Science in China Series A: Mathematics ©2009 @ SCIENCE IN CHINA PRESS
2009, Vol. 52, No. , 1-17

www.SciChina.com @ Springer
www.springerlink.com —_

Classification of Rational Holomorphic Maps from
B? into BY with Degree 2

JI Shanyu''* & ZHANG Yuan?

1Department of Mathematics, University of Houston, Houston, TX 77204, USA
2Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

(email: shanyuji@math.uh.edu, yuanz@math.rutgers.edu)

Abstract Rational proper holomorphic maps from the unit ball in C2? into the unit ball CY with
degree 2 are classified, up to automorphisms of balls.

Keywords: rational holomorphic maps between balls, classification, maps with degree 2
MSC(2000): 32HO02

1 Introduction

Denote by Prop(IB”,]BN) the space of proper holomorphic maps from the unit ball B C C™ into the unit ball
BN c CN, Prop,(B",BY) := Prop(B",BY) N C*(B") and Rat(B",BY) := Prop(B",BY) N {rational maps}.
We recall that F,G € Rat(B",BY) are said to be equivalent if there are automorphisms o € Aut(B"™) and
7 € Aut(BY) such that F = 70 G o . In this paper, we study the classification problem for elements in
Rat(B?,BY) with degree two. For an element F in Rat(B?,BY), there is a naturally associated invariant
Rkp < 1, called the geometric rank of the map (for the definition, see §2). Since F is linear if and only if
its geometric rank Rkp = 0, we only need to consider maps with geometric rank Rkr = 1. By using Cayley
transformation pj : HF — BF where HF is the Siegel upper-half space (see § 2), studying Rat(B?,BYN) is
equivalent to studying Rat(H?Z,HY).

Making use of results obtained in the previous work [8] [1], we give a complete description for the modular
space for maps in Rat(BQ,BN ) with degree < 2 under the above mentioned equivalence relation. Our main
result is the following Theorem 1.1. Notice that when N = 3, Rat(B2,B3) has been classified by Faran [4]; and
when N = 4, a complete list of monomial maps in Rat(B2,B*) has been given by D’Angelo [3].

Theorem 1.1. (i) Any nonlinear map in Rat(B2,BY) with degree 2 is equivalent to a map (F,0) where
F € Rat(B?,B5) is of one of the following forms:
(I): F = (G¢,0) where Gt € Rat(B2,B*) is defined by

Gi(z,w) = (22, V1 + cos? t zw, (cos t)w?, (sint)w), 0 <t < w/2. (1)
(IIA): F = (Fy,0) where Fy € Rat(B?,B*) is defined by
Fy(z,w) = (z, (cos 0)w, (sin 0) zw, (sin O)w?), 0< 6 < g (2)
(IIC): F = Fey,cq,e1,e0 = pgl o Fops=(f é1,02,¢3,9) € Rat(H2, H?) is of the form:
z+(% + ie1)zw 22
f ==,
1+ ie1w + eqw 1+ ieiw + eqw
cr2w cw? w + ieyw?

¢ =

1+ ieqw + eaw?’ 3 = 1+ieiw + eaw?’ 9= 1+ ieqw + eaw?’

where c1,c3 > 0,—e1,—e2 =20, ejea = cg, —e] —ex = % +c%, satisfying one of the following conditions: either
=G e =y (G )2 —4cd =Gty (G 4D —acd
el = ) , €2 = )
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or
—GHeD+y (GHeD)?—4ef —GHed) =/ (GHef)?—4cd
€1 = 2 0 €2 = 2 , (4)
1 1
L el < < (4D

(i1) Any two maps in Rat(B2,B°) in the form of types (I), (IIA), and (IIC) above are equivalent if and only
if they are identical.

Next, we give a review on the development of this problem and outline the proof for Theorem 1.1 as follows.
For some notations to be used, we refer the reader to §2.

e A result obtained in [8] A classification result was proved in the last section of [8] under the action of the
isotropic automorphism groups of the Heisenberg hypersurfaces, which gives in particular the following: Any
map F in Rat(H?,HY) with deg(F) = 2 is equivalent to a map (G, 0) where G = (f, ¢1, ¢2, ¢3,9) € Rat(H?,HP)
is of the form (see also Lemma 2.3 below)
_ 272ib22+(%+iel)zw
HEw) = T .
_ z“4+bzw _ cow“+cizw
$1(2,0) = icruteswi—zinss 923 W) = i ute, w2 -2 (5)
_ caw __wHiejw” —2ibzw
¢3(27 w) T 1tie;wtegw? —2ibz’ g(z’ w) T ltie;wtesw? —2ibz’
where b, —e1, —e2, c1, c2, c3 are real non-negative numbers satisfying ejeq = cg + cg, —e] —e2 = i + b2+ c%,
—bea = cjca, and c3 =0 if ¢; = 0.
Since b and ¢z are determined by c1,c3,e1 and e2, a map in the form of (5) is determined by c1,c3,e1 and
e2. We denote a map of the form (5) determined by c1,c3,e1 and ez to be

Fley,esier,e0) €K (6)

ca,e1,e0) 88 @ point: (c1,c3,e1,e2) € K. It was unclear in [8] which of the
coefficients eq, ea, c; and c3 of F' are independent parameters.

Sometimes we regard a such map F.

e Review of the result in [1] In [1], by obtaining an extra equation, we got a clearer picture on the maps
in (5).

For any F € Rat(H?,H°) with deg(F) = 2, if the geometric rank of F at the origin is one: Rkp(0) = 1,
then by a normalization procedure (see Lemma 2.2 and 2.3 below, or [7][8]), F is equivalent to another map
F*** € Rat(H?,H®) of the form (5). Also we can associate a family of maps F, € Rat(H?,H®) for any p € OH?2.
Let us define Zp := {p € OH? | Rk, (0) = 0} to be the set of p at which the geometric rank of F}, at the origin
is zero. If p € Ep, we obtain a normalized map (Fp)*** that is of the form (5), and we define a real analytic
function W(Fp**) = c1 ()2 — e1(p) — e2(p) where c1(p), e1(p) and e2(p) are the coefficients of Fy** as in (5).

The desired extra equation is obtained by moving up p to the extremal value as follows. We choose a sequence
of py, € OH? — Ep such that Rkp, (0) =1, pm — po € OHZ and lim,, W(Fpx*) = inf,c gz _= , (W (F;**)}

If po € OHZ, by [1, § 4], we can write

Fynl = (Foo ) (M)
where ¢ € OH? and g, — 0. Then it implies by [1, Lemma 2.5] that Rk‘ppo (0) = 1, and that F is equivalent
to Fp** which is of the form (5) and with the minimum property W(Fy;*) = inf,cog2_z, W(Ip**). The
minimum property implies the vanishing of derivatives of the function W(F,**) at po, which derives the extra
equation.

If po = oo, by [1, § 4] we can similarly write

Fy = (Too 0 F 0 000) i (8)

am
where 0oo € Aut(OB?), Too € Aut(OB®), qm € OH? and ¢m — 0 so that, by the same argument above,
Rk;_oFoos, (0) = 1 and that F is equivalent to (Teo © F' 0 000)*** which is of the form (5). The minimum
property also derives the extra equation.
With the extra equation described above, it was proved in [1] that F is equivalent to another map Fepcs.eq,e0
€ K satisfying the property

W((FC1,63~€1,€2 );**) > W((Fclv03~€1v€2)6**)7 Vp € OH? near 0. (9)

and that the new map Fc; c3.e1,e, is of the form in one of the following types:
() Fo,0,e1,e0 = (f; @1, P2, ¢3,9) is of the form

_ zt(d+ier)zw _ 22
f - 1+ielw+efw2’ ¢1 T 14iejwtesw?? (10)
b= T, Gy =0, g = e

1+ie;wtegw?? 1+ie; wtegw?
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where e1es = c% and —e1 — ex = Here e2 € [—%,O) is a parameter. It then corresponds to the family

1
i
{Gt}ogt<n/2 in (1). When ez = —%, F0,0,e1,e5 corresponds to Go, i.e. (z,w) — (22,v2zw,w?,0); when
ez — 0, Fo,0,e,e5 80€S t0 Gr/o = Fr/a, ie., (Z,w) — (2, 2w, w?).

