Linearity And Second Fundamental Forms For Proper Holomorphic Maps From \mathbb{B}^{n+1} to $\mathbb{B}^{4 n-3}$

Xiaoliang Cheng and Shanyu Ji

March 1, 2011

1 Introduction

In CR geometry, by spherical CR manifold, we mean a ($2 n+1$)-dimension CR manifold M that is locally CR equivalent to a piece of the sphere $\partial \mathbb{B}^{n+1}$ in \mathbb{C}^{n+1}. In general, the universal covering space of a spherical CR manifold may not be $\partial \mathbb{B}^{n+1}$ and the fundamental group of M may not be finite. For example, Burns-Schnider [BS76] constructed a compact real analytic CR spherical submanifold of dimension 3 in \mathbb{C}^{3} with fundamental group of infinite order. However, it is proved by Huang ([H06], corollary 3.3) that any $2 n+1$-dimensional compact (Nash) algebraic spherical CR submanifold of \mathbb{C}^{m}, with $n \geq 1$, is CR equivalent to $\partial \mathbb{B}^{n+1} / \Gamma$ where $\Gamma \subset A u t\left(\mathbb{B}^{n+1}\right)$ is a finite unitary group with the only free points at 0 and $A u t\left(\mathbb{B}^{n+1}\right)$ is the group of biholomorphisms of \mathbb{B}^{n+1}. This implies that if $M \subset \partial \mathbb{B}^{N+1}$ is a compact spherical CR submanifold of dimension $2 n+1$, by the argument in [H06], theorem 3.1, M is Nash algebraic if and only if $M=F\left(\partial \mathbb{B}^{n+1}\right)$ where $F: \mathbb{B}^{n+1} \rightarrow \mathbb{B}^{N+1}$ is a proper rational holomorphic map. By Klein's Erlanger program, we should study such submanifolds $M \subset \partial \mathbb{B}^{N+1}$ and the invariant properties under the transitive action of the automorphism group $\operatorname{Aut}\left(\partial \mathbb{B}^{N+1}\right)$ where $\operatorname{Aut}\left(\partial \mathbb{B}^{N+1}\right)$ is the group of CR automorphisms. Elements in both $\operatorname{Aut}\left(\mathbb{B}^{N+1}\right)$ and $A u t\left(\partial \mathbb{B}^{N+1}\right)$ are linear fractional.

Let us denote by $\operatorname{Prop}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ the space of all proper holomorphic maps from the unit ball $\mathbb{B}^{n+1} \subset \mathbb{C}^{n+1}$ to \mathbb{B}^{N+1}, and denote by $\operatorname{Prop}_{k}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ the space $\operatorname{Prop}\left(\mathbb{B}^{n+1}\right.$, $\left.\mathbb{B}^{N+1}\right) \cap C^{k}\left(\overline{\mathbb{B}^{n+1}}\right)$. Write $\mathbb{H}^{n+1}:=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}: \operatorname{Im}(w)>|z|^{2}\right\}$ for the Siegel upper-half space. Similarly, we can define the space $\operatorname{Prop}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ and $\operatorname{Prop}_{k}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$. By the Cayley transformation $\rho_{n+1}: \mathbb{H}^{n+1} \rightarrow \mathbb{B}^{n+1}, \rho_{n+1}(z, w)=\left(\frac{2 z}{1-i w}, \frac{1+i w}{1-i w}\right)$, we can identify
a map $F \in \operatorname{Prop}_{k}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ with $\rho_{N+1}^{-1} \circ F \circ \rho_{n+1}$ in the space $\operatorname{Prop}_{k}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$. For any map $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$, the restriction $F: \partial \mathbb{H}^{n+1} \rightarrow \partial \mathbb{H}^{N+1}$ is a C^{2}-smooth CR map.

For $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$, we denote $M=F\left(\partial \mathbb{H}^{n+1}\right)$ which is an immersed C^{2}-smooth CR submanifold. It is known that the following statements are equivalent:

- F is linear fractional.
- The geometric rank of F is zero (cf. [H03], and [HJ01], proposition 2.2).
- The CR second fundamental form $I I_{M}^{C R} \equiv 0$ (cf. [JY10]. Although the smoothness condition was required there, by checking the proof, C^{2} smoothness is sufficient. For the definition of $I I_{M}^{C R}$, also see (33) below).
$I I_{M}^{C R}$ was defined by Cartan's moving frame theory. Again by Cartan's moving frame theory, another second fundamental form $I I_{M}$ can be naturally defined (see the definition in (31) below). We observe that F is linear fractional if and only if $I I_{M} \equiv 0$ (see Corollary 5.2 below).

In this paper, we want to prove the following criterion for linearity.
Theorem 1.1 Let $F \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ with $4 \leq n+1<N+1 \leq 4 n-3$. Then F is linear fractional if and only if

$$
\begin{equation*}
I I_{M}-I I_{M}^{C R} \equiv 0 \tag{1}
\end{equation*}
$$

Roughly speaking, by the decomposition $T M=T^{1,0} M \oplus \mathbb{R} \xi$ in (6), we obtain the decomposition $I I_{M}=I I_{M}^{C R} \oplus\left(I I_{M}-I I_{M}^{C R}\right)$. While $I I_{M} \equiv 0 \Leftrightarrow I I_{M}^{C R} \equiv 0$, the above shows that it is also equivalent to $I I_{M}-I I_{M}^{C R} \equiv 0$. For the definition of $I I_{M}-I I_{M}^{C R}$, see (35). By the condition that $N+1 \leq 4 n-3$ together with the inequality $N \geq n+\frac{\left(2 n+1-\kappa_{0}\right) \kappa_{0}}{2}$ (cf. Lemma 2.1 (i)), it implies the geometric rank κ_{0} of F satisfies $\kappa_{0} \leq 2$. The condition that $4 \leq n+1$ is used to ensure the inequality $\kappa_{0} \leq n-1$ holds, which allows us to apply the semilinearity property (cf. [H03]). The conditions $N+1 \leq 4 n-3$ and $F \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ also imply that F is a rational map ([HJX05], corollary 1.3) so that we indeed deal with real analytic CR manifolds and CR maps in this paper.

The condition $I I_{M}-I I_{M}^{C R} \equiv 0$ indeed means (see (73) below):

$$
\begin{equation*}
\left.\frac{\partial^{2} \phi_{j l, p}^{* *}}{\partial z_{k} \partial w}\right|_{0}=0, \quad \forall(j, l) \in \mathcal{S}, \quad 1 \leq k \leq \kappa_{0}, \quad \forall p \in \partial \mathbb{H}^{n+1} \tag{2}
\end{equation*}
$$

As an explicit example, we would like to mention a map $F \in \operatorname{Rat}\left(\mathbb{H}^{4}, \mathbb{H}^{9}\right)$ in $([J X 04]$, theorem 6.1) which is not linear, and does not satisfy (2).

The authors conjecture that the coniditon " $N+1 \leq 4 n-3$ " in Theorem 1.1 can be dropped.

2 Preliminaries

On CR mappings between Heisenberg hyperplanes We say that F and $G \in$ $\operatorname{Prop}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ are equivalent if there are automorphisms $\sigma \in A u t\left(\mathbb{B}^{n+1}\right)$ and $\tau \in \operatorname{Aut}($ $\left.\mathbb{B}^{N+1}\right)$ such that $F=\tau \circ G \circ \sigma$. We say that F and $G \in \operatorname{Prop}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ are equivalent if there are automorphisms $\sigma \in \operatorname{Aut}\left(\mathbb{H}^{n+1}\right)$ and $\tau \in A u t\left(\mathbb{H}^{N+1}\right)$ such that $F=\tau \circ G \circ \sigma$.

We denote by $\partial \mathbb{H}^{n+1}=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}: \operatorname{Im}(w)=|z|^{2}\right\}$ the Heisenberg hypersurface. For any map $F \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$, by restricting to $\partial \mathbb{H}^{n+1}$, we can regard F as a $C^{2} \mathrm{CR}$ map from $\partial \mathbb{H}^{n+1}$ to $\partial \mathbb{H}^{N+1}$, and we denote it as $F \in C R_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$. We say that F and $G \in C R_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ are equivalent if there are automorphisms $\sigma \in A u t\left(\partial \mathbb{H}^{n+1}\right) \simeq$ $A u t\left(\mathbb{H}^{n+1}\right)$ and $\tau \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right) \simeq A u t\left(\mathbb{H}^{N+1}\right)$ such that $F=\tau \circ G \circ \sigma$.

We can parametrize $\partial \mathbb{H}^{n+1}$ by (z, \bar{z}, u) through the map $(z, \bar{z}, u) \rightarrow\left(z, u+i|z|^{2}\right)$. In what follows, we will assign the weight of z and u to be 1 and 2 , respectively. For a nonnegative integer m, a function $h(z, \bar{z}, u)$ defined over a small ball U of 0 in $\partial \mathbb{H}^{n+1}$ is said to be of quantity $o_{w t}(m)$ if $\frac{h\left(t z, t z, t^{2} u\right)}{|t|^{m}} \rightarrow 0$ uniformly for (z, u) on any compact subset of U as $t(\in \mathbb{R}) \rightarrow 0$.

Let $F=(f, \phi, g)=(\widetilde{f}, g)=\left(f_{1}, \cdots, f_{n}, \phi_{1}, \cdots, \phi_{N-n}, g\right) \in C R_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ with $F(0)=0$. For each $p=\left(z_{0}, w_{0}\right) \in \partial \mathbb{H}^{n+1}$, we write $\sigma_{p}^{0} \in \operatorname{Aut}\left(\mathbb{H}^{n+1}\right)$ with $\sigma_{p}^{0}(0)=p$ and $\tau_{p}^{F} \in \operatorname{Aut}\left(\mathbb{H}^{N+1}\right)$ with $\tau_{p}^{F}(F(p))=0$ for the maps

$$
\begin{align*}
& \sigma_{p}^{0}(z, w)=\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right) \tag{3}\\
& \tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\left.\widetilde{f}\left(z_{0}, w_{0}\right)\right\rangle}\right)\right. \tag{4}
\end{align*}
$$

For each $p \in \partial \mathbb{H}^{n+1}$, there is an automorphism $\tau_{p}^{* *} \in A u t_{0}\left(\mathbb{H}^{N+1}\right)$ such that (cf, [HJ01], lemma 2.1) $F_{p}^{* *}:=\tau_{p}^{* *} \circ F_{p}=\left(f_{p}^{* *}, \phi_{p}^{* *}, g_{p}^{* *}\right)$ satisfies

$$
\begin{equation*}
f_{p}^{* *}=z+\frac{i}{2} e_{p}^{(1)}(z) w+o_{w t}(3), \phi_{p}^{* *}=\phi_{p}^{(2)}(z)+o_{w t}(2), g_{p}^{* *}=w+o_{w t}(4) \tag{4}
\end{equation*}
$$

with $\left\langle\bar{z}, e_{p}^{(1)}(z)\right\rangle|z|^{2}=\left|\phi_{p}^{(2)}(z)\right|^{2}$ where we denote by $h^{(j)}(z)$ a certain weighted holomorphic homogeneous polynomial with weighted degree j.

Let $\mathcal{A}(p)=-2 i\left(\left.\frac{\partial^{2}\left(f_{p}\right)_{t}^{* *}}{\partial z_{j} \partial w}\right|_{0}\right)_{1 \leq j, l \leq n}$. We call the rank of $\mathcal{A}(p)$, which we denote by $R k_{F}(p)$, the geometric rank of F at $p . R k_{F}(p)$ depends only on p and F, and is a lower semi-continuous function on p. We define the geometric rank of F to be $\kappa_{0}(F)=\max _{p \in \partial \mathbb{H}^{n+1}} R k_{F}(p)$. Notice that we always have $0 \leq \kappa_{0} \leq n$. We define the geometric rank of $F \in \operatorname{Prop}_{2}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ to be the one for the map $\rho_{N}^{-1} \circ F \circ \rho_{n} \in \operatorname{Prop}_{2}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$.

Lemma 2.1 ([H03], Lemma 3.2 and 3.3) (i) Let F be a C^{2}-smooth $C R$ map from an open piece $M \subset \partial \mathbb{H}^{n+1}$ into $\partial \mathbb{H}^{N+1}$ with $F(0)=0$ and $R k_{F}(0)=\kappa_{0}$. Let $P\left(n, \kappa_{0}\right)=\frac{\kappa_{0}\left(2 n-\kappa_{0}+1\right)}{2}$. Then $N \geq n+1+P\left(n, \kappa_{0}\right)$ and there are $\sigma \in A u t_{0}\left(\partial \mathbb{H}^{n+1}\right)$ and $\tau \in A u t_{0}\left(\partial \mathbb{H}^{N+1}\right)$ such that $F_{p}^{* * *}=\tau \circ F \circ \sigma:=(f, \phi, g)$ satisfies the following normalization conditions:

$$
\left\{\begin{align*}
f_{j} & =z_{j}+\frac{i \mu_{j}}{2} z_{j} w+o_{w t}(3), \quad \frac{\partial^{2} f_{j}}{\partial w^{2}}(0)=0, j=1 \cdots, \kappa_{0}, \mu_{j}>0 \tag{5}\\
f_{j} & =z_{j}+o_{w t}(3), \quad j=\kappa_{0}+1, \cdots, n \\
\phi_{j l} & =\mu_{j l} z_{j} z_{l}+o_{w t}(2), \quad \text { with }(j, l) \in \mathcal{S} \\
g & =w+o_{w t}(4)
\end{align*}\right.
$$

where $\mu_{j l}>0$ for $(j, l) \in \mathcal{S}_{0}$, and $\mu_{j l}=0$ otherwise. More precisely, $\mu_{j l}=\sqrt{\mu_{j}+\mu_{l}}$ for $j, l \leq \kappa_{0} j \neq l, \mu_{j l}=\sqrt{\mu_{j}}$ if $j \leq \kappa_{0}$ and $l>\kappa_{0}$ or if $j=l \leq \kappa_{0}$.
(ii) If, in addition, $F \in \operatorname{Prop}_{3}\left(\mathbb{B}^{n+1}, \mathbb{B}^{N+1}\right)$ with $0<\kappa_{0}<n$, then

$$
\left.\frac{\partial^{2} \phi_{j l}}{\partial z_{k} \partial w}\right|_{0}=0,\left.\quad \frac{\partial^{2} \phi_{j l}}{\partial w^{2}}\right|_{0}=0, \quad \forall(j, l) \in \mathcal{S}, k>\kappa_{0}
$$

On CR submanifolds Let M be a smooth strictly pseudoconvex ($2 n+1$)-dimensional CR manifold. We denote by $H M \subset T M$ its maximal complex tangent bundle with the complex structure $J: H M \rightarrow H M$. Suppose that M is of hypersurface type, i.e., $\operatorname{dim}_{\mathbb{R}} H M=2 n$. Consider the natural extension of J on $H M \otimes \mathbb{C} \subset T M \otimes \mathbb{C}$. The eigenvalues of J in $H M \otimes \mathbb{C}$ is $\pm i$. We denote by $T^{1,0} M$ and $T^{0,1} M$ the eigenspaces of J and have the decomposition $H M \otimes \mathbb{C}=T^{1,0} M \oplus T^{0,1} M$. All $H M, T^{1,0} M$ and $T^{0,1} M$ are complex vector bundles over M of rank n. There is a \mathbb{C}-linear isomorphism: $H M \rightarrow T^{1,0} M, v \mapsto \frac{1}{2}(v-i J(v))$.

Let $H^{0} M$ be the annihilator bundle of $H M$ which is a rank one subbundle. It is known that there exist a real globally defined nowhere zero 1 -form $\theta \in \Gamma\left(M, H^{0} M\right)$ such that $\operatorname{Ker}(\theta)=H M$. If M is locally defined by a defining function r, then we can take $\theta=i \partial r$. The Levi-form L_{θ} with respect to θ is defined by $L_{\theta}(X, Y):=-i d \theta(X \wedge J(Y))=i \theta([X, J Y])$, $\forall X, Y \in \Gamma(M, H M)$. By $H M \simeq T^{1,0} M$, we have

$$
L_{\theta}(u, v):=-i d \theta(u \wedge \bar{v})=i \theta([u, \bar{v}]), \quad \forall u, v \in T_{p}^{1,0}(M), \quad \forall p \in M .
$$

Recall that (M, θ) is strictly pseudoconvex if the Levi-form L_{θ} is positive definite for all $z \in M$. Such real non-vanishing 1-form θ over M is a contact form because it satisfies: $\theta \wedge(d \theta)^{n} \neq 0$. Associated with a contact form θ, there is a unique Reeb vector field ξ, defined by the equations: (i) $\theta(\xi) \equiv 1$, (ii) $d \theta(\xi, X) \equiv 0$ for any smooth vector field X over M. We have orthogonal decomposition $T M \simeq H M \oplus \mathbb{R} \xi$, or by $H M \simeq T^{1,0} M$, we have

$$
\begin{equation*}
T M \simeq T^{1,0} M \oplus \mathbb{R} \xi \tag{6}
\end{equation*}
$$

Here $\left.g_{\theta}\right|_{H M}=L_{\theta}$ and $g_{\theta}(\xi, \xi)=1$ defines the Webster metric associated to θ.

3 Cartan's moving frame theory

Q-frames We consider the real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$
\begin{equation*}
\langle Z, Z\rangle:=\sum_{A} Z^{A} \overline{Z^{A}}+\frac{i}{2}\left(Z^{N+1} \overline{Z^{0}}-Z^{0} \overline{Z^{N+1}}\right)=0 \tag{7}
\end{equation*}
$$

where $Z=\left(Z^{0}, Z^{A}, Z^{N+1}\right)^{t} \in \mathbb{C}^{N+2}$. This can be extended to the scalar product

$$
\begin{equation*}
\left\langle Z, Z^{\prime}\right\rangle:=\sum_{A} Z^{A} \overline{Z^{\prime A}}+\frac{i}{2}\left(Z^{N+1} \overline{Z^{\prime 0}}-Z^{0} \overline{Z^{\prime N+1}}\right) \tag{8}
\end{equation*}
$$

for any $Z=\left(Z^{0}, Z^{A}, Z^{N+1}\right)^{t}, Z^{\prime}=\left(Z^{\prime 0}, Z^{\prime A}, Z^{N+1}\right)^{t} \in \mathbb{C}^{N+2}$. This product has the properties: $\left\langle Z, Z^{\prime}\right\rangle$ is linear in Z and anti-linear in $Z^{\prime} ; \overline{\left\langle Z, Z^{\prime}\right\rangle}=\left\langle Z^{\prime}, Z\right\rangle$; and Q is defined by $\langle Z, Z\rangle=0$.

