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1 Introduction

Denote by Prop(Bn,BN ) the space of proper holomorphic maps from the unit ball Bn ⊂ Cn into the unit ball

BN ⊂ CN , Propk(B
n,BN ) := Prop(Bn,BN ) ∩ Ck(Bn) and Rat(Bn,BN ) := Prop(Bn,BN ) ∩ {rational maps}.

We recall that F,G ∈ Rat(Bn ,BN ) are said to be equivalent if there are automorphisms σ ∈ Aut(Bn) and

τ ∈ Aut(BN ) such that F = τ ◦ G ◦ σ. In this paper, we study the classification problem for elements in

Rat(B2 ,BN ) with degree two. For an element F in Rat(B2 ,BN ), there is a naturally associated invariant

RkF 6 1, called the geometric rank of the map (for the definition, see §2). Since F is linear if and only if

its geometric rank RkF = 0, we only need to consider maps with geometric rank RkF = 1. By using Cayley

transformation ρk : Hk → Bk where Hk is the Siegel upper-half space (see § 2), studying Rat(B2 ,BN ) is

equivalent to studying Rat(H2,HN ).

Making use of results obtained in the previous work [8] [1], we give a complete description for the modular

space for maps in Rat(B2 ,BN ) with degree 6 2 under the above mentioned equivalence relation. Our main

result is the following Theorem 1.1. Notice that when N = 3, Rat(B2 ,B3) has been classified by Faran [4]; and

when N = 4, a complete list of monomial maps in Rat(B2 ,B4) has been given by D’Angelo [3].

Theorem 1.1. (i) Any nonlinear map in Rat(B2,BN ) with degree 2 is equivalent to a map (F, 0) where

F ∈ Rat(B2 ,B5) is of one of the following forms:

(I): F = (Gt, 0) where Gt ∈ Rat(B2 ,B4) is defined by

Gt(z,w) = (z2,
p

1 + cos2 t zw, (cos t)w2, (sin t)w), 0 6 t < π/2. (1)

(IIA): F = (Fθ, 0) where Fθ ∈ Rat(B2 ,B4) is defined by

Fθ(z,w) = (z, (cos θ)w, (sin θ)zw, (sin θ)w2), 0 < θ 6
π

2
. (2)

(IIC): F = Fc1,c3,e1,e2 = ρ−1
5 ◦ F ◦ ρ2 = (f, φ1, φ2, φ3, g) ∈ Rat(H2 , H5) is of the form:

f =
z + ( i

2
+ ie1)zw

1 + ie1w + e2w2
, φ1 =

z2

1 + ie1w + e2w2
,

φ2 =
c1zw

1 + ie1w + e2w2
, φ3 =

c3w2

1 + ie1w + e2w2
, g =

w + ie1w2

1 + ie1w + e2w2
,

where c1, c3 > 0,−e1,−e2 > 0, e1e2 = c23, −e1 − e2 = 1
4

+ c21, satisfying one of the following conditions: either
8

<

:

e1 =
−( 1

4
+c21)−

q
( 1
4
+c21)2−4c23

2
, e2 =

−( 1
4
+c21)+

q
( 1
4
+c21)2−4c23

2
,

0 < 4c23 6 ( 1
4

+ c21)
2,

(3)
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or
8

<

:

e1 =
−( 1

4
+c21)+

q
( 1
4
+c21)2−4c23

2
, e2 =

−( 1
4
+c21)−

q
( 1
4
+c21)2−4c23

2
,

1
2
c21 + c41 6 4c23 6 ( 1

4
+ c21)

2.
(4)

(ii) Any two maps in Rat(B2 ,B5) in the form of types (I), (IIA), and (IIC) above are equivalent if and only

if they are identical.

Next, we give a review on the development of this problem and outline the proof for Theorem 1.1 as follows.

For some notations to be used, we refer the reader to §2.

• A result obtained in [8] A classification result was proved in the last section of [8] under the action of the

isotropic automorphism groups of the Heisenberg hypersurfaces, which gives in particular the following: Any

map F in Rat(H2,HN ) with deg(F ) = 2 is equivalent to a map (G, 0) where G = (f, φ1, φ2, φ3, g) ∈ Rat(H2,H5)

is of the form (see also Lemma 2.3 below)

f(z,w) =
z−2ibz2+( i

2
+ie1)zw

1+ie1w+e2w2−2ibz
,

φ1(z, w) = z2+bzw
1+ie1w+e2w2−2ibz

, φ2(z,w) = c2w
2+c1zw

1+ie1w+e2w2−2ibz
,

φ3(z, w) = c3w
2

1+ie1w+e2w2−2ibz
, g(z, w) = w+ie1w

2−2ibzw
1+ie1w+e2w2−2ibz

,

(5)

where b,−e1,−e2, c1, c2, c3 are real non-negative numbers satisfying e1e2 = c22 + c23, −e1 − e2 = 1
4

+ b2 + c21,

−be2 = c1c2, and c3 = 0 if c1 = 0.

Since b and c2 are determined by c1, c3, e1 and e2, a map in the form of (5) is determined by c1, c3, e1 and

e2. We denote a map of the form (5) determined by c1, c3, e1 and e2 to be

F(c1,c3,e1,e2) ∈ K. (6)

Sometimes we regard a such map F(c1,c3,e1,e2) as a point: (c1, c3, e1, e2) ∈ K. It was unclear in [8] which of the

coefficients e1, e2, c1 and c3 of F are independent parameters.

• Review of the result in [1] In [1], by obtaining an extra equation, we got a clearer picture on the maps

in (5).

For any F ∈ Rat(H2,H5) with deg(F ) = 2, if the geometric rank of F at the origin is one: RkF (0) = 1,

then by a normalization procedure (see Lemma 2.2 and 2.3 below, or [7][8]), F is equivalent to another map

F ∗∗∗ ∈ Rat(H2 ,H5) of the form (5). Also we can associate a family of maps Fp ∈ Rat(H2,H5) for any p ∈ ∂H2.

Let us define ΞF := {p ∈ ∂H2 | RkFp
(0) = 0} to be the set of p at which the geometric rank of Fp at the origin

is zero. If p 6∈ ΞF , we obtain a normalized map (Fp)∗∗∗ that is of the form (5), and we define a real analytic

function W(F ∗∗∗
p ) = c1(p)2 − e1(p) − e2(p) where c1(p), e1(p) and e2(p) are the coefficients of F ∗∗∗

p as in (5).

The desired extra equation is obtained by moving up p to the extremal value as follows. We choose a sequence

of pm ∈ ∂H2 − ΞF such that RkFpm
(0) = 1, pm → p0 ∈ ∂H2 and limmW(F ∗∗∗

pm
) = infp∈∂H2−ΞF

{W(F ∗∗∗
p )}.

If p0 ∈ ∂H2, by [1, § 4], we can write

F ∗∗∗
pm

= (Fp0)∗∗∗qm
(7)

where qm ∈ ∂H2 and qm → 0. Then it implies by [1, Lemma 2.5] that RkFp0
(0) = 1, and that F is equivalent

to F ∗∗∗
p0

which is of the form (5) and with the minimum property W(F ∗∗∗
p0

) = infp∈∂H2−ΞF
W(F ∗∗∗

p ). The

minimum property implies the vanishing of derivatives of the function W(F ∗∗∗
p ) at p0, which derives the extra

equation.

If p0 = ∞, by [1, § 4] we can similarly write

F ∗∗∗
pm

= (τ∞ ◦ F ◦ σ∞)∗∗∗qm
(8)

where σ∞ ∈ Aut(∂B2), τ∞ ∈ Aut(∂B5), qm ∈ ∂H2 and qm → 0 so that, by the same argument above,

Rkτ∞◦F◦σ∞(0) = 1 and that F is equivalent to (τ∞ ◦ F ◦ σ∞)∗∗∗ which is of the form (5). The minimum

property also derives the extra equation.

With the extra equation described above, it was proved in [1] that F is equivalent to another map Fc1,c3.e1,e2
∈ K satisfying the property

W
`

(Fc1,c3.e1,e2 )∗∗∗p

´

> W
`

(Fc1,c3.e1,e2)∗∗∗0

´

, ∀p ∈ ∂H
2 near 0. (9)

and that the new map Fc1,c3.e1,e2 is of the form in one of the following types:

(I) F0,0,e1 ,e2 = (f, φ1, φ2, φ3, g) is of the form

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c2w
2

1+ie1w+e2w2 , φ3 = 0, g = w+ie1w
2

1+ie1w+e2w2

(10)
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where e1e2 = c22 and −e1 − e2 = 1
4
. Here e2 ∈ [− 1

4
, 0) is a parameter. It then corresponds to the family

{Gt}06t<π/2 in (1). When e2 = − 1
4
, F0,0,e1,e2 corresponds to G0, i.e. (z, w) 7→ (z2,

√
2zw,w2, 0); when

e2 → 0, F0,0,e1 ,e2 goes to Gπ/2 = Fπ/2, i.e., (Z,w) 7→ (z, zw,w2).

(IIA) Fc1,0,e1,0 = (f, φ1, φ2, φ3, g) is of the form

f =
z + ( i

2
+ ie1)zw

1 + ie1w
, φ1 =

z2

1 + ie1w
, φ2 =

c1zw

1 + ie1w
, φ3 = 0, g = w (11)

where −e1 = 1
4

+ c21 and c1 ∈ [0,∞) is a parameter. It corresponds to the family {Fθ}0<θ6π/2 in (2). When

c1 = 0, Fc1,0,e1,0 corresponds to Fπ/2; when c1 → ∞, Fc1,0,e1,0 goes to the linear map, i.e., (z,w) 7→ (z,w, 0).