(ITA) Fey,0,e1,0 = (f, #1,¢2, ¢3,9) is of the form

z+(% +ieq)zw 22 c1zw
s = 5 = ) - 07 11
1 1o o2 1+ ier ¢3=0, g=w (11)

f=

1+iew

where —e; = % 4 ¢2 and ¢ € [0,00) is a parameter. It corresponds to the family {Fy}o<ggn/2 in (2). When

c1 =0, F¢;,0,e,,0 corresponds to Fy/9; when ¢1 — 00, Fey,0,e1,0 goes to the linear map, i.e., (2, w) — (2,w,0).
(IIB) Feq,0,0,e5 = (f, ¢17¢27¢37g) is of the form:

z+ b1 = 22 s Ccl1Zw ¢ w
2’ 1_1-1—6211127 1+ Tteqw? 27 1—1—6211127

where —eg = % + c% and ¢; € (0,00) is a parameter. Notice that when ¢; — 0, the map F¢, 0,0,e, 80€s to the
1

map Go, i.e. the one in type (I) when ez = —7.

(IIC) Fey,cs,e1,e2 = (f, #1, 82, ¢3,g) is of the form:

f_

= 12
1+ezw (12)

_ 2+ i fieq)zw 22
I= 1+zelw+egw2’ ¢ = 1+ie;wtesw?’ (13)
. 2
c3w wHtie; w

¢2 = 1+iei'lwzfegw2’ ¢3 T 14ieqwtesw?? 9= 1+ie] wtesw?’
where c1,¢c3 > 0,—e1,—ex >0, ejex = c§7 —e1 —eg = % + c%.
For any map Fe; cz,eq,eo in one of these four types, we denote Fe, c3.eq,eq, OF (C1,€3,€1, €2), € K1, Kr14,
KrrB, and Ko, respectively.
Recall from [1, (33)]
F can be embedded into H* & c3 = 0. (14)

Concerning the proof of Theorem 1.1, our main idea to establish following formula (see (33)):

WS a) = WESSS) + (A1 (ber + 262) — 8b(er + e2)] (T(1)S (g1 (1) At + of| At). (15)

One crucial point is that the term [4c1(ber + 2¢2) — 8b(er + €2)](T'(¢)) is always non-negative so that it allows
us to reduce the study of (9) into the study for the term (q1(t)).
We'll prove in Lemma 3.4 below that indeed

there is no map F satisfying both (9) and (12), (16)

and that a map

F satisfies (9) and (13) <« F satisfies (13), (3) and (4), 17)
which proves Theorem 1.1(i). To prove Theorem 1.1(ii), we first prove its local version (see Corollary 4.3). Then
we shall find a way to reduce the global problem into the local one.

2 Notation and preliminaries

e Maps between balls Write H” := {(z,w) € C*~! x C: Im(w) > |2|?} for the Siegel upper-half space.
Similarly, we can define the space Rat(H", HY), Prop,(H", H") and Prop(H", HY) respectively. Since the
Cayley transformation

ntH® = B", pn(z,w) = (

is a biholomorphic mapping between H” and B", we can identify a map F € Prop,(B",BY) or Rat(B",BY)
with p;\,l o F o p, in the space Prop, (H”,HY) or Rat(H"™, H"), respectively.
Parametrize OH" by (z,%,u) through the map (2,%,u) — (z,u + i|2|?). In what follows, we will assign the

2z 1+iw)

1—dw’ 1—dw

weight of z and u to be 1 and 2, respectively. For a non-negative integer m, a function h(z,Zz,u) defined over a

small ball U of 0 in OH" is said to be of quantity o.¢(m) if % — 0 uniformly for (z,u) on any compact

subset of U as t(€ R) — 0.

« Partial normalization of F Let F = (f,6,9) = (f,9) = (f1,--+ , fa— 1,61, - ,¢x—n,9) be a non-constant
02 smooth CR map from OH™ into OHY with F(0) = 0. For each p € OH2, we write Ug € Aut(H"™) and
re Aut(HN) for the maps

crg(z,w) = (2 4+ z0,w + wo + 2i<z Z0)),

A E — (18)
Tf(z*,w*) (z* — (zo,wo) — g(z0,wo) — 2i(z*, f(20,w0)))-
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F is equivalent to Fp = T; o Foag = (fp, ®p, gp)- Notice that Fo = F and Fp(0) = 0. The following is basic for
the understanding of the geometric properties of F'.

Lemma 2.1. (/6, §2, Lemma 5.8], [7, Lemma 2.0]): Let F be a C?*-smooth CR map from OH™ into OHY,
2 < n < N with F(0O) = 0. For each p € OH", there is an automorphism T:* € Auto(HY) such that

P
Fp* := 71" o F} satisfies the following normalization:

5=t 0 V@t 0w, 657 = 05" () +own(2), 5" = w+ 0w (0), (19)

za;" M (2212 = 653 (2) 2.

Let A(p) = —2@'(% |0)1<j,l<(n—1)- We call the rank of A(p), which we denote by Rkg(p), the geometric
rank of F' at p. Rkp(p) depends only on p and F, and is a lower semi-continuous function on p. We define the
geometric rank of F' to be Rkp := maxpconn Rkp(p). Notice that we always have 0 < Rkrp < n — 1. We define
the geometric rank of F' € Prop,(B™,BY) to be the one for the map pX,l o Fopp € Prop, (H™, HN). Tt is proved
that F' is linear fractional if and only if the geometric rank Rkp = 0 (cf. [6, Theorem 4.3]). Hence, in all that
follows, we assume that Rkp = ko > 1.

Denote by So = {(4,1) : 1 < j < ko,1 <1 < (n—1),5 <1} and write S := {(4,1) : (,1) € So, or j =

ko+1,l€{ko+1,--- ,ko+ N—n— (2n7'€371)'€0 }}. Then we further have the following normalization for F':

Lemma 2.2. ([7, Lemma 3.2]): Let F be a C?-smooth CR map from an open piece M C OH™ into OHYN with
F(0) =0 and Rkp(0) = ko. Let P(n, ko) = M Then N 2 n+P(n,ko) and there are o € Auto(OH™)
and T € Autg(OHY) such that Fy** =T1o0Foo:=(f,¢,9) satisfies the following normalization conditions:
82fj
Ow?
fi=zj touwt(3), j=ro+1l,---,n—1,
g =w ~+ owt(4),
bj1 =pjiziz; + owt(2), where (j,1) € S with pj; > 0 for (4,1) € So

i .
fy =2+ Lz + ou(3), 0)=0, j=1-- k0, pj >0,

(20)

and pj; = 0 otherwise.
Moreover pj; = \/pj + wy for j,0 <wo j#1, pj = /i if § < ko and I > ko or if j =1 < ko.

Here we denote Auto(OH") = {¢ € Aut(0H") | ¢(0) = 0}.

- Prm)

e Degree of a rational map For a rational holomorphic map H = (Pl'T over C", where Pj,Q are

holomorphic polynomials and (P, ..., Pm, Q) = 1, we define
deg(H) = maz{deg(P;), 1 <j <m, deg(Q)}.

For a rational map H and a complex affine subspace S of dimension k, we say that H is linear fractional along
S, if S is not contained in the singular set of H and for any linear parametrization z; = z? + Zf:l ajit; of S

with j=1,--- ,n, H*(t1, - ,tx) = H(z(l) +Zf:1 ayty, -, 29 +Zf:1 ajnt;) has degree 1in (t1,--- ,tg).

e Actions of the isotropic groups of the Heisenberg hypersurfaces Recall from [7, (2.4.1)] and [7,
(2.4.2)], we define o € Auto(9H?) and 7* € Auto(OH®) by

