write ω µ
α = ω µ

α βθβ. The matrix of (ω µ
α β), 1 ≤ α, β ≤ n, n+1 ≤ µ ≤ n̂, defines the CR

second fundamental form of M . It was used in [We79] and [Fa90].

4 CR second fundamental forms —– Definition 2

Definition 2 introduced in [EHZ04] is the extrinsic one in terms of defining function.

Let F : M → M̃ be a smooth CR-embedding between M ⊂ Cn+1 and M̃ ⊂ CN+1 where
M and M̃ are real strictly pseudoconvex hypersurfaces of dimensions 2n+1 and 2ñ+1, and
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CR dimensions n and ñ, respectively. Let p ∈ M and p̃ = F (p) ∈ M̃ be points. Let ρ̃ be a

local defining function for M̃ near the point p̃. Let

Ek(p) := spanC{LJ̄(ρ̃Z′ ◦ F )(p) | J ∈ (Z+)n, 0 ≤ |J | ≤ k} ⊂ T 1,0
ep C

N+1,

where ρ̃Z′ := ∂ρ̃ is the complex gradient (i.e., represented by vectors in CN+1 in some

local coordinate system Z ′ near p̃). Here we use multi-index notation LJ = LJ1

1 · · ·LJn
n and

|J | = J1 + ... + Jn. It was shown in [La01] that Ek(p) is independent of the choice of local
defining function ρ̃, coordinates Z ′ and the choice of basis of the CR vector fields L1, ..., Ln.

The CR second fundamental form IIM of M is defined by (cf. [EHZ04], §2)

IIM(Xp, Yp) := π
(
XY (ρ̃

Z
′ ◦ f)(p)

)
∈ T ′

p̃M̃/E1(p) (12)

where ρ̃
Z

′ = ∂ρ̃ is represented by vectors in CN+1 in some local coordinate system Z ′ near
p̃, X, Y are any (1, 0) vector fields on M extending given vectors Xp, Yp ∈ T 1,0

p (M), and

π : T ′
epM̃ → T ′

epM̃/E1(p) is the projection map.

Since M̃ and M are strictly pseudoconvex, the Levi form of M̃ (at p̃) with respect to ρ̃
defines an isomorphism

T ′
epM̃/E1(p) ∼= T 1,0

ep M̃/F∗(T
1,0
p M)

and the CR second fundamental form can be viewed as an C-linear symmetric form

IIM,p : T 1,0
p M × T 1,0

p M → T 1,0
ep M̃/F∗(T

1,0
p M) (13)

that does not depend on the choice of ρ̃ (cf.[EHZ04], §2).

The relation between Definition 1 and Definition 2 was discussed in [EHZ04]. Let (M, M̃),

(θ, θα), (θ̃, θ̃A) be as in Lemma 3.1, and we abuse the structure bundle (θ, θα) on M with

the structure bundle (θ̃, θ̃α) on M̃ . We can choose a defining function ρ̃ of M̃ near a point

p̃ = F (p) ∈ M̃ where p ∈M such that θ = i∂ρ̃ on M̃ ., i.e., in local coordinates Z ′ in CN+1,
we have

θ = i

N+1∑

k=1

∂ρ̃

∂Z ′
k

dZ ′
k,

where we pull back the forms dZ ′
1, ..., dZ ′

N+1 to M̃ . Then we consider the coframe (θ, θα) =

(F ∗θ̃, F ∗θ̃α) on M near p with F (p) = p̃. We take its dual frame (T, LA) of (θ, θA) and have

Lβ(ρ̃
Z

′ ◦ F ) = −iLβydθ = gβCθC = gβγθ
γ. (14)
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Here we used the definition of the construction, (5) and the dual relationship 〈Lβ, θ
α〉 =

δα
β and also notice that gβγ = δβγ. Applying Lα to both sides of (14), we obtain

LαLβ(ρ̃
Z

′ ◦ F ) = gβγLαydθγ = ωαµβθµ mod(θ, θα)

which implies
IIM(Lα, Lβ) = ω µ

α βLµ, n + 1 ≤ µ ≤ N. (15)

This identity gives the equivalent relation of the intrinsic and extrinsic definitions of IIM .
Notice that we need a right choice of (θ, θα), (T, LA) and ρ̃.

By using (ω b
α β) and (15), as in (13), we can also define

IIM,p : T 1,0
p M × T 1,0

p M → T 1,0
ep M̃/F∗(T

1,0
p M) (16)

which is independent of the choice of the adapted coframe (θ, θA) in case M̃ is locally CR
embeddable in CN+1 (cf. [EHZ04], § 4).

5 CR second fundamental forms —– Definition 3

Definition 3 is the one as a tensor with respect to the group GLQ(CN+2).

The bundle GLQ(CN+2) over ∂H
N+1 We consider a real hypersurface Q in C

N+2 defined
by the homogeneous equation

〈Z, Z〉 :=
∑

A

ZAZA +
i

2
(Z0ZN+1 − Z0ZN+1) = 0, (17)

where Z = (Z0, ZA, ZN+1)t ∈ CN+2. Let

π0 : C
N+2 − {0} → CP

N+1, (z0, ...., zN+1) 7→ [z0 : ... : zN+1], (18)

be the standard projection. For any point x ∈ CPN+1, π−1
0 (x) is a complex line in CN+2−{0}.

For any point v ∈ C
N+2 − {0}, π0(v) ∈ CP

N+1 is a point. The image π0(Q − {0}) is the
Heisenberg hypersurface ∂HN+1 ⊂ CPN+1.

For any element A ∈ GL(CN+2):

A = (a0, ..., aN+1) =




a
(0)
0 a

(0)
1 ... a

(0)
N+1

a
(1)
0 a

(1)
1 ... a

(1)
N+1

...
...