(IIB) Fc1,0,0,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z + i

2
zw

1 + e2w2
, φ1 =

z2

1 + e2w2
, φ2 =

c1zw

1 + e2w2
, φ3 = 0, g =

w

1 + e2w2
, (12)

where −e2 = 1
4

+ c21 and c1 ∈ (0,∞) is a parameter. Notice that when c1 → 0, the map Fc1,0,0,e2 goes to the

map G0, i.e. the one in type (I) when e2 = − 1
4
.

(IIC) Fc1,c3,e1,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c1zw
1+ie1w+e2w2 , φ3 = c3w

2

1+ie1w+e2w2 , g = w+ie1w
2

1+ie1w+e2w2 ,
(13)

where c1, c3 > 0,−e1,−e2 > 0, e1e2 = c23, −e1 − e2 = 1
4

+ c21.

For any map Fc1,c3,e1,e2 in one of these four types, we denote Fc1,c3,e1,e2 , or (c1, c3, e1, e2), ∈ KI , KIIA,

KIIB , and KIIC , respectively.

Recall from [1, (33)]

F can be embedded into H
4 ⇔ c3 = 0. (14)

Concerning the proof of Theorem 1.1, our main idea to establish following formula (see (33)):

W(F ∗∗∗
Γ(t+∆t)

) = W(F ∗∗∗
Γ(t)

) + [4c1(bc1 + 2c2) − 8b(e1 + e2)](Γ(t))ℑ(q1(t))∆t + o(|∆t|). (15)

One crucial point is that the term [4c1(bc1 + 2c2) − 8b(e1 + e2)](Γ(t)) is always non-negative so that it allows

us to reduce the study of (9) into the study for the term ℑ(q1(t)).

We’ll prove in Lemma 3.4 below that indeed

there is no map F satisfying both (9) and (12), (16)

and that a map

F satisfies (9) and (13) ⇔ F satisfies (13), (3) and (4), (17)

which proves Theorem 1.1(i). To prove Theorem 1.1(ii), we first prove its local version (see Corollary 4.3). Then

we shall find a way to reduce the global problem into the local one.

2 Notation and preliminaries

• Maps between balls Write Hn := {(z,w) ∈ Cn−1 × C : Im(w) > |z|2} for the Siegel upper-half space.

Similarly, we can define the space Rat(Hn,HN ), Propk(H
n,HN ) and Prop(Hn,HN ) respectively. Since the

Cayley transformation

ρn : H
n → B

n, ρn(z,w) =

„

2z

1 − iw
,

1 + iw

1 − iw

«

is a biholomorphic mapping between Hn and Bn, we can identify a map F ∈ Propk(B
n,BN ) or Rat(Bn,BN )

with ρ−1
N ◦ F ◦ ρn in the space Propk(H

n,HN ) or Rat(Hn,HN ), respectively.

Parametrize ∂Hn by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). In what follows, we will assign the

weight of z and u to be 1 and 2, respectively. For a non-negative integer m, a function h(z, z, u) defined over a

small ball U of 0 in ∂Hn is said to be of quantity owt(m) if h(tz,tz,t
2u)

|t|m
→ 0 uniformly for (z, u) on any compact

subset of U as t(∈ R) → 0.

• Partial normalization of F Let F = (f, φ, g) = ( ef , g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g) be a non-constant

C2-smooth CR map from ∂Hn into ∂HN with F (0) = 0. For each p ∈ ∂H2, we write σ0
p ∈ Aut(Hn) and

τFp ∈ Aut(HN ) for the maps

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉),
τFp (z∗, w∗) = (z∗ − ef(z0, w0), w∗ − g(z0, w0) − 2i〈z∗, ef(z0, w0)〉).

(18)
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F is equivalent to Fp = τFp ◦F ◦ σ0
p = (fp, φp, gp). Notice that F0 = F and Fp(0) = 0. The following is basic for

the understanding of the geometric properties of F .

Lemma 2.1. ([6, §2, Lemma 5.3], [7, Lemma 2.0]): Let F be a C2-smooth CR map from ∂Hn into ∂HN ,

2 6 n 6 N with F (0) = 0. For each p ∈ ∂Hn, there is an automorphism τ∗∗p ∈ Aut0(HN ) such that

F ∗∗
p := τ∗∗p ◦ Fp satisfies the following normalization:

f∗∗p = z +
i

2
a
∗∗(1)
p (z)w + owt(3), φ

∗∗
p = φ∗∗p

(2)(z) + owt(2), g
∗∗
p = w + owt(4), (19)

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗p (2)(z)|2.

Let A(p) = −2i(
∂2(fp)∗∗l

∂zj∂w
|0)16j,l6(n−1) . We call the rank of A(p), which we denote by RkF (p), the geometric

rank of F at p. RkF (p) depends only on p and F , and is a lower semi-continuous function on p. We define the

geometric rank of F to be RkF := maxp∈∂HnRkF (p). Notice that we always have 0 6RkF 6 n− 1. We define

the geometric rank of F ∈ Prop2(Bn,BN ) to be the one for the map ρ−1
N ◦F ◦ρn ∈ Prop2(Hn,HN ). It is proved

that F is linear fractional if and only if the geometric rank RkF = 0 (cf. [6, Theorem 4.3]). Hence, in all that

follows, we assume that RkF = κ0 > 1.

Denote by S0 = {(j, l) : 1 6 j 6 κ0, 1 6 l 6 (n − 1), j 6 l} and write S := {(j, l) : (j, l) ∈ S0, or j =

κ0 + 1, l ∈ {κ0 + 1, · · · , κ0 +N − n− (2n−κ0−1)κ0
2

}}. Then we further have the following normalization for F :

Lemma 2.2. ([7, Lemma 3.2]): Let F be a C2-smooth CR map from an open piece M ⊂ ∂Hn into ∂HN with

F (0) = 0 and RkF (0) = κ0. Let P (n, κ0) =
κ0(2n−κ0−1)

2
. Then N > n+P (n,κ0) and there are σ ∈ Aut0(∂Hn)

and τ ∈ Aut0(∂HN ) such that F ∗∗∗
p = τ ◦ F ◦ σ := (f, φ, g) satisfies the following normalization conditions:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

fj =zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj =zj + owt(3), j = κ0 + 1, · · · , n− 1,

g =w + owt(4),

φjl =µjlzjzl + owt(2), where (j, l) ∈ S with µjl > 0 for (j, l) ∈ S0

and µjl = 0 otherwise.

(20)

Moreover µjl =
p

µj + µl for j, l 6 κ0 j 6= l, µjl =
√
µj if j 6 κ0 and l > κ0 or if j = l 6 κ0.

Here we denote Aut0(∂Hn) = {ψ ∈ Aut(∂Hn) | ψ(0) = 0}.

• Degree of a rational map For a rational holomorphic map H = (P1,...,Pm)
Q

over Cn, where Pj , Q are

holomorphic polynomials and (P1, ..., Pm, Q) = 1, we define

deg(H) = max{deg(Pj ), 1 6 j 6m, deg(Q)}.

For a rational map H and a complex affine subspace S of dimension k, we say that H is linear fractional along

S, if S is not contained in the singular set of H and for any linear parametrization zj = z0j +
Pk
l=1 ajltl of S

with j = 1, · · · , n, H∗(t1, · · · , tk) := H(z01 +
Pk
l=1 a1ltl, · · · , z0n +

Pk
l=1 ajntj) has degree 1 in (t1, · · · , tk).

• Actions of the isotropic groups of the Heisenberg hypersurfaces Recall from [7, (2.4.1)] and [7,

(2.4.2)], we define σ ∈ Aut0(∂H2) and τ∗ ∈ Aut0(∂H5) by

σ =
(λ(z + aw) · U, λ2w)

q(z, w)
, τ∗(z∗, w∗) =

(λ∗(z∗ + a∗w∗) · U∗, λ∗2w∗)

q∗(z∗, w∗)
, (21)

with q(z,w) = 1−2i〈a, z〉+(r− i|a|2)w, λ > 0, r ∈ R, a, U ∈ C, |U | = 1, and q∗(z∗, w∗) = 1−2i〈a∗ , z∗〉+(r∗ −
i|a∗|2)w∗, λ∗ > 0, r∗ ∈ R, a∗ = (a∗1 , a

∗
2) ∈ C1 × C3 and U∗ is an 4 × 4 unitary matrix, such that [7, ((2.5.1),

(2.5.2)] holds:

λ∗ = λ−1, a∗1 = −λ−1aU, a∗2 = 0, r∗ = −λ−2r, U∗ =

 

U−1 0

0 U∗
22

!

, (22)
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where a∗ = (a∗1 , a
∗
2), U∗

22 is an 3 × 3 unitary matrix. Define F ∗ = τ∗ ◦ F ◦ σ. By [7, Lemma 2.3(A)], we can

write

f(z, w) = z + i
2
zAw+ owt(3), f∗(z,w) = z + i

2
zA∗w + owt(3),

φ(z,w) = 1
2
z(B1, B2, B3)z + zBw + 1

2
∂2φ
∂w2 (0)w2 + o(|(z, w)|2),

φ∗(z,w) = 1
2
z(B∗1, B∗2, B∗3)z + zB∗w + 1

2
∂2φ∗

∂w2 (0)w2 + o(|(z,w)|2),
(23)

where Bi = ∂2φi

∂z2
(0), B∗i =

∂2φ∗

i

∂z2
(0) for i = 1, 2, 3 and B = ( ∂

2φ1
∂z∂w

, ∂
2φ2

∂z∂w
, ∂

2φ3
∂z∂w

), B∗ = (
∂2φ∗

1
∂z∂w

,
∂2φ∗

2
∂z∂w

,
∂2φ∗

3
∂z∂w

).

