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Abstract Under certain conditions on co-dimension and curvature tensors, the image
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1 Introduction

In Several Complex Variables, understanding when a CR manifold can be embedded
into a sphere is a subtle problem. Forstneric [9] and Faran [7] proved the existence
of real analytic strictly pseudoconvex hypersurfaces in C"*! which do not admit any
germ of non-constant holomorphic map taking M into the sphere dBN*! for any pos-
itive integer N. Zaitsev constructed explicit examples for the Forstneric—Faran phe-
nomenon [26]. Meanwhile, there has been much work done to prove the uniqueness
of such embeddings up to the action of automorphisms. For instance, a well-known
rigidity theorem says that if M>"*1 is a CR spherical immersion inside dBN*! with
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N <2n — 1, then M must be totally geodesic (i.e., M is the image of 9B"*! by a
linear fractional holomorphic map). Ebenfelt, Huang, and Zaitsev ([5], Theorem 1.2)
proved that if d < %, any smooth CR-immersion f : M — OB t9+1 where M is a
smooth CR hypersurface of dimension 2n + 1, is rigid. Oh in [21] obtained a very
interesting result on the non-embeddability for real hyperboloids into spheres of low
codimension. Kim and Oh [17] found a necessary and sufficient condition for the
local holomorphic embeddability into a sphere of a generic strictly pseudoconvex
pseudo-Hermitian CR manifold in terms of its Chern—Moser curvatures. Along these
lines, we mention recent studies in the papers of Huang and Zhang [15], Ebenfelt and
Sun [6] and Huang and Zaitsev [14]. We also refer the reader to a recent survey paper
[12] by the first two authors and many references therein. Our first goal in this paper
is to study the non-embeddability property for a class of hypersurfaces, called real
hypersurfaces of involution type, in the low codimensional case, by the properties of
a naturally related Gauss curvature. (For some other studies on degenerate hypersur-
faces of involution type in C2, we also mention a recent paper by Kolar and Lambel
[181.)

We first recall that a connected real hypersurface M in C” is called a real hyper-
surface of revolution type in C" if it can be defined by an equation of the following
form:

={(z,w)eC" x C|r =0}

F=p(z,2)+q(w,w), q(wiw)za(wvw)s d(CI)|{q=0} #07
p(z,2) = Z h ﬁz j2d

1<a,B<n

ey

Here (h aﬁ) is a positive definite (constant) Hermitian matrix, g (w, w) is a smooth
function in C and takes negative values somewhere in C. Such a real hypersurface
admits a U (n)-action and was first studied by Webster in [24]. Associated with such
a real hypersurface is a domain Dy in C defined by Dy := {w € C: g(w,w) < 0}.
Assume that M is strongly pseudoconvex in a certain small neighborhood M, of
(zo0, wo) € M with wg € Dg. Write « for the projection from M \ {g(w,w) = 0}
into Dg. And assume that Uy is a neighborhood of wg in Dy with 7 (Mq) = Uy. Then,
by the symmetry, 7 ~! (Up) is strongly pseudoconvex. Hence, without loss of general-
ity, we assume that A (Up) = My. Webster observed that then / := —(logq)yw > 0
in Uy and thus we have a well-defined Hermitian metric ds?> = hdwdw w Write the
Gauss curvature of such a metric as K, which is given by K = —% T logh. We
first prove the following result, which reveals the connection between the Hermitian
geometry over Uj and the local smooth CR embeddability of M into a sphere with
lower codimension:

Theorem 1.1 Let Dy, Uy, K, and My be just defined as above. Let My = z! (Uy) be
a (connected) strongly pseudoconvex open piece of the real hypersurface of revolution
inCrtl defined as in (1) with2 <n < N <2n — 2. Suppose that the Gauss curvature
K > —2 over Uy and for any p € My, there is a non-constant smooth CR map from
a neighborhood of p in Mg into BNt Then K = —2 over Uy and the embedding
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image in 3BT is totally geodesic, namely, a CR transversal intersection of an affine
complex subspace of dimension (n + 1) with an open piece of 9BV *1.