. 2 * ok *,p k) * *2 )k
0:()\(z+aw) U,)\w)’ 7_*(2*7“)*):()\ (z* + a*w*) - U*, X w)’ 1)
q(z,w)

q*(z*, w*)
with q(z,w) = 1—2i(@, 2) + (r —i|a]>)w, A > 0, r €R, a,U € C, |U| = 1, and ¢*(z*,w*) = 1 —2i{a*, 2*) + (r* —
ila*|2)w*, A* >0, r* € R, a* = (a},al) € C! x C3 and U* is an 4 X 4 unitary matrix, such that [7, ((2.5.1),
(2.5.2)] holds:

u-t o
M =271 af=-X2"1alU, a} =0, r* = —\"2r, U* = ) (22)
1 2 %
0 U3y
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where a* = (a},a3), Uj, is an 3 x 3 unitary matrix. Define F* = 7* o F o 0. By [7, Lemma 2.3(A)], we can
write

flz,w)=2z+ %zAw + owt(3), f*(z,w) =z+ %zA*w + owt (3),

2
¢(z,w) = 12(B', B2, B%)z + zBuw + %ST%(O);J? +o(|(z,w)|?), (23)
¢*(z,w) = 32(B*Y, B*2, B*3)z + 2B*w + 3 25 (0)w? + o(|(2,w)|?),

i _ 0%, wi _ 0°¢% o _ (9% %%y 9%¢: « _ (0°¢7 0°¢5 9°¢3
where B* = 7575 (0), B*" = 55-(0) for ¢ = 1,2,3 and B = (555 5200 vz0w ) B = (520w’ 9200 0z0w)-
Also, the same computation in [7, Lemma 2.3 (A)] gives the following:

297 0) =0, L2 (0) =0, L9 (0) =0, LL(0) =0, A* = N2UAUY,

O%ZQ* ' 920w 86 2 Oz
21 (0) = iX2aU AU + X3 2L (0)U 1,
[B*!, B*2,B*3] = \U[B', B2, B3U'US,, (24)

B* = XU[BY, B2, B3|UtatU3}, + N2UBUS,,
2 Lk 2
22-(0) = XaU[B', B2, B3U'a'U, + 2X2aUBUS, + N> 25 (0)U3,.

ow? w2

Lemma 2.3. (/8, theorem 4.1]) Let F' € Rat(0H?,0HY) have degree 2 with F(0) = 0 and Rkp(0) = 1 (N > 4).
Then
(1) F is equivalent to (F***,0) where F*** = (f, ¢1, b2, ¢3,9) € Rat(OH?,0H) defined by
_ 2—2ibz2 4 (L +ieq)zw
f(z’w) - 1+ielw45622w272ibz ’

_ z“+bzw
¢>1(27“’) - 1+ielwtegw272ibz’
$a(z,w) = ___cowidcizw (25)

1+iey ’LU+62%U2 —2ibz?

— c3w
$3(z,w) = Ttie;wtesw?—24bz’
_ w+tie; w” —2ibzw
g(z’ w) T 1tie;wtesw? —2ibz "

Here b, —e1, —ea, c1, c2,c3 are real non-negative numbers satisfying
eleg = cg +c§, —e1 —eg = % + b2 +c%, —bes = cic2, c3 =01if ¢c1 =0. (26)

(2) ci1,c2,c3,e1,e2,b are uniquely determined by F. Conversely, for any non-negative real numbers c1,ca,
c3, €1, 2, b satisfying the relations in (26), the map F defined in (25) is an element in Rat(OH2, 0H®) of degree
2 with F(0) =0 and Rkr(0) = 1.

(3) If e2 = 0, then F is equivalent to (Fy,0) with Fy as in (1).

Remarks (i) The new normalized map in Lemma 2.3(1) can be obtained by F*** = 7* o F** 0 o where F** is
as in Lemma 2.2 and o and 7* are as in (21).

(ii) For any map F' in Lemma 2.3(1), b= {/—e1 —e2 — i — c% and c2 = y/e1e2 — c% are determined by c¢1,c3, €1
and e2. Then c1,c3,e1 and e2 can be regarded as parameters, and we denote F' = Fey ¢z eq,eo-

(iii) We denote by K a subset of R* such that (c1,cs,e1,€2), O Fo, cg,e1,e0 € K if and only if Foy g6 0 i a
map as above.

Lemma 2.4. ([1, Lemma 2.5]) Let F € Rat(0H?, 0H5) with F(0) = 0 and deg(F) = 2. Suppose that p., € OH?

2 gk
9" d1m

is a sequence converging to 0 € OH2 and Fyp,, is of rank 1 at 0 for any m and F;;* converges such that T2 lo,
¢ty Ceshy 25
oz lo, 5255 lo and — 5™ |o are bounded for all m. Then
(i) F is of rank 1 at 0.
(i) Fpr* — F***,
(iii) If we write F** = G2,m 0 Tp,, o I' 0 op,, 0 G1,m where op,, and Tp,, = Tfm are as in (18), G1,m

and Ga,m are as in (21), then G1,m and Ga,m, are convergent to some G1 € Autg(OH?) and G2 € Auto(OH?)
respectively.

Let F be as in Lemma 2.3 (1). By Lemma 2.3, F}, is equivalent to a map of the following form =

(fp* @15y, @55y, &3% s gp**) for any p € OH? where Rkp(p) = 1:

e ) z — 2ib(p)22 + (% + ie1(p))zw
Z7w = . . )
P 1 +ie1(p)w + e2(p)w? — 2ib(p)z
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S (2 w) = 22 4 b(p)zw
1+ ie1(p)w + e2(p)w? — 2ib(p)z
G55 (2 w) = ca(p)w? + c1(p)zw
P 1 +ie1(p)w + ea(p)w? — 2ib(p)z
57 (2, w) = c3(p)w?
1+ ie1(p)w + e2(p)w? — 2ib(p)z
o (rw) = — 2 + de1(p)w? — 2ib(p)zw

1 +ie1(p)w + ea(p)w? — 2ib(p)z

Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisty e2(p)e1(p) = c3(p) + c3(p), —e2(p)

= +6%(p) + 1 (p),
and —b(p)ea(p) = c1(p)c2(p), ca(p) =0 if c1(p) = 0, with ¢1(p), c2(p), b(p) = 0, e2(p),

e1(p)
») <0.
Lemma 2.5. Let F' and F;** be as above. Let p = (z0,w0) = (20,u0 +14|20|?) € OH? near 0. Then the

followings hold.
(i) The real analytic functions have the formulas

b*(p) = b* — 4b(2e1 + c7)S(20) + o(1),
A(p) = & + ey (bey + 2¢2)S(20) + o(1),
e2(p) +e1(p) = e2 + e1 + 8b(e1 + €2)S(20) + o(1),
i(p) —e1(p) —ea(p) = cf —e1 —e2 + (401 (ber + 2¢2) — 8b(e1 + ez))%(zo) +0(1)

where we denote o(k) = o(|(z0, u0)|*).
(it) If c1 > 0, the real analytic function has the formula

B(p) = &+ 4(cs) (b — %)%cza) +o(1),

(%t) If c1 = 0, then c3(p) = 0.

Proof: (1) All these formulas were proved in [1, lemma 3.1].
(ii) We use the formulas in [1, Step 3 and 4, § 5] and the notation to obtain

2 1 skokok 2
1005 o2,
P2 ow? 2 Ow?

=2 + 4(c3)%(5b — %)%(zo) + o(1).

(0) (0)

(iii) If ¢y = 0, by Lemma 2.3, c3 = 0 and F € Rat(H?,H*). We modify slightly on the normalization F*** so
that ¢¥3* =0 and hence c3(p) =0. U

3 A Monotone Lemma

Recall that for any (c1,c3,e1,e2) € K, we denote
o (c1,c3,e1,e2) € Ky (i.e. Feq,cq,eq,eo is of the form of type (I)) if ¢1 =0 and b= 0;
e (c1,c3,e1,e2) € Krr (i.e. Fey cz,eq,eo is of the form of type (II)) if ¢; > 0 and b= c2 = 0.

Also recall that for any map (c1,c3,e1,e2) € Krr, we denote
e (c1,c3,e1,e2) € Krra (ie. Fey cs.eq,e5 is of the form of type (ITA)) ifc; > 0,b=c2 =0 and c3 = e2 = 0;
o (c1,c3,e1,e2) € Krrp (i.e. Feycz,eq,eo is of the form of type (IIB)) if ¢1 > 0, b =c2 =0 and c3 = e; =0;
e (c1,c3,e1,e2) € Krro (i-e. Fey cz,eq,eo is of the form of type (IIC)) if ¢; > 0, b=c2 =0 and ¢3 > 0.