Also, the same computation in [7, Lemma 2.3 (A)] gives the following:

∂2g∗

∂z2
(0) = 0, ∂2g∗

∂z∂w
(0) = 0, ∂2g∗

∂w2 (0) = 0, ∂2f∗

∂z2
(0) = 0, A∗ = λ2UAU−1,

∂2f∗

∂w2 (0) = iλ2aUAU−1 + λ3 ∂
2f

∂w2 (0)U−1,

[B∗1, B∗2, B∗3] = λU [B1, B2, B3]U tU∗
22,

B∗ = λU [B1, B2, B3]U tatU∗
22 + λ2UBU∗

22,
∂2φ∗

∂w2 (0) = λaU [B1, B2, B3]U tatU∗
22 + 2λ2aUBU∗

22 + λ3 ∂
2φ

∂w2 (0)U∗
22.

(24)

Lemma 2.3. ([8, theorem 4.1]) Let F ∈ Rat(∂H2 , ∂HN ) have degree 2 with F (0) = 0 and RkF (0) = 1 (N > 4).

Then

(1) F is equivalent to (F ∗∗∗, 0) where F ∗∗∗ = (f, φ1, φ2, φ3, g) ∈ Rat(∂H2, ∂H5) defined by

f(z, w) =
z−2ibz2+( i

2
+ie1)zw

1+ie1w+e2w2−2ibz
,

φ1(z, w) = z2+bzw
1+ie1w+e2w2−2ibz

,

φ2(z, w) = c2w
2+c1zw

1+ie1w+e2w2−2ibz
,

φ3(z, w) = c3w
2

1+ie1w+e2w2−2ibz
,

g(z,w) = w+ie1w
2−2ibzw

1+ie1w+e2w2−2ibz
.

(25)

Here b,−e1,−e2, c1, c2, c3 are real non-negative numbers satisfying

e1e2 = c22 + c23, −e1 − e2 = 1
4

+ b2 + c21, −be2 = c1c2, c3 = 0 if c1 = 0. (26)

(2) c1, c2, c3, e1, e2, b are uniquely determined by F . Conversely, for any non-negative real numbers c1, c2,

c3, e1, e2, b satisfying the relations in (26), the map F defined in (25) is an element in Rat(∂H2, ∂H5) of degree

2 with F (0) = 0 and RkF (0) = 1.

(3) If e2 = 0, then F is equivalent to (Fθ, 0) with Fθ as in (1).

Remarks (i) The new normalized map in Lemma 2.3(1) can be obtained by F ∗∗∗ = τ∗ ◦ F ∗∗ ◦ σ where F ∗∗ is

as in Lemma 2.2 and σ and τ∗ are as in (21).

(ii) For any map F in Lemma 2.3(1), b =
q

−e1 − e2 − 1
4
− c21 and c2 =

q

e1e2 − c23 are determined by c1, c3, e1
and e2. Then c1, c3, e1 and e2 can be regarded as parameters, and we denote F = Fc1,c3,e1,e2 .

(iii) We denote by K a subset of R4 such that (c1, c3, e1, e2), or Fc1,c3,e1,e2 ∈ K if and only if Fc1,c3,e1,e2 is a

map as above.

Lemma 2.4. ([1, Lemma 2.5]) Let F ∈ Rat(∂H2, ∂H5) with F (0) = 0 and deg(F ) = 2. Suppose that pm ∈ ∂H2

is a sequence converging to 0 ∈ ∂H2 and Fpm is of rank 1 at 0 for any m and F ∗∗∗
pm

converges such that
∂2φ∗∗∗

1,m

∂z∂w
|0,

∂2φ∗∗∗

2,m

∂w2 |0,
∂2φ∗∗∗

2,m

∂z∂w
|0 and

∂2φ∗∗∗

3,m

∂w2 |0 are bounded for all m. Then

(i) F is of rank 1 at 0.

(ii) F ∗∗∗
pm

→ F ∗∗∗.

(iii) If we write F ∗∗∗
pm

= G2,m ◦ τpm ◦ F ◦ σpm ◦ G1,m where σpm and τpm := τFpm
are as in (18), G1,m

and G2,m are as in (21), then G1,m and G2,m are convergent to some G1 ∈ Aut0(∂H2) and G2 ∈ Aut0(∂H5)

respectively.

Let F be as in Lemma 2.3 (1). By Lemma 2.3, Fp is equivalent to a map of the following form F ∗∗∗
p =

(f∗∗∗p , φ∗∗∗1,p , φ∗∗∗2,p , φ∗∗∗3,p , g∗∗∗p ) for any p ∈ ∂H2 where RkF (p) = 1:

f∗∗∗p (z,w) =
z − 2ib(p)z2 + ( i

2
+ ie1(p))zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,
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φ∗∗∗1,p (z, w) =
z2 + b(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

φ∗∗∗2,p (z, w) =
c2(p)w2 + c1(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

φ∗∗∗3,p (z, w) =
c3(p)w2

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

g∗∗∗p (z, w) =
w + ie1(p)w2 − 2ib(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
.

Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisfy e2(p)e1(p) = c22(p) + c23(p), −e2(p) = 1
4

+ e1(p) + b2(p) + c21(p),

and −b(p)e2(p) = c1(p)c2(p), c3(p) = 0 if c1(p) = 0, with c1(p), c2(p), b(p) > 0, e2(p), e1(p) 6 0.

Lemma 2.5. Let F and F ∗∗∗
p be as above. Let p = (z0, w0) = (z0, u0 + i|z0|2) ∈ ∂H2 near 0. Then the

followings hold.

(i) The real analytic functions have the formulas

b2(p) = b2 − 4b(2e1 + c21)ℑ(z0) + o(1),

c21(p) = c21 + 4c1(bc1 + 2c2)ℑ(z0) + o(1),

e2(p) + e1(p) = e2 + e1 + 8b(e1 + e2)ℑ(z0) + o(1),

c21(p) − e1(p) − e2(p) = c21 − e1 − e2 +

„

4c1(bc1 + 2c2) − 8b(e1 + e2)

«

ℑ(z0) + o(1)

where we denote o(k) = o(|(z0, u0)|k).
(ii) If c1 > 0, the real analytic function has the formula

c23(p) = c23 + 4(c3)2(5b− 2c2

c1
)ℑ(z0) + o(1),

(iii) If c1 = 0, then c3(p) ≡ 0.

Proof: (1) All these formulas were proved in [1, lemma 3.1].

(ii) We use the formulas in [1, Step 3 and 4, § 5] and the notation to obtain

c23 =

˛

˛

˛

˛

1

2

∂2φ∗∗∗p3

∂w2
(0)

˛

˛

˛

˛

2

=

˛

˛

˛

˛

1

2

∂2φ∗∗pe3

∂w2
(0)

˛

˛

˛

˛

2

= c23 + 4(c3)2(5b − 2c2

c1
)ℑ(z0) + o(1).

(iii) If c1 = 0, by Lemma 2.3, c3 = 0 and F ∈ Rat(H2,H4). We modify slightly on the normalization F ∗∗∗ so

that φ∗∗∗p3 ≡ 0 and hence c3(p) ≡ 0. �

3 A Monotone Lemma

Recall that for any (c1, c3, e1, e2) ∈ K, we denote

• (c1, c3, e1, e2) ∈ KI (i.e. Fc1,c3,e1,e2 is of the form of type (I)) if c1 = 0 and b = 0;

• (c1, c3, e1, e2) ∈ KII (i.e. Fc1,c3,e1,e2 is of the form of type (II)) if c1 > 0 and b = c2 = 0.

Also recall that for any map (c1, c3, e1, e2) ∈ KII , we denote

• (c1, c3, e1, e2) ∈ KIIA (i.e. Fc1,c3,e1,e2 is of the form of type (IIA)) if c1 > 0, b = c2 = 0 and c3 = e2 = 0;

• (c1, c3, e1, e2) ∈ KIIB (i.e. Fc1,c3,e1,e2 is of the form of type (IIB)) if c1 > 0, b = c2 = 0 and c3 = e1 = 0;

• (c1, c3, e1, e2) ∈ KIIC (i.e. Fc1,c3,e1,e2 is of the form of type (IIC)) if c1 > 0, b = c2 = 0 and c3 > 0.

For any (c1, c3, e1, e2) ∈ KI ∪ KII , we denote

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0, if 1 + 4e2 + 2c21 > 0;

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0, if 1 + 4e2 + 2c21 = 0;

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0, if 1 + 4e2 + 2c21 < 0.
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For any Fc1,c3,e1,e2 ∈ K, we define W(Fc1,c3,e1,e2) := W(c1, c3, e1, e2) := c21 − e1 − e2. We also consider

curves

Γ(t) = (αt, β1t + i|α|2t2) ∈ ∂H
2, ∀t ∈ [0, 1], |α| 6 1 and |β1| 6 1 (27)

where α = α1 + iα2, αj , β1 are real numbers.

Lemma 3.1. Let Γ be any curve as in (27).