Example 1.2 Let g = |w|2 + 6|w|4 — 1 and (haﬁ) = I« in (1). Then, for € > 0,
M admits a non-totally geodesic holomorphic embedding into the unit sphere in C"*2
through the map (z, w) = (z, w, /€ wz). However, for € < 0, the Gauss curvature K
of ds? = —(logq)wwdw @ dw is given by K = —2 — 4€ 4+ 0o(1) > —2 near a neigh-
borhood of w = 0. (See Example 7.1.) Thus, by Theorem 1.1 and the algebraicity
theorem of the first author in [10], M in this setting cannot be local holomorphically
embedded into dBN*! with N < 2n — 2. Hence the curvature assumption is needed
in Theorem 1.1. Similarly, let ¢ = |w|*> 4 €|w|* + |w|® — 1 with € < 0, |¢| <« 1. Then
M defined by r = |z]> + |w|® + €|w|* + |[w|® — 1 =0 is now compact and strongly
pseudoconvex. Since the Gauss curvature K defined above now is larger than —2 in
a neighborhood of 0 in Dy, combining Theorem 1.1 with the algebraicity theorem of
the first author in [10], we also see that any open piece of M cannot be smoothly CR
embedded into BN *! with N < 2n — 2. However, it appears to be a very interesting
problem to find out if the assumption N < 2n — 2 can be dropped in this specific
algebraic and compact strongly pseudoconvex example.

Remark 1.3 There is a very nice connection of the study of real hypersurfaces of
involution type and Hermitian vector bundles over a Riemann surface. Indeed, My in
(1) can be regarded as the Grauert tube (or sphere bundle) of the trivial holomorphic
vector bundle of rank n over Dy with the Hermitian metric d2h = —q(w, w)d2Eucl.
For this reason, it may be interesting to consider further the case when Dy is a domain
in C" with m > 1.

Our proof of Theorem 1.1 is based on the framework established in [5], computa-
tions of pseudo-Hermitian curvature tensors in [24], and the following rigidity lemma
of the first author:

Rigidity Lemma [11] Let g1, ..., gk, f1, - .-, fk be holomorphic functions in z € C"
near 0. Assume g;(0) = f;(0) =0 for all j. Let A(z,7) be real-analytic near the
origin such that

k
Y 8@ i@ =1zl AG. ). ©)

j=1
Ifk<n—1,then Az,2)=0and Y_5_, g;() f;(z) =0.

This rigidity lemma played an important role in understanding many other prob-
lems in CR geometry. For instance, the proof of the third gap theorem [13] is obtained
by repeatedly applying this lemma in subtle ways. In [5], a different formulation of
the above lemma was formulated. A new formulation of this rigidity lemma is pre-
sented in Lemma 2.1 of Sect. 2, and will be used in this paper.

Along the same lines of applying the above rigidity lemma, we also study rigid-
ity problems for conformal maps between a class of Kéhler manifolds with pseudo-
conformally flat metrics. More precisely, we prove the following:
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Theorem 1.4 Let f : (X,w) — (Y,0) be a holomorphic conformal embedding,
where (X, w) and (Y,o) are Kdihler manifolds with dim¢c X = n and dim¢c Y =
N. Suppose 2 <n < N <2n — 1 and that the curvature tensors of (X,w) and
(Y, o) are pseudo-conformally flat. Then f(X) is a totally geodesic submanifold
of Y.

Here we mention that a holomorphic map f : (M, w) — (N, o) between Hermi-
tian manifolds M and N is called conformal if f*o = kw holds for some positive
function £ on M. When dim(M) > 1 and both M and N are Kihler, the conformal
factor k is always a positive constant. Hence, in our consideration, we always as-
sume that & is a positive constant. A tensor Tg,w over a complex manifold is called
pseudo-conformally flat if in any holomorphic chart, we have

where (H,3), (I-AIO[E), (H;F)’ and (I-NIQE) are smoothly varied Hermitian matrices, and
(gag) is the smoothly varied Hermitian metric over the chart.

Basic examples for Hermitian manifolds with pseudo-conformally flat curvature
tensors are the complex space forms: C" with the Euclidean metric, CP" with the
Fubini—Study metric and B"” with the Poincaré metric. Other more complicated ex-
amples contain the Bochner—Kihler manifolds [1].

Concerning the dimension condition N < 2n — 1 in Theorem 1.2, we recall some
related results on global holomorphic immersions. For CP”, Feder proved in 1965
[8] that any holomorphic immersion f : CP* — CPY with N < 2n — 1 has totally
geodesic image (realizing CIP" as a linear subvariety). For X =B"/I", Cao and Mok
proved in 1990 [3] that if f : X — Y is a holomorphic immersion where X and Y
are complex hyperbolic space forms of complex dimension n and N respectively,
such that X is compact and N < 2n — 1, then f has totally geodesic image. In CR
geometry, we have the rigidity theorem [11]: If F : 9B"+! — 9BV *! is a CR map
which is C2-smooth with 1 <n < N <2n — 1, then F must be linear fractional.
Also, Mok had constructed an example [20] of a non-totally geodesic holomorphic
isometric embedding from the disc A into A? with p > 1. For other related rigidity
results, we refer the reader to the papers by Calabi [2], Mok and Ng [19], Mok [20],
Yuan and Zhang [25] and many references therein.