For any (c1,c3,e1,e2) € K1 UKy, we denote

e (ci1,c3,e1,e2) € ’CI,H,1+462+2.:§>07 if 14 4e2 + 20% > 0;

o (c1,e3,€1,2) €Ky 111 4acy pac2—or If 1+ 4e2 +2c] = 0;

e (ci1,c3,e1,e2) € ’CI,H,1+462+2.:§<07 if 1 4 4es + 20% < 0.
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For any Fey,cq,eq,e0 € K, we define W(Fe, cq,e1,e0) := W(c1,¢3,€1,€2) := c% —e1 — e2. We also consider

curves

I(t) = (at, Bit +i|al?t?) € OHZ, Vt€[0,1], |af <1and |f1] <1 27

where o = a1 + iz, aj, 81 are real numbers.

Lemma 3.1. Let I' be any curve as in (27).
(a) If (c1,c3,e1,e2) € ICI,II,1+4e2+2c§>0’ then there exists § = §(T') > 0 such that

W((FCth,el,Ez)lth:l)) < W((Fclycs,ﬁl,ﬁz)ltz;)% YOSt <t2 <0 (28)

(b) If (c1,c3,€e1,e2) € ICI,II,1+4e2+2cf:O’ then there exists 6 = §(T') > 0 such that
W((Fey,e3,e1,e2)7(z)) = constant, Vt. (29)

(c) If (c1,c3,€e1,e2) € /CI’H’1+452+20§<0, then there exists § = §(I') > 0 such that

W((FC17C3761752);TZ(1)) 2 W((Fclycs,ﬁl,ﬁz)lt?:z))v VOt <tz <6 (30)

Proof of Lemma 3.1: Step a. The basic setup The monotonicity (28) in (a) means

dW(F***)) W(F*** ) — W(F***)
AR OIS TN L(t+at) P2 5 0, vt € [0,4). (31)
dt At—0 At

For any 0 < t < § and sufficiently small At > 0, if we can write
a0 = (Fi5) (32
q(t,At)

for some differentiable map q(t, At) € OH?, then from Lemma 2.5 we should have

WIEFEE any) = WERES) + [4c1<bc1 +205) — 8b(e1 + ezﬂ (D()S (a1 (£) At + o|At]), (33)

where we write g(t, At) := (q1(t), g2(t)) At + o(|]At|). Notice that [4e1(ber 4 2¢2) — 8b(e1 + e2)](T'(¢)) = 0 always
holds because c¢1,c2, —e1 — e2 > 0. Then (31) follows if $(qg1(¢t)) = 0 holds. In particular, if [4ci(ber + 2¢c2) —
8b(e1 + e2)](I'(t)) # 0 for any fixed t € [0,6), and if the following condition is satisfied:

S(q1(t)) >0, Vtelo,d], (34)

then the strict inequality (31) holds. To prove (31), it suffices to prove (34).

Step b. I'(t) determines ¢(t, At)  To prove (32), we define q(t, At) by
P(t+ At) = o1y 0 Gi(a(t, Ab)) (35)
where G1 = G1(t) € Auto(0H?) and G2 € Auto(OH®) are defined such that
(Fr@)™* =Gao Tf(t) o Foopg oG (36)
By (35), q(t, At) is a function uniquely determined by I'(¢) given by
q(t, At) = GT ooy o T(t + Ab). (37)

The definition (37) will be justified in Step c¢. Here we derive a formula (39).
By the definition of o (see (18)),

Jlf(lt)(z,w) = (z—2(t), w — w(t) — 2i(z, z(t)) + 2i|z(t)]?),

and

Lt + At) = (a(t + At), B1(t + At) + 4|2 (82 + 2tAt + At2))
=T(t) + (o, B1 +i|al?(2t + At))At = T(t) + (aAt, (81 + 2i|a|?t) At) + o |At]).

(38)

Then

or gy OT( + A) = (alkt, B1AL) + of|At)).
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We denote G1 € Auto(0H?) as in (21), and we have

Az + aw)U 22w )
1—2i(@, z) — (r+il@d2)w’ 1 - 2@, z) — (r+ild?)w

Gi(z,w) = (

where U = U(t) = €*®, § = 0(t) € R, A = A(t) > 0 and @ = @(t) € C, and r = r(t) € R, and

6t = (e = B a )
L 1+ 220, 2) + (s5r — i Z2)w’ 14220, 2) + (357 — il Z[2)w
Therefore

qt,At)=Gto a;(lt) oD(t + At) = GTH(aAt, B1AL) + o(|At))
1 L 1
— (5 0aUt s, 1) Av+ o(lA0).

By using the notation in (34), we have

S (1) = ﬁ%(x(wav(trl - d(t)ﬁl). (39)

Step c. The identity = We want to prove that the identity (32) holds:

(Fran)™ = (((Fr(t))***) ) ; (40)
q(t,At)
for sufficiently small ¢ and At, i.e., to prove the following identity
Gyo Tlf(t+At) o Foopitar oGs=Geo 'qu o (G2 o Tlf(t) oFoopy)o G’l) 0 04(t,at) © Gs. (41)

Here by abusing of notion, we still use Tf to denote T;{ where H = (Fp(t))***. Notice that G1,Gs5,G3

€ Auto(0Hz), Or(t), Tq, OT(t+At) € Aut(0Hz2), and Ga2,Ge, G4€ Auto(OHs), Tlf(t)’ TqF, TII‘:(t+At) € Aut(0Hs)
are uniquely determined by F, I'(t), ¢ and I'(¢t + At) in the normalization process, respectively.
If we can write

(((Fm»***) ) = Bo(Frisan)™ oA (42)
q(t,At)

for some A € Auto(0H?) and B € Auto(OH®), then (40) holds by Lemma 2.3(2).
In fact, we write

<<(Fr(t))***) )
q(t,At)

=Gs OT{ o (G2 OTlf(t) o Foopgy oGl) 0 0y(t,at) © Gs
= <G6 orf o G2 OTIE(t) o (Tlf'(t+At))71 OGll) o <G4 OTIF(t+At) o Foop(i4at) OGg) o

O(G;l o 0;(17t+At) 0 0p(t) © G o Oq(t,At) © G5)
= B [} (FF(t+At))*** (o] A

where B = Gg o1l 0Gao Tlf(t) ) (Tlf‘(t+At))71 o GZl and A = G;l o Ul:(1t+At) o ap() © G1 0 0g(4,A¢) © Gs.

q
Writing A = G;l o (‘71:(115+At) oopiy oGy o Uq(t,At)) o G'5. Notice G;l, G5 € Auto(0H?). By (35), we know

01:(1,5+At) ooy 0 G100g,ar) € Auto(OH?). Then A € Auto(OH?). Similarly, we can show B € Auto(9H®).

Step d. Proof of (a) - the case @ #0 Let a be as in (39). Suppose a # 0. By our construction (see [1,
Step 3 in § 5]), the vector @ and the matrix U in (39) are given by

62 ok

a=at)=1 8wpzb (0) = i(e1 — 2e2)z0 + 2icicaug + (Ip]) = i(er — 2e2)at + o(t), (43)
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) 52 % 824" a2
e = 551 0)/| 555 (0)], if et (0) #0,
U= U(t) _ dzo0w dz0w azé;f*w (44)
1, if het(0) =0,
and (see [1, Step 3 in § 5])
82prx FoRT )
pel pdl 13 . 2 (3
0) = 0) =b— 2ib — b — 44b — =b
0z0w 0) = 0z0w ©) 1o mabertio 10z0 2 o
—iz0 — 4ieazg + 4icicaug — 2ibc%uo - 22’0?20 = —i(1+4e2 + 20%)20 + o(|p|),

where p = (20, w0) = I'(t) = (at, B1t + ila|?t?) € OH2. Here we used the fact that b = cac1 = 0 because
(c1,c3,€1,e2) € Ky UKr. Then we obtain

62
8?;;1 (0) = —i(1 + 4e2 + 2¢)at + o(t) (45)

92+
Now 1 + 4eo + 20% > 0. Since a # 0, we have 8:)57;1 (0) # 0 by (45) so that @ U~! and ¢ are real analytic
neat 0 from their construction (cf. [1]). Then

92 z

Do)t — e it Bzapwl (0) i(1+ 4@2 + 201)oct +o(lt]) (14 4ezx + 2c¢2)a +O(jt).
e pel T (1 + de2 + 2¢3)a]
|5z (0)| E 9250 (0)]

and there exists a constant § > 0 such that

S((0) = sz (ADav ()" ~ (o) ﬁl) siy3(av1) +00)

(46)
1(14+4es+2c @
— 4o(Urs il ) 4 0(1) = fal + O, Ve € 0.4
because A = A(t) = 1+ O(|¢|). This proves (34) as well as (28).
Step e. Proof of (a) - the case @ = 0 Next we will prove (a) for the case & = 0. In this case
2
T'(t) = (0, B1t), and S(q1(t)) = _)\?7:1)2 S(a(t)) and a(t) = iaa£2 (0). From [1, § 5, step 3 and step 2], we have
2155 0 = P 0y
suz (0) = 5,2 (0) =
1 o7 7 1 2 27 T2
= @T F®) - LTw) - )2 3 (TF- LF)(@2g - 212F - T — 2T F1?)(p) (47)

We want to prove @(t) = 0 which implies (28). This will be done by direct computation. Write F as in the
following form:

f=zh+ (% + ie1)zwh, p1 = 22h, P2 = c1zwh, ¢3 = cswzh,g = wh + ieqw?h,

where h = h(w) = Then

1
1+ie]wtesw?”
h' = (—ie1 — 2eaw)h?, h" = (—2e2 — 22 + 6Giereaw + 6e3w?)h3.