Let $S U(N+1,1)$ be the group of unimodular linear homogeneous transformations of \mathbb{C}^{N+2} that leave the form $\langle Z, Z\rangle$ invariant (cf. [CM74]). By a unimodular of linear homogeneous transformation, in terms of a matrix A, we mean $\operatorname{det}(A)=1$.

By a Q-frame is meant an element $E=\left(E_{0}, E_{A}, E_{N+1}\right) \in G L\left(\mathbb{C}^{N+2}\right)$ satisfying (cf. [CM74, (1.10)])

$$
\left\{\begin{array}{l}
\operatorname{det}(E)=1 \tag{9}\\
\left\langle E_{A}, E_{B}\right\rangle=\delta_{A B},\left\langle E_{0}, E_{N+1}\right\rangle=-\left\langle E_{N+1}, E_{0}\right\rangle=-\frac{i}{2}
\end{array}\right.
$$

while all other products are zero.
There is exactly one transformation of $S U(N+1,1)$ which maps a given Q-frame into another. By fixing one Q-frame as reference, the group $S U(N+1,1)$ can be identified with the space of all Q-frames. Then $S U(N+1,1) \subset G L\left(\mathbb{C}^{N+2}\right)$ is a subgroup with the composition operation.
The Q-frame bundle over $\mathbb{C P}^{N+1} \quad$ Consider an element $A \in G L\left(\mathbb{C}^{N+2}\right)$:

$$
A=\left(a_{0}, \ldots, a_{N+1}\right)=\left[\begin{array}{cccc}
a_{0}^{(0)} & a_{1}^{(0)} & \ldots & a_{N+1}^{(0)} \tag{10}\\
a_{0}^{(1)} & a_{1}^{(1)} & \ldots & a_{N+1}^{(1)} \\
\vdots & \vdots & & \vdots \\
a_{0}^{(N+1)} & a_{1}^{(N+1)} & \ldots & a_{N+1}^{(N+1)}
\end{array}\right],
$$

where each a_{j} is a column vector in $\mathbb{C}^{N+2}, 0 \leq j \leq N+1$. This A is associated to an
automorphism $A^{\star} \in \operatorname{Aut}\left(\mathbb{C P}^{N+1}\right)$ given by

$$
A^{\star}\left(\left[z_{0}: z_{1}: \ldots: z_{N+1}\right]\right)=\left[A\left(\begin{array}{c}
z_{0} \tag{11}\\
\vdots \\
z_{N+1}
\end{array}\right)\right]=\left[\sum_{j=0}^{N+1} a_{j}^{(0)} z_{j}: \sum_{j=0}^{N+1} a_{j}^{(1)} z_{j}: \ldots: \sum_{j=0}^{N+1} a_{j}^{(N+1)} z_{j}\right] .
$$

When $a_{0}^{(0)} \neq 0$, in terms of the non-homogeneous coordinates $\left(w_{1}, \ldots, w_{N+1}\right), A^{\star}$ is a linear fractional from \mathbb{C}^{N+1} which is holomorphic near $(0, \ldots, 0)$:

$$
\begin{equation*}
A^{\star}\left(w_{1}, \ldots, w_{N+1}\right)=\left(\frac{\sum_{j=0}^{N+1} a_{j}^{(1)} w_{j}}{\sum_{j=0}^{N+1} a_{j}^{(0)} w_{j}}, \ldots, \frac{\sum_{j=0}^{N+1} a_{j}^{(N+1)} w_{j}}{\sum_{j=0}^{N+1} a_{j}^{(0)} w_{j}}\right), \quad \text { where } w_{j}=\frac{z_{j}}{z_{0}} \tag{12}
\end{equation*}
$$

We define a bundle map:

$$
\begin{array}{rll}
\pi: & G L\left(\mathbb{C}^{N+2}\right) & \rightarrow \mathbb{C P}^{N+1} \\
& A=\left(a_{0}, a_{1}, \ldots, a_{N+1}\right) & \mapsto \pi_{0}\left(a_{0}\right)
\end{array}
$$

where

$$
\begin{equation*}
\pi_{0}: \mathbb{C}^{N+2}-\{0\} \rightarrow \mathbb{C P}^{N+1}, \quad\left(z_{0}, \ldots, z_{N+1}\right) \mapsto\left[z_{0}: \ldots: z_{N+1}\right] \tag{13}
\end{equation*}
$$

be the standard projection. By taking restriction, we have the projection

$$
\begin{equation*}
\pi: S U(N+1,1) \rightarrow \partial \mathbb{H}^{N+1},\left(Z_{0}, Z_{A}, Z_{N+1}\right) \mapsto \operatorname{span}\left(Z_{0}\right) \tag{14}
\end{equation*}
$$

which is called a Q-frames bundle. We get $\partial \mathbb{H}^{N+1} \simeq S U(N+1,1) / P_{2}$ where P_{2} is the isotropy subgroup of $S U(N+1,1) . S U(N+1,1)$ acts on $\partial \mathbb{H}^{N+1}$ effectively.
The Maurer-Cartan form over $S U(N+1,1) \quad$ Consider $E=\left(E_{0}, E_{A}, E_{N+1}\right) \in S U(N+$ $1,1)$ as a local lift. Then the Maurer-Cartan form Θ on $S U(N+1,1)$ is defined by $d E=$ $\left(d E_{0}, d E_{A}, d E_{N+1}\right)=E \Theta$, or $\Theta=E^{-1} \cdot d E$, i.e.,

$$
d\left(\begin{array}{lll}
E_{0} & E_{A} & E_{N+1}
\end{array}\right)=\left(\begin{array}{lll}
E_{0} & E_{B} & E_{N+1}
\end{array}\right)\left(\begin{array}{ccc}
\Theta_{0}^{0} & \Theta_{A}^{0} & \Theta_{N+1}^{0} \tag{15}\\
\Theta_{0}^{B} & \Theta_{A}^{B} & \Theta_{N+1}^{B} \\
\Theta_{0}^{N+1} & \Theta_{A}^{N+1} & \Theta_{N+1}^{N+1}
\end{array}\right),
$$

where Θ_{A}^{B} are 1-forms on $S U(N+1,1)$. By (9) and (15), the Maurer-Cartan form Θ satisfies

$$
\begin{align*}
& \Theta_{0}^{0}+\overline{\Theta_{N+1}^{N+1}}=0, \Theta_{0}^{N+1}=\overline{\Theta_{0}^{N+1}}, \Theta_{N+1}^{0}=\overline{\Theta_{N+1}^{0}}, \tag{16}\\
& \Theta_{A}^{N+1}=2 \overline{\Theta_{0}^{A}}, \Theta_{N+1}^{A}=-\frac{i}{2} \overline{\Theta_{A}^{0}}, \Theta_{B}^{A}+\overline{\Theta_{A}^{B}}=0, \Theta_{0}^{0}+\Theta_{A}^{A}+\Theta_{N+1}^{N+1}=0,
\end{align*}
$$

where $1 \leq A, B \leq N$. For example, from $\left\langle E_{A}, E_{B}\right\rangle=\delta_{A B}$, by taking differentiation, we obtain

$$
\left\langle d E_{A}, E_{B}\right\rangle+\left\langle E_{A}, d E_{B}\right\rangle=0
$$

By (15), we have

$$
\left\{\begin{array}{l}
d E_{0}=E_{0} \Theta_{0}^{0}+\sum_{B} E_{B} \Theta_{0}^{B}+E_{N+1} \Theta_{0}^{N+1}, \\
d E_{A}=E_{0} \Theta_{A}^{0}+\sum_{B} E_{B} \Theta_{A}^{B}+E_{N+1} \Theta_{A}^{N+1}, \\
d E_{N+1}=E_{0} \Theta_{N+1}^{0}+\sum_{B} E_{B} \Theta_{N+1}^{B}+E_{N+1} \Theta_{N+1}^{N+1} .
\end{array}\right.
$$

Then

$$
\left\langle E_{0} \Theta_{A}^{0}+\sum_{C} E_{C} \Theta_{A}^{C}+E_{N+1} \Theta_{A}^{N+1}, E_{B}\right\rangle+\left\langle E_{A}, E_{0} \Theta_{B}^{0}+\sum_{D} E_{D} \Theta_{B}^{D}+E_{N+1} \Theta_{B}^{N+1}\right\rangle=0
$$

which implies $\Theta_{A}^{B}+\overline{\Theta_{B}^{A}}=0$. In particular, from (16), $\Theta_{A}^{0}=-2 i \overline{\Theta_{N+1}^{A}} . \Theta$ satisfies

$$
\begin{equation*}
d \Theta=-\Theta \wedge \Theta \tag{17}
\end{equation*}
$$

CR submanifolds of $\partial \mathbb{H}^{N+1} \quad$ Let $H: M^{\prime} \rightarrow \partial \mathbb{H}^{N+1}$ be a CR smooth embedding where M^{\prime} is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1}. We denote $M=H\left(M^{\prime}\right)$.

Let $\xi_{M^{\prime}}$ be the Reeb vector field of M^{\prime} with respect to a fixed contact form on M^{\prime}. By (6), we have:

$$
\begin{equation*}
T M^{\prime} \simeq H M^{\prime} \oplus \mathbb{R} \xi_{M^{\prime}} \simeq T^{1,0} M^{\prime} \oplus \mathbb{R} \xi_{M^{\prime}} \tag{18}
\end{equation*}
$$

For example, if $M^{\prime}=\partial \mathbb{H}^{n+1}=\left\{\left(z_{1}, \ldots, z_{n}, z_{n+1}\right)\left|\operatorname{Im}\left(z_{n+1}\right)=|z|^{2}\right\}\right.$, then the above isomorphism is given by

$$
\begin{equation*}
\sum_{j=1}^{n}\left(a_{j} \frac{\partial}{\partial x_{j}}+b_{j} \frac{\partial}{\partial y_{j}}\right)+c \xi_{M^{\prime}} \mapsto \sum_{j=1}^{n}\left(a_{j}+i b_{j}\right) \frac{\partial}{\partial z_{j}}+c \xi_{M^{\prime}}, \text { where } a_{j}, b_{j}, c \in \mathbb{R} \tag{19}
\end{equation*}
$$

Since H is a CR embedding, we have

$$
\begin{gather*}
H_{*}\left(T^{1,0} M^{\prime}\right)=T^{1,0} M \subset T^{1,0}\left(\partial \mathbb{H}^{N+1}\right) \tag{20}\\
T M \simeq H_{*}\left(T^{1,0} M^{\prime}\right) \oplus H_{*}\left(\mathbb{R} \xi_{M^{\prime}}\right) \subset T\left(\partial \mathbb{H}^{N+1}\right) \tag{21}
\end{gather*}
$$

First-order adapted lifts In order to define more specific lifts, we need to give some relationship between geometry on $\partial \mathbb{H}^{N+1}$ and on \mathbb{C}^{N+2} as follows. For any subset $X \subset$ $\partial \mathbb{H}^{N+1}$, we denote $\hat{X}:=\pi_{0}^{-1}(X)$ where $\pi_{0}: \mathbb{C}^{N+2}-\{0\} \rightarrow \mathbb{C P}^{N+1}$ is the standard projection
map (13). In particular, for any $x \in M, \hat{x}$ is a complex line and for the real submanifold $M^{2 n+1}$, the real submanifold $\hat{M}^{2 n+3}$ is of dimension $2 n+3$.

For any $x \in M$, we take $v \in \hat{x}=\pi_{0}^{-1}(x) \subset \mathbb{C}^{N+2}-\{0\}$, and we define

$$
\hat{T}_{x} M=T_{v} \hat{M} \text { and } \hat{T}_{x}^{1,0} M=T_{v}^{1,0} \hat{M}
$$

These definitions are independent of choice of v. Notice that $\hat{T}_{x} M=\pi_{0}^{-1}\left(T_{x} M\right) \cup\{0\}$ and $\hat{T}_{x}^{1,0} M=\pi_{0}^{-1}\left(T_{x}^{1,0} M\right) \cup\{0\}$. We denote $\hat{\mathbb{R}} \xi_{M, x}:=\pi_{0}^{-1}\left(\mathbb{R} \xi_{M, x}\right) \cup\{0\}$.

Let $M \subset \partial \mathbb{H}^{N+1}$ be the image of $H: M^{\prime} \rightarrow \partial \mathbb{H}^{N+1}$ where $M^{\prime} \subset \mathbb{C}^{n+1}$ is a CR strictly pseudoconvex smooth hypersurface. Consider the inclusion map $M \hookrightarrow \partial \mathbb{H}^{N+1}$ and a C^{2} smooth lift $e=\left(e_{0}, e_{\alpha}, e_{\nu}, e_{N+1}\right)$ of M where $1 \leq \alpha \leq n$ and $n+1 \leq \nu \leq N$

We call e a first-order adapted lift if for any $x \in M$,

$$
\left\{\begin{array}{l}
\pi_{0}\left(e_{0}(x)\right)=x \tag{22}\\
\left.\mathbb{C} \otimes\left\{e_{0}+\sum_{\alpha} a_{\alpha} e_{\alpha} \mid a_{\alpha} \in \mathbb{C}\right\}\right|_{x}=\hat{T}_{x}^{1,0} M \\
\left.\mathbb{C} \otimes\left\{e_{0}+\sum_{\alpha} a_{\alpha} e_{\alpha}+b e_{N+1} \mid a_{\alpha} \in \mathbb{C}, b \in \mathbb{R}\right\}\right|_{x}=\hat{T}_{x}^{1,0} M \oplus \hat{\mathbb{R}} \xi_{M, x}
\end{array}\right.
$$

Locally first-order adapted lifts always exist (cf. [JY10], theorem 7.1). We have the restriction bundle $\mathcal{F}_{M}^{0}:=\left.S U(N+1,1)\right|_{M}$ over M. The subbundle $\pi: \mathcal{F}_{M}^{1} \rightarrow M$ of \mathcal{F}_{M}^{0} is defined by

$$
\mathcal{F}_{M}^{1}=\left\{\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right) \in \mathcal{F}_{M}^{0} \mid\left[e_{0}\right] \in M, \text { (22) are satisfied }\right\}
$$

Local sections of \mathcal{F}_{M}^{1} are exactly all local first-order adapted lifts of M. The fiber of π : $\mathcal{F}_{M}^{1} \rightarrow M$ over a point is isomorphic to the group

$$
G_{1}=\left\{g=\left(\begin{array}{cccc}
g_{0}^{0} & g_{\beta}^{0} & g_{\nu}^{0} & g_{N+1}^{0} \tag{23}\\
0 & g_{\beta}^{\alpha} & g_{\nu}^{\alpha} & g_{N+1}^{\alpha} \\
0 & 0 & g_{\nu}^{\mu} & 0 \\
0 & 0 & 0 & g_{N+1}^{N+1}
\end{array}\right) \in S U(N+1,1)\right\}
$$

where we use the index range $1 \leq \alpha, \beta \leq n$ and $n+1 \leq \mu, \nu \leq N$.
By (9), we have $\left\langle g_{0}, g_{N+1}\right\rangle=-\frac{i}{2}$, it implies $g_{0}^{0} \cdot \overline{g_{N+1}^{N+1}}=1$ so that $g_{N+1}^{N+1}=\frac{1}{\overline{g_{0}^{0}}}$. Since $\left\langle g_{0}, g_{\mu}\right\rangle=0$ and $g_{0}^{0} \neq 0$, it implies $g_{\mu}^{N+1}=0$. Since $\left\langle g_{\alpha}, g_{\beta}\right\rangle=\delta_{\alpha \beta}$, it implies that the matrix
$\left(g_{\alpha}^{\beta}\right)$ is unitary. Since $\operatorname{det}(g)=1$, it implies $g_{0}^{0} \cdot \operatorname{det}\left(g_{\alpha}^{\beta}\right) \cdot \operatorname{det}\left(g_{\mu}^{\nu}\right) \cdot g_{N+1}^{N+1}=1$. By (19) and (22), g_{N+1}^{N+1} is a real if $g_{N+1}^{0}=0 ; g_{N+1}^{N+1} / g_{N+1}^{0}$ is real if $g_{N+1}^{0} \neq 0$.