...

a
(N+1)
0 a

(N+1)
1 ... a

(N+1)
N+1


 ∈ GL(CN+2), (19)
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where each aj is a column vector in CN+2, 0 ≤ j ≤ N + 1. This A is associated to an
automorphism A⋆ ∈ Aut(CPN+1) given by

A⋆

([
z0 : z1 : ... : zN+1

])
=

[ N+1∑

j=0

a
(0)
j zj :

N+1∑

j=0

a
(1)
j zj : ... :

N+1∑

j=0

a
(N+1)
j zj

]
. (20)

When a
(0)
0 6= 0, in terms of the non-homogeneous coordinates (w1, ..., wn), A⋆ is a linear

fractional from CN+1 which is holomorphic near (0, ..., 0):

A⋆
(
w1, ..., wN+1

)
=

(∑N+1
j=0 a

(1)
j wj

∑N+1
j=0 a

(0)
j wj

, ...,

∑N+1
j=0 a

(N+1)
j wj

∑N+1
j=0 a

(0)
j wj

)
, where wj =

zj

z0
. (21)

We denote A ∈ GLQ(CN+2) if A satisfies A(Q) ⊆ Q where we regard A as a linear
transformation of CN+2. If A ∈ GLQ(CN+2), we must have A⋆(∂HN+1) ⊆ ∂HN+1, so that
A⋆ ∈ Aut(∂HN+1). Conversely, if A⋆ ∈ Aut(∂HN+1), then A ∈ GLQ(CN+2).

We define a bundle map:

π : GL(CN+2) → CP
N+1

A = (a0, a1, ..., aN+1) 7→ π0(a0).

Then by (20), for any map A ∈ GL(CN+2), A ∈ π−1
(
π0(a0)

)
⇐⇒ A⋆([1 : 0 : ... : 0]) =

π0(a0). In particular, by the restriction, we consider a map

π : GLQ(CN+2) → ∂HN+1

A = (a0, a1, ..., aN+1) 7→ π0(a0).
(22)

We get ∂HN+1 ≃ GLQ(CN+2)/P1 where P1 is the isotropy subgroup of GLQ(CN+2). Then
by (20), for any map A ∈ GLQ(Cn+2),

A ∈ π−1
(
π0(a0)

)
⇐⇒ A⋆([1 : 0 : ... : 0]) = π0(a0). (23)

CR submanifolds of ∂HN+1 Let H : M ′ → ∂HN+1 be a CR smooth embedding where
M ′ is a strictly pseudoconvex smooth real hypersurface in Cn+1. We denote M = H(M ′).

Let RM ′ be the Reeb vector field of M ′ with respect to a fixed contact form on M ′. Then
the real vector RM ′ generates a real line bundle over M ′, denoted by RM ′. Since we can
regard the rank n complex vector bundle T 1,0M ′ as the rank 2n real vector bundle, over the
real number field R we have:

TM ′ = T cM ′ ⊕RM ′ ≃ T 1,0M ′ ⊕RM ′ . (24)
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given by

(aj

∂

∂xj

, bj

∂

∂yj

) + cRM ′ 7→ (aj + ibj)
∂

∂zj

+ cRM ′ , ∀aj , bj, c ∈ R. (25)

Since H is a CR embedding, we have

H∗(T
1,0M ′) = T 1,0M ⊂ T 1,0(∂H

N+1), TM ≃ H∗(T
1,0M ′)⊕H∗(RM ′) ⊂ T (∂H

N+1). (26)

Lifts of the CR submanifolds Let M = H(M ′) ⊂ ∂HN+1 be as above. Consider the
commutative diagram

GLQ(CN+2)
eր ↓ π

M →֒ ∂HN+1

Any map e satisfying π ◦ e = Id is called a lift of M to GLQ(CN+2).
In order to define a more specific lifts, we need to give some relationship between geometry

on ∂HN+1 and on CN+2 as follows. For any subset X ⊂ ∂HN+1, we denote X̂ := π−1
0 (X)

where π0 : CN+2−{0} → CPN+1 is the standard projection map (18). In particular, for any
x ∈M , x̂ is a complex line and for the real submanifold M2n+1, the real submanifold M̂2n+3

is of dimension 2n + 3.
For any x ∈M , we take v ∈ x̂ = π−1

0 (x) ⊂ CN+2 − {0}, and we define

T̂xM = TvM̂, T̂ 1,0
x M = T 1,0

v M̂, R̂M,x := RM̂,v

where RM̂ = ∪v∈M̂RM̂,v. These definitions are independent of choice of v.

A lift e = (e0, eα, eµ, eN+1) of M into GLQ(CN+2), where 1 ≤ α ≤ n and n + 1 ≤ µ ≤ N ,
is called a first-order adapted lift if it satisfies the conditions:

e0(x) ∈ π−1
0 (x), span(e0, eα)(x) = T̂ 1,0

x M, span(e0, eα, eN+1)(x) = T̂ 1,0
x M ⊕ R̂M,x (27)

where span(e0, eα)(x) = C⊗ {e0 + aαeα + beN+1 | aα ∈ C, b ∈ R}|x, and

span(e0, eα, eN+1)(x) := C⊗ {e0 + aαeα + beN+1 |aα ∈ C, b ∈ R}|x. (28)

Here we used (25) and the fact that the Reeb vector is real. Locally first-order adapted lifts
always exist (see Theorem 7.1 below).

We have the restriction bundle F0
M := GLQ(CN+2)|M over M . The subbundle π : F1

M →
M of F0

M is defined by

F1
M = {(e0, ej, eµ, eN+1) ∈ F0

M | [e0] ∈M, (27) are satisfied}.

10



Local sections of F1
M are exactly all local first-order adapted lifts of M .

For two first-order adapted lifts s = (e0, ej , eµ, eN+1) and s̃ = (ẽ0, ẽj , ẽµ, ẽN+1), by (27),
we have 




ẽ0 = g0
0e0,

ẽj = g0
je0 + gk

j ek,

ẽµ = g0
µe0 + gj

µej + gν
µeν + gN+1

µ eN+1,

ẽN+1 = g0
N+1e0 + gj

N+1ej + gN+1
N+1eN+1,

(29)

In other words, s̃ = s · g where

g = (g0, gj, gµ, gN+1) =




g0
0 g0

k g0
µ g0

N+1

0 gj
k gj

µ gj
N+1

0 0 gν
µ 0

0 0 gN+1
µ gN+1

N+1


 (30)

is a smooth map from M into GLQ(CN+2). Then the fiber of π : F1
M → M over a point is

isomorphic to the group

G1 =

{
g =




g0
0 g0

β g0
µ g0

N+1

0 gα
β gα

µ gα
N+1

0 0 gν
µ 0

0 0 gN+1
µ gN+1

N+1


 ∈ GLQ(CN+2)

}
,

where we use the index ranges 1 ≤ α, β ≤ n and n + 1 ≤ µ, ν ≤ N .
We pull back the Maurer-Cartan form from GLQ(CN+2) to F1

M by a first-order adapted
lift e of M as

ω =




ω0
0 ω0

β ω0
ν ω0

N+1

ωα
0 ωα

β ωα
ν ωα

N+1

ωµ
0 ωµ

β ωµ
ν ωµ

N+1

ωN+1
0 ωN+1

β ωN+1
ν ωN+1

N+1


 .