From the definition of F), where p = (z,w), we have [1, § 5]

fp) =zh + (% + ie1)zwh,

Lf(p )—h—i—(; +zel)wh+22z(zh' ( +ie1)z (h—i—wh'))7
Tf(p) = zh/ + (% +ie1)z(h + wh'),

T2f(p) = zh" + (% T ie1)z(2h + wh'),

é1(p) = 22h, L1(p) = 2zh + 2iz22h/,  Té1(p) = 22H/,
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¢2(p) = c1zwh, L¢a(p) = crwh + 2ic1Zz(h + wh'), T¢a(p) = c1z(h +wh’),
T2¢1 (p) — Z2h”7
L2¢a(p) = 2ic1z(h + wh') + 2i% | c1 (h + wh') + 2ic122(2h + wh'")

= dic1z(h + wh') — 4c12%2(20" + wh'"),
T2¢5(p) = c12(2k + wh'"),
#3(p) = caw?h, Les(p) = 2ic3z(2wh + w?h'), Tés(p) = c3(2wh + w3h'),

T2¢3(p) = c3(2h + 2wh’ + 2wh’ + w?h") = c3(2h + dwh’ + w3h""),
When p = (0,t), we have
A(P) = [LF(®)|? + |Lo1(p)]? + |Ld2(p)|? + | L3 (p)|? = |h(t)|* + |erth(t)]? = 1+ o(?)

and T'f(p) =_§¢1(p) = T¢2(p) = Los(p) = T2f(p) = T?¢1(p) = T2p2(p) = 0 so that (Tf - fft)(p) =0 and

that (T2f - Lf )(p) = 0. Hence by (47) we obtain S(q1(t)) = — A?tl)Q S(d(t)) = 0. The proof of (a) is complete.

Step f. Proof of (b) and (¢) Similarly we can prove (c¢). To prove (b), we first consider the case when

a # 0. In this case, we can take a sequence of points (cgk),cgk) egk),egk)) € Ko 14+4e3+2¢3>0 such that

)

(cgk),cgk),egk), eék)) — (c1,¢3,e1,e2). Then (46) holds for such maps F ) 6 0 k)
1% g

761

k
3(a” (1) = lal +O(ltl), Ve € [0,4] (48)
Also, we can take another sequence of points (E(lk),Egk),E(lk), Eék)) E(lk),Egk),
(k) (k)
€ ’,ey7)

= K110,1+462+26§<0 such that (

— (c1,c3,e1,e2). Then by letting k — oo and the same argument in the proof for (c), we get
k
3@ (1)) = ~lal +O(lt), vt € [0,6] (49)

for maps FE(k) S6) () (k) - Such estimate is uniform for all k. Notice that the function [4cq(bc1 4 2c2) —8b(e1 +
1C3 5€1 s€

e2)[(D(t))S(q1(¢)) in (33) is real analytic but 4ci(ber + 2¢2) — 8b(e1 + e2) and J(g1) may be not (see Remark
(a) following the proof of Lemma 3.1 below). Then by (48) and (49) and by letting k& — oo, we must have

[4c1(ber 4 2¢2) — 8b(er + e2)](T'(t))S(q1(t)) =0, Vi€ [0,4]

for the map Fe,,cg,eq,e0 S0 that I(q1(t)) = 0 is proved.
Next we consider the case when o = 0, by Step e, we have $(qi1(t)) = 0 so that (c) is proved [l
8247

Remark (a) We notice that if 1+ 4ez +2c2 =0, azgjjl (0) may be zero so that U and hence U~! may not be

differentiable. By the way, W(F;**) = c}(p) — e1(p) — e2(p) = % +2¢2(p) + b?(p) is real analytic but c1(p) and
b(p) may not be differentiable; this is because of some definitions such as (44) (cf. [1, p.1521-1522]). Then the
function [4c1 (ber + 2¢2) — 8b(e1 + e2)](T'(t)) (g1 (¢)) in (33) is real analytic but 4c1 (bey + 2¢2) — 8b(e1 + e2) and
S(g1) may be not.

(b) If we replace the curve T'(t) = (at, 81t + i|a|?t2) by another curve
() = (at, Bo + Bt + ilaf*t?), (50)
then (38) and hence (46) holds.

Recall (c1,c3,e1,e2) € Ky <= (5) holds with ¢; > 0 and b = ca = 0 <= ¢1 > 0 and either

~Grd-JGrdr-ad —Grd+d+dr-43 -

€1 = 2 ; €2 = 2 )
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where 4c2 < (% +c2)2, or

e JArar-ad  —Ged - Jirdr-id
e1 = 3 , €3 = 3 , (52)

where 4c2 < (i +c?)2. Here c1 and c3 are parameters.

We can write a disjoint union K;r = K71 ey <eo UKIT,6;=e5 UKTI 61 >ey, Where

Krr,ei<es = {(c1,c3,e1,e2) € Kr1 | e1 < ea}

Kirei=es = {(c1,c3,e1,€2) € K1 | €1 = e2},
and

ICII,61>62 = {(01703751,62) ey ‘ er > 62}_
Then Kjij e <e, = {(c1,¢3,€1,e2) € K7 | (51) and 4c§ < (i +c§)2 hold}, Krre;=e; = {(c1,c3,€1,€2) €
Krr | (51)or (52) and 4c2 = (% + )2 hold}, and Kigeq<ey, = {(c1,c3,e1,e2) € Krr | (52) and 4c2 <
(3 +¢2)? hold}.

Lemma 3.2. (i) K1,e;<ey © K1,11,1+4e2+2c§>0’ and Ki1e;=e; © K1,11,1+4e2+2c§>0‘

(i) Let (c1,c3,e1,e2) € Kr1,e;>ey- Then

(a) (c1,c3,e1,e2) € KI,II,1+4e2+2c%>0 if and only if %c% +cf <43 < (% +¢2)2 holds.
(b) (c1,c3,e1,e2) € KI,II,1+4e2+2c§:0 if and only if %c% + ¢} = 4¢3 holds.

(c) (c1,c3,€1,€e2) € ’CI,II»1+462+2C?<0 if and only if 0 < 4c3 < %c% + ¢} holds.

Proof of Lemma 3.2: (i) For any (c1,c3,e1,e2) € KiT,e;<es UKIT,e;=cy, Dy —€1 — €2 = % +c% and (51), we
have

1 1 1 2 1
1+4e2+2c§=§+262—2e1:5+2 (Z+c§) —4c§>§>0.

(ii) For any (c1,c3,e1,e2) € Kr1,e;>ey, We know that 1 4 4es + 20? > 0 is equivalent to % + 2e0 — 2e1 =

% — 24/ (i +c3)2 —4c¢2 >0, ie., %c% + ¢} < 4¢3, so that (a) is proved. (b) and (c) are proved similarly. [l

Lemma 3.3. Let £ := {(c1,c3,e1,e2) € KT UKr | (Fey,eq,e1,e0)5™™ = Feycg,e1,e0, VP € OH2 near 0}. Then

Feq,cs,e1,e0 € € if and only if for any curve T' as in (27), !
(4c1(ber + 2c2) — 8b(er + €2))(T'(¢)) =0, Vt € [0,1]. (53)
Proof: It is clear
Feyes,e1,e0 € E <= c1(p),c3(p) are constant, ¥p € OH? near 0. (54)

If Foy cq,e1,e0 € &, then either c1(p) = b(p) = 0 or c1(p) > 0,b(p) = c2(p) = 0, Vp € OH? near 0 (i.e., the case
(I) or (IIA), (IIB) and (IIC)). Then the equality in (53) holds.