2 A Tensor Version of the Rigidity Lemma

We first reformulate the rigidity lemma mentioned in (2) into the following version
(see also related formulations in [5]):

Lemma 2.1 Let AOZg and Ba‘llg be complex numbers where 1 <a,f <n,n+ 1<
a<N. Let (gaB) and (G ;) be Hermitian matrices with (gaB) positive definite. Let

0 0] (1) ~(I) .. .
(HQB), (HQB), (Haﬁ ), and (Haﬁ) be Hermitian matrices where 1 <1 < k. Suppose
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that N —n <n — 1 and that

N
> GpALX“XPBh, XFXY
a,b=n+1

1} I 1 1 VB T
H<)g,w H(;gav‘i‘H*](;)gﬂﬁ‘i‘H(gg /S)XaXﬂXMXV “4)

HM»

holds for any X = (X%) = (XP) = (X"*) = (X") € C". Then
N —
Y. GapAlzX*XPBL, XIXV=0, vXeC" ©)
a,b=n+1

Proof The right-hand side of (4) is equal to

k
§ : g g U] 7D

ﬁg#v ﬁgav+H*v gﬂﬂ+H vgaﬁ)XaXMXﬁ XV
=1

k
D yaypyvi2 240) YBIvI2 *\() yayv) vi2 7O vy yv2
:Z(HQEX“Xle +H G X" XPIXP + o XUXV|X| + H o X" XV X|?)

=1

k
Z (HGXXP + HOXPXP + Hy ) X“X + Hys X"X7)
— XA, X), ©)

where A(X, X) is some real analytic function of X and |X|*> = gaEX“W. Notice
that the left-hand side of (4) is equal to

N N
Y GaAL X XPBELXEX = 3 ga(X)ha(X) @)
a,b=n+1 a=n+1

where g4(X) = Y, 4 A%sX?XP and he(X) = Y5, 1 Yy 4 GanBLy X XP are
holomorphic functions. Namely, we have

N
D 2 (0hX) =|XPAX,X), VXeC"
a=n+1

By the hypothesis, N — n < n, and it follows from the rigidity lemma (2) that
A(X, X) =0. Thus (5) holds. O
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3 Pseudo-Hermitian Geometry

CR Submanifold of Hypersurface Type Let M be a smooth strictly pseudoconvex
(2n + 1)-dimensional CR submanifold in C**!. A non-zero real smooth 1-form 6
along M is said to be a contact form of M if 0], annihilates TIEI’O)M @ TIEO’I)M for
any p € M. Let r be a local defining function of M. Then 6 =id,r is a contact form
of M and any other contact form is a multiple of 6: k6 with k # 0 a smooth function
along M. Fix a contact form 6. Then there is a unique smooth vector field 7', called
the Reeb vector field such that (i) 6(T) = 1, (ii) d6(T, X) = 0 for any smooth tangent
vector field X over M. We have the complexified tangent bundle CTM which admits
the decomposition CTM = T-OM @ TO-D M @ RT.

Lo(u,v) == —id0(u ") =i0([u,7]), Yu,vely’(M), VpeM. (8)

Recall that we say (M, 0) is strictly pseudoconvex if the Levi-form Ly is positive
definite for all z € M.

Let 7'M be the annihilator bundle of V := T D M which is a rank n + 1 subbun-
dle of CT*M.

Admissible Coframe _If we choose a local basis Ly, « = 1,...,n, of (1,0) vector
fields (i.e., sections of V = Tﬁl,l’o), sothat (T, Ly, Lg) is a frame for CTM :=CQTM
where Ly = L. Then the equation in (ii) above is equivalent to

d6 = ig,56° 6P, )

Here 6# = 68, (gaE) is the (Hermitian) Levi-form matrix and 6,0%,6%) is the
coframe dual to (T, Ly, Ly). (For brevity, we shall say that (6, 60%) is the coframe
dual to (T, Ly).) Note that 6 and T are real, whereas 6% and L, always have non-
trivial real and imaginary parts.

Without mentioning 7', we can complete 6 to a coframe (6, 6¢) by adding (1, 0)-
cotangent vectors (the cotangent vectors that annihilate ') 6%. The coframe is called
admissible if (0%, T) =0, for « =1, ...,n. As other equivalent definitions, (6, 6%)
is admissible if (9) holds.

Pseudo-Hermitian Geometry on M  Observe that (by the uniqueness of the Reeb
vector field) for a given contact form 6 on M, the admissible coframes are determined
up to transformations

6% = u%@’g, (uﬂ“) € GL((C").