Since ω = e−1de, i.e., eω = de. Then we have

de0 = e0ω
0
0 + eαωα

0 + eµωµ
0 + eN+1ω

N+1
0 . (31)

On the other hand, we have de0 ≡ 0 mod{e0, eα, eN+1) when pullback to F1
M . Then we

conclude ωµ
0 = 0, ∀µ. By the Maurer-Cartan equation dω = −ω ∧ ω, one gets 0 = dων

0 =
−ων

α ∧ ωα
0 − ων

N+1 ∧ ωN+1
0 , i.e., 0 = −ων

α ∧ ωα
0 , mod(ωN+1

0 ). Then by Cartan’s lemma,

ων
β = qν

αβωα
0 mod(ωN+1

0 ),

11



for some functions qν
αβ = qν

βα.

The CR second fundamental form In order to define the CR second fundamental
form IIM = IIs

M = qµ
αβωα

0 ωβ
0 ⊗ eµ, mod(ωN+1

0 ), let us define eµ as follows.

For any first-order adapted lift e = (e0, eα, eν , eN+1) with π0(e0) = x, we have eα ∈ T̂ 1,0
x M .

Recall TEG(k, V ) ≃ E∗ ⊗ (V/E) where G(k, V ) is the Grassmannian of k-planes that pass
through the origin in a vector space V over R or C and E ∈ G(k, V ) ([IL03], p.73). Then
TxM ≃ (x̂)∗ ⊗ (T̂xM/x̂) and hence the vector eα induces eα ∈ T 1,0

x M by

eα = e0 ⊗
(
eα mod(e0)

)
,

where we denote by (e0, eα, eµ, eN+1) the dual basis of (CN+2)∗. Similarly, we let

eµ = e0 ⊗
(
eµ mod T̂xM

)
∈ NxM, (32)

where NxM is the CR normal bundle of M defined by NxM = Tx(∂HN+1)/TxM .
By direct computation, we obtain a tensor

IIM = IIe
M = qµ

αβωα
0 ωβ

0 ⊗ eµ ∈ Γ
(
M, S2T 1,0∗

π0(e0)M ⊗Nπ0(e0)M
)

mod(ωN+1
0 ). (33)

The tensor IIM is called the CR second fundamental form of M .

Pulling back a lift Let M ⊂ ∂HN+1 be as above with a point Q0 ∈ M . Let
A ∈ GLQ(CN+2), A⋆ ∈ Aut(∂HN+1) with A⋆(Q0) = P0 and M̃ = A⋆(M). Let s̃ : M̃ →
GLQ(CN+2) be a lift. We claim:

s := A−1 · s̃ ◦ A⋆, (34)

is also a lift from M into GLQ(CN+2). In fact, in order to prove that s is a lift, it suffices to
prove: πs = Id, i.e., for any point Q ∈M near Q0, πs(Q) = Q. In fact,

πs(Q) = π(A−1 · s̃ ◦ A⋆)(Q) = π(A−1 · s̃(P )) = (A⋆)−1(πs̃(P )) = (A⋆)−1(P ) = Q.

so that our claim is proved.
If, in addition, s̃ is a first-order adapted lift of M̃ into GLQ(CN+2), s is also a first-order

adapted lift of M into GLQ(CN+2).
Let Ω be the Maurer-Cartan form over GLQ(CN+2). Then by the invariant property

A∗Ω = Ω, we have s∗Ω = (A−1 · s̃ ◦ A⋆)∗Ω = (A⋆)∗(s̃)∗(A−1)∗Ω = (A⋆)∗(s̃)∗Ω, i.e., it holds
on M that

ω = (A⋆)∗ω̃ (35)

where ω = s∗Ω and ω̃ = s̃∗Ω so that ωα
0 = (A⋆)∗ω̃α

0 and ωµ
β = (A⋆)∗ω̃µ

β . The last equality
yields

qµ
αβ = q̃µ

αβ ◦ A⋆. (36)

12



6 CR second fundamental forms —– Definition 4

Definition 4 will be the one as a tensor with respect to the group SU(N + 1, 1).
As for Definition 3, we consider the real hypersurface Q in CN+2 defined by the homo-

geneous equation

〈Z, Z〉 :=
∑

A

ZAZA +
i

2
(ZN+1Z0 − Z0ZN+1) = 0, (37)

where Z = (Z0, ZA, ZN+1)t ∈ C
N+2. This can be extended to the scalar product

〈Z, Z ′〉 :=
∑

A

ZAZ ′A +
i

2
(ZN+1Z ′0 − Z0Z ′N+1), (38)

for any Z = (Z0, ZA, ZN+1)t, Z ′ = (Z ′0, Z ′A, Z ′N+1)t ∈ CN+2. This product has the prop-
erties: 〈Z, Z ′〉 is linear in Z and anti-linear in Z ′; 〈Z, Z ′〉 = 〈Z ′, Z〉; and Q is defined by
〈Z, Z〉 = 0.

Let SU(N + 1, 1) be the group of unimodular linear transformations of CN+2 that leave
the form 〈Z, Z〉 invariant (cf. [CM74]).