We pull back the Maurer-Cartan form from $S U(N+1,1)$ to \mathcal{F}_{M}^{1} by a first-order adapted lift e of M as

$$
\omega=\left(\begin{array}{cccc}
\omega_{0}^{0} & \omega_{\beta}^{0} & \omega_{\nu}^{0} & \omega_{N+1}^{0} \\
\omega_{0}^{\alpha} & \omega_{\beta}^{\alpha} & \omega_{\nu}^{\alpha} & \omega_{N+1}^{\alpha} \\
\omega_{0}^{\mu} & \omega_{\beta}^{\mu} & \omega_{\nu}^{\mu} & \omega_{N+1}^{\mu} \\
\omega_{0}^{N+1} & \omega_{\beta}^{N+1} & \omega_{\nu}^{N+1} & \omega_{N+1}^{N+1}
\end{array}\right) .
$$

Since $\omega=e^{-1} d e$, i.e., $e \omega=d e$. Then we have $d e_{0}=e_{0} \omega_{0}^{0}+\sum_{\alpha} e_{\alpha} \omega_{0}^{\alpha}+\sum_{\mu} e_{\mu} \omega_{0}^{\mu}+e_{N+1} \omega_{0}^{N+1}$. On the other hand, we have (cf.[JY10]) $d e_{0}=e_{0} \omega_{0}^{0}+\sum_{\alpha} e_{\alpha} \omega_{0}^{\alpha}+e_{N+1} \omega_{0}^{N+1}$ so that $\omega_{0}^{\mu}=$ $0, \forall \mu$. By the Maurer-Cartan equation $d \omega=-\omega \wedge \omega$, one gets $0=d \omega_{0}^{\nu}=-\sum_{\alpha} \omega_{\alpha}^{\nu} \wedge \omega_{0}^{\alpha}-$ $\omega_{N+1}^{\nu} \wedge \omega_{0}^{N+1}$, i.e., $0=-\sum_{j \in\{1,2, \ldots, n, N+1\}} \omega_{j}^{\nu} \wedge \omega_{0}^{j}$. Then by Cartan's lemma,

$$
\begin{equation*}
\omega_{k}^{\nu}=\sum_{j} q_{j k}^{\nu} \omega_{0}^{j} \tag{24}
\end{equation*}
$$

for some functions $q_{j k}^{\nu}=q_{k j}^{\nu}$.
Second fundamental form and CR second fundamental form For any first-order adapted lift $s=\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right)$ with $\pi_{0}\left(e_{0}\right)=x$, we have $e_{j} \in \hat{T}_{x}^{1,0} M$. Recall $T_{E} G(k, V) \simeq$ $E^{*} \otimes(V / E)$ where $G(k, V)$ is the Grassmannian of k-planes that pass through the origin in a vector space V over \mathbb{R} or \mathbb{C} and $E \in G(k, V)\left(\left[\right.\right.$ IL03], p.73). Then $T_{x} M \simeq(\hat{x})^{*} \otimes\left(\hat{T}_{x} M / \hat{x}\right)$. The vector e_{j} induces $\underline{e_{j}} \in T_{x} M$ by

$$
\underline{e}_{j}=e^{0} \otimes\left(e_{j} \bmod \left(e_{0}\right)\right) \in T_{\left[e_{0}\right]} M, \quad \forall j \in\{1,2, \ldots, n, N+1\}
$$

where we denote by $\left(e^{0}, e^{j}, e^{\mu}, e^{N+1}\right)$ the dual basis of $\left(\mathbb{C}^{N+2}\right)^{*}$. Similarly, we let

$$
\begin{equation*}
\underline{e}_{\mu}=e^{0} \otimes\left(e_{\mu} \bmod \left(\hat{T}_{\left[e_{0}\right]} M\right)\right) \in N_{\left[e_{0}\right]} M, \tag{25}
\end{equation*}
$$

where $N M$ is the normal bundle of M defined by $N_{x} M=T_{x}\left(\partial \mathbb{H}^{N+1}\right) / T_{x} M$.
We claim that

$$
\begin{equation*}
\sum_{j, k \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu \leq N} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu} \text {, is independent of choice of the lift } s . \tag{26}
\end{equation*}
$$

In fact, suppose that s and \widetilde{s} are both such lifts. Then

$$
\widetilde{s}=s g=s\left(\begin{array}{cccc}
g_{0}^{0} & g_{k}^{0} & g_{\mu}^{0} & g_{N+1}^{0} \tag{27}\\
0 & g_{k}^{j} & g_{\mu}^{j} & g_{N+1}^{j} \\
0 & 0 & g_{\mu}^{\nu} & 0 \\
0 & 0 & 0 & g_{N+1}^{N+1}
\end{array}\right)
$$

where g is some map from M to $G_{1} \subset S U(N+1,1)$. By the general transformation formula $\widetilde{\omega}=g^{-1} \omega g+g^{-1} d g$ (cf. (1.19) in [IL03]), we have

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\widetilde{\omega}_{0}^{0} & \widetilde{\omega}_{k}^{0} & \widetilde{\omega}_{\nu}^{0} & \widetilde{\omega}_{N+1}^{0} \\
\widetilde{\omega}_{0}^{j} & \widetilde{\omega}_{k}^{j} & \widetilde{\omega}_{\nu}^{j} & \widetilde{\omega}_{N+1}^{j} \\
0 & \widetilde{\omega}_{k}^{\mu} & \widetilde{\omega}_{\nu}^{\mu} & \widetilde{\omega}_{N+1}^{\mu} \\
\widetilde{\omega}_{0}^{N+1} & \widetilde{\omega}_{k}^{N+1} & 0 & \omega_{N+1}^{N+1}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
h_{0}^{0} & h_{t}^{0} & h_{\kappa}^{0} & h_{N+1}^{0} \\
0 & h_{t}^{j} & h_{\kappa}^{j} & h_{N+1}^{j} \\
0 & 0 & h_{\kappa}^{\mu} & 0 \\
0 & 0 & 0 & h_{N+1}^{N+1}
\end{array}\right)\left(\begin{array}{cccc}
\omega_{0}^{0} & \omega_{s}^{0} & \omega_{\ell}^{0} & \omega_{N+1}^{0} \\
\omega_{0}^{t} & \omega_{s}^{t} & \omega_{\ell}^{t} & \omega_{N+1}^{t} \\
0 & \omega_{s}^{\kappa} & \omega_{\ell}^{\kappa} & \omega_{N+1}^{\kappa} \\
\omega_{0}^{N+1} & \omega_{s}^{N+1} & 0 & \omega_{N+1}^{N+1}
\end{array}\right) \cdot\left(\begin{array}{cccc}
g_{0}^{0} & g_{k}^{0} & g_{\nu}^{0} & g_{N+1}^{0} \\
0 & g_{k}^{s} & g_{\nu}^{s} & g_{N+1}^{s} \\
0 & 0 & g_{\nu}^{\ell} & 0 \\
0 & 0 & 0 & g_{N+1}^{N+1}
\end{array}\right) \\
& +\left(\begin{array}{ccccc}
h_{0}^{0} & h_{t}^{0} & h_{\kappa}^{0} & h_{N+1}^{0} \\
0 & h_{t}^{j} & h_{\kappa}^{j} & h_{N+1}^{j} \\
0 & 0 & h_{\kappa}^{\nu} & 0 \\
0 & 0 & 0 & h_{N+1}^{N+1}
\end{array}\right)\left(\begin{array}{cccc}
d g_{0}^{0} & d g_{k}^{0} & d g_{\nu}^{0} & d g_{N+1}^{0} \\
0 & d g_{k}^{t} & d g_{\nu}^{t} & g_{N+1}^{t} \\
0 & 0 & d g_{\nu}^{\kappa} & 0 \\
0 & 0 & 0 & d g_{N+1}^{N+1}
\end{array}\right)
\end{aligned}
$$

where $h=g^{-1}$. Then we find

$$
\begin{equation*}
\widetilde{\omega}_{0}^{j}=\sum_{t} g_{0}^{0} h_{t}^{j} \omega_{0}^{t}, \quad \widetilde{\omega}_{k}^{\mu}=\sum_{\kappa, s} h_{\kappa}^{\mu} \omega_{s}^{\kappa} g_{k}^{s}, \quad j, k, t, s \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu, \kappa \leq N \tag{28}
\end{equation*}
$$

Also, from $\widetilde{s}=s \cdot g$, we obtain

$$
\widetilde{e}^{0}=h_{0}^{0} e^{0}, \quad \widetilde{e}_{\mu}=\sum_{k \in\{1,2, \ldots, n, N+1\}, n+1 \leq \nu \leq N}\left(g_{\mu}^{0} e_{0}+g_{\mu}^{k} e_{k}+g_{\mu}^{\nu} e_{\nu}\right) .
$$

Applying those formulas into $\widetilde{\omega}_{k}^{\mu}=\sum_{j} \widetilde{q}_{j k}^{\mu} \widetilde{\omega}_{0}^{j}$, we obtain $\sum_{\kappa, s} h_{\kappa}^{\mu} q_{t}^{\kappa} g_{k}^{s}=\sum_{j, t} \widetilde{q}_{j k}^{\mu} g_{0}^{0} h_{t}^{j}$, i.e.,

$$
\begin{equation*}
\tilde{q}_{j k}^{\mu}=h_{0}^{0} \sum_{\kappa, t, s} h_{\kappa}^{\mu} g_{k}^{s} g_{j}^{t} q_{t s}^{\kappa}, \tag{29}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sum_{\mu, j, k} \widetilde{q}_{j k}^{\mu} \widetilde{\omega}_{0}^{j} \widetilde{\omega}_{0}^{k} \otimes \widetilde{\widetilde{e}}_{\mu}=\sum_{\mu, j, k} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu} \tag{30}
\end{equation*}
$$

Thus (26) is proved so that the form

$$
\begin{equation*}
I I_{M}=\sum_{j, k \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu \leq N} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu} \in \Gamma\left(M, S^{2} T^{*} M \otimes N M\right) \tag{31}
\end{equation*}
$$

is independent of choice of first-order adapted lift s from M into $S U(N+1,1) . I I_{M}$ is called the second fundamental form of M.

Comparing the identity (30):

$$
\sum_{j, k \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu \leq N} \widetilde{q}_{j k}^{\mu} \widetilde{\omega}_{0}^{j} \widetilde{\omega}_{0}^{k} \otimes \underline{\widetilde{ }}_{\mu}=\sum_{j, k \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu \leq N} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu},
$$

it also holds that

$$
\begin{equation*}
\sum_{j, k \in\{1,2, \ldots, n\}, n+1 \leq \mu \leq N} \widetilde{q}_{j k}^{\mu} \widetilde{\omega}_{0}^{j} \widetilde{\omega}_{0}^{k} \otimes \underline{\widetilde{e}}_{\mu}=\sum_{j, k \in\{1,2, \ldots, n\}, n+1 \leq \mu \leq N} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu}, \quad \bmod \left(\omega_{0}^{N+1}\right) . \tag{32}
\end{equation*}
$$

From this, we define the $C R$ second fundamental form $I I_{M}^{C R}$ by moduling ω_{0}^{N+1} :

$$
\begin{equation*}
I I_{M}^{C R}=\sum_{j, k \in\{1,2, \ldots, n\}, n+1 \leq \mu \leq N} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu} \in \Gamma\left(M, S^{2} T^{1,0 *} M \otimes N M\right) \tag{33}
\end{equation*}
$$

Remark

1. The definition of $I I_{M}$ in (31) is similar to the one of the projective second fundamental form for complex submanifolds (cf. [IL03]).
2. The $I I_{M}^{C R}$ defined in (33) was studied in [Wang09] and in [JY10]. It was proved that $I I_{M}^{C R} \equiv 0$ if and only if F is linear fractional [JY10].
3. Let $s, s^{(1)}, s^{(2)}$ be three first-order adapted lifts with $I I_{M}^{s}=\sum_{j, k, \mu} q_{j k}^{\mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu}, I I_{M}^{s^{(1)}}=$ $\sum_{j, k, \mu} q_{j k}^{(1) \mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu}$, and $I I_{M}^{s^{(2)}}=\sum_{j, k, \mu} q_{j k}^{(2) \mu} \omega_{0}^{j} \omega_{0}^{k} \otimes \underline{e}_{\mu}$. Let $s^{(1)}=s g_{1}$ and $s^{(2)}=s g_{2}$ be as in (27). Suppose $g_{1}(p)=g_{2}(p)$ holds at one point $p \in M$. Then by (29), we have

$$
\begin{equation*}
q_{j k}^{(1) \mu}(p)=q_{j k}^{(2) \mu}(p) \tag{34}
\end{equation*}
$$

for any $j, k \in\{1,2, \ldots, n, N+1\}$ and $n+1 \leq \mu \leq N$.
By inclusion $T^{1,0 *} M \hookrightarrow T^{*} M \simeq T^{1,0 *} M \oplus(\mathbb{R} \xi)^{*}$, we can regard $I I^{C R} M \in \Gamma\left(M, T^{*} M \otimes\right.$ $N M)$. Then by (31) and (33), we have defined a section $I I_{M}-I I_{M}^{C R} \in \Gamma\left(M, T^{*} M \otimes N M\right)$, i.e., in terms of local coordinates,

$$
\begin{equation*}
I I_{M}-I I_{M}^{C R}=\sum_{1 \leq j, k \leq n, n+1 \leq \mu \leq N}\left(q_{j N+1}^{\mu} \omega_{0}^{j} \omega_{0}^{N+1}+q_{N+1 k}^{\mu} \omega_{0}^{N+1} \omega_{0}^{k}+q_{N+1 N+1}^{\mu} \omega_{0}^{N+1} \omega_{0}^{N+1}\right) \otimes \underline{e}_{\mu} \tag{35}
\end{equation*}
$$

Pulling back a lift Let $M \subset \partial \mathbb{H}^{N+1}$ be as above with a point $Q \in M$. Let $A \in S U(N+$ $1,1), A^{\star} \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right)$ with $A^{\star}(Q)=P$ and $\widetilde{M}=A^{\star}(M)$. Let $\widetilde{s}: \widetilde{M} \rightarrow S U(N+1,1)$ be a lift. We claim:

$$
\begin{equation*}
s(Q):=\left(A^{-1} \cdot \widetilde{s}\right)\left(A^{\star}(Q)\right) \tag{36}
\end{equation*}
$$

is also a lift from M into $S U(N+1,1)$. In fact, in order to prove that s is a lift from M into $S U(N+1,1)$, it suffices to prove: $\pi s=I d$. In fact, write $\widetilde{s}=\left(\widetilde{e}_{0}, \widetilde{e}_{A}, \widetilde{e}_{N+1}\right)$ and $s=\left(e_{0}, e_{A}, e_{N+1}\right)=\left(A^{-1} \widetilde{e}_{0}, A^{-1} \widetilde{e}_{A}, A^{-1} \widetilde{e}_{N+1}\right)$. Here $\left[\widetilde{e}_{0}\right](P)=P$ and $\left[e_{0}\right](Q)=Q$. Then $\pi s(Q)=\left[A^{-1} \widetilde{e}_{0}\right](Q)=\left[e_{0}\right](Q)=Q$ so that our claim is proved.

If, in addition, \widetilde{s} is a first-order adapted lift of \widetilde{M} into $S U(N+1,1), s$ is also a first-order adapted lift of M into $S U(N+1,1)$.

Let Ω be the Maurer-Cartan form over $S U(N+1,1)$. Denote $\omega=s^{*} \Omega$ and $\widetilde{\omega}=\widetilde{s}^{*} \Omega$. Since A is a matrix with constant entries, $\omega=(s)^{-1} d s=\left(A^{-1} \cdot \widetilde{s}\right)^{-1} d\left(A^{-1} \widetilde{s}\right)=\widetilde{s}^{-1} \cdot A \cdot A^{-1} d \widetilde{s}=$ $\widetilde{s}^{-1} d \widetilde{s}$, i.e.,

$$
\begin{equation*}
\omega=\left(A^{\star}\right)^{*} \widetilde{\omega} \tag{37}
\end{equation*}
$$

so that $\omega_{0}^{\alpha}=\left(A^{\star}\right)^{*} \widetilde{\omega}_{0}^{\alpha}$ and $\omega_{\beta}^{\mu}=\left(A^{\star}\right)^{*} \widetilde{\omega}_{\beta}^{\mu}$. The last equality yields

$$
\begin{equation*}
q_{\alpha \beta}^{\mu}=\widetilde{q}_{\alpha \beta}^{\mu} \circ A^{\star} \tag{38}
\end{equation*}
$$

[Example] Consider the maps in (3) and (4):

$$
\begin{aligned}
& \sigma_{p}^{0}(z, w)=\left(z+z_{0}, w+w_{0}+2 i\left\langle z, \overline{z_{0}}\right\rangle\right) \\
& \tau_{p}^{F}\left(z^{*}, w^{*}\right)=\left(z^{*}-\widetilde{f}\left(z_{0}, w_{0}\right), w^{*}-\overline{g\left(z_{0}, w_{0}\right)}-2 i\left\langle z^{*}, \overline{\left.\widetilde{f}\left(z_{0}, w_{0}\right)\right\rangle}\right)\right.
\end{aligned}
$$

where $p=\left(z_{0}, w_{0}\right), z \in \mathbb{C}^{n}, w=z_{n+1}, \sigma_{p}^{0} \in \operatorname{Aut}\left(\partial \mathbb{H}^{n+1}\right)$, and $\tau_{p}^{F} \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right)$.
By (10) and (12), these two maps correspond to two matrices:

$$
A_{\sigma_{p}^{0}}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \tag{39}\\
z_{01} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
z_{0 n} & 0 & \ldots & 1 & 0 \\
w_{0} & 2 i \overline{z_{01}} & \ldots & 2 i \overline{z_{0 n}} & 1
\end{array}\right] \in S U(n+1,1)
$$

and

$$
A_{\sigma_{p}^{F}}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \tag{40}\\
-\widetilde{f}_{01} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-\frac{\widetilde{f}_{0 N}}{-\overline{g\left(z_{0}, w_{0}\right)}} & -2 i \frac{\widetilde{f}_{1}\left(z_{0}, w_{0}\right)}{} & \ldots & -2 i \frac{1}{\widetilde{f}_{N}\left(z_{0}, w_{0}\right)} & 1
\end{array}\right] \in S U(N+1,1)
$$

where $z_{0}=\left(z_{01}, \ldots, z_{0 n}\right)$ and $w_{0}=z_{0 n+1}$.
[Example] Consider the map $F_{\lambda, r, \vec{a}, U}=(f, g) \in A u t_{0}\left(\partial \mathbb{H}^{n+1}\right)$

$$
f(z)=\frac{\lambda(z+\vec{a} w) U}{1-2 i\langle z, \overline{\vec{a}}\rangle-\left(r+i\|\vec{a}\|^{2}\right) w}, g(z)=\frac{\lambda^{2} w}{1-2 i\langle z, \overline{\vec{a}}\rangle-\left(r+i\|\vec{a}\|^{2}\right) w}
$$

where $\lambda>0, r \in \mathbb{R}, \vec{a} \in \mathbb{C}^{n}$ and $U=\left(u_{\alpha \beta}\right)$ is an $(n-1) \times(n-1)$ unitary matrix. By (10) and (12), its corresponding matrix,

$$
A_{F_{\lambda, r, \vec{a}, U}}=\left[\begin{array}{ccccc}
1 & -2 i \overline{a_{1}} & \ldots & -2 i \overline{a_{n}} & -\left(r+i\|\vec{a}\|^{2}\right) \tag{41}\\
0 & \lambda u_{11} & \ldots & \lambda u_{1 n} & \lambda a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \lambda u_{n 1} & \ldots & \lambda u_{n n} & \lambda a_{n} \\
0 & 0 & \ldots & 0 & \lambda^{2}
\end{array}\right]
$$

is not in $S U(n+1,1)$ in general. In fact, we can write

$$
\begin{equation*}
F_{\lambda, r, \vec{a}, U}=F_{\lambda, 0,0, I d} \circ F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} . \tag{42}
\end{equation*}
$$

or $A_{F_{\lambda, r, \vec{a}, U}}=A_{F_{\lambda, 0,0, I d}} \cdot A_{F_{1,0,0, U}} \cdot A_{F_{1, r, \vec{a}, I d}}$. Here $A_{F_{1,0,0, U}}$ and $A_{F_{1, r, \vec{a}, I d}}$ are in $S U(N+1,1)$; while $A_{F_{\lambda, 0,0, I d}}$ is in $S U(N+1,1)$ if and only if $\lambda=1$. Therefore

$$
\begin{equation*}
A_{F_{\lambda, r, \vec{a}, U}} \text { is in } S U(n+1,1) \text { if and only if } \lambda=1 . \tag{43}
\end{equation*}
$$