Every choice of a contact form 6 on M is called a pseudo-Hermitian structure and
defines a Hermitian metric on V (and on V) via the (positive-definite) Levi-form (see
(8)). For every such 0, Tanaka [22] and Webster [23] defined a pseudo-Hermitian
connection 7 on V (and also on CT M) which is expressed relative to an admissible
coframe (6, 6%) by

vie =0l ® Lg
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where the 1-forms a)g on M are uniquely determined by the structure equations:
do’ =6% Awf mod (0 A60%),  dg,z=w,5+ wg,. (10)
We may rewrite the first condition in (10) as
d6P =69 NP +0 ATP,  oF = APG7, A% = APe (11)

for a suitably determined torsion matrix (Ag), where the last symmetry relation holds
automatically (see [23]).

The pseudo-Hermitian curvature Rﬁ 5 and we «u of the pseudo-Hermitian connec-
tion is given, in view of [23, (1.27), (1.41)], by

dof — ol Nl = RE 0" NOT+WE 0" N0 —WEOT N0 +i0, nTP ity 6P
(12)

4 Local CR Embeddings

Coframes on f : M — M Let f:M— M be a local CR embedding where M
is a strictly pseudoconvex hypersurface in C"*! and M is a strictly pseudoconvex
hypersurface in C+1. We use a " to denote objects associated with M. We shall also
omit the ~ over frames and coframes if there is no ambiguity. It will be clear from the
context if a form is pulled back to M or not. Under the above assumptions, we identify
M with the submanifold f (M) and write M C M. Capital Latin indices A, B, etc.,
will run over the set {1, ...,7n}; Greek indices «, 8, etc., will run over {1,...,n};
small Latin indices a, b, etc., will run over the complementary set{n+1,...,a}.

Let (6,6%) and (9 QA) be coframes on M and M, respectively, and recall that f
is a CR mapping if

f¥@)=ab, (6% =EL0* + E%6,

where a is a real-valued function and E Aa, E4 are complex-valued functions.

We identify M with the submanifold f (M) of M and write M C M. Then the CR
bundle V = T%! M is a rank n subbundle of V = T*!M along M. Then there is a
rank (7 —n) subbundle N’ M consisting of 1-forms on M whose pullbacks to M by f
vanish. The subbundle N’ M is called the holomorphic conormal bundle of M in M.

We write i* for the standard pullback map and i, for the pushforward map. Notice
that our consideration is purely local. We let p € M and fix a local admissible coframe
{6,0%} for M. Let T be the Reeb vector field associated with 6. Assume that M is
a small nelghborhood of 0 in R™, p =0, and M is defined near 0 by x; =0 with
j=m+1,...,m. First, we can extend 6 to a contact form of Mina neighborhood
of 0. Write x’ = (x1, ..., x;y). Define 0= uf, with u(x’, 0) = 1. Then dO =du nb +
udf. We want 0T =0 along M. For this, we write ud6 T = Z?I:l dj(x',0)dx;.

Then, we need to have, along M: du = Z;ﬁ:ldj (x/,O)dxj. Since T is the Reeb
vector field for 6 along M, we have d; (x’,0) =0 for j < m. Thus, choose u =
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1+ ZJ “mt1dj(x",0)x;. Then we have do.T =0 along M. Now, by the uniqueness

of the Reeb vector field, we see that the Reeb vector field T of 8 when restrlcted
to M, coincides with T'. Extend 6% to a neighborhood of 0 in M to get 6%, and
add 9% so that {0, 0"‘, 0“} forms a basis for T'M near 0. After a linear change for
the forms {é\‘",é\“}, we can assume that the pullback of 9% to M is zero for each
a=n+1,...,n, the pullback of 8% to M is 6 fora=1,...,n, 6 remains the same,
and {, 0%, 6} is an admissible coframe along M near 0.

Next, suppose that d6 = \/—_lgaBG“ A 0P with 84f = Oap along M. We can even
make the Levi-form of M with respect to the coframe {é\ o 5“} also the identical
matrix along M. Indeed, let {T', Ly} be the dual frame of {6, 6%} along M. Extend
Ly to a vector field L of type (1,0) in a neighborhood of 0 i in M. Find {L } so
that {La, L o} forms a base of vector fields of type (1, 0) over M with its Levi form
along M near 0 the identical matrix. Let 6 be as constructed above such that its
Reeb vector field 7 is T, when restricted to M. Then we can find {9 o, 9“} which
are the dual coframe of {T LA} Then along M, (i *(0") Ly) = ( Loy =0;
(i (0“) T)= (9“ T|M> = 0. Hence the pullback of 9% to M is zero. Clearly, the
pullback of 9% to M is 6% and t*(é‘) 6. Assume that

-~

n
40 = =1g, 50" AOT + > (e +ea(n)87) A
A=1

Contracting along ’7:, we see that e4 = 0. Hence, we see that {5, é\"‘, 5“} is an admis-
sible coframe. Now, the Levi-form of M along M is the identity with respect to such
a frame.