By a Q-frame is meant an element E = (E0, EA, EN+1) ∈ GL(CN+2) satisfying (cf.
[CM74, (1.10)])

{
det(E) = 1,
〈EA, EB〉 = δAB, 〈E0, EN+1〉 = −〈EN+1, E0〉 = − i

2
,

(39)

while all other products are zero.
There is exactly one transformation of SU(N + 1, 1) which maps a given Q-frame into

another. By fixing one Q-frame as reference, the group SU(N + 1, 1) can be identified
with the space of all Q-frames. Then SU(N + 1, 1) ⊂ GLQ(CN+1) is a subgroup with the
composition operation. By (22) and the restriction, we have the projection

π : SU(N + 1, 1)→ ∂H
N+1, (Z0, ZA, ZN+1) 7→ span(Z0). (40)

which is called a Q-frames bundle. We get ∂HN+1 ≃ SU(N + 1, 1)/P2 where P2 is the
isotropy subgroup of SU(N + 1, 1). SU(N + 1, 1) acts on ∂HN+1 effectively.

Consider E = (E0, EA, EN+1) ∈ SU(N + 1, 1) as a local lift. Then the Maurer-Cartan
form Θ on SU(N +1, 1) is defined by dE = (dE0, dEA, dEN+1) = EΘ, or Θ = E−1 · dE, i.e.,

d
(
E0 EA EN+1

)
=

(
E0 EB EN+1

)



Θ0
0 Θ0

A Θ0
N+1

ΘB
0 ΘB

A ΘB
N+1

ΘN+1
0 ΘN+1

A ΘN+1
N+1


 , (41)

13



where ΘB
A are 1-forms on SU(N + 1, 1). By (39) and (41), the Maurer-Cartan form (Θ)

satisfies

Θ0
0 + ΘN+1

N+1 = 0, ΘN+1
0 = ΘN+1

0 , Θ0
N+1 = Θ0

N+1,

ΘN+1
A = 2iΘA

0 , ΘA
N+1 = − i

2
Θ0

A, ΘA
B + ΘB

A = 0, Θ0
0 + ΘA

A + ΘN+1
N+1 = 0,

(42)

where 1 ≤ A ≤ N . For example, from 〈EA, EB〉 = δAB, by taking differentiation, we obtain

〈dEA, EB〉+ 〈EA, dEB〉 = 0.

By (41), we have 



dE0 = E0Θ
0
0 + EBΘB

0 + EN+1Θ
N+1
0 ,

dEA = E0Θ
0
A + EBΘB

A + EN+1Θ
N+1
A ,

dEN+1 = E0Θ
0
N+1 + EBΘB

N+1 + EN+1Θ
N+1
N+1.

Then

〈E0Θ
0
A + ECΘC

A + EN+1Θ
N+1
A , EB〉+ 〈EA, E0Θ

0
B + EDΘD

B + EN+1Θ
N+1
B 〉 = 0,

which implies ΘB
A + ΘA

B = 0. In particular, from (42), Θ0
A = −2iΘA

N+1. Θ satisfies

dΘ = −Θ ∧Θ. (43)

Let M →֒ ∂HN+1 be the image of H : M ′ → ∂HN+1 where M ′ ⊂ Cn+1 is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M →֒ ∂HN+1 and a lift
e = (e0, e1, ..., eN+1) = (e0, eα, eν , eN+1) of M where 1 ≤ α ≤ n and n + 1 ≤ ν ≤ N

SU(N + 1, 1)
eր ↓ π

M →֒ ∂H
N+1

We call e a first-order adapted lift if for any x ∈M , (27) is satisfied:

π0

(
e0(x)

)
= x, span(e0, eα)(x) = T̂ 1,0

x M, span(e0, eα, eN+1)(x) = T̂ 1,0
x M ⊕ R̂M,x. (44)

Locally first-order adapted lifts always exist (see Theorem 7.1 below). We have the restric-
tion bundle F0

M := SU(N + 1, 1)|M over M . The subbundle π : F1
M → M of F0

M is defined
by

F1
M = {(e0, ej, eµ, eN+1) ∈ F0

M | [e0] ∈M, (44) are satisfied}.
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Local sections of F1
M are exactly all local first-order adapted lifts of M . The fiber of π :

F1
M →M over a point is isomorphic to the group

G1 =

{
g =




g0
0 g0

β g0
ν g0

N+1

0 gα
β gα

ν gα
N+1

0 0 gµ
ν 0

0 0 0 gN+1
N+1


 ∈ SU(N + 1, 1)

}
,

where we use the index ranges 1 ≤ α, β ≤ n and n + 1 ≤ µ, ν ≤ N .

By (39), we have 〈g0, gN+1〉 = − i
2
, it implies g0

0 · gN+1
N+1 = 1 so that gN+1

N+1 = 1

g0
0

. Since

〈g0, gµ〉 = 0 and g0
0 6= 0, it implies gN+1

µ = 0. Since 〈gα, gβ〉 = δαβ , it implies that the matrix

(gβ
α) is unitary. Since deg(g) = 1, it implies g0

0 · det(gβ
α) · det(gν

µ) · gN+1
N+1 = 1. By (25) and

(44), gN+1
N+1 is a real if g0

N+1 = 0; gN+1
N+1/g

0
N+1 is real if g0

N+1 6= 0.

By considering all first-order adapted lifts from M into SU(N + 1, 1), as the definition
of IIM in Definition 3, we can defined CR second fundamental form IIM as in (33):

IIM = IIe
M = qµ

αβωα
0 ωβ

0 ⊗ eµ ∈ Γ(M, S2T 1,0∗
π0(e0)M ⊗Nπ0(e0)M), mod(ωN+1

0 ), (45)

which is a well-defined tensor, and is called the CR second fundamental form of M .
We remark that IIM in Definition 4 was studied in [Wa09].

Pulling back a lift Let M ⊂ ∂HN+1 be as above with a point Q0 ∈M . Let A ∈ SU(N +

1, 1), A⋆ ∈ Aut(∂H
N+1) with A⋆(Q0) = P0 and M̃ = A⋆(M). Let s̃ : M̃ → SU(N + 1, 1) be

a lift. We claim:
s := A−1 · s̃ ◦ A⋆, (46)

is also a lift from M into SU(N + 1, 1). Similarly as in (35) and (36), we have

ω = (A⋆)∗ω̃ (47)

and
qµ
αβ = q̃µ

αβ ◦ A⋆. (48)

where ω = s∗Ω, ω̃ = s̃∗Ω and Ω is the Maurer-Cartan form over SU(N + 1, 1).