(a) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2)∗∗∗Γ(t1)) 6 W((Fc1,c3,e1,e2 )∗∗∗Γ(t2)), ∀ 0 6 t1 < t2 6 δ. (28)

(b) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2 )∗∗∗Γ(t)) ≡ constant, ∀t. (29)

(c) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2)∗∗∗Γ(t1)) > W((Fc1,c3,e1,e2 )∗∗∗Γ(t2)), ∀ 0 6 t1 < t2 6 δ. (30)

Proof of Lemma 3.1: Step a. The basic setup The monotonicity (28) in (a) means

dW(F ∗∗∗
Γ(t)

))

dt
= lim

∆t→0

W(F ∗∗∗
Γ(t+∆t)

) −W(F ∗∗∗
Γ(t)

)

∆t
> 0, ∀t ∈ [0, δ]. (31)

For any 0 < t < δ and sufficiently small ∆t > 0, if we can write

F ∗∗∗
Γ(t+∆t) =

„

F ∗∗∗
Γ(t)

«∗∗∗

q(t,∆t)

(32)

for some differentiable map q(t,∆t) ∈ ∂H2, then from Lemma 2.5 we should have

W(F ∗∗∗
Γ(t+∆t)

) = W(F ∗∗∗
Γ(t)

) +

»

4c1(bc1 + 2c2) − 8b(e1 + e2)

–

(Γ(t))ℑ(q1(t))∆t + o(|∆t|), (33)

where we write q(t,∆t) := (q1(t), q2(t))∆t+ o(|∆t|). Notice that [4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t)) > 0 always

holds because c1, c2,−e1 − e2 > 0. Then (31) follows if ℑ(q1(t)) > 0 holds. In particular, if [4c1(bc1 + 2c2) −
8b(e1 + e2)](Γ(t)) 6= 0 for any fixed t ∈ [0, δ), and if the following condition is satisfied:

ℑ(q1(t)) > 0, ∀t ∈ [0, δ], (34)

then the strict inequality (31) holds. To prove (31), it suffices to prove (34).

Step b. Γ(t) determines q(t,∆t) To prove (32), we define q(t,∆t) by

Γ(t+ ∆t) = σΓ(t) ◦G1(q(t,∆t)) (35)

where G1 = G1(t) ∈ Aut0(∂H2) and G2 ∈ Aut0(∂H5) are defined such that

(FΓ(t))
∗∗∗ = G2 ◦ τFΓ(t) ◦ F ◦ σΓ(t) ◦G1. (36)

By (35), q(t,∆t) is a function uniquely determined by Γ(t) given by

q(t,∆t) = G−1
1 ◦ σ−1

Γ(t)
◦ Γ(t+ ∆t). (37)

The definition (37) will be justified in Step c. Here we derive a formula (39).

By the definition of σ (see (18)),

σ−1
Γ(t)

(z, w) = (z − z(t), w − w(t) − 2i〈z, z(t)〉 + 2i|z(t)|2),

and

Γ(t + ∆t) =

„

α(t + ∆t), β1(t + ∆t) + i|α|2(t2 + 2t∆t + ∆t2)

«

= Γ(t) + (α, β1 + i|α|2(2t+ ∆t))∆t = Γ(t) + (α∆t, (β1 + 2i|α|2t)∆t) + o(|∆t|).
(38)

Then

σ−1
Γ(t)

◦ Γ(t + ∆t) = (α∆t, β1∆t) + o(|∆t|).
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We denote G1 ∈ Aut0(∂H2) as in (21), and we have

G1(z,w) =

„

λ(z + ~aw)U

1 − 2i〈~a, z〉 − (r + i|~a|2)w ,
λ2w

1 − 2i〈~a, z〉 − (r + i|~a|2)w

«

where U = U(t) = eiθ, θ = θ(t) ∈ R, λ = λ(t) > 0 and ~a = ~a(t) ∈ C, and r = r(t) ∈ R, and

G−1
1 (z∗, w∗) =

„ 1
λ
(z − ~a

λ
Uw)U−1

1 + 2i〈~a
λ
U, z〉 + ( 1

λ2 r − i|~a
λ
|2)w

,
1
λ2w

1 + 2i〈~a
λ
U, z〉 + ( 1

λ2 r − i|~a
λ
|2)w

«

.

Therefore

q(t,∆t) = G−1
1 ◦ σ−1

Γ(t)
◦ Γ(t + ∆t) = G−1

1 (α∆t, β1∆t) + o(|∆t|)

=

„

1

λ2
(λαU−1 − ~aβ1),

1

λ2
β1

«

∆t+ o(|∆t|).

By using the notation in (34), we have

ℑ(q1(t)) =
1

λ(t)2
ℑ
„

λ(t)αU(t)−1 − ~a(t)β1

«

. (39)

Step c. The identity We want to prove that the identity (32) holds:

(FΓ(t+∆t))
∗∗∗ =

„„

(FΓ(t))
∗∗∗

«

q(t,∆t)

«∗∗∗

, (40)

for sufficiently small t and ∆t, i.e., to prove the following identity

G4 ◦ τFΓ(t+∆t) ◦ F ◦ σΓ(t+∆t) ◦G3 = G6 ◦ τFq ◦
„

G2 ◦ τFΓ(t) ◦ F ◦ σΓ(t) ◦G1

«

◦ σq(t,∆t) ◦G5. (41)

Here by abusing of notion, we still use τFq to denote τHq where H = (FΓ(t))
∗∗∗. Notice that G1, G5, G3

∈ Aut0(∂H2), σΓ(t), σq , σΓ(t+∆t) ∈ Aut(∂H2), and G2, G6, G4∈ Aut0(∂H5), τF
Γ(t)

, τFq , τF
Γ(t+∆t)

∈ Aut(∂H5)

are uniquely determined by F , Γ(t), q and Γ(t + ∆t) in the normalization process, respectively.

If we can write
„„

(FΓ(t))
∗∗∗

«

q(t,∆t)

«∗∗∗

= B ◦ (FΓ(t+∆t))
∗∗∗ ◦A (42)

for some A ∈ Aut0(∂H2) and B ∈ Aut0(∂H5), then (40) holds by Lemma 2.3(2).

In fact, we write

„„

(FΓ(t))
∗∗∗

«

q(t,∆t)

«∗∗∗

= G6 ◦ τFq ◦
„

G2 ◦ τFΓ(t) ◦ F ◦ σΓ(t) ◦G1

«

◦ σq(t,∆t) ◦G5

=

„

G6 ◦ τFq ◦G2 ◦ τFΓ(t) ◦ (τFΓ(t+∆t))
−1 ◦G−1

4

«

◦
„

G4 ◦ τFΓ(t+∆t) ◦ F ◦ σΓ(t+∆t) ◦G3

«

◦

◦
„

G−1
3 ◦ σ−1

Γ(t+∆t)
◦ σΓ(t) ◦G1 ◦ σq(t,∆t) ◦G5

«

= B ◦ (FΓ(t+∆t))
∗∗∗ ◦A

where B = G6 ◦ τFq ◦ G2 ◦ τF
Γ(t)

◦ (τF
Γ(t+∆t)

)−1 ◦ G−1
4 and A = G−1

3 ◦ σ−1
Γ(t+∆t)

◦ σΓ(t) ◦ G1 ◦ σq(t,∆t) ◦ G5.

Writing A = G−1
3 ◦

„

σ−1
Γ(t+∆t)

◦ σΓ(t) ◦ G1 ◦ σq(t,∆t)
«

◦ G5. Notice G−1
3 , G5 ∈ Aut0(∂H2). By (35), we know

σ−1
Γ(t+∆t)

◦ σΓ(t) ◦G1 ◦ σq(t,∆t) ∈ Aut0(∂H2). Then A ∈ Aut0(∂H2). Similarly, we can show B ∈ Aut0(∂H5).

Step d. Proof of (a) - the case α 6= 0 Let α be as in (39). Suppose α 6= 0. By our construction (see [1,

Step 3 in § 5]), the vector ~a and the matrix U in (39) are given by

~a = ~a(t) = i
∂2f∗∗pb

∂w2
(0) = i(e1 − 2e2)z0 + 2ic1c2u0 + (|p|) = i(e1 − 2e2)αt + o(t), (43)
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U = U(t) =

8

>

<

>

:

eiθ =
∂2φ∗∗

pe1

∂z∂w
(0)/

˛

˛

˛

˛

∂2φ∗∗

pe1

∂z∂w
(0)

˛

˛

˛

˛

, if
∂2φ∗∗

pe1

∂z∂w
(0) 6= 0,

1, if
∂2φ∗∗

pe1

∂z∂w
(0) = 0,

(44)

and (see [1, Step 3 in § 5])

∂2φ∗∗pe1

∂z∂w
(0) =

∂2φ∗∗pd1

∂z∂w
(0) = b− 2ib3u0 − ibe1u0 − 4ib2z0 − i

2
bu0

−iz0 − 4ie2z0 + 4ic1c2u0 − 2ibc21u0 − 2ic21z0 = −i(1 + 4e2 + 2c21)z0 + o(|p|),

where p = (z0, w0) = Γ(t) = (αt, β1t + i|α|2t2) ∈ ∂H2. Here we used the fact that b = c2c1 = 0 because

(c1, c3, e1, e2) ∈ KI ∪KII . Then we obtain

∂2φ∗∗pe1

∂z∂w
(0) = −i(1 + 4e2 + 2c21)αt+ o(t) (45)

Now 1 + 4e2 + 2c21 > 0. Since α 6= 0, we have
∂2φ∗∗

pe1

∂z∂w
(0) 6= 0 by (45) so that ~a, U−1 and q1 are real analytic

neat 0 from their construction (cf. [1]). Then

U(t)−1 = e−iθ =

∂2φ∗∗

pe1

∂z∂w
(0)

| ∂
2φ∗∗

pe1

∂z∂w
(0)|

=
i(1 + 4e2 + 2c21)αt+ o(|t|)

| ∂
2φ∗∗

pe1

∂z∂w
(0)|

=
i(1 + 4e2 + 2c21)α

|(1 + 4e2 + 2c21)α|
+ O(|t|).

and there exists a constant δ > 0 such that

ℑ(q1(t)) = 1
λ(t)2

ℑ
„

λ(t)αU(t)−1 − ~a(t)β1

«

= 1
λ(t)

ℑ
„

αU(t)−1

«

+O(t)

= 1
λ
ℑ
„

i(1+4e2+2c21)|α|2

|(1+4e2+2c21)α|

«

+ O(|t|) = |α| + O(|t|), ∀t ∈ [0, δ]
(46)

because λ = λ(t) = 1 +O(|t|). This proves (34) as well as (28).