We say that the pseudo-Hermitian structure (M, ) is admissible for the pair
(M, M) if the Reeb vector field T for 6 is tangent to M. With the just-obtained
coframe (é, éA) on M where A = 1,2,...,n, the holomorphic conormal bundle
N’'M is spanned by the linear combinations of the 64, Summarizing the above, we
see the following basic fact from [5]:

Proposition 4.1 [5], Corollary 4.2 Let M and M be strictly pseudoconvex CR-
manifolds of dimensions 2n + 1 and 2n + 1, respectively. Let f : M — M be a CR
embedding. If (0,0%) is any admissible coframe on M, then in a neighborhood of
any point p e f(M) in M there exists an_admissible coframe 0,604 on M with
f* (9, 6, 9”) = (0,0%,0). In particular, 0 is admissible for the pair (f(M), M),
i.e., the Reeb vector field T is tangent to f(M). Also, when the Levi-form of M with
respect to the coframe (0, 9“) is the identical matrlx then we can also choose (6 QA)
such that the Levi form of M with respect to (6, 6%) is also the identical matrix.

If we fix an admissible coframe (0,6%) on M and let (é, éA) be an admissible
coframe on M near a point p € f(M), we shall say (é, éA) is adapted to (0, 60%)
on M if it satisfies the conclusions of the above proposition. We also normalize the
Levi-forms with these frames such that they are identical.

Second Fundamental Form Equation (11) impliesA thflt when (0, 04) is adapted
to M, if the pseudoconformal connection matrix of (M, 0) is d)g , then that of (M, 6)
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is the pullback of @%. The pulled back torsion 7% is ¢, so omitting the ~ over these
pullbacks will not cause any ambiguity and we shall do that from now on. By the
normalization of the Levi-form, the second equation in (10) reduces to

wpg Tz =0, (13)

where as before w7z =® Agb.
The matrix of 1-forms (w, ) pulled back to M defines the second fundamental form

of the embedding f : M — M. Since 6° =0 on M, Eq. (11) implies that on M,
w2 A + 1P AO =0, (14)

and this implies that

a)z =w359ﬂ, a)gﬂ :a)ga, P =0. (15)

Following [5], we identify the CR-normal space Tp1 Om / T;’OM , also denoted by

N ,];01\;[ with C"—" by choosing the equivalence classes of L, as a basis. Therefore, for
fixedo, B =1,...,n, we view the component vector (wa“ﬁ)aan ; as an element

of C'", We also vievy the second fundamental form as a section over M of the
bundle 7'M @ N'OM @ T1OM.

5 The Pseudo-Conformal Geometry

Pseudo-Conformal Geometry We will need the pseudo-conformal connection and
structure equations introduced by Chern and Moser in [4]. Let Y be the bundle of
coframes (w, w*, w*, ¢) on the real ray bundle mg : E — M of all contact forms

defining the same orientation of M, such that dw =i gaga)“ AP+ oA ¢ where

w* € T[Z(T/ M) and w is the canonical 1-form on E. In [4] it was shown that these
forms can be completed to a full set of invariants on Y given by the coframe of
1-forms

(0. 0% &%, ¢, 9%. 6. V) (16)
which define the pseudo-conformal connectionon Y.
Pup + g = d8up:
do=io" Aoy, +ong,
do® =a)“/\¢fj+a)/\¢°‘,

dp =iy A" +igy A0’ +oAY,
a7

80[

g = ol A GE +iwg /\¢°‘—i¢ﬁ/\a)a—i8g¢ﬂ/\a}“—?ﬂlﬂ/\a)-i-q?g,

1
d¢“:¢/\¢“+¢“/\¢fj—§1ﬁ/\wa+q§“,

dl/f:¢A1//+2i¢ﬂ/\¢;L+W,
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where the curvature 2-forms @g, @%, and ¥ are decomposed as

45:3}‘ = S/‘;‘Im A’ + Vgﬂa)“ Aw -+ ngw A,

DY =VEo' Ao’ + Piot Ao+ Q%" Ao, (18)

U =2i P50’ + Ryt Aw+ Ryw” Aw,
where the functions Sg‘ s
curvature of M." As in [4] we restrict our attention here to coframes (6, %) for which
the Levi-form (gag) is constant. The 1-forms ¢%, ¢¢, d)g, Y are uniquely determined

by requiring the coefficients in (18) to satisfy certain symmetry and trace conditions
(see [4] and the appendix), e.g.,

Vg‘u, P/‘f, Q% together represent the pseudo-conformal

S,

aBuv = S

npav

— _ _ 13 _ mu __ pl __
= S,508 = SouBa> S 5=V =P =0.