Conversely, suppose that (4ci(ber + 2c2) — 8b(e1 + e2))(I'(¢)) = 0 for any choice of curve I'(t) and for any
(c1,c3) in some open subset of R2. Then by (p) = 0 and c1(p)ca(p) = 0, Vp € OH? near 0. If ¢; = 0, then by
Lemma 2.5(iii), c3(p) = 0,Vp so that Fe; cz,e1,e0 € €. If c1(p) > 0 for any p in some open subset of OH?, then
c2(p) = 0, Vp. Then we apply Lemma 2.5(ii) to know

2c
3(p) = e + 4(e3)*(5b — ~2)3(20) + of(p]) = e +o(lpl). where p = (z0,10) € DK (55)

which implies as in (33) that c3(p) = constant, Vp. Also, by (33), from (4c1(be1 + 2¢2) — 8b(e1 + €2))(I'(t)) =0
it implies W((FC1,C3761762);?:)) = constant, VI' and Vt. Then

W((Fep ez er ea)ilh) = (6 — 1 = e2)(T(0) = (5 +26) (D) = constant,

which implies that ¢; (I'(t)) = constant for any t € [0, to], i.e., c1 = constant. By (54), we obtain Fe, cg,e,e0 € £.
Claim (53) is proved. O

Theorem 1.1(i) will follow by Lemma 3.2 and the following lemma.
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Lemma 3.4. Let (c1,c3,e1,e2) € Kr UKrr. Then Fey cs.eq,es Satisfies (9) if and only if Fe cy,eq,e0 € K* 1=
KrUKr =Ky 11144ep+2e2<0-

Proof: («<=) It follows from Lemma 3.1.

(=) Take any map Feq c3,e1,e0 € ICI,II,1+4e2+2c§<0 satisfying the minimum property (9). We first show
that Fey c3.e1,e0 € € where £ was defined in above lemma.

By Step d in the proof of Lemma 3.1, we know that for any curve I" as in Lemma 3.1, there is § > 0 such
that

(@1 (1) = —lal + O(It]), ¥t € [0,6)].

Suppose that Fe, cs,e; e, satisfies (9). By (33), it implies (4c1(ber + 2¢2) — 8b(e1 + e2))(T'(¢)) = 0 for any such
curves I'(t) and for any (c1,c3) with 0 < 4¢3 < (% +¢2)2. Then by above lemma, Fe, cs,e;,e5 € E-

EnN ICI,H,1+452+2c§<0 is a real analytic set in ICI,II,1+452+2c§<0' We claim:

ENK 111140y 42e2<0 = 0- (56)
Suppose (56) is not true. Then we can take

0) (0) (0) (0
(Cg )vcé )ve:(l )’eé e Kirritaey+2c2<0Né- (57)

(B) o) () o)y

We can take a sequence of points (¢i’, c3 € ’CI,II,1+462+2.:§<0 — & such that

k k k k 0 0 0 0
: (k) (k) (k) _(k) : _
By our choice of (¢;"”,c3 ;e ', ey ), the corresponding maps Fc(k) ROROIRO) has the property that the asso:
1963 el e
ciated function W((chk),cgk),e(lk),eék) )1’2’{;‘)) is strictly decreasing as t goes from 0 to 1. Then chk),cgk),e(lk),e;k)
is equivalent to some map F_ck) (k) _(k) -0y € K* = K1 UKir = Ky py 1+4es+2¢2<0 with the minimum W
1 0% €1 %2 B

(k) ~(k)
3

value. Since the function value W((Fc(k) RORO) e(k))lf**) is decreasing, the sequence of points (¢ ’,¢
1003 el ey

3
E{lk) , Eék)) is also bounded in K. By taking subsequence, we may assume that (E(lk),E(Bk), E{lk) , Eék)) — (E(lo),E(BO)7

0) ~(0 i i i
é{l ),Eg )) € K*. Then F (o) (0) (0) (o) is equivalent to F_oy _0) —(0) —0) € K*, i.e.,
cy /yey,eq ey €1 "sC3 h€1 €9

% %k %k
F~0 ~(0) ~(0) ~(0 :(FO 0 0 0) 58
20) 50) 5(0) 5(0) o0 e, o0 ) (58)

for some non zero q € 9H2, by the same argument as in (7) and (8) (or [1, Step 1, § 4]). On the other hand,

since F (o) (0) _0) () € &, by the definition of £, (58) cannot occur. This contradiction shows that (57) cannot
1 i)

(
3 €1

occur. Thus Claim (56) is proved. [

4 Local version of Theorem 1.1(ii)

For each point p = (a,b+i|a|?) € OH? where b € R and a € C, we denote 7(p) = w(a,b+ila|?) := (|a|,|b]) € R2.
We denote by [ := [0,¢] X [0,c] a square and A := {(z,y) | 0 <z < ¢, 0 <y < z} a triangle inside [..
Let T'(t) = (at, B1t + i|a|?t?) with t € [0,1] be line segments, The set {m(T'(t)) = 7(at, fit + i|a|?t?) | |a| =
1, |B1] <1, 0<t<to}is equal to Ayy. Notice that 7(a, b+ ila|?) € Ay, if and only if there exists such a line
segment I'(¢) so that (a,b + i|a|?) = T'(t*) for some t* € [0, to].

Lemma 4.1. For any PO = (cgo),cg0)7e§0),eéo)) € K*, there is a neighborhood U of P(® in K* and a
constant ¢ > 0 such that for any point (c},ch, e}, eb), (cf,c4, el el) € U with Fclllycé/’elllyeé/ = (Fcll’cé’ell’eé )
where p = (a,b +ila|?) € OH?, a € C, b € R, |p| := max{|al, |b|} < ¢, we have

(c1,c3, €l e3) = (i, c5, €l €3). (59)

Proof of Lemma 4.1: Step 1. Choose U and ¢ For the point P(®) € K£*, by Lemma 3.1 and the uniform
estimate (46), there exists a neighborhood U of this point and a constant 0 < tp < 1 such that for any point
(c},ch, €y, eb) € U and for any curve I'(t) = {(at, B1t + i|o|*t?)} with a € C, 81 € R with |81] < 1, |of = 1,
0 <t < to, we have the property

W((FCQ»Cé,ei,eé)ltTr)) is nondecreasing, Vt € [0,to]. (60)
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H ok ok
= = (e} (e}
Slnce Fci’?‘:g?elll?Eé, (Fci7cé7el17e,2)p H T Fcllycéyellye

4, 00p 0 G where G € Auto(0H?), H € Auto(OHP),
7 and and op are as in (18), we can write

Fcll,cé,e/l,e’2 = (Fc/l/,cé/,e/l/,eé’)z**v
where ¢ = G~ (—20, —wp). Since G(0) = 0 and G~1(0) = 0, by continuity, ¢ — 0 as p — 0. Then we can choose
a number 0 < ¢ < to such that Vp = (a,b + ila|?) € OH? with |p| < ¢, the point ¢ = (4, B + i|A|?) satisfies
lg| <to. Let us verify that c is the desired number.

Step 2. There exists a curve from 0 to p with monotone property We have to put the condition
|| = 1 in (60); otherwise we may not be able to find the tg for all curves. We want to remove this condition
by adding one more piece of the line segment, namely, we claim that for any p and (c’l,c’3,e’1,e’2) as above,
there is a curve I'(t), t € [0,t*], consisting of one or two pieces of line segments, such that (60) is still true:
W((Fcllycg@/l 7612)1”:?:)) is nondecreasing along I".

Write p = (a,b +i|al?) € OH2. We distinguish two cases: (i) 7(a, b + ila|?) € A¢; and (ii) w(a, b+ ilal?) €
O — Ae.

In the first case (i): for any p = (a, b + i|a|?) with |a| < ¢ and |b| < |a|c, assuming p # 0, we have p = ['(t*)
for some curve I'(t) = (at, B1t + i|a|?t?) with 0 < B1 <1 and |a| = 1 as above with some t* € [0, c]. In fact, we
have oo = ‘%‘, b1 = % and t* = |a|]. By (60) the function W((FCQ,Céyei,eé)ltT:)
to t*.