Step e. Proof of (a) - the case α = 0 Next we will prove (a) for the case α = 0. In this case

Γ(t) = (0, β1t), and ℑ(q1(t)) = − β1
λ(t)2

ℑ(~a(t)) and ~a(t) = i
∂2f∗∗pb

∂w2 (0). From [1, § 5, step 3 and step 2], we have

∂2f∗∗pb

∂w2 (0) =
∂2f∗∗p

∂w2 (0) =

=
1

λ(p)
T 2
ef(p) · L ef(p)

t
− 1

λ(p)2
(T ef · L ef

t
)(T 2g − 2iT 2

ef · ef
t
− 2i‖T ef‖2)(p) (47)

We want to prove ~a(t) ≡ 0 which implies (28). This will be done by direct computation. Write F as in the

following form:

f = zh+ (
i

2
+ ie1)zwh, φ1 = z2h, φ2 = c1zwh,φ3 = c3w

2h, g = wh+ ie1w
2h,

where h = h(w) = 1
1+ie1w+e2w2 . Then

h′ = (−ie1 − 2e2w)h2, h′′ = (−2e2 − 2e21 + 6ie1e2w + 6e22w
2)h3.

From the definition of Fp where p = (z, w), we have [1, § 5]

f(p) = zh+ (
i

2
+ ie1)zwh,

Lf(p) = h+ (
i

2
+ ie1)wh+ 2iz

„

zh′ + (
i

2
+ ie1)z(h+ wh′)

«

,

T f(p) = zh′ + (
i

2
+ ie1)z(h+ wh′),

T 2f(p) = zh′′ + (
i

2
+ ie1)z(2h

′ + wh′′),

φ1(p) = z2h, Lφ1(p) = 2zh+ 2izz2h′, Tφ1(p) = z2h′,
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φ2(p) = c1zwh, Lφ2(p) = c1wh+ 2ic1zz(h+ wh′), Tφ2(p) = c1z(h+wh′),

T 2φ1(p) = z2h′′,

L2φ2(p) = 2ic1z(h+ wh′) + 2iz

»

c1(h+wh′) + 2ic1zz(2h
′ +wh′′)

–

= 4ic1z(h+wh′) − 4c1z
2z(2h′ + wh′′),

T 2φ2(p) = c1z(2h
′ + wh′′),

φ3(p) = c3w
2h, Lφ3(p) = 2ic3z(2wh+w2h′), Tφ3(p) = c3(2wh+ w2h′),

T 2φ3(p) = c3(2h+ 2wh′ + 2wh′ + w2h′′) = c3(2h+ 4wh′ +w2h′′),

When p = (0, t), we have

λ(p) = |Lf(p)|2 + |Lφ1(p)|2 + |Lφ2(p)|2 + |Lφ3(p)|2 = |h(t)|2 + |c1th(t)|2 = 1 + o(t)

and Tf(p) = Tφ1(p) = Tφ2(p) = Lφ3(p) = T 2f(p) = T 2φ1(p) = T 2φ2(p) = 0 so that (T ef · L ef
t
)(p) = 0 and

that (T 2
ef · L ef

t
)(p) = 0. Hence by (47) we obtain ℑ(q1(t)) = − β1

λ(t)2
ℑ(~a(t)) ≡ 0. The proof of (a) is complete.

Step f. Proof of (b) and (c) Similarly we can prove (c). To prove (b), we first consider the case when

α 6= 0. In this case, we can take a sequence of points (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) ∈ KIIC,1+4e2+2c21>0 such that

(c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) → (c1, c3, e1, e2). Then (46) holds for such maps F

c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

:

ℑ(q
(k)
1 (t))) = |α| +O(|t|), ∀t ∈ [0, δ] (48)

Also, we can take another sequence of points (ec
(k)
1 ,ec

(k)
3 , ee

(k)
1 , ee

(k)
2 ) ∈ KIIC,1+4e2+2c21<0 such that (ec

(k)
1 ,ec

(k)
3 ,

ee
(k)
1 , ee

(k)
2 ) → (c1, c3, e1, e2). Then by letting k → ∞ and the same argument in the proof for (c), we get

ℑ(eq
(k)
1 (t))) = −|α| + O(|t|), ∀t ∈ [0, δ] (49)

for maps Fec(k)
1 ,ec(k)

3 ,ee(k)
1 ,ee(k)

2

. Such estimate is uniform for all k. Notice that the function [4c1(bc1 +2c2)−8b(e1 +

e2)](Γ(t))ℑ(q1(t)) in (33) is real analytic but 4c1(bc1 + 2c2) − 8b(e1 + e2) and ℑ(q1) may be not (see Remark

(a) following the proof of Lemma 3.1 below). Then by (48) and (49) and by letting k → ∞, we must have

[4c1(bc1 + 2c2) − 8b(e1 + e2)](Γ(t))ℑ(q1(t)) ≡ 0, ∀t ∈ [0, δ]

for the map Fc1,c3,e1,e2 so that ℑ(q1(t)) ≡ 0 is proved.

Next we consider the case when α = 0, by Step e, we have ℑ(q1(t)) ≡ 0 so that (c) is proved �.

Remark (a) We notice that if 1 + 4e2 + 2c21 = 0,
∂2φ∗∗

pe1

∂z∂w
(0) may be zero so that U and hence U−1 may not be

differentiable. By the way, W(F ∗∗∗
p ) = c21(p)− e1(p) − e2(p) = 1

4
+ 2c21(p) + b2(p) is real analytic but c1(p) and

b(p) may not be differentiable; this is because of some definitions such as (44) (cf. [1, p.1521-1522]). Then the

function [4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t))ℑ(q1(t)) in (33) is real analytic but 4c1(bc1 + 2c2)− 8b(e1 + e2) and

ℑ(q1) may be not.

(b) If we replace the curve Γ(t) = (αt, β1t+ i|α|2t2) by another curve

Γ(t) = (αt, β0 + β1t+ i|α|2t2), (50)

then (38) and hence (46) holds.

Recall (c1, c3, e1, e2) ∈ KII ⇐⇒ (5) holds with c1 > 0 and b = c2 = 0 ⇐⇒ c1 > 0 and either

e1 =
−( 1

4
+ c21) −

q

( 1
4

+ c21)
2 − 4c23

2
, e2 =

−( 1
4

+ c21) +
q

( 1
4

+ c21)
2 − 4c23

2
, (51)
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where 4c23 6 ( 1
4

+ c21)2, or

e1 =
−( 1

4
+ c21) +

q

( 1
4

+ c21)
2 − 4c23

2
, e2 =

−( 1
4

+ c21) −
q

( 1
4

+ c21)
2 − 4c23

2
, (52)

where 4c23 6 ( 1
4

+ c21)2. Here c1 and c3 are parameters.

We can write a disjoint union KII = KII,e1<e2 ∪ KII,e1=e2 ∪KII,e1>e2 , where

KII,e1<e2 = {(c1, c3, e1, e2) ∈ KII | e1 < e2}

KII,e1=e2 = {(c1, c3, e1, e2) ∈ KII | e1 = e2},
and

KII,e1>e2 = {(c1, c3, e1, e2) ∈ KII | e1 > e2}.
Then KII,e1<e2 = {(c1, c3, e1, e2) ∈ KII | (51) and 4c23 < ( 1

4
+ c21)

2 hold}, KII,e1=e2 = {(c1, c3, e1, e2) ∈
KII | (51)or (52) and 4c23 = ( 1

4
+ c21)

2 hold}, and KII,e1<e2 = {(c1, c3, e1, e2) ∈ KII | (52) and 4c23 <

( 1
4

+ c21)
2 hold}.

Lemma 3.2. (i) KII,e1<e2 ⊆ KI,II,1+4e2+2c21>0, and KII,e1=e2 ⊆ KI,II,1+4e2+2c21>0.

(ii) Let (c1, c3, e1, e2) ∈ KII,e1>e2 . Then

(a) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0 if and only if 1
2
c21 + c41 < 4c23 < ( 1

4
+ c21)

2 holds.

(b) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0 if and only if 1
2
c21 + c41 = 4c23 holds.

(c) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0 if and only if 0 6 4c23 <
1
2
c21 + c41 holds.

Proof of Lemma 3.2: (i) For any (c1, c3, e1, e2) ∈ KII,e1<e2 ∪ KII,e1=e2 , by −e1 − e2 = 1
4

+ c21 and (51), we

have

1 + 4e2 + 2c21 =
1

2
+ 2e2 − 2e1 =

1

2
+ 2

s

„

1

4
+ c21

«2

− 4c23 >
1

2
> 0.