[Example] Let $G \in \operatorname{Aut}\left(\partial \mathbb{H}^{N+1}\right)$. Then G can be written as $G=\sigma_{F(0)}^{0} \circ F_{\rho, r, \vec{a}, U}$ where $F_{\rho, r, \vec{a}, U} \in A u t_{0}\left(\partial \mathbb{H}^{N+1}\right)$ as in the previous example. By (42), we have

$$
\begin{equation*}
G=\sigma_{F(0)}^{0} \circ F_{\lambda, 0,0, I d} \circ F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} . \tag{44}
\end{equation*}
$$

[Example] Let $A \in S U(N+1,1)$. From above, we know $A_{F_{\lambda, 0,0, I d}} \cdot A$ may not be in $S U(N+1,1)$ unless $\lambda=1$. However, it is possible to modify it so that the modified map is in $S U(N+1,1)$, namely, for any real number $\lambda \in \mathbb{R}$, we have

$$
\begin{equation*}
A_{F_{\lambda, 0,0, I d}} \cdot A \cdot A_{F_{\lambda, 0,0, I d}}{ }^{-1} \in S U(N+1,1) . \tag{45}
\end{equation*}
$$

In fact, we write $A=\left(A_{i j}\right)$. Then $A_{F_{\lambda, 0,0, I d}} \circ A \cdot A_{F_{\lambda, 0,0, I d}}{ }^{-1}=$

$$
\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda & 0 \\
0 & 0 & \ldots & 0 & \lambda^{2}
\end{array}\right]\left[\begin{array}{ccccc}
A_{00} & A_{01} & \ldots & A_{0 N} & A_{0, N+1} \\
A_{10} & A_{11} & \ldots & A_{1 N} & A_{1, N+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{N, 0} & A_{N, 1} & \ldots & A_{N, N} & A_{N, N+1} \\
A_{N+1,0} & A_{N+1,1} & \ldots & A_{N+1, N} & A_{N+1, N+1}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & \frac{1}{\lambda} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \frac{1}{\lambda} & 0 \\
0 & 0 & \ldots & 0 & \frac{1}{\lambda^{2}}
\end{array}\right]
$$

$$
\begin{aligned}
=\left[\begin{array}{ccccc}
A_{00} & A_{01} & \ldots & A_{0 N} & A_{0, N+1} \\
\lambda A_{10} & \lambda A_{11} & \ldots & \lambda A_{1 N} & \lambda A_{1, N+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda A_{N, 0} & \lambda A_{N, 1} & \ldots & \lambda A_{N, N} & \lambda A_{N, N+1} \\
\lambda^{2} A_{N+1,0} & \lambda^{2} A_{N+1,1} & \ldots & \lambda^{2} A_{N+1, N} & \lambda^{2} A_{N+1, N+1}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & \frac{1}{\lambda} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \frac{1}{\lambda} & 0 \\
0 & 0 & \ldots & 0 & \frac{1}{\lambda^{2}}
\end{array}\right] \\
=\left[\begin{array}{ccccc}
A_{00} & \frac{1}{\lambda} A_{01} & \ldots & \frac{1}{\lambda} A_{0 N} & \frac{1}{\lambda^{2}} A_{0, N+1} \\
\lambda A_{10} & A_{11} & \ldots & A_{1 N} & \frac{1}{\lambda} A_{1, N+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda A_{N, 0} & A_{N, 1} & \ldots & A_{N, N} & \frac{1}{\lambda} A_{N, N+1} \\
\lambda^{2} A_{N+1,0} & \lambda A_{N+1,1} & \ldots & \lambda A_{N+1, N} & A_{N+1, N+1}
\end{array}\right] \in S U(N+1,1) .
\end{aligned}
$$

If s is a first-order adapted lift, we can define $\widetilde{s}=A_{F_{\lambda, 0,0, I d}} \cdot s \cdot A_{F_{\lambda, 0,0, I d}}^{-1}$. Recall the pulling back Maurer-Cartan form by s is $\omega=s^{-1} d s$. Since $\widetilde{\omega}=\widetilde{s}^{-1} d \widetilde{s}=\left(A s A^{-1}\right)^{-1} d\left(A s A^{-1}\right)=$ $A \cdot s^{-1} d s \cdot A^{-1}=A \cdot \omega \cdot A^{-1}$. As above, we have

$$
\left[\begin{array}{ccccc}
\widetilde{\omega}_{0}^{0} & \widetilde{\omega}_{1}^{0} & \ldots & \widetilde{\omega}_{N}^{0} & \widetilde{\omega}_{N+1}^{0} \\
\widetilde{\omega}_{0}^{1} & \widetilde{\omega}_{1}^{1} & \ldots & \widetilde{\omega}_{N}^{1} & \widetilde{\omega}_{N+1}^{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\widetilde{\omega}_{0}^{N} & \widetilde{\omega}_{N}^{N} & \ldots & \widetilde{\omega}_{N}^{N} & \widetilde{\omega}_{N+1}^{N} \\
\widetilde{\omega}_{0}^{N+1} & \widetilde{\omega}_{1}^{N+1} & \ldots & \widetilde{\omega}_{N}^{N+1} & \widetilde{\omega}_{N+1}^{N+1}
\end{array}\right]=\left[\begin{array}{ccccc}
\omega_{0}^{0} & \frac{1}{\lambda} \omega_{1}^{0} & \ldots & \frac{1}{\lambda} \omega_{N}^{0} & \frac{1}{\lambda^{2}} \omega_{N+1}^{0} \\
\lambda \omega_{0}^{1} & \omega_{1}^{1} & \ldots & \omega_{N}^{1} & \frac{1}{\lambda} \omega_{N+1}^{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda \omega_{0}^{N} & \omega_{1}^{N} & \ldots & \omega_{N}^{N} & \frac{1}{\lambda} \omega_{N+1}^{N} \\
\lambda^{2} \omega_{0}^{N+1} & \lambda \omega_{1}^{N+1} & \ldots & \lambda \omega_{N}^{N+1} & \omega_{N+1}^{N+1}
\end{array}\right] .
$$

4 Geometric Rank, $I I_{M}$ and $I I_{M}^{C R}$

Lemma 4.1 (i) ([JY10], theorem 7.1) Let $F \in C R_{k}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ with $k \geq 2$ and $F(0)=$ 0 . Then there exists a neighborhood of 0 in $M:=F\left(\partial \mathbb{H}^{n+1}\right)$ and a C^{k-1}-smooth first-order adapted lift $e: U \rightarrow S U(N+1,1)$

$$
\begin{equation*}
e=\left(e_{0}, e_{j}, e_{b}, e_{N+1}\right) \in S U(N+1,1), \quad 1 \leq j \leq n, n+1 \leq b \leq N \tag{46}
\end{equation*}
$$

(ii) ([JY10], Step 3 of the proof of Theorem 1.1) Let $F=F^{* * *}=(f, \phi, g)$, the induced first-order adapted lift s, and notation be as in Lemma 2.1. Then

$$
\begin{equation*}
\left.h_{j, k}^{\mu}\right|_{0}=\left.\frac{\partial^{2} \phi_{\mu}}{\partial z_{j} \partial z_{k}}\right|_{0}, \quad j, k \in\{1,2, \ldots, n, N+1\} \tag{47}
\end{equation*}
$$

where $h_{j k}^{\mu}$ are defined in (31) and in (33).

Theorem 4.2 Let $F \in C R_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$. Then its geometric rank κ_{0} equals to

$$
\kappa_{0}=\sup _{p \in \partial \mathbb{H}^{n+1}}\left[n-\operatorname{dim}_{\mathbb{C}}\left\{\nu \mid I I_{M, F(p)}^{C R}(\nu, \nu)=0\right\}\right]
$$

where $I I_{M, F(p)}^{C R}$ is the CR second fundamental form of the submanifold M at the point $F(p)$. Here $\left\{\nu \mid I I_{M, F(p)}^{C R}(\nu, \nu)=0\right\}$ is a vector space over \mathbb{C}.

Let $M \subset \partial \mathbb{H}^{N+1}$ be a CR submanifold which is the image of a smooth CR hypersurface in \mathbb{C}^{n+1} by a C^{2}-smooth CR map. Fixing one first-order adapted lift s, we write $I I_{M}^{C R}=$ $\sum_{\alpha, \beta, \mu} q_{\alpha \beta}^{\mu} \omega_{0}^{\alpha} \omega_{0}^{\beta} \otimes e_{\mu}, \bmod \left(\omega_{0}^{N+1}\right)$. Consider the set of vectors in \mathbb{C}^{n}, which is a variety defined by a quadratic polynomial and is called the set of asymptotic directions, defined by

$$
\begin{equation*}
\text { Baseloc }\left|I I_{M, x}^{C R}\right|:=\left\{v=\left(v^{\alpha}\right) \in \mathbb{C}^{n} \mid \sum_{\alpha, \beta} q_{\alpha \beta}^{\mu}(x) v^{\alpha} v^{\beta}=0, \quad \forall n+1 \leq \mu \leq N\right\} \tag{48}
\end{equation*}
$$

which is independent of the choice of the lift s.
Recall from [H99], lemma 5.3, that for any $p \in \partial \mathbb{H}^{n}$, the induced map $F=F^{* *}$ satisfies

$$
\begin{equation*}
\left\langle\bar{z}, e^{(1)}(z)\right\rangle|z|^{2}=\left|\phi^{(2)}(z)\right|^{2}, \quad \forall z \in \partial \mathbb{H}^{n} . \tag{49}
\end{equation*}
$$

where $e^{(1)}(z)=-\left.2 i \sum_{j} \frac{\partial^{2} f}{\partial z_{j} \partial w}\right|_{0} z_{j}$.
Then by Lemma 4.1 (ii), any vector $v=\left(v_{1}, \ldots, v_{n}\right) \in$ Baseloc $\left|I I_{M, F(0)}^{C R}\right|$ if and only if $\left.\sum_{i, j} \frac{\partial^{2} \phi_{\mu}}{\partial z_{i} \partial z_{j}}\right|_{0} v_{i} v_{j}=0, \forall \mu$. Then by (49), the statement is equivalent to $\left\langle\bar{v}, e^{(1)}(v)\right\rangle=0$. Since the matrix $\left(-\left.2 i \frac{\partial^{2} f}{\partial z_{j} \partial w}\right|_{0}\right)$ is semi-positive, the statement is equivalent to $e^{(1)}(v)=0$, i.e.,

$$
\begin{equation*}
\text { Baseloc }\left|I I_{M, 0}^{C R}\right|=\left\{v:-\left.2 i \sum_{j} \frac{\partial^{2} f}{\partial z_{j} \partial w}\right|_{0} v_{j}=0\right\} \tag{50}
\end{equation*}
$$

which is a vector space over \mathbb{C}, so that it makes sense to define its dimension. Recall $R k_{F}(p)=\operatorname{rank}(\mathcal{A}(p))$. By the formulas of f_{j} in Lemma 2.1, we have

$$
\begin{equation*}
R k_{F}(0)=n-\operatorname{dim}_{\mathbb{C}} \text { Baseloc }\left|I I_{M, 0}^{C R}\right| \tag{51}
\end{equation*}
$$

Proof of Theorem 4.2: Step 1. The lift $s_{p}^{* * *}$ It suffices to prove

$$
\begin{equation*}
R k_{F}(p)=n-\operatorname{dim}_{\mathbb{C}} \text { Baseloc }\left|I I_{M, F(p)}^{C R}\right|, \quad \forall p \in \partial \mathbb{H}^{n+1} \tag{52}
\end{equation*}
$$

The case when $p=0$ has been proved in (51). Let us consider $p \in \partial \mathbb{H}^{n+1}$ with $P:=F(p) \neq 0$.

By the definition,

$$
\begin{equation*}
R k_{F}(p)=R k_{F_{p}^{* * *}}(0) \tag{53}
\end{equation*}
$$

Here we write $F_{p}^{* * *}=G_{p} \circ \tau_{p}^{F} \circ F \circ \sigma_{p}^{0} \circ H_{p}$ where τ_{p}^{F} is as in (4), σ_{p}^{0} is as in (3), $H_{p} \in$ Aut $t_{0}\left(\partial \mathbb{H}^{n+1}\right)$ and $G_{p} \in A u t_{0}\left(\partial \mathbb{H}^{N+1}\right)$. Since M is a real analytic hypersurface containing the point $P=F(p), G_{p} \circ \tau_{p}^{F}(M)$ is a real analytic hypersurface containing $0=\tau_{0}^{F}(P)$.

We consider

$$
\begin{array}{ccc}
(M, P) \\
\uparrow F & \xrightarrow{G_{p} \circ \tau_{p}^{F}} & \left(\begin{array}{c}
\left.G_{p} \circ \tau_{p}^{F}(M), 0\right) \\
\uparrow F_{p}^{* * *}
\end{array}\right. \tag{54}\\
\left(\partial \mathbb{H}^{n+1}, p\right) & \stackrel{\sigma_{p}^{0} \circ H_{p}}{\rightleftarrows} & \left(\partial \mathbb{H}^{n+1}, 0\right)
\end{array}
$$

Now from $F_{p}^{* * *}: \partial \mathbb{H}^{n+1} \rightarrow G_{p} \circ \tau_{0}^{F}(M)$, we can construct a first-order adapted lift $s_{p}^{* * *}$ of $G_{p} \circ \tau_{0}^{F}(M)$ as we constructed s from the map F in (46). Since $F \in \operatorname{Prop}_{k}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$, the lift $s_{p}^{* * *}$ is C^{k-1} smooth. Write the CR second fundamental form of $G_{p} \circ \tau_{0}^{F}(M)$ with respect to the lift $s_{p}^{* * *}$ as

$$
\begin{equation*}
I I_{M, P}^{C R\left(s_{p}^{* * *}\right)}=q_{i j}^{\mu\left(s_{p}^{* * *}\right)} \omega_{0}^{i\left(s_{p}^{* *}\right)} \omega_{0}^{j\left(s_{p}^{* * *}\right)} \otimes \underline{e}_{\mu}^{\left(s_{p}^{* *}\right)} . \tag{55}
\end{equation*}
$$

Step 2. Construct the lift s_{p}
Now we may try to define a first-order adapted lift from M into $S U(N+1,1)$ by (36):

$$
\begin{equation*}
s_{p}=\left(\tau_{p}^{F}\right)^{-1} \circ G_{p}^{-1} \circ s_{p}^{* * *} \circ G_{p} \circ \tau_{p}^{F} . \tag{56}
\end{equation*}
$$

Unfortunately, this lift s_{p} may not be a lift of M into $S U(N+1,1)$ (See the example in (43)). We have to modify the construction of (56) so that it is a first-order adapted lift of M into $S U(N+1,1)$ as follows.

Since $G_{p} \in A u t_{0}\left(\partial \mathbb{H}^{N+1}\right)$, we can write it as in (44):

$$
\begin{equation*}
G_{p}=F_{\lambda, 0,0, I d} \circ F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} . \tag{57}
\end{equation*}
$$

Here $F_{1,0,0, U}, F_{1, r, \vec{a}, I d} \in S U(N+1,1)$, but $F_{\lambda, 0,0, I d} \in S U(N+1,1)$ if and only if $\lambda=1$.
Now we begin to modify the s_{p} in (56).

- Lift from $F_{\lambda, 0,0, I d} \circ F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M) \quad$ For any $P \in G_{p} \circ \tau_{p}^{F}(M)$, the map

$$
\begin{equation*}
\left.P \mapsto s_{p}^{* * *}\right|_{P} \tag{58}
\end{equation*}
$$

is a first-ordered adapted lift from $G \circ \tau_{p}^{F}(M)$ into $S U(N+1,1)$.

- Lift from $F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M) \quad$ Then we consider $F_{\lambda, 0,0, I d}{ }^{-1} \circ s_{p}^{* *} \circ F_{\lambda, 0,0, I d}$: $\forall P \in F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M)$, by a similar formula in (36) and a modification in (45), we define $\left(F_{\lambda, 0,0, I d}^{-1} \circ s_{p}^{* * *} \circ F_{\lambda, 0,0, I d}\right) \cdot A_{F_{\lambda, 0,0, I d}} ;$ more precisely, $\forall P \in F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M)$,

$$
\begin{equation*}
\left.\left.P \mapsto\left(F_{\lambda, 0,0, I d}^{-1} \circ s_{p}^{* * *} \circ F_{\lambda, 0,0, I d}\right)\right|_{P} \cdot\left(A_{F_{\lambda, 0,0, I d}}\right)\right|_{P} \tag{59}
\end{equation*}
$$

which is a first-ordered adapted lift from $F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M)$ into $S U(N+1,1)$.