[Example] Consider the maps in (1) and (2):

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉),

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉)
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where p = (z0, w0), z = Cn, w = zn+1, σ0
p ∈ Aut(∂Hn+1), and τF

p ∈ Aut(∂HN+1).
By (19) and (21), these two maps correspond to two matrices:

Aσ0
p

=




1 0 ... 0 0
z01 1 ... 0 0
...

...
. . .

...
...

z0n 0 ... 1 0
w0 2iz01 ... 2iz0n 1



∈ SU(n + 1, 1) (49)

and

AσF
p

=




1 0 ... 0 0

−f̃01 1 ... 0 0
...

...
. . .

...
...

−f̃0N−n 0 ... 1 0

−g(z0, w) −2if̃1(z0, w0) ... −2if̃N−n(z0, w0) 1



∈ SU(N + 1, 1) (50)

where z0 = (z01, ..., z0n) and w0 = z0n+1. �

[Example] Consider the map Fλ,r,~a,U = (f, g) ∈ Aut0(∂Hn+1)

f(z) =
λ(z + ~aw)U

1− 2i〈z,~a〉 − (r + i‖~a‖2)w
, g(z) =

λ2w

1− 2i〈z,~a〉 − (r + i‖~a‖2)w
where λ > 0, r ∈ R,~a ∈ Cn and U = (uαβ) is an (n− 1)× (n− 1) unitary matrix. By (19)
and (21), its corresponding matrix,

AFλ,r,~a,U
=




1 −2ia1 ... −2ian −(r + i‖~a‖2)
0 λu11 ... λu1n λa1
...

...
. . .

...
...

0 λun1 ... λunn λan

0 0 ... 0 λ2




, (51)

is not in SU(n + 1, 1) in general. In fact, we can write

Fλ,r,~a,U = Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id. (52)

or AFλ,r,~a,U
= AFλ,0,0,Id

· AF1,0,0,U
· AF1,r,~a,Id

. Here AF1,0,0,U
and AF1,r,~a,Id

are in SU(N + 1, 1);
while AFλ,0,0,Id

is in SU(N + 1, 1) if and only if λ = 1. Therefore

AFλ,r,~a,U
is in SU(n + 1, 1) if and only if λ = 1. (53)
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7 Existence of First-order Adapted Lifts from M into

SU(N + 1, 1) or into GLQ(CN+2)

Existence of first-order adapted lifts. Let (M ′, 0) be a germ of smooth real hyper-
surface in Cn+1 defined by the defining function

r =
n∑

j=1

zjzj +
i

2
(w − w) + o(2). (54)

We take

θ = i∂r = i

( n∑

j=1

zjdzj −
1

2
dw)

)
+ o(1).

as a contact form of M ′.
Write w = u + iv. Here v =

∑n
j=1 |zj|2 + o(2). Take (zj , u) as a coordinates system of

M ′. By considering the coordinate map: h : Cn × R→ M ′, (zj , u) 7→ (zj , u + i|z|2 + o(2)),
we get the pushforward

h∗(
∂

∂zj

) = Lj :=
∂

∂zj

+ i
(
zj + o(1)

) ∂

∂u
, h∗(

∂

∂u
) = RM ′ := (1 + o(1))

∂

∂u

for j = 1, 2, ..., n. Then {Lj}1≤j≤n form a basis of the complex tangent bundle T 1,0M ′ of M ′.
Since dα = −i

∑n
j=1 dzj ∧ dzj , we see that R is the Reeb vector field of M ′. In particular,

as the restriction at 0, we have

Lj |0 =
∂

∂zj

|0, RM ′|0 =
∂

∂u
|0. (55)

Theorem 7.1 Let M →֒ ∂HN+1 be the image of H : M ′ → ∂HN+1 where M ′ ⊂ Cn+1 is
a smooth strictly pseudoconvex CR-hypersurface. Then for any point in M , the first-order
adapted lift E = (E0, Eα, Eµ, EN+1) of M into SU(N +1, 1) ( hence into GLQ(CN+2)) exists
in some neighborhood of the point in M .

Proof: Step 1. Without of loss of generality, we assume that 0 ∈M so that it suffices to
construct a lift E = (E0, Eα, Eµ, EN+1) in a neighborhood of the point 0. Here we denote
[1 : 0 : ... : 0] by 0.
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Assume that M ′ is defined by the equation Im w = |z|2 + o(|z|2) in (z, w) ∈ Cn × C

where w = u + iv. Assume that H = (1, fα, φµ, g) is the smooth CR embedding of M ′ into
∂HN+1 with H(0) = 0 and

f = z + O(|(z, w)|2), φ = O(|(z, w)|2), g = w + O(|(z, w)|2). (56)

Let Lα, α = 1, 2, ..., n be a basis of the CR vector fields and R is the Reeb vector field on
M ′. Then as in (55) with (56), we have

Lα|0 =
∂

∂zj

|0, and R|0 =
∂

∂u
|0. (57)

It follows that L̄αH = 0 as H is a CR map. By the Lewy extension theorem, H extends
holomorphically to one side of M ′, denoted by D, where D is obtained by attaching the
holomorphic discs. By applying the maximum principle and the Hopf lemma to the sub-
harmonic function

∑
|fα|2 +

∑
|φµ|2 + i

2
(g − ḡ) on D, it follows that ∂Im g

∂v
(0) 6= 0. Since

∂g

∂w̄
= 0 and ∂Im g

∂u
(0) = 0, we have Rg(0) = ∂g

∂u
(0) = ∂Im g

∂v
(0) 6= 0.

Step 2. Direct construction of E0, Eα and EN+1 We define

E0 :=




1
fα(z, w)
φµ(z, w)
g(z, w)


 (58)

which can be regarded as a point in ∂HN+1. Then 〈E0, E0〉 = 0 holds:

∑
fαf̄α +

∑
φµφ̄µ +

i

2
(g − ḡ) = 0, on M. (59)

Apply the CR vector field Lβ to E0, we define

Ẽβ = (0, Lβfα, Lβφµ, Lβg)t,

which form the basis of the complex tangent bundle T 1,0
π0(E0)

(M). Then in a neighborhood of

0 in M , we have as in (27)

span(E0, Ẽα) = T̂
(1,0)
π0(E0)

M.