(ii) For any (c1, c3, e1, e2) ∈ KII,e1>e2 , we know that 1 + 4e2 + 2c21 > 0 is equivalent to 1
2

+ 2e2 − 2e1 =

1
2
− 2
q

( 1
4

+ c21)2 − 4c23 > 0, i.e., 1
2
c21 + c41 < 4c23, so that (a) is proved. (b) and (c) are proved similarly. �.

Lemma 3.3. Let E := {(c1, c3, e1, e2) ∈ KI ∪KII | (Fc1,c3,e1,e2 )∗∗∗p ≡ Fc1,c3,e1,e2 , ∀p ∈ ∂H2 near 0}. Then

Fc1,c3,e1,e2 ∈ E if and only if for any curve Γ as in (27),

(4c1(bc1 + 2c2) − 8b(e1 + e2))(Γ(t)) ≡ 0, ∀t ∈ [0, 1]. (53)

Proof: It is clear

Fc1,c3,e1,e2 ∈ E ⇐⇒ c1(p), c3(p) are constant, ∀p ∈ ∂H
2 near 0. (54)

If Fc1,c3,e1,e2 ∈ E, then either c1(p) = b(p) = 0 or c1(p) > 0, b(p) = c2(p) = 0, ∀p ∈ ∂H2 near 0 (i.e., the case

(I) or (IIA), (IIB) and (IIC)). Then the equality in (53) holds.

Conversely, suppose that (4c1(bc1 + 2c2) − 8b(e1 + e2))(Γ(t)) ≡ 0 for any choice of curve Γ(t) and for any

(c1, c3) in some open subset of R2. Then b1(p) = 0 and c1(p)c2(p) = 0, ∀p ∈ ∂H2 near 0. If c1 ≡ 0, then by

Lemma 2.5(iii), c3(p) = 0, ∀p so that Fc1,c3,e1,e2 ∈ E. If c1(p) > 0 for any p in some open subset of ∂H2, then

c2(p) = 0, ∀p. Then we apply Lemma 2.5(ii) to know

c23(p) = c23 + 4(c3)2(5b − 2c2

c1
)ℑ(z0) + o(|p|) = c23 + o(|p|), where p = (z0, w0) ∈ ∂H

2 (55)

which implies as in (33) that c3(p) = constant, ∀p. Also, by (33), from (4c1(bc1 + 2c2) − 8b(e1 + e2))(Γ(t)) ≡ 0

it implies W((Fc1,c3,e1,e2 )∗∗∗
Γ(t)

) = constant, ∀Γ and ∀t. Then

W((Fc1,c3,e1,e2)∗∗∗Γ(t)) = (c21 − e1 − e2)(Γ(t)) = (
1

4
+ 2c21)(Γ(t)) = constant,

which implies that c1(Γ(t)) = constant for any t ∈ [0, t0], i.e., c1 ≡ constant. By (54), we obtain Fc1,c3,e1,e2 ∈ E.

Claim (53) is proved. �

Theorem 1.1(i) will follow by Lemma 3.2 and the following lemma.
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Lemma 3.4. Let (c1, c3, e1, e2) ∈ KI ∪ KII . Then Fc1,c3,e1,e2 satisfies (9) if and only if Fc1,c3,e1,e2 ∈ K∗ :=

KI ∪KII −KI,II,1+4e2+2c21<0.

Proof: (⇐=) It follows from Lemma 3.1.

(=⇒) Take any map Fc1,c3,e1,e2 ∈ KI,II,1+4e2+2c21<0 satisfying the minimum property (9). We first show

that Fc1,c3,e1,e2 ∈ E where E was defined in above lemma.

By Step d in the proof of Lemma 3.1, we know that for any curve Γ as in Lemma 3.1, there is δ > 0 such

that

ℑ(q1(t)) = −|α| + O(|t|), ∀t ∈ [0, δ].

Suppose that Fc1,c3,e1,e2 satisfies (9). By (33), it implies (4c1(bc1 + 2c2) − 8b(e1 + e2))(Γ(t)) ≡ 0 for any such

curves Γ(t) and for any (c1, c3) with 0 6 4c23 6 ( 1
4

+ c21)
2. Then by above lemma, Fc1,c3,e1,e2 ∈ E.

E ∩ KI,II,1+4e2+2c21<0 is a real analytic set in KI,II,1+4e2+2c21<0. We claim:

E ∩ KI,II,1+4e2+2c21<0 = ∅. (56)

Suppose (56) is not true. Then we can take

(c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ KI,II,1+4e2+2c21<0 ∩ E. (57)

We can take a sequence of points (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) ∈ KI,II,1+4e2+2c21<0 − E such that

(c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) → (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ).

By our choice of (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ), the corresponding maps F

c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

has the property that the asso-

ciated function W
`

(F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

)∗∗∗
Γ(t)

´

is strictly decreasing as t goes from 0 to 1. Then F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

is equivalent to some map Fec(k)
1 ,ec(k)

3 ,ee(k)
1 ,ee(k)

2

∈ K∗ = KI ∪ KII − KI,II,1+4e2+2c21<0 with the minimum W

value. Since the function value W((F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

)∗∗∗Γ ) is decreasing, the sequence of points (ec
(k)
1 ,ec

(k)
3 ,

ee
(k)
1 , ee

(k)
2 ) is also bounded in K. By taking subsequence, we may assume that (ec

(k)
1 ,ec

(k)
3 , ee

(k)
1 , ee

(k)
2 ) → (ec

(0)
1 ,ec

(0)
3 ,

ee
(0)
1 , ee

(0)
2 ) ∈ K∗. Then F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

is equivalent to Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

∈ K∗, i.e.,

Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

=

„

F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

«∗∗∗

q

(58)

for some non zero q ∈ ∂H2, by the same argument as in (7) and (8) (or [1, Step 1, § 4]). On the other hand,

since F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

∈ E, by the definition of E, (58) cannot occur. This contradiction shows that (57) cannot

occur. Thus Claim (56) is proved. �

4 Local version of Theorem 1.1(ii)

For each point p = (a, b+ i|a|2) ∈ ∂H2 where b ∈ R and a ∈ C, we denote π(p) = π(a, b+ i|a|2) := (|a|, |b|) ∈ R2.

We denote by �c := [0, c] × [0, c] a square and △c := {(x, y) | 0 6 x 6 c, 0 6 y 6 x} a triangle inside �c.

Let Γ(t) = (αt, β1t + i|α|2t2) with t ∈ [0, 1] be line segments, The set {π(Γ(t)) = π(αt, β1t + i|α|2t2) | |α| =

1, |β1| 6 1, 0 6 t 6 t0} is equal to △t0 . Notice that π(a, b+ i|a|2) ∈ △t0 if and only if there exists such a line

segment Γ(t) so that (a, b+ i|a|2) = Γ(t∗) for some t∗ ∈ [0, t0].

Lemma 4.1. For any P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗, there is a neighborhood U of P (0) in K∗ and a

constant c > 0 such that for any point (c′1, c
′
3, e

′
1, e

′
2), (c

′′
1 , c

′′
3 , e

′′
1 , e

′′
2 ) ∈ U with Fc′′1 ,c

′′

3 ,e
′′

1 ,e
′′

2
= (Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗p

where p = (a, b+ i|a|2) ∈ ∂H2, a ∈ C, b ∈ R, |p| := max{|a|, |b|} 6 c, we have

(c′′1 , c
′′
3 , e

′′
1 , e

′′
2 ) = (c′1, c

′
3, e

′
1, e

′
2). (59)

Proof of Lemma 4.1: Step 1. Choose U and c For the point P (0) ∈ K∗, by Lemma 3.1 and the uniform

estimate (46), there exists a neighborhood U of this point and a constant 0 < t0 < 1 such that for any point

(c′1, c
′
3, e

′
1, e

′
2) ∈ U and for any curve Γ(t) = {(αt, β1t + i|α|2t2)} with α ∈ C, β1 ∈ R with |β1| 6 1, |α| = 1,

0 6 t 6 t0, we have the property

W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗Γ(t)) is nondecreasing, ∀t ∈ [0, t0]. (60)
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Since Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
= (Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗p = H ◦ τ ◦Fc′1,c′3,e′1,e′2 ◦ σp ◦G where G ∈ Aut0(∂H2), H ∈ Aut0(∂H5),

τ and and σp are as in (18), we can write

Fc′1,c
′

3,e
′

1,e
′

2
= (Fc′′1 ,c

′′

3 ,e
′′

1 ,e
′′

2
)∗∗∗q ,

where q = G−1(−z0,−w0). Since G(0) = 0 and G−1(0) = 0, by continuity, q → 0 as p→ 0. Then we can choose

a number 0 < c < t0 such that ∀p = (a, b + i|a|2) ∈ ∂H2 with |p| 6 c, the point q = (A,B + i|A|2) satisfies

|q| 6 t0. Let us verify that c is the desired number.

Step 2. There exists a curve from 0 to p with monotone property We have to put the condition

|α| = 1 in (60); otherwise we may not be able to find the t0 for all curves. We want to remove this condition

by adding one more piece of the line segment, namely, we claim that for any p and (c′1, c
′
3, e

′
1, e

′
2) as above,

there is a curve Γ(t), t ∈ [0, t∗], consisting of one or two pieces of line segments, such that (60) is still true:

W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ(t)

) is nondecreasing along Γ.

Write p = (a, b + i|a|2) ∈ ∂H2. We distinguish two cases: (i) π(a, b + i|a|2) ∈ △c; and (ii) π(a, b + i|a|2) ∈
�c −△c.