- Lift from $F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M) \quad \forall P \in F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M)$, by (36), the map

$$
\begin{equation*}
\left.\left.P \mapsto\left(F_{1,0,0, U}^{-1} \circ F_{\lambda, 0,0, I d}{ }^{-1} \circ s_{p}^{* * *} \circ F_{\lambda, 0,0, I d} \circ F_{1,0,0, U}\right)\right|_{P} \cdot\left(A_{F_{\lambda, 0,0, I d}}\right)\right|_{F_{1,0,0, U}(P)} \tag{60}
\end{equation*}
$$

is a first-ordered adapted lift from $F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(M)$ into $S U(N+1,1)$.

- Lift from $\tau_{p}^{F}(M)$ Similarly, $\forall P \in \tau_{p}^{F}(M)$, by (36), the map

$$
\begin{gathered}
\left.P \mapsto\left(F_{1, r, \vec{a}, I d}^{-1} \circ F_{1,0,0, U}^{-1} \circ F_{\lambda, 0,0, I d}^{-1} \circ s_{p}^{* * *} \circ F_{\lambda, 0,0, I d} \circ F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d}\right)\right|_{P} . \\
\left.\cdot\left(A_{F_{\lambda, 0,0, I d}}\right)\right|_{F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d}(P)}
\end{gathered}
$$

is a first-ordered adapted lift from $\tau_{p}^{F}(M)$ into $S U(N+1,1)$. In other words,

$$
\begin{equation*}
\left.\left.P \mapsto\left(G_{p}^{-1} \circ s_{p}^{* * *} \circ G_{p}\right)\right|_{P} \cdot\left(A_{F_{\lambda, 0,0, I d}}\right)\right|_{F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d}(P)} \tag{61}
\end{equation*}
$$

- Lift from M Finally, $\forall P \in M$, by (36), the map

$$
\begin{equation*}
\left.\left.P \mapsto\left(\left(\tau_{p}^{F}\right)^{-1} \circ G_{p}^{-1} \circ s_{p}^{* * *} \circ G_{p} \circ \tau_{p}^{F}\right)\right|_{P} \cdot\left(A_{F_{\lambda, 0,0, I d}}\right)\right|_{F_{1,0,0, U} \circ F_{1, r, \vec{a}, I d} \circ \tau_{p}^{F}(P)} \tag{62}
\end{equation*}
$$

is a first-ordered adapted lift s_{p} from M into $S U(N+1,1)$. Without cause confusion, we denote

$$
\begin{equation*}
s_{p}=\left(\left(\tau_{p}^{F}\right)^{-1} \circ G_{p}^{-1} \circ s_{p}^{* * *} \circ G_{p} \circ \tau_{p}^{F}\right) \cdot A_{F_{\lambda, 0,0, I d}} . \tag{63}
\end{equation*}
$$

Here we recall from $\S 7$ that for any $P \in M$,

$$
A_{F_{\lambda, 0,0, I d}}(P)=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \tag{64}\\
0 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda & 0 \\
0 & 0 & \ldots & 0 & \lambda^{2}
\end{array}\right](P)
$$

where $\lambda=\lambda(P)$ is defined in (57). Since $F \in \operatorname{Prop}_{k}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$, by the construction, λ is a C^{k-1}-smooth positive function, and hence the lift s_{p} is C^{k-1}-smooth.

Step 3. Construct the lift s_{p} Write the CR second fundamental form of M with respect to the lift s_{p} as

$$
\begin{equation*}
I I_{M, P}^{C R\left(s_{p}\right)}=q_{i j}^{\mu\left(s_{p}\right)} \omega_{0}^{i\left(s_{p}\right)} \omega_{0}^{j\left(s_{p}\right)} \otimes \underline{e}_{\mu}^{\left(s_{p}\right)} \tag{65}
\end{equation*}
$$

Then by (38), for $P=F(p)$ we have

$$
\begin{equation*}
q_{i j}^{\mu\left(s_{p}\right)}(P)=q_{i j}^{\mu\left(s_{p}^{* * *}\right)}(0)\left(G_{p} \circ \tau_{0}^{F}\right)(0) . \tag{66}
\end{equation*}
$$

This implies from (54)

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \text { Baseloc }\left|I I_{M, P}^{C R}\right|=\operatorname{dim}_{\mathbb{C}} \text { Baseloc }\left|I I_{G_{p} \circ \tau_{0}^{F}(M), 0}^{C R}\right|=\operatorname{dim}_{\mathbb{C}} \text { Baseloc }\left|I I_{F_{p}^{* * *}(M), 0}^{C R}\right| . \tag{67}
\end{equation*}
$$

By (53), (67) and (51), we prove (52).

5 A Lift with Special Property

Theorem 5.1 Let $F=F^{* * *} \in \operatorname{Prop}_{k}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ where $k \geq 2$ and $M=F\left(\partial \mathbb{H}^{n+1}\right)$. For any point of M, there exists a neighborhood U of this point in M and a C^{k-1}-smooth firstorder adapted lift s of U into $S U(N+1,1)$ where U is a neighborhood of 0 in M such that the coefficient functions $q_{i j}^{\mu}$ of $I I_{M}$ satisfy

$$
\begin{equation*}
q_{i j}^{\mu}(P)=\left.\lambda(P) \frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{i} \partial z_{j}}\right|_{0}, \quad i, j \in\{1,2, \ldots, n, N+1\}, n+1 \leq \mu \leq N \tag{68}
\end{equation*}
$$

$\forall p \in \partial \mathbb{H}^{n+1}$ with $P=F(p) \in U$, where λ is a positive C^{k-1} smooth function defined on U, and $F_{p}^{* * *}=\left(f_{p}^{* * *}, \phi_{p}^{* * *}, g_{p}^{* * *}\right)$.
Proof of Theorem 5.1 Step 1. Start with the lift $s \quad$ Let $s: U \rightarrow S U(N+1,1)$ be the C^{k-1}-smooth first-order adapted lift of F defined in Theorem 5.1 where $U \subset M$ is a neighborhood of 0 . Since $F(0)=0$, we can choose small neighborhoods \widetilde{U} of 0 in $\partial \mathbb{H}^{n+1}$ and U of 0 in M such that $F: \widetilde{U} \rightarrow U$ is diffeomorphic. Then for any $P \in U$, there is a unique $p \in \widetilde{U}$ with $F(p)=P$.

The second fundamental form with respect to s can be expressed as

$$
I I_{M, 0}^{(s)}(P)=\sum_{j, k} q_{j k}^{(s) \mu}(P) \omega_{0}^{(s) j} \omega_{0}^{(s) k} \otimes \underline{e}_{\mu}^{(s)}
$$

Here the coefficient functions $q_{j k}^{(s) \mu}$ satisfy the formulas in Lemma 4.1 above at $P=0$. In order to prove Theorem 5.1, we need to modify the lift s to construct a new first-order adapted lift \hat{s} of M into $S U(N+1,1)$:

$$
\begin{equation*}
\hat{s}(P)=s(P) \cdot \psi(P), \quad \forall P \in U \tag{69}
\end{equation*}
$$

where $\psi: U \rightarrow G_{1}$ is some C^{k-2}-smooth map where G_{1} is defined in (23) such that the coefficients of the second fundamental form with respect to \hat{s} satisfy the formulas in (68) at any $P \in U$.

Step 2. Construct the lift s_{p} For any point $P \in U$, by Step 2 of the proof of Theorem 4.2, there is a first-order adapted lift s_{p} defined on a neighborhood U_{p} of P in M into $S U(N+1,1)$. Then there exists a C^{k-1} smooth map $a_{p}: U_{p} \rightarrow G_{1}$ such that

$$
\begin{equation*}
s_{p}=s \cdot a_{p} \quad \text { on } U_{p} \tag{70}
\end{equation*}
$$

In fact $a_{p}:=s^{-1} \cdot s_{p}$.
Step 3. Construct the lift \hat{s} Now we define C^{k-1}-smooth a first-order adapted lift \hat{s} from a neighborhood U of 0 in M into $S U(N+1,1)$ given by

$$
\begin{equation*}
\hat{s}(p)=s(p) \cdot a_{p}(p), \quad \forall p \in U \tag{71}
\end{equation*}
$$

where a_{p} is defined in Step 2. Write the second fundamental form with respect to \hat{s} as

$$
I I_{M, \hat{p}}^{(\hat{s})}=\sum_{j, k} q_{j k}^{(\hat{s}) \mu} \omega_{0}^{(\hat{s}) j} \omega_{0}^{(\hat{s}) k} \otimes \underline{e}^{(\hat{s})}{ }_{\mu}, \bmod \left(\eta^{N+1}\right)
$$

We claim:

$$
\begin{equation*}
q_{j k}^{(\hat{s}) \mu}(p)=q_{j k}^{\left(s_{p}\right) \mu}(p), \quad \forall p \in M \tag{72}
\end{equation*}
$$

so that the coefficients $q_{j k}^{(\hat{s}) \mu}$ satisfy the formulas in Theorem 5.1. In fact, for any $p_{0} \in M$, setting $s_{1}(q):=a_{q}(q), \forall q \in M$ and $s_{2}:=a_{p_{0}}$. Since $s_{1}\left(p_{0}\right)=s_{2}\left(p_{0}\right)$, by (34), we prove Claim (72).

Corollary 5.2 Let M and F be as above. $I I_{M} \equiv 0$ if and only if F is linear fractional.
Proof: In fact, if $I I_{M} \equiv 0$, then $I I_{M}^{C R} \equiv 0$ by the definitions so that F is linear fractional by [JY10]. Conversely, if F is linear fractional, then $\left.\frac{\partial^{2} \phi^{* * *}}{\partial z_{i} \partial z_{j}}\right|_{0}=0$ for $F^{* * *}=\left(f^{* * *}, \phi^{* * *}, g^{* * *}\right)$ where we use notation in Lemma 2.1 by standard calculation. Then $\left.\frac{\partial^{2} \phi_{p}^{* * *}}{\partial z_{i} \partial z_{j}}\right|_{0}=0$ for any $F_{p}^{* * *}$ for any $p \in \partial \mathbb{H}^{n+1}$ where we use the notation in Lemma 2.1. We apply Theorem 5.1 to conclude that $q_{i j}^{\mu}(P)=0$ for any $p \in \partial \mathbb{H}^{n+1}$ with $P=F(p)$, and hence $I I_{M} \equiv 0$.

Now let $F=F^{* * *} \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ with $\kappa_{0} \leq n-1$ and $3 \leq n \leq N-1$. By (35),
for any $P=F(p)$ where $p \in \partial \mathbb{H}^{n+1}$,

$$
\begin{aligned}
& \left(I I_{M}-I I_{M}^{C R}\right)(P) \\
& =\left.\sum_{1 \leq j, k \leq n, n+1 \leq \mu \leq N}\left(q_{j N+1}^{\mu} \omega_{0}^{j} \omega_{0}^{N+1}+q_{N+1 k}^{\mu} \omega_{0}^{N+1} \omega_{0}^{k}+q_{N+1 N+1}^{\mu} \omega_{0}^{N+1} \omega_{0}^{N+1}\right) \otimes \underline{e}_{\mu}\right|_{P} \\
& =\sum_{1 \leq j, k \leq n, n+1 \leq \mu \leq N}\left(\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{j} \partial z_{N+1}}\right|_{0} \omega_{0}^{j} \omega_{0}^{N+1}+\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{N+1} \partial z_{k}}\right|_{0} \omega_{0}^{N+1} \omega_{0}^{k}\right. \\
& \left.\quad+\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{N+1} \partial z_{N+1}}\right|_{0} \omega_{0}^{N+1} \omega_{0}^{N+1}\right) \otimes \underline{e}_{\mu} \quad(\text { By Theorem 5.1) } \\
& =\sum_{1 \leq j, k \leq \kappa_{0}, n+1 \leq \mu \leq N}\left(\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{j} \partial w}\right|_{0} \omega_{0}^{j} \omega_{0}^{N+1}+\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial w \partial z_{k}}\right|_{0} \omega_{0}^{N+1} \omega_{0}^{k}\right) \otimes \underline{e}_{\mu} .
\end{aligned}
$$

Here the last equality holds because $\left.\frac{\partial^{2}\left(\phi_{* * *}^{* *}\right) \mu}{\partial z_{j} \partial w}\right|_{0}=0$ for $j \geq \kappa_{0}$ hold by Lemma 2.1(ii). Then $I I_{M}-I I_{M}^{C R} \equiv 0$ means

$$
\begin{equation*}
\left.\frac{\partial^{2}\left(\phi_{p}^{* * *}\right)_{\mu}}{\partial z_{j} \partial w}\right|_{0}=0, \quad \forall 1 \leq j \leq n, \forall n+1 \leq \mu \leq N, \quad \forall p \in \partial \mathbb{H}^{n+1} \tag{73}
\end{equation*}
$$

6 Maps between balls with rank two

Let $F=F^{* * *} \in \operatorname{Prop}_{3}\left(\mathbb{H}^{n+1}, \mathbb{H}^{N+1}\right)$ with $\operatorname{rank}(F)=R k_{F}(0)=2$ and $3 \leq n$ and $3 n \leq N+1$.
Then we can write $F=\left(f_{1}, f_{2}, f_{p}, \phi_{p^{\prime}}, \phi_{n^{\prime}}, \phi_{p^{\prime \prime}}, \phi_{(n-1)^{\prime \prime}}, \phi_{b}, g\right)$, where

$$
\begin{aligned}
& f_{1}=z_{1}+\frac{i \mu_{1}(0)}{\mu_{2}} z_{1} w+o_{w t}(3), \\
& f_{2}=z_{2}+\frac{i \mu_{2}}{2} z_{2} w+o_{w t}(3), \\
& f_{p}=z_{p}, 3 \leq p \leq n, \\
& \phi_{1 p}=\sqrt{\mu_{1}(0)} z_{1} z_{p}+\sum_{q \geq 3} 0 z_{q} w+o_{w t}(2), 3 \leq p \leq n, \\
& \phi_{2 p}=\sqrt{\mu_{2}(0)} z_{2} z_{p}+\sum_{q \geq 3} 0 z_{q} w+o_{w t}(2), \quad 3 \leq p \leq n, \\
& \phi_{11}=\sqrt{\mu_{1}(0)} z_{1} z_{1}+\sum_{q \geq 3} 0 z_{q} w+o_{w t}(2), \\
& \phi_{12}=\sqrt{\mu_{1}(0)+\mu_{2}(0)} z_{1} z_{2}+\sum_{q \geq 3} 0 z_{q} w+o_{w t}(2), \\
& \phi_{22}=\sqrt{\mu_{2}(0)} z_{2} z_{2}+\sum_{q \geq 3} 0 z_{q} w+o_{w t}(2), \\
& \left\{\phi_{33}, \phi_{34}, \ldots, \phi_{3, N-3 n+3}\right\}=\left\{\phi_{b}\right\} \\
& \text { Other } \phi_{*}=0+o_{w t}(2), \\
& g=w .
\end{aligned}
$$

In the rest of the paper, we set up the following index ranges:

$$
\begin{equation*}
1 \leq \alpha, \beta, \gamma \leq n-2, \quad \alpha^{\prime}=n+\alpha, \quad \alpha^{\prime \prime}=2 n+\alpha, n+1 \leq \mu \leq N \tag{74}
\end{equation*}
$$