Now, we have 〈E0, Ẽα〉 = 0 by applying Lβ to (59):

∑
f̄αLβfα +

∑
φ̄µLβφµ +

i

2
Lβg = 0. (60)
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By the Gram-Schmid orthonormalization procedure, we can obtain, from {Ẽβ}, an or-
thonormal set with respect to the usual Hermitian inner product 〈 , 〉0; we denote it by {Eβ}.
By the definition (38), we notice that for any Z = (Z0, ZA, ZN+1) and Z ′ = (Z ′0, Z ′A, Z ′N+1),

〈Z, Z ′〉 =

〈
(
i

2
ZN+1, ZA,− i

2
Z0), (Z ′

0, Z
′A, Z ′N+1)

〉

0

= 〈Ẑ, Z ′〉0, (61)

where 〈 , 〉0 is the usual Hermitian inner product and Ẑ := ( i
2
ZN+1, ZA,− i

2
Z0). Then we

see from (60) that

〈E0, Eβ〉 =

〈
(
i

2
g, fα, φµ,−

i

2
), (0, Lβfα, Lβφµ, Lβg)

〉

0

= 0.

Also we observe 〈Eα, Eβ〉 = 〈Eα, Eβ〉0 = δαβ . Then 〈E0, E0〉 = 0, 〈E0, Eβ〉 = 0 and
〈Eα, Eβ〉 = δαβ hold.

Applying the Reeb vector field R, we define another vector

ẼN+1 := (0, R fα, R φµ, R g)t

over a neighborhood of 0 in M such that

span(E0, Eα, ẼN+1) = T̂π0(E0)M

as in (27). We want to construct

EN+1 = AE0 + BαEα + CẼN+1

such that

〈EN+1, E0〉 =
i

2
, 〈Eα, EN+1〉 = 0, and 〈EN+1, EN+1〉 = 0.

From 〈EN+1, E0〉 = i
2
, we get 〈AE0 + BαEα + CẼN+1, E0〉 = i

2
so that

C =
i

2〈ẼN+1, E0〉
. (62)

By (57), we notice that

〈ẼN+1, E0〉|0 =
∑ ∂fα

∂u
|0f̄α(0) +

∑ ∂φµ

∂u
|0φ̄µ(0) +

i

2

∂g

∂u
|0

and therefore 〈ẼN+1, E0〉(0) = i
2
R g(0) 6= 0.
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From 〈EN+1, Eα〉 = 0, we get 〈AE0 + BβEβ + CẼN+1, Eα〉 = 0 so that

Bα = −Cδβα〈ẼN+1, Eβ〉 = −C〈ẼN+1, Eα〉. (63)

From 〈EN+1, EN+1〉 = 0, we get 〈AE0 + BβEβ + CẼN+1, AE0 + BβEβ + CẼN+1〉 = 0.

Since C〈ẼN+1, E0〉 = i
2
, C〈E0, ẼN+1〉 = − i

2
, Bα = −C〈ẼN+1, Eα〉 and Bα = −C〈Eα, ẼN+1〉

by (62) and (63), we obtain

− i

2
A +

i

2
A−

∑

α

|Bα|2 + |C|2〈EN+1, EN+1〉 = 0,

so that
Im(A) =

∑

α

|Bα|2 − |C|2〈EN+1, EN+1〉. (64)

Therefore EN+1 is determined.
So far we have 〈E0, E0〉 = 〈EN+1, EN+1〉 = 〈E0, Eβ〉 = 〈EN+1, Eβ〉 = 0, 〈Eα, Eβ〉 = δαβ

and 〈E0, EN+1〉 = − i
2

hold.

Step 3. Construction of E From Step 2, at the point 0, we have vectors

E0|0 = [1 : 0 : ... : 0], E1|0 = [0 : 1 : 0 : ... : 0], ..., En|0 = [0 : 0 : ... : 1 : 0 : ... : 0], (65)

and
EN+1|0 = [0 : 0 : ... : 0 : 1]. (66)

Therefore we can define E at the point 0 by

E(0) := Id ∈ SU(N + 1, 1). (67)

For any other point P in a small neighborhood of 0 in M , we are going to define E(P ) ∈
SU(N + 1, 1) as follows.

Write H(p) = P for some p ∈M ′. Then we take a map ΨP ∈ SU(N + 1, 1) such that

Ψ⋆
P (P ) = 0, T 1,0

0 Ψ(M) = span(E0|0, Eα|0), and T0Ψ(M) = span(E0|0, Eα|0, EN+1|0)

as in (27), where E0|0, Eα|0 and EN+1|0 are defined in (65) and (66). The map ΨP can be
defined as AF1,r,~a,U

◦AσF
p

where AσF
p
∈ SU(N + 1, 1) as in (50) and AF1,r,~a,U

∈ SU(N + 1, 1)
as in (51). Notice in the construction of the normalization F ∗∗ and F ∗∗∗, we can always
choose λ = 1 so that (52) can be used. ΨP is smooth as P varies. Then we define

E(P ) := (Ψ⋆
P )∗E(0) = (ΨP )−1E(0). (68)
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This definition is the same as in (46). Since ΨP is invariant for the Hermitian scalar product
〈 , 〉 defined in (38) and E(0) satisfies the identities (39), it implies that E(P ) satisfies the
identities (39), i.e., E(p) ∈ SU(N + 1, 1).

As a matrix, we denote E(P ) = (Ê0, Êα, Êµ, ÊN+1). Since the map ΨP preserves the CR
structures and the tangent vector spaces of M and ΨP (M), we have as in (27)

span(Ê0, Êα) = span(E0, Eα)|P , span(Ê0, Êα, ÊN+1) = span(E0, Eα, EN+1)|P .

where E0, Eα and EN+1 are constructed in Step 2. We remark that we can replace (Ê0, Êα,
ÊN+1) by (E0, Eα, EN+1). �

Existence of a more special first-order adapted lifts when M is spherical When
M = F (∂Hn+1) where F ∈ Prop2(H

n+1, HN+1), we can construct a more special first-order
adapted lift of M into SU(N + 1, 1) as follows (cf. [HJY09]).