In the first case (i): for any p = (a, b+ i|a|2) with |a| 6 c and |b| 6 |a|c, assuming p 6= 0, we have p = Γ(t∗)

for some curve Γ(t) = (αt, β1t+ i|α|2t2) with 0 6 β1 6 1 and |α| = 1 as above with some t∗ ∈ [0, c]. In fact, we

have α = a
|a|

, β1 = b
|a|

and t∗ = |a|. By (60) the function W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ(t)

) is increasing as t varies from 0

to t∗.

In the second case (ii): p = (a, b+ i|a|2) with |a| 6 c and |a| < |b| 6 c. Let us assume b > 0; otherwise it can

be proved by the same argument. In this case, we cannot find Γ such that it connects 0 and p as in the case (i).

However, we can define two pieces of curves:

Γ(t) =

(

Γ1(t), 0 6 t 6 b− |a|,
Γ2(t), b− |a| 6 t 6 b.

:=

8

>

<

>

:

(0, t), 0 6 t 6 b− |a|,
„

a
|a|

(t − b+ |a|), t+ i

˛

˛

˛

˛

t − b+ |a|
˛

˛

˛

˛

2«

, b− |a| 6 t 6 t∗ := b.

Here π(Γ1) = {0}× [0, b−|a|] is a vertical line segment; and π(Γ2) is another line segment connecting Γ1(b−|a|)
and the point p.

By Step e in § 3, the function W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ1(t)

) is constant for 0 6 t 6 b − |a|. Next we consider

W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ2(t)

). If we use a new variable u = t − b+ |a|, then Γ2(t) can be written as

Γ2(u) =

„

a

|a|u, (b− |a|) + u+ iu2

«

, 0 6 u 6 |a|.

By the remark (b) in (50), (46) is still valid for Γ2(u) so that W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ2(t)

) is nondecreasing for any

b− |a| 6 t 6 t∗. Our claim is proved.

Step 3. The W function is constant We claim:

W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗Γ ) = constant. (61)

In fact, since Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
= (Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗p and Fc′1,c

′

3,e
′

1,e
′

2
= (Fc′′1 ,c

′′

3 ,e
′′

1 ,e
′′

2
)∗∗∗q . We have Fc′1,c

′

3,e
′

1,e
′

2
= ((Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗p )∗∗∗q .

Since π(p) ∈ �c, by our choice of c, q = (A,B + i|A|2) satisfies π(q) ∈ �t0 , i.e., |A| 6 t0 and |B| 6 t0. Then

by Step 2, there exists a curve eΓ(et), 0 6 et 6 et∗, connecting 0 and q such that the function W((Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗eΓ(et)

)

is nondecreasing along eΓ. Then we obtain

W(Fc′1,c
′

3,e
′

1,e
′

2
) = W((Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗Γ(0)) 6 W((Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗Γ(t∗)) = W(Fc′′1 ,c

′′

3 ,e
′′

1 ,e
′′

2
), (62)

and

W(Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
) = W((Fc′′1 ,c

′′

3 ,e
′′

1 ,e
′′

2
)∗∗∗eΓ(0)

) 6 W((Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
)∗∗∗eΓ(et∗)

) = W((Fc′1,c
′

3,e
′

1,e
′

2
). (63)

By (62) and (63), Claim (61) is proved.

Step 4. Proof of the uniqueness We next claim that (Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ(t)

is constant:

(Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗Γ(t) ≡ Fc′1,c

′

3,e
′

1,e
′

2
, ∀t ∈ [0, t0]. (64)
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Let us consider the case (i) in Step 2. From (31) and Lemma 2.5, it implies that
`

4c′1(b
′c′1 + 2c′2) − 8b′(e′1 +

e′2)
´

Γ(t) = 0 for any t ∈ [0, t∗]. Thus by the argument in (55), we proved c′1(Γ(t)) = c′3(Γ(t)) = 0 for any

t ∈ [0, t∗]. This implies that (Fc′1,c
′

3,e
′

1,e
′

2
)∗∗∗
Γ(t)

is the same map for any t ∈ [0, t0]. Claim (64) is proved. The

case (ii) will be proved by similar argument as the case (i) and by the remark (b) in (50). �

Lemma 4.2. For any point P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗ −E where E is defined in Lemma 3.3, there is a

neighborhood V of P (0) in K, a neighborhood U of P (0) in K∗ −E and a neighborhood E of 0 in ∂H2 such that

the map Ψ : U × E → V, (F, p) 7→ F ∗∗∗
p is surjective.

Proof: We first claim that for any Fc1,c3,e1,e2 ∈ K∗ − E, the set N := {(Fc1,c3,e1,e2 )∗∗∗p | p ∈ ∂H2} is of real

dimension > 2. In fact, consider a function W((Fc1,c3,e1,e2 )∗∗∗Γ ) on N where Γ(t) = (αt, β1t+ |α|2t2) is a curve

in ∂H2 as (27). By (46), we have ℑ(q1(t)) = |α|+O(|t|) for t > 0 sufficiently small. Since Fc1,c3,e1,e2 ∈ K∗ −E,

by Lemma 3.3, we have (4c1(bc1 + 2c2) − 8b(e1 + e2))(Γ(t)) 6≡ 0 holds for some curve Γ. Then from (33),

W(F ∗∗∗
Γ(t+∆t)

) = W(F ∗∗∗
Γ(t)

) +

»

4c1(bc1 + 2c2) − 8b(e1 + e2)

–

(Γ(t))|α|∆t + o(|∆t|), (65)

Since α ∈ C ∼= R2, our claim is proved.

It remains to prove dimR Ψ(U×E) = 4. Notice that dimR K = 4, dimR(K∗) > 2, and that the map defined by

(K∗−E)×∂H2 → K, (F, p) 7→ F ∗∗∗
p is (Nash) algebraic. Then it suffices to show that this map is injective, i.e.,

for any two distinct points (c1, c3, e1, e2), (ec1,ec3, ee1, ee2) ∈ K∗, which are sufficiently close to (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ),

and for any two points p, ep ∈ ∂H2, which are sufficiently close to 0 ∈ ∂H2,

(Fc1,c3,e1,e2 )∗∗∗p 6= (Fec1,ec3,ee1,ee2 )∗∗∗ep . (66)

If this can be proved, it follows dimR Ψ(U × E) = 4.

Recall that for a fixed F , we write

F ∗∗∗
p = Hp ◦ τp ◦ F ◦ σp ◦Gp, (67)

where σp ∈ Aut(H2) and τp ∈ Aut(H5) are defined in (18), Gp ∈ Aut0(H2) and Hp ∈ Aut0(∂H5).

In case (66) does not hold, i.e., we have (Fc1,c3,e1,e2 )∗∗∗p = (Fec1,ec3,ee1,ee2 )∗∗∗ep . By (67), we write

Hp ◦ τp ◦ Fc1,c3,e1,e2 ◦ σp ◦Gp = eHp ◦ eτp ◦ Fec1,ec3,ee1,ee2 ◦ eσp ◦ eGp,

i.e.,

Fc1,c3,e1,e2 = τ−1
p ◦H−1

p ◦ eHp ◦ eτp ◦ Fec1,ec3,ee1,ee2 ◦ eσp ◦ eGp ◦G−1
p ◦ σ−1

p = (Fec1,ec3,ee1,ee2 )∗∗∗p0
, (68)

where p0 = eσp ◦ eGp ◦G−1
p ◦ σ−1

p (0).

Notice from (67) that there is δ > 0 such that as p → 0, σp, Gp, τp,Hp all converge to the identity maps in

Aut(H2) and Aut(H5) respectively. We apply this fact to (68) to conclude that for any ǫ > 0, there exists δ > 0

such that for any (c1, c3, e1, e2), (ec1,ec3, ee1, ee2) ∈ K∗ with

dist
`

(c1, c3, e1, e2), (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 )
´

< δ, dist
`

(ec1,ec3, ee1, ee2), (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 )
´

< δ,

we must have |p0| < ǫ. We can choose ǫ to be the c as in Lemma 4.1. By applying Lemma 4.1 to (68) to conclude

Fc1,c3,e1,e2 = Fec1,ec3,ee1,ee2 . This contracts with the fact that (c1, c3, e1, e2) and (ec1,ec3, ee1, ee2) are distinct. Hence

(66) is proved. �

Corollary 4.3. (Local version of Theorem 1.1(ii)) For any P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗ − E where

E is defined in Lemma 3.3, there is a neighborhood U of P (0) in K∗ − E such that ∀(c′1, c
′
3, e

′
1, e

′
2), (c′′1 , c

′′
3 , e

′′
1 ,

e′′2 ) ∈ U such that Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
and Fc′1,c

′

3,e
′

1,e
′

2
are equivalent, we have (c′′1 , c

′′
3 , e

′′
1 , e

′′
2 ) = (c′1, c

′
3, e

′
1, e

′
2).

Proof: Let U1 be a neighborhood of P (0) in K∗−E, E a neighborhood of 0 in ∂H2 and V a neighborhood of P (0)

in K as in Lemma 4.2. Let U be a neighborhood of P (0) in K∗−E and c > 0 be a constant as in Lemma 4.1. We

choose U1, E = {(z, u+i|z|2) ∈ ∂H2 | |z| < c, |u| < c}, V such that U1 ⊂ U and V ∩(K∗−E) ⊂ U . Then by Lemma

4.2, we have Fc′′1 ,c
′′

3 ,e
′′

1 ,e
′′

2
= (Fc′1,c

′

3,e
′

1,e
′

2
)∗∗∗p with |p| < c, and by Lemma 4.1, (c′′1 , c

′′
3 , e

′′
1 , e

′′
2 ) = (c′1, c

′
3, e

′
1, e

′
2).