When $n \geq 4$, we also denote $3 n \leq a, b, c \leq N$. By replacing 1 and 2 with n and $n-1$, we write F as
$F=\left(f_{\alpha}, f_{n-1}, f_{n}, \phi_{\alpha^{\prime}}, \phi_{\alpha^{\prime \prime}}, \phi_{n_{11}}, \phi_{n_{22}}, \phi_{n_{12}}, \phi_{b}, g\right)$, where
$f_{\alpha}=z_{\alpha}+0 z_{\alpha} w+o_{w t}(3)$,
$f_{n-1}=z_{n-1}+\frac{i \mu_{1}(0)}{2} z_{n-1} w+o_{w t}(3)$,
$f_{n}=z_{n}+\frac{i \mu_{2}(0)}{2} z_{n} w+o_{w t}(3)$,
$\phi_{\alpha^{\prime}}=\phi_{1 \alpha}=\sqrt{\mu_{1}(0)} z_{n} z_{\alpha}+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$,
$\phi_{\alpha^{\prime \prime}}=\phi_{2 \alpha}=\sqrt{\mu_{2}(0)} z_{n-1} z_{\alpha}+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$,
$\phi_{n_{11}}=\sqrt{\mu_{1}(0)} z_{n} z_{n}+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$,
$\phi_{n_{22}}=\sqrt{\mu_{2}(0)} z_{n-1} z_{n-1}+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$,
$\phi_{n_{12}}=\sqrt{\mu_{1}(0)+\mu_{2}(0)} z_{n-1} z_{n}+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$,
$\phi_{b}=0+\sum_{\sigma} 0 z_{\sigma} w+o_{w t}(2)$.
Let F be as above. Let $M=F\left(\partial \mathbb{H}^{n+1}\right)$. Then the following holds in a neighborhood of $0=F(0)$ in M by Theorem 5.1:
$h_{\beta \gamma}^{\alpha^{\prime}}=0, \quad h_{\beta}^{\alpha^{\prime}}{ }_{n}=\lambda \delta_{\alpha \beta} \sqrt{\mu_{1}}, \quad h_{\beta}^{\alpha^{\prime}}{ }_{n-1}=h_{n}^{\alpha^{\prime}}{ }_{n}=h_{n-1, n-1}^{\alpha^{\prime}}=h_{n, n-1}^{\alpha^{\prime}}=h_{\beta, N+1}^{\alpha^{\prime}}=h_{n-1, N+1}^{\alpha^{\prime}}=$ $h_{n, N+1}^{\alpha^{\prime}}=h_{N+1, N+1}^{\alpha^{\prime}}=0$,
$h_{\beta \gamma}^{\alpha^{\prime \prime}}=h_{\beta}^{\alpha^{\prime \prime}}{ }_{n}=0, \quad h_{\beta}^{\alpha^{\prime \prime}}{ }_{n-1}=\lambda \delta_{\alpha \beta} \sqrt{\mu_{2}}, \quad h_{n}^{\alpha^{\prime \prime}}{ }_{n}=h_{n-1, n-1}^{\alpha^{\prime \prime}}=h_{n, n-1}^{\alpha^{\prime \prime}}=h_{\beta, N+1}^{\alpha^{\prime \prime}}=h_{n-1, N+1}^{\alpha^{\prime \prime}}=$ $h_{n, N+1}^{\alpha^{\prime \prime}}=h_{N+1, N+1}^{\alpha^{\prime \prime}}=0$,
$h_{\beta \gamma}^{n_{11}}=h_{\beta}^{n_{11}}=h_{\beta n-1}^{n_{11}}=0, \quad h_{n}^{n_{11}}=2 \lambda \sqrt{\mu_{1}}, \quad h_{n-1{ }_{n-1}}^{n_{11}}=h_{n}^{n_{11}}{ }_{n-1}=h_{\beta N+1}^{n_{11}}=h_{n-1}^{n_{11}}{ }_{N+1}=$ $h_{n N+1}^{n_{11}}=h_{N+1}^{n_{11}}{ }_{N+1}=0$,
$h_{\beta \gamma}^{n_{22}}=h_{\beta}^{n_{22}}=h_{\beta}^{n_{22}}=h_{n}^{n_{22}}=0, \quad h_{n-1}^{n_{22}}{ }_{n-1}=2 \lambda \sqrt{\mu_{2}}, \quad h_{n}^{n_{22}}=h_{\beta-1}^{n_{22}}=h_{n-1}^{n_{22}}{ }_{N+1}=$ $h_{n N+1}^{n_{22}}=h_{N+1}^{n_{22}}{ }_{N+1}=0$,
$h_{\beta \gamma}^{n_{12}}=h_{\beta n}^{n_{12}}=h_{\beta n-1}^{n_{12}}=h_{n}^{n_{12}}=h_{n-1}^{n_{12}}{ }_{n-1}=0, \quad h_{n-1}^{n_{12}}=\lambda \sqrt{\mu_{1}+\mu_{2}}, \quad h_{\beta N+1}^{n_{12}}=$ $h_{n-1}^{n_{12}}{ }_{N+1}=h_{n N+1}^{n_{12}}=h_{N+1}^{n_{12}}{ }_{N+1}=0$.
$h_{\beta \gamma}^{b}=h_{\beta n}^{b}=h_{\beta-1}^{b}=h_{n}^{b}=h_{n-1, n-1}^{b}=h_{n, n-1}^{b}=h_{\beta, N+1}^{b}=h_{n-1 N+1}^{b}=h_{n N+1}^{b}=$ $h_{N+1, N+1}^{b}=0$,
where λ is a positive C^{2}-smooth function, and μ_{1}, μ_{2} are C^{1}-smooth functions in the neighborhood of 0 in M.

Recall from (15), any first-order adapted lift $s=\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right): M \rightarrow S U(N+1,1)$ of F where $1 \leq i, j \leq n, n+1 \leq \mu, \nu \leq N$, we have $d s=s \theta$ where θ is the pull-back of the Maurer-Cartan form from $S U(N+1,1)$:

$$
d\left(e_{0}, e_{j}, e_{\mu}, e_{N+1}\right)=\left(e_{0}, e_{i}, e_{\nu}, e_{N+1}\right)\left(\begin{array}{cccc}
\theta_{0}^{0} & \theta_{j}^{0} & \theta_{\mu}^{0} & \theta_{N+1}^{0} \\
\theta_{0}^{i} & \theta_{j}^{i} & \theta_{\mu}^{i} & \theta_{N+1}^{i} \\
0 & \theta_{j}^{\nu} & \theta_{\mu}^{\nu} & \theta_{N+1}^{\nu} \\
\theta_{0}^{N+1} & \theta_{j}^{N+1} & 0 & \theta_{N+1}^{N+1}
\end{array}\right)
$$

Recall $\theta_{j}^{\mu}=h_{j i}^{\mu} \eta^{i}+h_{j N+1}^{\mu} \eta$ and $\theta_{N+1}^{\mu}=h_{N+1}^{\mu} \eta^{i}+h_{N+1}^{\mu}{ }_{N+1} \eta$. We still use notation in (74) and we write F as $F=\left(f_{\alpha}, f_{n-1}, f_{n}, \phi_{\alpha^{\prime}}, \phi_{\alpha^{\prime \prime}}, \phi_{n_{11}}, \phi_{n_{22}}, \phi_{n_{12}}, \phi_{b}, g\right)$.

For simplicity, we replace $\lambda \sqrt{\mu_{1}}$ by $\sqrt{\mu_{1}}$; replace $\lambda \sqrt{\mu_{2}}$ by $\sqrt{\mu_{2}}$; and replace $\lambda \sqrt{\mu_{1}+\mu_{2}}$ by $\sqrt{\mu_{1}+\mu_{2}}$, by changing notation. Then by the formulas above, we have

$$
\begin{aligned}
& \theta_{\beta}^{\alpha^{\prime}}=h_{\beta}^{\alpha^{\prime}}{ }_{\gamma} \eta^{\gamma}+h_{\beta}^{\alpha^{\prime}}{ }_{n-1} \eta^{n-1}+h_{\beta}^{\alpha^{\prime}}{ }_{n} \eta^{n}+h_{\beta}^{\alpha^{\prime}}{ }_{N+1} \eta=\delta_{\alpha \beta} \sqrt{\mu_{1}} \eta^{n} \text {, } \\
& \theta_{n-1}^{\alpha^{\prime}}=h_{n-1}^{\alpha^{\prime}} \eta^{\gamma}+h_{n-1}^{\alpha^{\prime}}{ }_{n-1} \eta^{n-1}+h_{n-1}^{\alpha^{\prime}}{ }_{n} \eta^{n}+h_{n-1}^{\alpha^{\prime}} N+1 \eta=0, \\
& \theta_{n}^{\alpha^{\prime}}=h_{n}^{\alpha^{\prime}} \eta^{\gamma}+h_{n}^{\alpha^{\prime}}{ }_{n-1} \eta^{n-1}+h_{n}^{\alpha^{\prime}}{ }_{n} \eta^{n}+h_{n}^{\alpha^{\prime}}{ }_{N+1} \eta=\sqrt{\mu_{1}} \eta^{\alpha} \text {, } \\
& \theta_{N+1}^{\alpha^{\prime}}=h_{N+1}^{\alpha^{\prime}} \eta^{\gamma}+h_{N+1{ }_{n-1}}^{\alpha^{\prime}} \eta^{n-1}+h_{N+1}^{\alpha_{n}^{\prime}} \eta^{n}+h_{N+1}^{\alpha^{\prime}}{ }_{N+1} \eta=0, \\
& \theta_{\beta}^{\alpha^{\prime \prime}}=h_{\beta}^{\alpha^{\prime \prime}} \eta^{\gamma}+h_{\beta}^{\alpha^{\prime \prime}}{ }_{n-1} \eta^{n-1}+h_{\beta}^{\alpha^{\prime \prime}}{ }_{n} \eta^{n}+h_{\beta}^{\alpha^{\prime \prime}}{ }_{N+1} \eta=\delta_{\alpha \beta} \sqrt{\mu_{2}} \eta^{n-1} \text {, } \\
& \theta_{n-1}^{\alpha^{\prime \prime}}=h_{n-1}^{\alpha^{\prime \prime}} \eta^{\gamma}+h_{n-1}^{\alpha^{\prime \prime}}{ }_{n-1} \eta^{n-1}+h_{n-1}^{\alpha_{n}^{\prime \prime}} \eta^{n}+h_{n-1}^{\alpha^{\prime \prime}} N+1 \eta=\sqrt{\mu_{2}} \eta^{\alpha} \text {, } \\
& \theta_{n}^{\alpha^{\prime \prime}}=h_{n}^{\alpha^{\prime \prime}} \eta^{\gamma}+h_{n}^{\alpha^{\prime \prime}}{ }_{n-1} \eta^{n-1}+h_{n}^{\alpha^{\prime \prime}} \eta^{n}+h_{n}^{\alpha^{\prime \prime}}{ }_{N+1} \eta=0, \\
& \theta_{N+1}^{\alpha^{\prime \prime}}=h_{N+1}^{\alpha^{\prime \prime}} \eta^{\gamma}+h_{N+1}^{\alpha^{\prime \prime}}{ }_{n-1} \eta^{n-1}+h_{N+1}^{\alpha^{\prime \prime}} \eta^{n}+h_{N+1}^{\alpha^{\prime \prime}}{ }_{N+1} \eta=0, \\
& \theta_{\beta}^{n_{11}}=h_{\beta}^{n_{11}} \eta^{\gamma}+h_{\beta}^{n_{11}}{ }_{n-1} \eta^{n-1}+h_{\beta}^{n_{11}} \eta^{n}+h_{\beta N+1}^{n_{11}} \eta=0, \\
& \theta_{n-1}^{n_{11}}=h_{n-1}^{n_{11}} \eta^{\gamma}+h_{n-1}^{n_{11}}{ }_{n-1} \eta^{n-1}+h_{n-1}^{n_{11}}{ }_{n} \eta^{n}+h_{n-1}^{n_{11}}{ }_{N+1} \eta=0, \\
& \theta_{n}^{n_{11}}=h_{n}^{n_{11}} \eta^{\gamma}+h_{n-1}^{n_{11}} \eta^{n-1}+h_{n}^{n_{11}} \eta^{n}+h_{n N+1}^{n_{11}} \eta=2 \sqrt{\mu_{1}} \eta^{n} \text {, } \\
& \theta_{N+1}^{n_{11}}=h_{N+1}{ }_{\gamma} \eta^{\gamma}+h_{N+1}^{n_{11}}{ }_{n-1} \eta^{n-1}+h_{N+1}^{n_{11}} \eta^{n}+h_{N+1}^{n_{11}}{ }_{N+1} \eta=0, \\
& \theta_{\beta}^{n_{22}}=h_{\beta}^{n_{22}} \eta^{\gamma}+h_{\beta}^{n_{22}} \eta_{n-1}^{n-1}+h_{\beta}^{n_{22}} \eta^{n}+h_{\beta}^{n 22}{ }_{N+1} \eta=0, \\
& \theta_{n-1}^{n 22}=h_{n-1}^{n 22} \eta^{\gamma}+h_{n-1}^{n_{n-1}} \eta^{n-1}+h_{n-1}^{n 22}{ }_{n} \eta^{n}+h_{n-1}^{n_{22}}{ }_{n+1} \eta=2 \sqrt{\mu_{2}} \eta^{n-1}, \\
& \theta_{n}^{n_{22}}=h_{n}^{n_{2} 2} \eta^{\gamma}+h_{n-1}^{n_{22}} \eta^{n-1}+h_{n}^{n_{22}} \eta^{n}+h_{n}^{n_{2}}{ }_{N+1} \eta=0, \\
& \theta_{N+1}^{n_{22}}=h_{N+1}^{n_{22}} \eta^{\gamma}+h_{N+1}^{n_{22}}{ }_{n-1} \eta^{n-1}+h_{N+1}^{n_{22}} \eta^{n}+h_{N+1}^{n_{22}}{ }_{N+1} \eta=0, \\
& \theta_{\beta}^{n_{12}}=h_{\beta}^{n_{12}} \eta^{\gamma}+h_{\beta}^{n_{12}} \eta_{n-1}^{n-1}+h_{\beta}^{n_{12}} \eta^{n}+h_{\beta N+1}^{n_{12}} \eta=0, \\
& \theta_{n-1}^{n_{12}}=h_{n-1}^{n_{12}} \eta^{\gamma}+h_{n-1}^{n_{12}}{ }_{n-1} \eta^{n-1}+h_{n-1}^{n_{12}}{ }_{n} \eta^{n}+h_{n-1}^{n_{12}}{ }_{N+1} \eta=\sqrt{\mu_{1}+\mu_{2}} \eta^{n}, \\
& \theta_{n}^{n_{12}}=h_{n}^{n_{12}} \eta^{\gamma}+h_{n}^{n_{12}}{ }_{n-1} \eta^{n-1}+h_{n}^{n_{12}} \eta^{n}+h_{n N+1}^{n_{12}} \eta=\sqrt{\mu_{1}+\mu_{2}} \eta^{n-1} \text {, } \\
& \theta_{N+1}^{n_{12}}=h_{N+1}^{n_{12}} \eta^{\gamma}+h_{N+1}^{n_{n-1}} \eta^{n-1}+h_{N+1}^{n_{12}}{ }_{n} \eta^{n}+h_{N+1}^{n_{12}}{ }_{N+1} \eta=0, \\
& \theta_{\beta}^{b}=h_{\beta}^{b} \eta^{\gamma}+h_{\beta-1}^{b}{ }_{n} \eta^{n-1}+h_{\beta}^{b}{ }_{n} \eta^{n}+h_{\beta}^{b}{ }_{N+1} \eta=0, \\
& \theta_{n-1}^{b}=h_{n-1}^{b} \eta^{\gamma}+h_{n-1{ }_{n-1}}^{b} \eta^{n-1}+h_{n-1}^{b}{ }_{n} \eta^{n}+h_{n-1}^{b}{ }_{N+1} \eta=0, \\
& \theta_{n}^{b}=h_{n}^{b} \eta^{\gamma}+h_{n-1}^{b}{ }_{n-1}^{n-1}+h_{n}^{b} \eta^{n}+h_{n}^{b}{ }_{N+1} \eta=0, \\
& \theta_{N+1}^{b}=h_{N+1} \gamma^{b} \eta^{\gamma}+h_{N+1{ }_{n-1}}^{b} \eta^{n-1}+h_{N+1}^{b} \eta^{n}+h_{N+1}^{b}{ }_{N+1} \eta=0,
\end{aligned}
$$

where μ_{1} and μ_{2} are C^{1}-smooth positive functions defined on M.

7 Lemma for mappings of rank 2

Let $F \in C R_{2}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ with geometric rank $\kappa_{0}=2$. Then by the inequality $N \geq$ $n+\frac{\left(2 n+1-\kappa_{0}\right) \kappa_{0}}{2}$ (cf. Lemma 2.1 (i)), $N \geq n+\frac{\left(2 n+1-\kappa_{0}\right) \kappa_{0}}{2}=3 n-1$, i.e., $N+1 \geq 3 n$. In the remaining of the paper, Einstein summation notation is used without mentioning it.

Lemma 7.1 Let $F \in \operatorname{Prop}_{3}\left(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1}\right)$ with the expression in above section and with $4 \leq n+1 \leq N+1 \leq 4 n-3$ and $\kappa_{0}=2$. If $N+1>3 n$. Then $\theta_{n_{12}}^{\gamma^{\prime}}=\theta_{n_{12}}^{\gamma^{\prime \prime}}=\theta_{\beta}^{n}=\theta_{n_{11}}^{\gamma^{\prime}}=$ $\theta_{n_{22}}^{\gamma^{\prime}}=\theta_{b}^{\gamma^{\prime}}=0$. If $N+1=3 n$ and $4 \leq n$, then $\theta_{n_{12}}^{\gamma^{\prime}}=\theta_{n_{12}}^{\gamma^{\prime \prime}}=\theta_{\beta}^{n}=\theta_{n_{11}}^{\gamma^{\prime}}=\theta_{n_{22}}^{\gamma^{\prime}}=0$.

Proof of Lemma: It suffices to prove the case $N+1>3 n$ for the proof of the case $N+1=3$ is similar. We use the notation in the section 6. The facts that $\theta_{n_{12}}^{\gamma^{\prime}}=\theta_{n_{12}}^{\gamma^{\prime \prime}}=\theta_{\beta}^{n}=\theta_{n_{11}}^{\gamma^{\prime}}=$ $\theta_{n_{22}}^{\gamma^{\prime}}=\theta_{b}^{\gamma^{\prime}}=0$ will be proved in Step 2(C), 2(D), 2(A'), 4, 2(C) and 9 below, respectively.