Let us fix a contact form 6 that defines a section M — E. Then any admissible
coframe (0, 6%) for T1-OM defines a unique section M — Y for which the pullbacks
of (w, ®*) coincide with (8, 6%) and the pullback of ¢ vanishes. As in [23], we shall
use the same notation for the pulled back forms on M (which now depend on the
choice of the admissible coframe). With this convention, we have

0 =w, 0% = 0%, ¢=0 19)

on M.

Relationship Between Pseudo-Conformal Geometry and Pseudo-Hermitian Geome-
try In view of Webster [23, (3.8)], the pulled back tangential pseudoconformal cur-
vature tensor Sg up can be obtained from the tangential pseudo-Hermitian curvature

g .
tensor Raw in (12) by

R R, 58w + R, 58av + Ruv8, 5 + Ruvgup
T Tepuy n+2
R(go58uv + 8av8,p)
(n+1D(n+2)

SC{

Buv

(20)

where

_ . pM& _ pH
Ro‘ﬂ'_RuaE and R—RM

are respectively the pseudo-Hermitian Ricci and scalar curvature of (M, 9).

IThe indices of S%

Buv here are interchanged comparing to [4] to make them consistent with indices of
R% _in(12).
B uv
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ay---arby---bg

Traceless Component Asin [5], we call a tensor T i pseudo-conformal-

(LA RRTeN ar, /31 yyyyy 5
ly equivalent to 0 or pseudo-conformally flat if it is a linear combination of ten-
sors with factor g, z- fori =1,2,...,rand j =1,2,...,s. Two tensors Tz Buv and

R, 5,v are called conformally eqmvalent if T wBuv — Ropuw is pseudo-conformally
flat. For any tensor R,z Buv> its traceless component is the unique tensor that is trace
zero and that is conformally equivalent to R wBuv . We denote the traceless component
by [R «Buv /F] Formula (20) expresses the fact that S wBuv is the “traceless component”

of R, (cf. [5], (5.5)):

S

aBuv — [R 2n

otﬁ,ui] .

6 Real Hypersurfaces of Revolution

Real Hypersurfaces of Revolution As in (1) of the Introduction, let M = {(z, w) |
r = 0} be a real hypersurface of revolution in C"*! with n > 2, where

r=p@&2)+qw,w), g=gand p(2)=h,5z"7", (22)

where (haB) is a positive definite Hermitian matrix. Also d(g) # 0 when ¢ =0, ¢
takes negative values somewhere.

Define D := {(z, w) |r < 0}. As the auxiliary curve and domain in C, we define

={w|q(w,w) =0} and Dg := {w|g(w,w) < 0}. M is strictly pseudoconvex

if and only if on Dy :={g < 0}, h := —(logq)yw = q"”%ﬂ > 0. Assume that

M is strictly pseudoconvex. Then Dy admits a Hermitian metric ds?> = hdwdw. We
denote by K its Gaussian curvature on Dy. It was proved in [24] that for w € Dy and
(z, w) € M with n > 2 and q,, # 0, the fourth-order Chern—Moser tensor S(z, w) =0
if and only if K(w) = —

The Pseudo-Hermitian Curvature of M By Webster, at a point where g, # 0, the
pseudo-Hermitian curvature of M is calculated as

Rpaps = —A(gpagos + 8pagps) — Bppprabops (23)
where
0 .
A=———7—, ga3=ha3+QpD,p3, 0 =—idr,
1-0q (24)
“=dzg—in"0,  n"=g"ng nu=—0Qpa:
and

212
wa+ Q(Qw Qw)+3Q +q|(Qw/qw)+Q| 25)

quqw 1—0q
where Q = % Notice that the formulas above were slightly modified from those
in [24], since we need (8,p) tobe positive definite to apply the Gauss—Codazzi equa-
tion here.

B =

w w
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Here B can also be calculated as

(K +2)K?

=" (26)
a* (quqw)?
where k = ¢, qw — qqww. We notice that B is a real-valued function and B < 0 if and

only if K +2>0.

Umbilic Points of the Fourth-Order Chern—Moser Tensor S Let S be the fourth-
order Chern—Moser tensor when n > 2. (For n = 1, it is replaced by the Cartan in-
variant.) A point (z, w) € M is called an umbilic point if S(z, w) =0.

It was proved by Webster [24] that if w € Dy and (z, w) € M, then at points where
dg # 0, we have

S(z,w)=0 ifandonlyif K(w)=-2. 27

If B=0, itimplies K = —2 by (26).

7 Proof of Theorem 1.1

Assume the notation and assumption in Theorem 1.1. For simplicity of notation, we
can simply assume that M can be CR smoothly embedded into dBN*! withn < N <
2n — 1. Indeed, by the Hopf lemma and shrinking M), if needed, we can conclude
that F is a CR embedding whenever F is not a constant map. We then need to prove
that F'(M) must be the CR transversal intersection of an affine subspace with an open
piece of the sphere. Notice that ¢,, # 0 in a dense open subset of Uy. By passing to
the limit, if needed, and by the uniqueness of holomorphic functions, we may simply
assume that ¢q,, # 0 over Up.