In the second case (ii): p = (a, b+ ila|?) with |a| < c and |a| < |b] < c. Let us assume b > 0; otherwise it can
be proved by the same argument. In this case, we cannot find I' such that it connects 0 and p as in the case (i).
However, we can define two pieces of curves:

ri(t), 0<t<b—|lal,
ry - {T®, 0<t<b—lal
Tat), b—la| <t <b.

) is increasing as t varies from 0

(0,%), 0<t<b—lal,

(%(t—b—i—\ab,t—l—i

2
t—b+|a| ) b—la| <t <t* =0

Here 7(I'1) = {0} x [0, b—|a|] is a vertical line segment; and 7(I'2) is another line segment connecting I'1 (b—|al)
and the point p.
By Step e in § 3, the function W((Fc/l,cfgye/lyeé)ltﬁt)) is constant for 0 < ¢ < b — |a|]. Next we consider

W((ch,c;,ei,eg)FZTt))~ If we use a new variable u = ¢t — b+ |al, then I'a(¢) can be written as

a
Fg(u):(mu, (b—\a|)—|—u—i—iu2)7 0<u<]al

By the remark (b) in (50), (46) is still valid for I'2(u) so that V\}((Fc/1 el 7612)1’1’;’&)) is nondecreasing for any
b—|a] <t <t*. Our claim is proved.

Step 3. The W function is constant We claim:

%k %k k .
W((Fc/l,c’s,e’l,eé)l“ ) = constant. (61)
s _ ok ok _ ok ok
In fact, since Foy i or onr = (Fc/l,cg,e’l,e/z)p and For or o1 o1 = (Fclll’cé/’elllyeé/)q - We have Foy o1 or e
— ((F( , , , )***)***
chieh.eleh)p g

Since 7(p) € Ue, by our choice of ¢, ¢ = (4, B + 14| A|?) satisfies 7(q) € [y, i.e., |A| <to and |B| < to. Then

by Step 2, there exists a curve I'(£), 0 < ¢ < t*, connecting 0 and ¢ such that the function W((Fc/l,cé,ell,eé )%’Eti))

is nondecreasing along I'. Then we obtain

W(Fc/l,cé,e’l,e/z) = W((Fcll;cé,ell,eé);fg)) < Vv((Fc/l,cg,e/l,e/2 );"E:*)) = W(Fc/l/,cé’,e/l/,eé’L (62)
and
W(Fclll,cg,e'l',eg) = W((Fclll,cé',e/l/,e'z')1*:?;)) < W((Fc/l/,cg,e/l/,elzl)%T;*)) = W((Fc/l ,chhel ,e'z)' (63)

By (62) and (63), Claim (61) is proved.

Step 4. Proof of the uniqueness We next claim that (F, * is constant:

’ / ’ / )**
€1,C3:€1,€2/T(t)

(Fc’l,cé,e’l,eé)lt’z:) = Fc’l,cé,e’l,eév vt € [0, to]. (64)
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Let us consider the case (i) in Step 2. From (31) and Lemma 2.5, it implies that (4c;(b'c} + 2ch) — 8V (e} +
e5))I(t) = 0 for any t € [0,¢t*]. Thus by the argument in (55), we proved ¢} (I'(t)) = c5(I'(t)) = 0 for any
t € [0,t*]. This implies that (Fc;,cg,eg,eg)?Tf) is the same map for any t € [0,tp]. Claim (64) is proved. The
case (ii) will be proved by similar argument as the case (i) and by the remark (b) in (50). [

Lemma 4.2. For any point PO = (cgo),céo), ego), eéo)) € K* — & where & is defined in Lemma 3.3, there is a
neighborhood V of P in K, a neighborhood U of P(O) in K* — € and a neighborhood E of 0 in OH2 such that
the map ¥ : U x E —V, (F,p)+— F;** is surjective.

Proof:  We first claim that for any Fe,,cz,e1,e; € K* — &, the set N := {(Fe;,cz,e1,e2)p | P E OH?} is of real
dimension > 2. In fact, consider a function W((Fe; c5,e1,e2)5"*) on N where I'(t) = (at, f1t + |a|?t?) is a curve
in OH? as (27). By (46), we have S(q1(t)) = |a| + O([t]) for t > 0 sufficiently small. Since Fe; cg,eq,e, € K* =&,
by Lemma 3.3, we have (4c1(bc1 + 2¢2) — 8b(e1 + e2))(I'(t)) # 0 holds for some curve I'. Then from (33),

W(Ff:?tiAt)) = W(Flf(*t*)) + [4c1(ber + 2¢2) — 8b(e1 + e2) | (D(t)) || At + o |At]), (65)
Since a € C 22 R?, our claim is proved.

It remains to prove dimg ¥(U x E) = 4. Notice that dimg K = 4, dimg (K*) > 2, and that the map defined by
(K*—&)x 0% — K, (F,p) — F;** is (Nash) algebraic. Then it suffices to show that this map is injective, i.e.,
for any two distinct points (c1, ¢3, €1, e2), (¢1,¢3, €1, €2) € K*, which are sufficiently close to (cgo)7 C:())O) , ego) , eéo)),
and for any two points p,p € OH?Z, which are sufficiently close to 0 € 9H?,

(Feyoesensea)p’ # (Feyeaer,e0)p (66)

If this can be proved, it follows dimg ¥(U X E) = 4.
Recall that for a fixed F', we write

F;* = HpompoFoopoGy, (67)

where o, € Aut(H?) and 7, € Aut(H®) are defined in (18), G} € Auto(H?) and H, € Auto(H®).
In case (66) does not hold, i.e., we have (Fe;,cg,e1,e2)p" = (Fz 55,51, );‘7** By (67), we write

HpoTpoFeyeg,eq,e5 00p0Gp=HpoTpoFg 5,58 ©0po Gy,

ie.,

00p o ép ° G;1 ° U;I = (F&,,53,81,8)p0 (68)

-1 15 =
Fey,ese1,e0 =75 " 0H, " 0oHpoTpoF; po >

1,63,€1,€2
where po = &p 0 Gp 0 Gylooy(0).

Notice from (67) that there is § > 0 such that as p — 0, op, Gp, Tp, Hp all converge to the identity maps in
Aut(H?) and Aut(H®) respectively. We apply this fact to (68) to conclude that for any € > 0, there exists § > 0
such that for any (c1,cs,e1,e2), (¢1,¢3,€1,e2) € K* with

dist((c1, c3, e1, €2), (cgo),cgo),ego),eéo))) <8, dist((c1,¢3,¢1,€2), (cgo),cgo),ego), eéo))) < 4,

we must have |pg| < e. We can choose € to be the ¢ as in Lemma 4.1. By applying Lemma 4.1 to (68) to conclude
Fey,cs,e1,e0 = Fz, 25,6,,, - This contracts with the fact that (c1,c3,€e1,e2) and (¢1,¢3, €1, €2) are distinct. Hence
(66) is proved. 0

Corollary 4.3. (Local version of Theorem 1.1(i))  For any P(©) = (CSO)’C:())O), ego),eéo)) € K* — & where
& is defined in Lemma 3.8, there is a neighborhood U of PO in K* — & such that V(c),ch, el eh), (e, ey e,

1" ; /! /1 1" "y — / / / /
ey) € U such that Fc'l'»cé'»ﬁ'l'veg and For et e ety aTe equivalent, we have (cf,cf, e, ed) = (c],c5, €], ¢e5).