Step 1(A) Differentiating $\theta_{\beta}^{n_{11}}=0$, we get $d \theta_{\beta}^{n_{11}}=0$. By $d \omega=-\omega \wedge \omega$, we have $-\theta_{0}^{n_{11}} \wedge \theta_{\beta}^{0}-\theta_{\alpha}^{n_{11}} \wedge \theta_{\beta}^{\alpha}-\theta_{n-1}^{n_{11}} \wedge \theta_{\beta}^{n-1}-\theta_{n}^{n_{11}} \wedge \theta_{\beta}^{n}-\theta_{\alpha^{\prime}}^{n_{11}} \wedge \theta_{\beta}^{\alpha^{\prime}}-\theta_{\alpha^{\prime \prime}}^{n_{11}} \wedge \theta_{\beta}^{\alpha^{\prime \prime}}-\theta_{n_{11}}^{n_{11}} \wedge \theta_{\beta}^{n_{11}}-\theta_{n_{22}}^{n_{11}} \wedge \theta_{\beta}^{n_{22}}-\theta_{n_{12}}^{n_{11}} \wedge$ $\theta_{\beta}^{n_{12}}-\theta_{b}^{n_{11}} \wedge \theta_{\beta}^{b}-\theta_{N+1}^{n_{11}} \wedge \theta_{\beta}^{N+1}=0$, i.e., by $\S 6,2 \sqrt{\mu_{1}} \theta_{\beta}^{n} \wedge \eta^{n}+\sqrt{\mu_{1}} \eta^{n} \wedge \theta_{\beta^{\prime}}^{n_{11}}+\sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{\beta^{\prime \prime}}^{n_{11}}=0$, i.e., $\eta^{n} \wedge \sqrt{\mu_{1}}\left(\theta_{\beta^{\prime}}^{n_{11}}-2 \theta_{\beta}^{n}\right)+\eta^{n-1} \wedge \sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{n_{11}}=0$. By Cartan's lemma, there are some coefficients $A_{\beta}^{(1)}, B_{\beta}^{(1)}$ and $D_{\beta}^{(1)}$ such that

$$
\binom{\sqrt{\mu_{1}}\left(\theta_{\beta^{\prime}}^{n_{11}}-2 \theta_{\beta}^{n}\right)}{\sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{n_{11}}}=\left(\begin{array}{cc}
A_{\beta}^{(1)} & B_{\beta}^{(1)} \\
B_{\beta}^{(1)} & D_{\beta}^{(1)}
\end{array}\right)\binom{\eta^{n}}{\eta^{n-1}} .
$$

Step 1($\left.\mathbf{A}^{\prime}\right)$ Differentiating $\theta_{\alpha}^{n_{22}}=0$, we get $d \theta_{\alpha}^{n_{22}}=0$. Similarly as in Step 1(A), we get

$$
\binom{\sqrt{\mu_{2}}\left(\theta_{\alpha^{\prime \prime}}^{n_{22}}-2 \theta_{\alpha}^{n-1}\right)}{\sqrt{\mu_{1}} \theta_{\alpha^{\prime}} \theta_{22}}=\left(\begin{array}{ll}
A_{\alpha}^{(111)} & B_{\alpha}^{(111)} \\
B_{\alpha}^{(111)} & D_{\alpha}^{(111)}
\end{array}\right)\binom{\eta^{n-1}}{\eta^{n}}
$$

for some coefficients $A_{\alpha}^{(111)}, B_{\alpha}^{(111)}$ and $D_{\alpha}^{(111)}$.
Step 1(B) Differentiating $\theta_{\beta}^{b}=0$, we get $d \theta_{\beta}^{b}=0$. As the calculation in Step $1(\mathrm{~A})$ and $\S 6$, this implies with $\sqrt{\mu_{1}} \eta^{n} \wedge \theta_{\beta^{\prime}}^{b}+\sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{\beta^{\prime \prime}}^{b}=0$. By Cartan's lemma, there are some coefficients $C_{\beta}^{(2) b}, B_{\beta}^{(2) b}$, and $D_{\beta}^{(2) b}$ so that

$$
\binom{\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{b}}{\sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{b}}=\left(\begin{array}{cc}
2 C_{\beta}^{(2) b} & B_{\beta}^{(2) b} \\
B_{\beta}^{(2) b} & D_{\beta}^{(2) b}
\end{array}\right)\binom{\eta^{n}}{\eta^{n-1}} .
$$

Step 2(A) Differentiating $\theta_{\beta}^{\alpha^{\prime}}=0$ with $\alpha \neq \beta$, we get $d \theta_{\beta}^{\alpha^{\prime}}=0$. By $\S 6$, this implies $\theta_{\beta}^{\alpha} \wedge \sqrt{\mu_{1}} \eta^{n}+\theta_{\beta}^{n} \wedge \sqrt{\mu_{1}} \eta^{\alpha}+\sqrt{\mu_{1}} \eta^{n} \wedge \theta_{\beta^{\prime}}^{\alpha^{\prime}}+\sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{\beta^{\prime \prime}}^{\alpha^{\prime}}=0$, i.e., $\sqrt{\mu_{1}}\left(\theta_{\beta}^{\alpha}-\theta_{\beta^{\prime}}^{\alpha^{\prime}}\right) \wedge \eta^{n}-$ $\sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{\alpha^{\prime}} \wedge \eta^{n-1}+\sqrt{\mu_{1}} \theta_{\beta}^{n} \wedge \eta^{\alpha}=0$. By Cartan's lemma

$$
\left(\begin{array}{c}
\sqrt{\mu_{1}}\left(\theta_{\beta^{\prime}}^{\alpha^{\prime}}-\theta_{\beta}^{\alpha}\right) \\
\sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{\alpha^{\prime}} \\
-\sqrt{\mu_{1}} \theta_{\beta}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & F_{\beta}^{(3) \alpha} & G_{\beta}^{(3)} \\
0 & G_{\beta}^{(3)} & 0
\end{array}\right)\left(\begin{array}{c}
\eta^{n} \\
\eta^{n-1} \\
\eta^{\alpha}
\end{array}\right), \quad \alpha \neq \beta,
$$

for some coefficients $F_{\beta}^{(3) \alpha}$ and $G_{\beta}^{(3)}$. Here we use the facts that θ_{β}^{n} is independent of α, that $\theta_{\beta^{\prime}}^{\alpha^{\prime}}-\theta_{\beta}^{\alpha}=-\overline{\theta_{\alpha^{\prime}}^{\beta^{\prime}}}+\overline{\theta_{\alpha}^{\beta}}$ by (16) and that the matrix is symmetric. So $\theta_{\beta^{\prime}}^{\alpha^{\prime}}=\theta_{\beta}^{\alpha}, \forall \alpha \neq \beta$.
Step 2($\left.\mathbf{A}^{\prime}\right)$ Consider $\theta_{\alpha}^{\beta^{\prime \prime}}=0, \alpha \neq \beta$, and $d \theta_{\alpha}^{\beta^{\prime \prime}}=0$. Similarly as in Step 2(A), we get

$$
\left(\begin{array}{c}
\sqrt{\mu_{2}}\left(\theta_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}-\theta_{\alpha}^{\beta}\right) \\
\sqrt{\mu_{1}} \theta_{\alpha^{\prime \prime}}^{\beta^{\prime}} \\
-\sqrt{\mu_{2}} \theta_{\alpha}^{n-1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & F_{\alpha}^{(333) \beta} & G_{\alpha}^{(333)} \\
0 & G_{\alpha}^{(333)} & 0
\end{array}\right)\left(\begin{array}{c}
\eta^{n-1} \\
\eta^{n} \\
\eta^{\beta}
\end{array}\right) .
$$

for some coefficients $F_{\alpha}^{(333) \beta}$ and $G_{\alpha}^{(333)}$. Then $\theta_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}=\theta_{\alpha}^{\beta}$, for any $\alpha \neq \beta$. By comparing both formulas for $\theta_{\beta^{\prime \prime}}^{\alpha^{\prime}}=-\overline{\theta_{\alpha^{\prime}}^{\beta^{\prime \prime}}}$ above and in Step 2(A), we get $F_{\beta}^{(3) \alpha}=G_{\alpha}^{(3)}=F_{\beta}^{(333) \alpha}=G_{\beta}^{(333)}=0$, $\forall \alpha \neq \beta$. Then $\theta_{\beta}^{n-1}=\theta_{\beta}^{n}=0$. Hence $\theta_{\beta^{\prime \prime}}^{\alpha^{\prime}}=0, \forall \alpha \neq \beta$.
Step 2(B) Differentiating $\theta_{\beta}^{n_{12}}=0$, we get $d \theta_{\beta}^{n_{12}}=0$. Similarly as in Step 1(A), we get

$$
\binom{\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{n_{12}}}{\sqrt{\mu_{2}} \theta_{\beta^{\prime \prime}}^{n_{12}}}=\left(\begin{array}{cc}
A_{\beta}^{(4)} & B_{\beta}^{(4)} \\
B_{\beta}^{(4)} & E_{\beta}^{(4)}
\end{array}\right)\binom{\eta^{n}}{\eta^{n-1}}
$$

for some coefficients $A_{\beta}^{(4)}, B_{\beta}^{(4)}$ and $E_{\beta}^{(4)}$.
Step 2(C) Differentiating $\theta_{n-1}^{\alpha^{\prime}}=0$, we get $d \theta_{n-1}^{\alpha^{\prime}}=0$. By $\S 6$ and $\theta_{\beta}^{n-1}=0$, this implies $\theta_{n-1}^{n} \wedge \sqrt{\mu_{1}} \eta^{\alpha}+\sqrt{\mu_{2}} \eta^{\gamma} \wedge \theta_{\gamma^{\prime \prime}}^{\alpha^{\prime}}+2 \sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{n_{22}}^{\alpha^{\prime}}+\sqrt{\mu_{1}+\mu_{2}} \eta^{n} \wedge \theta_{n_{12}}^{\alpha^{\prime}}=0$. Recall $\sqrt{\mu_{2}} \theta_{\gamma^{\prime \prime}}^{\alpha^{\prime}}=$ $F_{\gamma}^{(3) \alpha} \eta^{n-1}+G_{\gamma}^{(3)} \eta^{\alpha}=0$ for $\alpha \neq \gamma$. Then $\theta_{n-1}^{n} \wedge \sqrt{\mu_{1}} \eta^{\alpha}+\sqrt{\mu_{2}} \eta^{\alpha} \wedge \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}+2 \sqrt{\mu_{2}} \eta^{n-1} \wedge$ $\theta_{n_{22}}^{\alpha^{\prime}}+\sqrt{\mu_{1}+\mu_{2}} \eta^{n} \wedge \theta_{n_{12}}^{\alpha^{\prime}}=0$. In other words, $\eta^{n} \wedge \sqrt{\mu_{1}+\mu_{2}} \theta_{n_{12}}^{\alpha^{\prime}}+\eta^{n-1} \wedge 2 \sqrt{\mu_{2}} \theta_{n_{22}}^{\alpha^{\prime}}+\eta^{\alpha} \wedge$ $\left(-\sqrt{\mu_{1}} \theta_{n-1}^{n}+\sqrt{\mu_{2}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}\right)=0$. By Cartan's lemma, there are coefficients $A^{(5) \alpha}$ etc. so that

$$
\left(\begin{array}{c}
\sqrt{\mu_{1}+\mu_{2}} \theta_{n_{12}}^{\alpha^{\prime}} \\
2 \sqrt{\mu_{2}} \theta_{n_{22}^{\prime}}^{\alpha^{\prime}} \\
-\sqrt{\mu_{1}} \theta_{n-1}^{n}+\sqrt{\mu_{2}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}
\end{array}\right)=\left(\begin{array}{ccc}
A^{(5) \alpha} & B^{(5) \alpha} & C^{(5) \alpha} \\
B^{(5) \alpha} & D^{(5) \alpha} & E^{(5) \alpha} \\
C^{(5) \alpha} & E^{(5) \alpha} & F^{(5)}
\end{array}\right)\left(\begin{array}{c}
\eta^{n} \\
\eta^{n-1} \\
\eta^{\alpha}
\end{array}\right) .
$$

Recall Step $1\left(A^{\prime}\right), \theta_{\alpha^{\prime}}^{n_{22}}=\frac{1}{\sqrt{\mu_{1}}}\left(B_{\alpha}^{(111)} \eta^{n-1}+D_{\alpha}^{(111)} \eta^{n}\right)$. Then $\theta_{n_{22}}^{\alpha^{\prime}}=-\frac{1}{\sqrt{\mu_{1}}}\left(\overline{B_{\alpha}^{(111)}} \overline{\eta^{n-1}}+\right.$ $\overline{D_{\alpha}^{(111)}} \overline{\eta^{n}}$) so that, by comparing above, $D^{(5) \alpha}=E^{(5) \alpha}=B_{\alpha}^{(111)}=D_{\alpha}^{(111)}=0$. Hence $\theta_{\alpha^{\prime}}^{n_{22}}=0$.

Recall Step 2(B), $\sqrt{\mu_{1}} \theta_{n_{12}}^{\alpha^{\prime}}=-\overline{A_{\alpha}^{(4)}} \overline{\eta^{n}}-\overline{B_{\alpha}^{(4)}} \overline{\eta^{n-1}}$, From above we have $\sqrt{\mu_{1}+\mu_{2}} \theta_{n_{12}}^{\alpha^{\prime}}=$ $A^{(5) \alpha} \eta^{n}+B^{(5) \alpha} \eta^{n-1}+C^{(5) \alpha} \eta^{\alpha}$. Then $A_{\alpha}^{(4)}=B_{\alpha}^{(4)}=A^{(5) \alpha}=B^{(5) \alpha}=C^{(5) \alpha}=0$ and $\theta_{n_{12}}^{\alpha^{\prime}}=0$. Step 2(D) Differentiating $\theta_{n}^{\beta^{\prime \prime}}=0$, we get $d \theta_{n}^{\beta^{\prime \prime}}=0$. Similarly as in Step Step 2(C), we get

$$
\left(\begin{array}{c}
\sqrt{\mu_{1}+\mu_{2}} \theta^{\beta^{\prime \prime}} \theta_{12}^{\prime} \\
2 \sqrt{\mu_{1}} \theta_{n_{11}^{\prime \prime}}^{\beta^{\prime \prime}} \\
\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{\beta^{\prime \prime}}-\sqrt{\mu_{2}} \theta_{n}^{n-1}
\end{array}\right)=\left(\begin{array}{ccc}
A^{(555) \beta} & B^{(555) \beta} & C^{(555)} \\
B^{(555) \beta} & D^{(555) \beta} & E^{(555)} \\
C^{(555)} & E^{(555)} & F^{(555)}
\end{array}\right)\left(\begin{array}{c}
\eta^{n-1} \\
\eta^{n} \\
\eta^{\beta}
\end{array}\right)
$$

for some coefficients $A^{(555) \beta}, B^{(555) \beta}, C^{(555)}, D^{(555) \beta}, E^{(555)}$ and $F^{(555)}$. By the formula for $\theta_{\beta^{\prime \prime}}^{n_{11}}$ in Step $1(\mathrm{~A})$, it implies $B_{\beta}^{(1)}=B^{(555) \beta}=D^{(555) \beta}=E^{(555)}=0$, and $\theta_{\beta^{\prime \prime}}^{n_{11}}=0$. By the formula for $\theta_{\beta^{\prime \prime}}^{n_{12}}$ in Step 2(B), it implies $E_{\beta}^{(4)}=A^{(555) \beta}=C^{(555) \beta}=0$, and $\theta_{\beta^{\prime \prime}}^{n_{12}}=0$.
Step 3(A) Differentiating $\theta_{\alpha}^{\alpha^{\prime}}=\sqrt{\mu_{1}} \eta^{n}$, we get $d \theta_{\alpha}^{\alpha^{\prime}}=d\left(\sqrt{\mu_{1}}\right) \wedge \eta^{n}+\sqrt{\mu_{1}} d \eta^{n}$. By $\S 6$ and $\theta_{n}^{\beta}=0$, this implies $\theta_{\alpha}^{\alpha} \wedge \sqrt{\mu_{1}} \eta^{n}+\sqrt{\mu_{1}} \eta^{n} \wedge \theta_{\alpha^{\prime}}^{\alpha^{\prime}}+\sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}=d\left(\sqrt{\mu_{1}}\right) \wedge \eta^{n}+\sqrt{\mu_{1}}\left(\theta_{0}^{0} \wedge\right.$ $\eta^{n}+\eta^{\gamma} \wedge \theta_{\gamma}^{n}+\eta^{n-1} \wedge \theta_{n-1}^{n}+\eta^{n} \wedge \theta_{n}^{n}$), $\bmod (\eta)$. By writing $\Delta_{\alpha}:=\theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}+\theta_{0}^{0}-\theta_{n}^{n}$, we have $\eta^{n} \wedge\left(\sqrt{\mu_{1}} \Delta_{\alpha}+d\left(\sqrt{\mu_{1}}\right)\right)+\eta^{n-1} \wedge\left(\sqrt{\mu_{2}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}-\sqrt{\mu_{1}} \theta_{n-1}^{n}\right)=0, \bmod (\eta)$. By Cartan's lemma,

$$
\begin{aligned}
& \sqrt{\mu_{2}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}-\sqrt{\mu_{1}} \theta_{n-1}^{n}=B^{(6) \alpha} \eta^{n-1}+C^{(6) \alpha} \eta^{n}, \quad \bmod (\eta), \\
& \sqrt{\mu_{1}} \Delta_{\alpha}=-d\left(\sqrt{\mu_{1}}\right)+C^{(6) \alpha} \eta^{n-1}+A^{(6) \alpha} \eta^{n}, \quad \bmod (\eta) .
\end{aligned}
$$

Recall from Step 2(C) that $\sqrt{\mu_{2}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}-\sqrt{\mu_{1}} \theta_{n-1}^{n}=F^{(5)} \eta^{\alpha}$. Then $F^{(5)}=B^{(6) \alpha}=C^{(6) \alpha}=0$. Hence $\sqrt{\mu_{1}} \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}=\sqrt{\mu_{2}} \theta_{n}^{n-1}$.
Step 3(A') Differentiating $\theta_{\alpha}^{\alpha^{\prime \prime}}=\sqrt{\mu_{2}} \eta^{n-1}$, we get $d \theta_{\alpha}^{\alpha^{\prime \prime}}=d\left(\sqrt{\mu_{2}}\right) \wedge \eta^{n-1}+\sqrt{\mu_{2}} d \eta^{n-1}$. Similarly as in Step 3(A), there are some coefficeints $A^{(666) \alpha}, B^{(666) \alpha}$ and $E^{(666) \alpha}$ such that

$$
\begin{aligned}
& \sqrt{\mu_{2}}\left(\theta_{\alpha^{\prime \prime}}^{\alpha^{\prime \prime}}-\theta_{\alpha}^{\alpha}+\theta_{0}^{0}-\theta_{n-1}^{n-1}\right)=-d\left(\sqrt{\mu_{2}}\right)+A^{(666) \alpha} \eta^{n-1}+B^{(666) \alpha} \eta^{n}, \bmod (\eta) \\
& \sqrt{\mu_{1}} \theta_{\alpha^{\prime}}^{\alpha^{\prime \prime}}-\sqrt{\mu_{2}} \theta_{n}^{n-1}=B^{(666) \alpha} \eta^{n-1}+E^{(666) \alpha} \eta^{n}, \quad \bmod (\eta) .
\end{aligned}
$$