�
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5 The proof of Theorem 1.1

Before proving Theorem 1.1, we mention a fact. Let σa and σb ∈ Aut(∂H2) defined as in (18) and F ∈
Rat(H2,H5), then we can define a family of automorphism Θs = σsb+(1−s)a, 0 6 s 6 1, and Ψs = τF

sb+(1−s)a
∈

Aut(∂H5) defined as in (18) so that Ψs ◦ F ◦ Θs ∈ Rat(H2,H5) satisfies Θ0 = σa, Θ1 = σb and

Ψs ◦ F ◦ Θs(0) = 0, ∀s ∈ [0, 1]. (69)

Proof of Theorem 1.1: For any F ∈ Rat(H2,H5) with degree 2, by [1] and Lemma 3.3, F is equivalent to

another map Fec1,ec3,ee1,ee2 ∈ K∗ with the minimum property (9). By Lemma 3.2 and 3.4, Theorem 1.1(i) is

proved.

It remains to prove Theorem 1.1(ii). We need to show: if F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

in K∗ are

equivalent, then

(ec
(0)
1 ,ec

(0)
3 , ee

(0)
1 , ee

(0)
2 ) = (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). (70)

We assume that (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E where E is defined in Lemma 3.3; otherwise F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and

Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

cannot be equivalent.

Step 1. Construct a curve L̂0 Since F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

are equivalent,

Fec(0)1 ,ec(0)3 ,ee(0)1 ,ee(0)2

= Ψ ◦ F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

◦ Θ (71)

where Θ ∈ Aut(H2) and Ψ ∈ Aut(H5). Notice Ψ ◦ F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

◦ Θ(0) = 0 holds.

We take a real analytic curve L = L(s) ∈ K∗ − E, 0 6 s < 1, such that L(0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). In fact,

since (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E and E is closed, L could be taken in a neighborhood of (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ).

By using automorphisms of balls, Cayley transformations and (69), we can take a real analytic family of

automorphisms Θs ∈ Aut(∂H2), Ψs ∈ Aut(∂H5), s ∈ [0, 1], such that when s = 0, Θ0 = Θ, Ψ0 = Ψ; when

s ∈ (0, 1), Θs(0) 6= ∞, Ψs ◦ FL(s) ◦ Θs(0) = 0; when s = 1, Θ1 = Id, Ψ1 = Id. Then we define

L̂0(s) := Ψs ◦ FL(s) ◦ Θs ∈ Rat(H2 ,H5), 0 6 s 6 1,

such that L̂0(s)(0) = 0 for all s, F
L̂0(0) = Ψ ◦ FL(0) ◦ Θ and L̂0(1) = L(1). Our goal is to show: L̂0(s) = L(s),

∀s ∈ [0, 1], so that L̂0(0) = L(0), i.e., (70) holds.

Step 2. Define a curve L̂(s) Notice that L̂0 must be in K, namely, F
L̂0(s) may geometric rank one at the

origin for all s ∈ [0, 1], so that (F
L̂0(s))

∗∗∗ is well defined for all s ∈ [0, 1].

Recall Θs(0) 6= ∞ for any s ∈ (0, 1] and Θ1 = Id. Then for any s ∈ (0, 1], we denote ψ(s) := Θs(0) ∈ ∂H2

with ψ(1) = 0, so that Θs = σψ(s) ◦ Gs where σψ(s) is defined as in (18) and Gs ∈ Aut0(∂H2), i.e., we have a

continuous map ψ(s) ∈ ∂H2 such that ψ(1) = 0 and

(F
L̂0(s))

∗∗∗ =

„

FL(s)

«∗∗∗

ψ(s)

, ∀s ∈ (0, 1], and (F
L̂0(1))

∗∗∗ = FL(1). (72)

Even though (F
L̂0(s))

∗∗∗ is in K for any s ∈ (0, 1], it may not be in K∗ because the minimum property (9)

may not be satisfied. We claim that (F
L̂0(s)

)∗∗∗ is equivalent to another map F
L̂(s)

∈ K∗. More precisely, we

want to find q(s) ∈ ∂H2 so that

F
L̂(s)

:= (F
L̂0(s)

)∗∗∗q(s) ∈ K∗, ∀s ∈ (0, 1]. (73)

To define such q(s), we consider several cases below.

If s = 1, since FL(1) ∈ K∗ and ψ(1) = 0, we define q(1) = 0.

If s ∈ (0, 1] at which the minimum property (9) holds, we define q(s) = 0.

If s ∈ (0, 1] at which (9) does not hold, we consider a continuous curve Γ(s)(t) ∈ ∂H2 − ΞF , 0 6 t 6 1,

with Γ(s)(0) = 0 such that the function value W((F
L̂0(s))

∗∗∗
Γ(s)(t)

) is decreasing along Γ(s). We denote by ℓs the

infimum of W((F
L̂0(s))

∗∗∗
Γ(s) ) over all such curves. Then there exists a sequence of curves Γ

(s)
m in ∂H2 such that

ℓs = lim
m→∞

W
„

(FL(s))
∗∗∗

Γ
(s)
m (1)

«

. (74)
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Since W((F
L̂0(s))

∗∗∗
p ) = c1(p)2 − e1(p) − e2(p), the decreasing property implies c1(p),−e1(p) and −e2(p) are

bounded (cf. [1, Step 1, §4]), so that (F
L̂0(s))

∗∗∗

Γ
(s)
m (t)

, regarded as a point, is inside K and is contained a compact

subset of K that is independent of Γ
(s)
m . Therefore, by taking subsequences, we may assume that the limit

limm→∞(F
L̂0(s)

)∗∗∗
Γ
(s)
m (1)

exists as a point in K∗ and that limm→∞ Γ
(s)
m (1) ∈ ∂H2 exists. Let us define

F
L̂(s) := lim

m→∞
(F
L̂0(s))

∗∗∗

Γ
(s)
m (1)

∈ K∗. (75)

It remains to show that q(s) ∈ ∂H2 can be defined such that F
L̂(s) = (F

L̂0(s))
∗∗∗
q(s)

.

By the choice of L(1) and Corollary 4.3, there exists a neighborhood U of L(1) in K∗, such that if a point

(c1, c3, e1, e2) ∈ U such that Fc1,c3,e1,e2 and FL(1) are equivalent, then (c1, c3, e1, e2) = L(1).

Let us consider K∩B4(L̂0(s), r), the intersection of K with the sphere in C4 which is centered at L̂0(s) with

radius r. We also consider K∗ ∩ B2(L̂0(s), r), the intersection of K∗ with the sphere in C2 which is centered at

L̂0(s) with radius r. We take r so small that K∗ ∩ B2(L̂0(s), r) ⊂ U .

Step 3. Claim on F
L̂(s)

→ F
L̂0(s)

Regarding F
L̂(s)

as points in K, we claim:

dist

„

F
L̂(s), F

L̂0(s)

«

→ 0, as s→ 1. (76)

Suppose (76) is not true. Then there exists a sequence sk → 1 such that

dist

„

F
L̂(sk), F

L̂0(sk)

«

> δ0, as k → ∞. (77)

for a certain δ0 > 0. By (75), we can take integer msk
for each sk such that

0 6 W((F
L̂0(sk))

∗∗∗

Γ
(sk)
msk

(1)
) − ℓsk

<
1

k
, and dist

„

(F
L̂0(sk))

∗∗∗

Γ
(sk)
msk

(1)
, F

L̂(sk)

«

<
1

k
. (78)

By (77) we have

dist

„

(F
L̂0(sk)

)∗∗∗
Γ
(sk)
msk

(1)
, F

L̂0(sk)

«

>
δ0

2
. (79)

Then we can choose r < δ0
2

. Then {(F
L̂0(sk)

)∗∗∗
Γ
(sk)
msk

}t∈[0,1], regarded as a curve in K initiated from the point

F
L̂0(sk), must be across through the sphere (K ∩ ∂B4(L̂0(sk), r)), i.e.,

{(F
L̂0(sk))

∗∗∗

Γ
(sk)
msk

}t∈[0,1] ∩ (K ∩ ∂B4(L̂0(sk), r)) 6= ∅. (80)

Let Q(sk) be a point in the intersection (80) and then Q(sk) = (F
L̂0(sk)

)∗∗∗
Γ

sk
msk

(tk)
for some tk ∈ [0, 1]. By taking

subsequences, we assume Q := limk→∞Q(sk) exists. By the construction, we see that the FQ is equivalent to

FL(1) and

Q ∈ K∗, and dist(Q,L(1)) = r.

Since Q ∈ K∗∩∂B2(L̂0(1), r) ⊂ U , by Corollary 4.3, Q = L(1), i.e., dist(Q,L(1)) = 0, but this is a contradiction.

Claim (76) is proved.

Step 4. Proof of L̂(s) ≡ L(s) From (76), we have continuous.

dist

„

F
L̂(s), FL(s)

«

→ 0, as s→ 1.

Since both F
L̂(s) ∈ K∗ and FL(s) ∈ K∗ − E where s ∈ (s0, 1] for some s0 > 0 such that 0 6 1 − s0 is sufficiently

small, by Corollary 4.3 and the choice of L(1), we conclude

F
L̂(s) = FL(s), ∀s ∈ (s0, 1].

Repeating this process. Finally by continuity F
L̂(s) = FL(s), ∀s ∈ [0, 1]. When restricted at 0, F

L̂0(0) = F
L̂(0) =

FL(0), so that (70) is proved. �
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Added note In a recent paper [5, theorem 3.1], it is proved that any map F ∈ Rat(B2 ,BN ) with degree 2

must be equivalent to a polynomial map.
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