We take an admissible coframe (6, 0%) on M as mentioned before with § := —idr
as the contact form. Fixing any point p € My, by Proposition 4.1, there exists a neigh-
borhood U of p:= F(p) in 3BN*! and an admissible coframe (é, 64) on U such
that F*(é, OA"‘, GA“) = (0,0%,0) on U, where U is a neighborhood of p in My such
that F(U) C U, {6,6%} is an admissible frame over U as defined in the previous
section.

Consider the pseudo-conformal Gauss equation (cf. (5.9) in [5])

[S(X, X, X. X)]=8X.X. X, X))+ [{I1(X,X), [1(X,X))], VXe Tﬁl’OF(M),
R (28)
where S is the pseudo-conformal curvature of F (M), S is the restriction of the
pseudo-conformal curvature of aBN*t on F (M), and I1(X, X) is the second fun-
damental form of F(M) c 9BV *!. Here the notation [ ] in (21) is used and we can
regard X as a vector in C". Locally it can be written as

S b
[Sagﬂg] = Saﬁ;ﬁ + [gazwgtﬂwﬁv] 29)

where (a)g) is the second fundamental form of F (M) and wZ = a)ZﬂOﬁ, and (g,3)
is the (Levi) positive definite Hermitian matrix. Here a)gﬁ are functions satisfying
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P a)g o (cf. [5], (4.3) and (5.6)). Recall the facts that the pseudo-conformal cur-

af
vature of a sphere vanishes and that we have

Saﬁui = [Raﬁui]
where R By is the pseudo-Hermitian curvature induced by the pseudo-Hermitian
metric on F(M). Then (29) becomes

b
0=[R,p,5] + [8a5¥an @] (30)

Since F is a local CR embedding, we can identify the pseudo-Hermitian struc-
ture (M, 0) with (F(M), (F~1)*8). In other words, we can identify the pseudo-
Hermitian curvature Raﬁ w5 On F(M) as the pseudo-Hermitian curvature over M.
Then from (23), we have Ra?w = —A(gaggﬂg + guggag) - Bpapgpppv. Since
p(z,2) = hﬂgzﬂf"‘, we have

pp=hgg?,  pz=hoa”
and thus

S pepgpurs= Y. gz hys b7 by
a,B,u,v o, B, v,a B v

:‘ Z hﬁ’BZﬁ hypz”
,B,v,/B/,U/

2
€1V

Now, as in the proof of Lemma 2.1, we have the following computation:
A58 X XPX'XY = B(X, X)X |,

where | X|? = gaBX“ﬁ and B(X, X) = AaBX“ﬁ. We substitute (23) and (31) into
(30) to obtain

0=I|XE(X,X)
! I — 2
_B‘ Y hygeP hysz” XP XY
,B,V,IB/,V/
+ Y g XXM XPXY, VX eC atpel (3D
n+1<a,b<N

for some real analytic function E(X, X). Since (N —n) +1<(2n—2) —n)+ 1=
n — 1, we apply Lemma 2.1 to yield that

_B< Z hﬂ/ﬂZﬂ/hv’VZV/ﬁF)< Z haa/ghuﬁ,gxaxli)

B.v.B' v o, o
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N
+ Y gl anx“a)%ixﬂ X"=0, VXeC" (33)
a,b=n+1

When B < 0, both terms in the left-hand side of the above equation are nonnega-
tive. Hence, we get that B =0 over Uy and

N
> 8ap(03, XOXH) (0 XPXT) =0, VX eC".
a,b=n+1
This shows that K = —2. Since (8ap) is Hermitian and positive definite, it implies

s u =0, Va, a, uso that the second fundamental form of F'(M) is zero.

Then either by the result of Webster in (27) or by the result in [16], F(M) and M
must be spherical. Thus F (M) is in the image G (8B"t1) for some linear fractional
map G : dB"t! — M c 9BN+!, by the well-known rigidity result in [11]. The proof

of Theorem 1.1 is complete.