Proof: Let Uz be a neighborhood of P(®) in K* —&, E a neighborhood of 0 in 8H? and V a neighborhood of P(9)
in K as in Lemma 4.2. Let U be a neighborhood of P(®) in K* — £ and ¢ > 0 be a constant as in Lemma 4.1. We
choose U1, E = {(z,u+i|z|?) € OH? | |2| < ¢, |u| < ¢}, V such that Uy C U and VN(K*—E€) C U. Then by Lemma

— 3 %k %k : /! /! " 1" — / ! / !
4.2, we have Fc/l/ycélye/l/’elzl = (Fcll’c/sye/l’elz)p with |p| < ¢, and by Lemma 4.1, (cf,cf,ef,el) = (c],ch, €l e}).
d
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5 The proof of Theorem 1.1

Before proving Theorem 1.1, we mention a fact. Let o, and o, € Aut(OH?) defined as in (18) and F €
Rat(H?2,H®), then we can define a family of automorphism @5 = Ospi(1—s)ar 0 <8< 1, and ¥ = F S

sb+(1—s)a
Aut(OHP) defined as in (18) so that ¥s o F o ©4 € Rat(H?2,H5) satisfies ©g = 04, ©1 = 03 and

T, 0Fo00,0)=0, Vselo0,1]. (69)

Proof of Theorem 1.1: For any F € Rat(H?,H®) with degree 2, by [1] and Lemma 3.3, F is equivalent to
another map Fx € K* with the minimum property (9). By Lemma 3.2 and 3.4, Theorem 1.1(i) is

1,C3,€1,€2
proved.
It remains to prove Theorem 1.1(ii). We need to show: if F' (o) (o) (0) (0) and F 0y 0) —0) 0y in K* are
€1 7563 he1 He2 €1 7563 5€1 He2
equivalent, then
0 0 0 0 0 0 0 0
@27, 87, 8") = (e, e, e, ). (70)

We assume that (cgo),céo),ego),eéo)) ¢ £ where £ is defined in Lemma 3.3; otherwise Fc(o) L0 (0) _(0) and
17563 501 50

F 0y _(0) ~(0) ~(0) cannot be equivalent.
€1 7563 5€1 €2

Step 1. Construct a curve Lo  Since F ) (o) (o) (o) and F_oy _0) (0) (o) are equivalent,
cy lyeg ey ey [T T =),

F~<lo)yggo>,g§o>yg<20) =VoF 0 o © ©° © (71)

c 3 ,61
where © € Aut(H2) and ¥ € Aut(H®). Notice ¥ o F (o) (0 0 0 ©©(0)=0holds.
FL IS I

We take a real analytic curve L = L(s) € K* — &, 0 < s < 1, such that L(0) = (650)701(30),650), ego)). In fact,
since (cgo),cg0)7 ego),eéo)) ¢ £ and & is closed, L could be taken in a neighborhood of (cgo),céo),ego), ego)).

By using automorphisms of balls, Cayley transformations and (69), we can take a real analytic family of
automorphisms O, € Aut(OH?), ¥s € Aut(0H®), s € [0,1], such that when s = 0, ©p = O, ¥g = ¥; when
s € (0,1), ©5(0) # o0, Vs 0 Fr5) 005(0) = 0; when s =1, ©1 = Id, ¥1 = Id. Then we define

Lo(s) == Ws 0 Fp(5) 0 ©s € Rat(H*, H?), 0<s<1,
such that Lo(s)(0) = 0 for all s, Fj 0y =¥ o Fr()°®© and Lo(1) = L(1). Our goal is to show: Lo(s) = L(s),
Vs € [0,1], so that Lo(0) = L(0), i.e., (70) holds.

Step 2. Define a curve f/(s) Notice that Lo must be in K, namely, Fio(s) may geometric rank one at the
origin for all s € [0, 1], so that (Fﬁo(s))*** is well defined for all s € [0, 1].

Recall ©4(0) # oo for any s € (0,1] and ©1 = Id. Then for any s € (0, 1], we denote 1)(s) := ©4(0) € OH?
with (1) = 0, so that ©s = 0y, (s) 0 Gs Where gy, is defined as in (18) and Gs € Auto(0H?), i.e., we have a
continuous map (s) € OH? such that ¥(1) = 0 and

(Fr o)™ = (FL(S>)WS), Vs € (0,1], and (Fj 4))"™"" = Fr)- (72)

Even though (Fio(s))*** is in K for any s € (0, 1], it may not be in I* because the minimum property (9)
may not be satisfied. We claim that (Fio(s))*** is equivalent to another map Fi(s) € K*. More precisely, we
want to find g(s) € OH? so that

Fip = (Fpy )it €K%, ¥s € (0,1], (73)

To define such ¢(s), we consider several cases below.

If s = 1, since F (1) € K* and 9(1) = 0, we define ¢(1) = 0.

If s € (0, 1] at which the minimum property (9) holds, we define ¢(s) = 0.

If s € (0,1] at which (9) does not hold, we consider a continuous curve F(S)(t) € O0H? —Zp, 0 <t < 1,
with T'(®) (0) = 0 such that the function value W((Fﬁo(s))l’:’(‘:)(t)) is decreasing along I'(®). We denote by £; the

infimum of W((Fio(s))l’:”(‘:)) over all such curves. Then there exists a sequence of curves Fﬁf) in OH? such that

ls = JEHOOWOFL(S));T:)(D)- (74)
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ok ok

P =ca (p)?2 — e1(p) — e2(p), the decreasing property implies c1(p), —e1(p) and —ez2(p) are

Since W((F} ()
Step 1, §4]), so that (FLO(S));T;‘) ' regarded as a point, is inside K and is contained a compact

o(s)
bounded (cf. [1,
subset of I that is independent of Fﬁf). Therefore, by taking subsequences, we may assume that the limit
1imm4‘°°(FLA,0(s)) exists as a point in K* and that limy,— FS)(l) € OH? exists. Let us define

k% %k
ri )

FL(S) = Aznm(Fﬁo(S))rgg) (1)

It remains to show that g(s) € 9H? can be defined such that Fiy = (Fﬁo(s))s&*)'
By the choice of L(1) and Corollary 4.3, there exists a neighborhood U of L(1) in K*, such that if a point
(c1,c3,e1,e2) € U such that Fe, cg,eq,e, and Fr1) are equivalent, then (c1,c3,e1,e2) = L(1).
Let us consider K NB4(Lo(s), ), the intersection of K with the sphere in C* which is centered at Lo(s) with
radius . We also consider K* NB2(Lo(s),r), the intersection of K* with the sphere in C2 which is centered at
Lo(s) with radius . We take r so small that K* N B2(Lo(s),r) C U.

€ K*. (75)

Step 3. Claim on FL(s) — FLO(s) Regarding Fﬁ(s) as points in K, we claim:

dist (FL(S)’ Fﬁo(s)) — 0, ass— 1. (76)
Suppose (76) is not true. Then there exists a sequence s — 1 such that
dist (FL(sk)’ Fﬁo(Sk)) >80, as k — oo. (77)

for a certain g > 0. By (75), we can take integer ms, for each sj such that

1 - KKk 1
0 <SW((Fz () ) =Ly < 3» and dzst((FLO(Sk))ngk) e ka)) << (78)
Sk

rink) ()
By (77) we have

. KKk 60
dzst((Fﬁo(Sk))ngk)(l)7 me) > PR (79)
Sk

%0, Then {(Fﬁo(sk))*’g:k) }telo,1)> regarded as a curve in K initiated from the point
T ’
Sk

Then we can choose r < 3
must be across through the sphere (K N8B (Lo(sk),)), i.c.,

{(Fp o)) Z50 Fecto N U N OB (Lo (s1), ) # 0. (80)
msy,

Fﬁo(sk)’

Let Q(5%) be a point in the intersection (80) and then Q(sk) = (Fﬁo(sk))l’:’%% (t2)

for some tj, € [0,1]. By taking
subsequences, we assume @ = limy_, Q(sk) exists. By the construction, we see that the Fg is equivalent to
FL(I) and

QeK*, and dist(Q,L(1)) =r.
Since Q € K*NOB2 (ﬁo(l), r) C U, by Corollary 4.3, Q = L(1), i.e., dist(Q, L(1)) = 0, but this is a contradiction.
Claim (76) is proved.

Step 4. Proof of L(s) = L(s)  From (76), we have continuous.

dist (FL(s)’ FL(S)) — 0, as s — 1.
Since both F} .y € K* and Fr () € K* — £ where s € (so, 1] for some so > 0 such that 0 <1 — sg is sufficiently
small, by Corollary 4.3 and the choice of L(1), we conclude
Fﬁ(s) = FL(S)7 Vs € (807 1}.

Repeating this process. Finally by continuity FL(s) = Fr(s), Vs € [0,1]. When restricted at 0, FLO(O) = FL(O) =
Fr,(0), so that (70) is proved. [
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Added note In a recent paper [5, theorem 3.1], it is proved that any map F € Rat(B?,BY) with degree 2
must, be equivalent to a polynomial map.
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