Let F = (f, φ, g) ∈ Prop2(∂Hn+1, ∂HN+1) be any map with F = F ∗∗∗
p . Then F (0) = 0.

We introduce a local biholomorphic map near the origin

Ffg := (f, g) : C
n+1 → C

n+1, (z, zN+1) 7→ (f, g) = (ẑ, ẑN+1)

with its inverse

F−1
fg : C

n+1 → C
n+1, (ẑ, ẑN+1) 7→ ((F−1

fg )(1), ..., (F−1
fg )(n), (F−1

fg )(N+1)) = (z, zN+1).

Here we use (ẑ, ẑN+1) as a coordinates system of M = F (∂Hn+1) near F (0) = 0. Denote
Projfg : CN+1 → Cn+1, (ẑ, ẑµ, ẑN+1) 7→ (ẑ, ẑN+1). Then we have Projfg ◦ F = Ffg:

F : ∂Hn+1 → M
ց Ffg ↓ Projfg

Cn+1

We also have a pair of inverse maps F : ∂Hn+1 → M and (F−1
fg ) ◦ Projfg : M → ∂Hn+1.

Locally we can regard M as a graph: F ◦ F−1
fg : Cn+1 →M ⊂ CN+2:

(ẑ, ẑN+1) 7→
(
ẑ, φ

(
(Ffg)

−1(ẑ, ẑN+1)
)
, ẑN+1

)

Now let us define a lift of M into SU(N + 1, 1)

e = (e0, eα, eµ, eN+1) ∈ SU(N + 1, 1), 1 ≤ α ≤ n, n + 1 ≤ µ ≤ N (69)

as follows.
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We define e0 : M →֒ CN+2 be the inclusion:

e0(ẑ, ẑN+1) = F ◦ F−1
fg (ẑ, ẑN+1) =

[
1 : ẑ : φ

(
(Ffg)

−1(ẑ, ẑN+1)
)

: ẑN+1

]t

(70)

∀(ẑ, ẑN+1) ∈ Cn+1. We define eα : M → CN+2 for 1 ≤ α ≤ n:

eα :=
1√

|Lαf |2 + |Lαφ|2
[
0 : Lαf : Lαφ : Lαg

]t ◦ F−1
fg . (71)

where Lα = ∂
∂zα + 2iz̄α ∂

∂zN+1 . By the definition (38), we have 〈e0, e0〉 = 0 because f · f + φ ·
φ− 1

2i
(g − g) = ẑ · ẑ + φ

(
(Ffg)

−1(ẑ, ẑN+1)
)
φ
(
(Ffg)−1(ẑ, ẑN+1)

)
+ i

2
(ẑN+1 − ẑN+1) = 0 holds

on ∂Hn+1, and 〈e0, eα〉 = 0 because Lαf · f + Lαφ · φ + i
2
Lαg = 0 holds on ∂Hn+1, and

〈eα, eβ〉 = δαβ because Lαf · Lβf + Lαφ · Lβφ = 0 holds on ∂Hn+1 for α 6= β.
If we define ẽN+1 := (0, T f, Tφ, Tg)t ◦ F−1

fg , where T = ∂
∂u

with zN+1 = u + iv, then

span(e0, eα, ẽN+1) = T̂π0(e0)M . We then find coefficient functions A, Bα and C such that
eN+1 = Ae0 +

∑
Bαeα + CẽN+1 satisfies

〈e0, eN+1〉 = − i

2
, 〈eα, eN+1〉 = 0, 〈eN+1, eN+1〉 = 0. (72)

8 Relationship among four definitions of IIM

Lemma 8.1 Let H : M ′ → ∂HN+1 be a CR smooth embedding where M ′ is a strictly
pseudoconvex smooth real hypersurface in Cn+1. We denote M = H(M ′). Then the following
statements are equivalent:

(i) The CR second fundamental form IIM by Definition 1 identically vanishes.
(ii) The CR second fundamental form IIM by Definition 2 identically vanishes.
(iii) The CR second fundamental form IIM by Definition 3 identically vanishes.
(iv) The CR second fundamental form IIM by Definition 4 identically vanishes.

Proof (i) ⇐⇒ (ii) by (15).
(iii) ⇐⇒ (iv) The equivalence follows by the facts that, for Definition 3 and 4, IIe

M ≡ 0
for one first-order adapted lift e if and only if IIs

M ≡ 0 for any first-order adapted lift s, that
a first-order adapted lift from M to SU(N + 1, 1) must be a first-order adapted lift from M
to GLQ(CN+2).
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(iv) =⇒ (i): Let M ⊂ ∂HN+1 be a (2n + 1) dimensional CR submanifold with CR
dimension n that admits a first-order adapted lift e into SU(N + 1, 1). Consider the pull-
backed Maurer-Cartan form over M by e

ω =




ω0
0 ω0

β ω0
ν ω0

N+1

ωα
0 ωα

β ωα
ν ωα

N+1

0 ωµ
β ωµ

ν ωµ
N+1

ωN+1
0 ωN+1

β 0 ωN+1
N+1


 .

with
ω0

0 + ωN+1
N+1 = 0, ωN+1

0 = ωN+1
0 , ω0

N+1 = ω0
N+1,

ωN+1
A = 2iωA

0 , ωA
N+1 = − i

2
ω0

A, ωA
B + ωB

A = 0, ω0
0 + ωA

A + ωN+1
N+1 = 0,

(73)

where 1 ≤ A ≤ N .
Let θ = ωN+1

0 which is a real 1-form by (73). By dω = −ω ∧ ω and (73), we obtain

dθ = −ωN+1
0 ∧ ω0

0 − ωN+1
α ∧ ωα

0 − ωN+1
N+1 ∧ ωN+1

0 = 2iωα
0 ∧ ωα

0 − θ ∧ (ω0
0 + ω0

0) = iθα ∧ θα,

where we denote
θα =

√
2ωα

0 + cαθ (74)

for some functions cα. Therefore, (8) holds and hence M is a strictly pseudoconvex pseu-
dohermitian manifold with an admissible coframe (θ, θα). Hence Definition 4 of IIM ≡ 0
implies Definition 1 of IIM ≡ 0.