Example 7.1 Let g = |w|* 4+ €|w|* + ¢(w, w) — 1 with € € R and ¢ = o(|w|*) be-
ing smoothly real-valued. Now Dy = {w € C: g < 0}. ds> = —(logq)ywdw ® dw
defines a Hermitian metric in a neighborhood of 0 € Dy. The formula for its Gauss
curvature was derived in [24, (15)]:

K = -2+ ¢’k (kquuwww + qlquwuw)* — 2% (quuadswdw) + quildww )

with k = qyqw — qqww. By a direct computation, one sees that K = —2 —4e+o(Jw)).
Hence, for € < 0, we have K > 2 in a small neighborhood of 0 in Dy

8 Examples of Pseudo-Conformally Flat Kéhler Manifolds

Complex Space Forms A Kihler manifold of constant holomorphic sectional cur-
vature is called a complex space form. The universal complex space forms are C",
CP", and B" equipped with the Kéhler metric

§ij  KZiZj
L+xlzl2 (1 +«]z[?)?

h,‘j =

with k =0, 1, and —1, respectively. Also, z € C" in the C" and P" (local chart in this
setting) case; and |z| < 1 in the hyperbolic space case. The curvature tensor is given
by

n n
0;j = K< > hygdz Adz—,)ai,- — kY hgdz Adz;
k,l=1 =1
and
R =« (highyg + hyghip).

Complex space forms are certainly pseudo-conformally flat.
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Bochner—Ka‘hli Manifolds Let (M,w) be a Kéhler manifold. Write w =
Zﬁ gl.;dz,' ® dz;j in a local holomorphic chart. The Bochner curvature tensor of
(M, w) is defined as the following tensor:

gpaRpz + goaRps + gpz Rpa + &p5 Rpw
n—+2

Bgaps = Rpaps —

R(gpagps + gpagps)
n+1Dn+2)

where R,z 5 is the curvature tensor of (M, ), Raﬁ is the Ricci tensor, and R is
the scalar curvature of (M, w). (M, w) is called a Bochner—Kéhler manifold if its
Bochner curvature tensor is identically zero. There have been extensive studies on
Bochner—Kihler manifolds in the literature, for which we refer the reader to the paper
of Bryant [1]. Bochner—Ké&hler manifolds are pseudo-conformally flat in our defini-
tion.

9 Proof of Theorem 1.4

To prove Theorem 1.4, for any point ug € X, let z = (zy,...,2,) be a holomor-
phic coordinate system of f(X) at zo = f(uo), and Z = (21, ..., Zn> Zn+1» -+ ZN)
an extension of (z1,...,2,) to a coordinate system of Y at zg. We shall fix the
following convention for indices: 1 <i,j,...,< N, 1 <ea,B,u,v,y,6,...,<n,
n+l1<a,b,A,B,...,<N.

Let us denote by gw,.7 the Hermitian metric of (¥, o) and Iéifki the curvature tensor
of this metric on Y. Let us denote by 848 the restriction metric of the metric g;= on
f(X) and R 7 —_ the curvature tensor of this induced metric 8q4p O f(X).

afyoc
By the Gauss—Codazzi equation, we have the following equation of tensors:

5 A 7B 5
Ry gyslrx) — Rypgys = hay higs8as (34)
00 —
where hgy =g % is the second fundamental form of f(X) in Y.

Since (Y, o) is pseudo-conformally flat, the restriction of the curvature also satis-
fies

Ry5y51r00 = (Gogéuv + G 5éav + Gond s + Guvdod) | 1) (35)
where G B> Gag, G;U, G uv are some Hermitian matrices on f(X).

Since (X, w) is pseudo-conformally flat, so is (f(X), (f~")*(w)). Since f is
holomorphic conformal, we have (f~!)*w =k'c| f(x) for a certain positive constant
k' > 0. By the assumption that (X, w) is pseudo-conformally flat, we conclude that
(f(X), ol fx)) is also pseudo-conformally flat. Hence the curvature tensor RaEyE is
conformally flat on f(X) and it can be written as

RgEyE = HaEgui + I‘Aluggav + H(;:Ug,uﬁ + ﬁ;ﬁgag (36)

A ~

where Ha?’ H,, H;v’ H,5 are some Hermitian matrices on f(X).
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By (34), (35), and (36), we have

(Gupus + G ipiar + Glsl i + Crniap) O XX XV X7

- (Haﬁg/ﬁ + I:Iuﬁgai + H;Eguﬁ + ﬁlﬁgaﬁ) (ZO)XaYﬂXMF
= (hg, hB X XPX'XV, 8 45)(z0) (37)
for any X = (X%) = (X#) = (X*) = (X") e C".
By the same calculation as in (6), the left-hand side of (37) is equal to

IXI?A(X,X). Since N—n<2n—1—n=n— 1, we can apply Lemma 2.1 to
conclude

N
> hl, o)X XP hE (z0)X"X78 45(z0) =0, VX eC".
A,B=n+1
Since the Hermitian metric (g 4% (20)) is positive definite, héﬂ (zo) =0 for all o, u,

and A. Since this holds for any point z in X, we have proved that the second fun-
damental form of f(X) is identically zero, and hence f(X) is totally geodesic in ¥,
proving Theorem 1.4.
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