(i) =⇒ (iv): Definition 1 of IIM gives a coframe (θ, θα) which corresponds to Definition
2 of IIM with respect to a defining function ρ of M in ∂HN+1.

Now take a first-order adapted lift e from M into SU(N + 1, 1). By (74), it corresponds
to a coframe (θ, θα) on M and by (16), it corresponds Definition 2 of IIM by some choice of
the defining function ρ̂ of M in ∂HN+1.

The above ρ and ρ̂ may not be the same. But Definition 2 of IIM ≡ 0 is independent of
choice of defining functions, which gives (i) =⇒ (iv). �

9 Proof of Theorem 1.1

Lemma 9.1 (cf. [EHZ04], corollary 5.5) Let H : M ′ → M →֒ ∂HN+1 be a smooth CR
embedding of a strictly pseudoconvex smooth real hypersurface M ⊂ Cn+1. Denote by (ω µ

α β)

the CR second fundamental form matrix of H relative to an admissible coframe (θ, θA) on
∂HN+1 adapted to M . If ω µ

α β ≡ 0 for all α, β and µ, then M ′ is locally CR-equivalent to
∂Hn+1.
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Proof of Theorem 1.1 Step 1. Reduction to a problem for geometric rank By
Lemma 8.1 and Lemma 9.1 and the hypothesis that the CR second fundamental form iden-
tically vanishes, we know that M is locally CR equivalent to ∂Hn+1.

Then M is the image of a local smooth CR map F : U ⊂ ∂Hn+1 → M ⊂ ∂HN+1 where
U is a open set in ∂Hn+1 . By a result of Forstneric[Fo89], the map F must be a rational
map. It suffices to prove that F is equivalent to a linear map. By Lemma 2.2, it is sufficient
to prove that the geometric rank of F is zero: κ0 = 0.

Suppose κ0 > 0 and we seek a contradiction.

Step 2. Reduction to a lift of
(
(H ◦ τF

p )(M), 0
)

Take any point p ∈ U ⊂ ∂H
n+1 with

κ0 = κ0(p) > 0, and consider the associated map (see Lemma 2.1)

F ∗∗∗
p = H ◦ τF

p ◦ F ◦ σ0
p ◦G : ∂H

n+1 → ∂H
N+1, F ∗∗∗

p (0) = 0, (75)

where σ0
p is defined in (1), τF

p is defined in (2), G ∈ Aut0(H
n+1) and H ∈ Aut0(H

N+1)
are automorphisms. By Theorem 2.3, F ∗∗∗

p = (f, φ, g) satisfies the following normalization
conditions:





fj =zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj =zj + owt(3), j = κ0 + 1, · · · , n− 1

g =w + owt(4),

φjl =µjlzjzl + owt(2), where (j, l) ∈ S with µjl > 0 for (j, l) ∈ S0

and µjl = 0 otherwise

(76)

where µjl =
√

µj + µl for j, l ≤ κ0 j 6= l, µjl =
√

µj if j ≤ κ0 and l > κ0 or if j = l ≤ κ0.
Here the assumption that κ0 > 0 is used.

From (75) we obtain

(M, F (p))
H◦τF

p−−−→
(
H ◦ τF

p (M), 0
)

↑ F ↑ F ∗∗∗
p

(∂Hn+1, p)
σ0

p◦G←−−− (∂Hn+1, 0)

If we can show that there exists a first-order adapted lift e from the submanifold H ◦ τF
p (M)

near 0 into SU(N + 1, 1) such that the corresponding CR second fundamental form

IIe
H◦τF

p (M) 6= 0 at 0, (77)
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then we obtain a first-order adapted lift ẽ :=
(
H ◦ τF

p

)−1 ◦ e ◦H ◦ τF
p from the submanifold

M near F (p) into GLQ(CN+1) such that the corresponding CR second fundamental form

IIee
M 6= 0 at F (p). (78)

Notice that the map H ◦ τF
p ∈ GLQ(CN+2) but H ◦ τF

p /∈ SU(N + 1, 1), so that the lift ẽ is
not from M into SU(N + 1, 1). This is why we have to introduce Definition 3.

Since we take arbitrary p ∈ ∂H
n+1, from (78) it concludes that IIM 6≡ 0, but this is a

desired contradiction.

Step 3. Calculation of the second fundamental form It remains to prove existence
of the lift e such that (77) holds.

The lift e constructed in the second half of Section 7 is a first-order adapted lift from
H ◦ τF

p (M) near 0 into SU(N + 1, 1) which defines a CR second fundamental form as a
tensor IIe

H◦τF
p (M) = qµ

αβωαωβ ⊗ (eµ) in (45). If we can show

qµ
αβ(0) =

∂2φµ

∂zα∂zβ

∣∣∣∣
0

, (79)

where F ∗∗∗
p = (f, φ, g) = (fα, φµ, g). Since we assume that κ0 > 0, by (76) and (79), it

implies qµ
αβ(0) 6= 0, ∀α, β and µ, i.e., IIe

H◦τF
p (M) 6= 0. This proves (77).

Let E = (e0, eα, Êµ, eN+1) be the lift constructed in Theorem 7.1 (see the remark at the
end of the proof of Theorem 7.1) and in (70) (71) and (72). Since E|0 = Id, we have

ω|0 = (E−1|0)(dE)|0 = dE|0
so that

ω|0 =




0 ∗ ... ∗
dz1 ∗ ... ∗
...

...
...

dzn ∗ ... ∗
∗ ∗ ... ∗
...

...
...

∗ ∗ ... ∗
dw ∗ ... ∗




∣∣∣∣
0

.

Hence ω1
0|0 = dz1, ..., ωn

0 |0 = dzn, ωN+1
0 |0 = dzN+1. Then by applying the chain rule, we

obtain

ωµ
j |0 = dEµ

j |0 = d
(
(Ljφµ) ◦ (Ffg)

−1
)∣∣

0
=

∂

∂zk

(
(Ljφµ) ◦ (Ffg)

−1
)
|0dzk =

∂2φµ

∂zk∂zj

|0ωk
0 |0,
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for any j, k ∈ {1, 2, ..., n, N + 1}, n + 1 ≤ µ ≤ N . Hence (79) is proved. The proof of
Theorem 1.1 is complete. �
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