Recall Step 2(D), $\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{\beta^{\prime \prime}}-\sqrt{\mu_{2}} \theta_{n}^{n-1}=F^{(555)} \eta^{\beta}$. Then, from above, we obtain $F^{(555)}=$ $B^{(666) \alpha}=E^{(666) \alpha}=0$. Hence $\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{\beta^{\prime \prime}}=\sqrt{\mu_{2}} \theta_{n}^{n-1}$. Recall from Step $3(\mathrm{~A})$ that $\sqrt{\mu_{2}} \theta_{\alpha^{\prime}}^{\alpha^{\prime \prime}}=$ $\sqrt{\mu_{1}} \theta_{n}^{n-1}$. It implies either $\mu_{1}=\mu_{2}, \quad \theta_{\beta^{\prime}}^{\beta^{\prime \prime}}=\theta_{n}^{n-1}$, or $\theta_{\beta^{\prime}}^{\beta^{\prime \prime}}=\theta_{n}^{n-1}=0$.
Step 3(B) Differentiating $\theta_{n-1}^{n_{12}}=\sqrt{\mu_{1}+\mu_{2}} \eta^{n}$, we get $d \theta_{n-1}^{n_{12}}=d\left(\sqrt{\mu_{1}+\mu_{2}}\right) \wedge \eta^{n}+\sqrt{\mu_{1}+\mu_{2}}$ $d \eta^{n}$. By $\S 6, \theta_{\gamma}^{n}=0$ and $\theta_{\gamma^{\prime \prime}}^{n_{12}}=0$ in Step 2(D), this implies $\theta_{n-1}^{n-1} \wedge \sqrt{\mu_{1}+\mu_{2}} \eta^{n}+\theta_{n-1}^{n} \wedge$ $\sqrt{\mu_{1}+\mu_{2}} \eta^{n-1}+2 \sqrt{\mu_{2}} \eta^{n-1} \wedge \theta_{n_{22}}^{n_{12}}+\sqrt{\mu_{1}+\mu_{2}} \eta^{n} \wedge \theta_{n_{12}}^{n_{12}}=d\left(\sqrt{\mu_{1}+\mu_{2}}\right) \wedge \eta^{n}+\sqrt{\mu_{1}+\mu_{2}}\left(\theta_{0}^{0} \wedge\right.$ $\left.\eta^{n}+\eta^{n-1} \wedge \theta_{n-1}^{n}+\eta^{n} \wedge \theta_{n}^{n}\right), \bmod (\eta)$. Denote $\Delta_{n-1}:=\theta_{n_{12}}^{n 12}-\theta_{n-1}^{n-1}+\theta_{0}^{0}-\theta_{n}^{n}$. Then $\eta^{n} \wedge$ $\left(\sqrt{\mu_{1}+\mu_{2}} \Delta_{n-1}+d\left(\sqrt{\mu_{1}+\mu_{2}}\right)\right)+\eta^{n-1} \wedge\left(2 \sqrt{\mu_{2}} \theta_{n_{22}}^{n}-2 \sqrt{\mu_{1}+\mu_{2}} \theta_{n-1}^{n}\right)=0, \bmod (\eta)$. By Cartan's lemma,

$$
\begin{gathered}
\sqrt{\mu_{1}+\mu_{2}} \Delta_{n-1}=-d\left(\sqrt{\mu_{1}+\mu_{2}}\right)+A^{(7)} \eta^{n}+B^{(7)} \eta^{n-1}, \quad \bmod (\eta) \\
2 \sqrt{\mu_{2}} \theta_{n_{22}}^{n_{12}}-2 \sqrt{\mu_{1}+\mu_{2}} \theta_{n-1}^{n}=B^{(7)} \eta^{n}+C^{(7)} \eta^{n-1}, \quad \bmod (\eta)
\end{gathered}
$$

Step 4. Differentiating $\theta_{n}^{\alpha^{\prime}}=\sqrt{\mu_{1}} \eta^{\alpha}$, $d \theta_{n}^{\alpha^{\prime}}=d\left(\sqrt{\mu_{1}}\right) \wedge \eta^{\alpha}+\sqrt{\mu_{1}} d \eta^{\alpha}$. By $\S 6 \theta_{\alpha}^{n-1}$ and $\theta_{\alpha}^{n}=0$ and $\theta_{\alpha^{\prime}}^{n_{12}}=0$ in Step 2(C), this implies $\theta_{n}^{n} \wedge \sqrt{\mu_{1}} \eta^{\alpha}+\sqrt{\mu_{1}} \eta^{\gamma} \wedge \theta_{\gamma^{\prime}}^{\alpha^{\prime}}+2 \sqrt{\mu_{1}} \eta^{n} \wedge \theta_{n_{11}}^{\alpha^{\prime}}=$ $d\left(\sqrt{\mu_{1}}\right) \wedge \eta^{\alpha}+\sqrt{\mu_{1}}\left(\theta_{0}^{0} \wedge \eta^{\alpha}+\eta^{\gamma} \wedge \theta_{\gamma}^{\alpha}\right), \bmod (\eta)$, i.e., $\eta^{\alpha} \wedge\left[\sqrt{\mu_{1}}\left(\theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}+\theta_{0}^{0}-\theta_{n}^{n}\right)+d\left(\sqrt{\mu_{1}}\right)\right]+$ $\eta^{n} \wedge\left(2 \sqrt{\mu_{1}} \theta_{n_{11}}^{\alpha^{\prime}}\right)=0, \bmod (\eta)$.

$$
\begin{aligned}
& \sqrt{\mu_{1}}\left(\theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}+\theta_{0}^{0}-\theta_{n}^{n}\right)=-d\left(\sqrt{\mu_{1}}\right)+A^{(77) \beta} \eta^{\beta}+B^{(77) \beta} \eta^{n}, \bmod (\eta), \\
& 2 \sqrt{\mu_{1}} \theta_{n_{11}}^{\alpha^{\prime}}=B^{(77) \beta} \eta^{\beta}+E^{(77) \beta} \eta^{n}, \bmod (\eta) .
\end{aligned}
$$

By Step 1(A), $\sqrt{\mu_{1}} \theta_{\beta^{\prime}}^{n_{11}}=A_{\beta}^{(1)} \eta^{n}$. It implies $A_{\beta}^{(1)}=B^{(77) \beta}=E^{(77) \beta}=0$ and $\theta_{n_{11}}^{\alpha^{\prime}}=0$.
By Step 3(A), $\sqrt{\mu_{1}} \Delta_{\alpha}=-d\left(\sqrt{\mu_{1}}\right)+A^{(6) \alpha} \eta^{n}, \bmod (\eta)$, it implies $A^{(6) \alpha}=0$.
Step 5 Consider $\theta_{\beta}^{n}=0$. Then $d \theta_{\beta}^{n}=0$. By $\S 6$ and $\theta_{\beta}^{n-1}=\theta_{\beta}^{n}=0$, this implies $\eta^{n} \wedge\left(-\theta_{\beta}^{0}\right)-$ $\mu_{1} \eta^{n} \wedge \overline{\eta^{\beta}}+2 i \overline{\eta^{\beta}} \wedge \theta_{N+1}^{n}=0$. Hence $\eta^{n} \wedge\left(-\theta_{\beta}^{0}-\mu_{1} \overline{\eta^{\beta}}\right)+\overline{\eta^{\beta}} \wedge\left(2 i \theta_{N+1}^{n}\right)=0$. Then by Cartan's lemma,

$$
\begin{aligned}
& -\theta_{\beta}^{0}-\mu_{1} \overline{\eta^{\beta}}=A^{(17) \beta} \eta^{n}+C^{(17)} \overline{\eta^{\beta}}, \\
& 2 i \theta_{N+1}^{n}=C^{(17)} \eta^{n}+F^{(17)} \overline{\eta^{\beta}} .
\end{aligned}
$$

Hence $F^{(17)}=0$. Recalling $\theta_{\beta}^{0}=-2 i \overline{\theta_{N+1}^{\beta}}$, we obtain $-2 i \theta_{N+1}^{\beta}=\overline{A^{(17) \beta}} \overline{\eta^{n}}+\left(\mu_{1}+\overline{C^{(17)}}\right) \eta^{\beta}$. Step 6 From $\theta_{\alpha^{\prime}}^{\beta^{\prime \prime}}=0$ for $\alpha \neq \beta$ by Step 2(A), $d \theta_{\alpha^{\prime}}^{\beta^{\prime \prime}}=0$. By the known formulas, this implies $\theta_{\alpha^{\prime}}^{\beta^{\prime}} \wedge \theta_{\beta^{\prime}}^{\beta^{\prime \prime}}+\theta_{\alpha^{\prime}}^{\alpha^{\prime \prime}} \wedge \theta_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}+\theta_{\alpha^{\prime}}^{b} \wedge \theta_{b}^{\beta^{\prime \prime}}=0$. By Step 2(A) and $2\left(\mathrm{~A}^{\prime}\right), \theta_{\alpha^{\prime}}^{\beta^{\prime}}=\theta_{\alpha}^{\beta}$ and $\theta_{\alpha^{\prime \prime}}^{\beta^{\prime \prime}}=\theta_{\alpha}^{\beta}$, $\forall \alpha \neq \beta$. By Step 1 (B), $\frac{1}{\sqrt{\mu_{1}}}\left(2 C_{\alpha}^{(2) b} \eta^{n}+B_{\alpha}^{(2) b} \eta^{n-1}\right) \wedge \frac{1}{\sqrt{\mu_{2}}}\left(-\overline{B_{\beta}^{(2) b}} \overline{\eta^{n}}-\overline{D_{\beta}^{(2) b}} \overline{\eta^{n-1}}\right)=0$. Then

$$
C_{\alpha}^{(2) b} \overline{B_{\beta}^{(2) b}}=C_{\alpha}^{(2) b} \overline{D_{\beta}^{(2) b}}=B_{\alpha}^{(2) b} \overline{B_{\beta}^{(2) b}}=B_{\alpha}^{(2) b} \overline{D_{\beta}^{(2) b}}=0, \quad \alpha \neq \beta
$$

Step 7 Consider $\theta_{\alpha^{\prime}}^{\beta^{\prime}}=\theta_{\alpha}^{\beta}$ where $\alpha \neq \beta$ by Step 2(A). Then $d \theta_{\alpha^{\prime}}^{\beta^{\prime}}=d \theta_{\alpha}^{\beta}$. By the known formulas, $-\theta_{n}^{\beta^{\prime}} \wedge \theta_{\alpha^{\prime}}^{n}-\theta_{\gamma^{\prime}}^{\beta^{\prime}} \wedge \theta_{\alpha^{\prime}}^{\gamma^{\prime}}-\theta_{b}^{\beta^{\prime}} \wedge \theta_{\alpha^{\prime}}^{b}=-\theta_{0}^{\beta} \wedge \theta_{\alpha}^{0}-\theta_{\gamma}^{\beta} \wedge \theta_{\alpha}^{\gamma}-\theta_{N+1}^{\beta} \wedge \theta_{\alpha}^{N+1}$, i.e.,

$$
\begin{aligned}
& \quad-\mu_{1} \overline{\eta^{\alpha}} \wedge \eta^{\beta}+\sum_{\gamma \neq \alpha, \beta} \theta_{\alpha^{\prime}}^{\gamma^{\prime}} \wedge \theta_{\gamma^{\prime}}^{\beta^{\prime}}+\theta_{\alpha^{\prime}}^{\alpha^{\prime}} \wedge \theta_{\alpha^{\prime}}^{\beta^{\prime}}+\theta_{\alpha^{\prime}}^{\beta^{\prime}} \wedge \theta_{\beta^{\prime}}^{\beta^{\prime}}+\frac{1}{\sqrt{\mu_{1}}}\left(2 C_{\alpha}^{(2) b} \eta^{n}+B_{\alpha}^{(2) b} \eta^{n-1}\right) \wedge \\
& \frac{1}{\sqrt{\mu_{1}}}\left(-2 \overline{C_{\beta}^{(2) b}} \overline{\eta^{n}}-\overline{B_{\beta}^{(2) b}} \overline{\eta^{n-1}}\right)=\left(-\mu_{1}-C^{(17)}\right) \overline{\eta^{\alpha}} \wedge \eta^{\beta}+\sum_{\gamma \neq \alpha, \beta} \theta_{\alpha}^{\gamma} \wedge \theta_{\gamma}^{\beta} \wedge+\theta_{\alpha}^{\alpha} \wedge \theta_{\alpha}^{\beta}+\theta_{\alpha}^{\beta} \wedge \\
& \theta_{\beta}^{\beta}+2 i \overline{\eta^{\alpha}} \wedge \frac{i}{2}\left(\mu_{1}+\bar{C} \overline{C(17)}\right) \eta^{\beta} . \text { Since } \sum_{\gamma \neq \alpha, \beta} \theta_{\alpha^{\prime}}^{\gamma^{\prime \prime}} \wedge \theta_{\gamma^{\prime \prime}}^{\beta^{\prime \prime}}=\sum_{\gamma \neq \alpha, \beta} \theta_{\alpha}^{\gamma} \wedge \theta_{\gamma}^{\beta} \wedge, \theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}= \\
& \theta_{\beta^{\prime}}^{\beta^{\prime}}-\theta_{\beta}^{\beta} \text { and } \theta_{\beta^{\prime \prime}}^{\alpha^{\prime}}=0 \forall \alpha \neq \beta \text {, the above identity becomes }-\mu_{1} \eta^{\alpha} \wedge \eta^{\beta}+\frac{1}{\sqrt{\mu_{1}}}\left(2 C_{\alpha}^{(2) b} \eta^{n}\right. \\
& \left.+B_{\alpha}^{(2) b} \eta^{n-1}\right) \wedge \frac{1}{\sqrt{\mu_{1}}}\left(-2 \overline{C_{\beta}^{(2) b}} \overline{\eta^{n}}-\overline{B_{\beta}^{(2) b}} \overline{\eta^{n-1}}\right)=\left(-\mu_{1}-C^{(17)} \overline{\eta^{\alpha}} \wedge \eta^{\beta}+2 i \overline{\eta^{\alpha}} \wedge \frac{i}{2}\left(\mu_{1}+\overline{C^{(17)}}\right) \eta^{\beta} .\right.
\end{aligned}
$$

Then we obtain $C^{(17)}+\overline{C^{(17)}}=-\mu_{1}$ again and $\sum_{b} C_{\alpha}^{(2) b} \overline{C_{\beta}^{(2) b}}=0, \forall \alpha \neq \beta$.
Step 8 Notice $\theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}=\theta_{\beta^{\prime}}^{\beta^{\prime}}-\theta_{\beta}^{\beta}, \forall \alpha \neq \beta$ (see Step 6). Then $d \theta_{\alpha^{\prime}}^{\alpha^{\prime}}-d \theta_{\alpha}^{\alpha}=d \theta_{\beta^{\prime}}^{\beta^{\prime}}-d \theta_{\beta}^{\beta}$.
By the known formulas, $d \theta_{\alpha^{\prime}}^{\alpha^{\prime}}-d \theta_{\alpha}^{\alpha}=-\mu_{1} \overline{\eta^{n}} \wedge \eta^{n}-\mu_{1} \overline{\eta^{\alpha}} \wedge \eta^{\alpha}+\theta_{\alpha^{\prime}}^{\alpha^{\prime \prime}} \wedge \theta_{\alpha^{\prime \prime}}^{\alpha^{\prime}}+\left(2 C_{\alpha}^{(2) b} \eta^{n}+\right.$ $\left.B_{\alpha}^{(2) b} \eta^{n-1}\right) \wedge\left(-2 \overline{C_{\alpha}^{(2) b}} \overline{\eta^{n}}-\overline{B_{\alpha}^{(2) b}} \overline{\eta^{n-1}}\right)-\left(-\mu_{1}-C^{(17)}\right) \overline{\eta^{\alpha}} \wedge \eta^{\alpha}+\mu_{1} \eta^{n} \wedge \overline{\eta^{n}}+\mu_{2} \eta^{n-1} \wedge \overline{\eta^{n-1}}-$
$2 i \overline{\eta^{\alpha}} \wedge\left(-\frac{i}{2}\right)\left(-C^{(17)}-\mu_{1}\right) \eta^{\alpha}$. Since $\Delta_{\alpha}=\theta_{\alpha^{\prime}}^{\alpha^{\prime}}-\theta_{\alpha}^{\alpha}+\theta_{0}^{0}-\theta_{n}^{n}$ is independent of α by its formula in Step 3(A), we have $d \theta_{\alpha^{\prime}}^{\alpha^{\prime}}-d \theta_{\alpha}^{\alpha}=d \theta_{\beta^{\prime}}^{\beta^{\prime}}-d \theta_{\beta}^{\beta}$, i.e., $-\mu_{1} \overline{\eta^{\alpha}} \wedge \eta^{\alpha}+\left(2 C_{\alpha}^{(2) b} \eta^{n}+B_{\alpha}^{(2) b} \eta^{n-1}\right) \wedge$ $\left(-2 \overline{C_{\alpha}^{(2) b}} \overline{\eta^{n}}-\overline{B_{\alpha}^{(2) b}} \overline{\eta^{n-1}}\right)-\left(-\mu_{1}-C^{(17)}\right) \overline{\eta^{\alpha}} \wedge \eta^{\alpha}-2 i \overline{\eta^{\alpha}} \wedge \frac{i}{2}\left(\overline{C^{(17)}}+\mu_{1}\right) \eta^{\alpha}=-\mu_{1} \overline{\eta^{\beta}} \wedge \eta^{\beta}+$ $\left(2 C_{\beta}^{(2) b} \eta^{n}+B_{\beta}^{(2) b} \eta^{n-1}\right) \wedge\left(-2 \overline{C_{\beta}^{(2) b}} \overline{\eta^{n}}-\overline{B_{\beta}^{(2) b}} \overline{\eta^{n-1}}\right)-\left(-\mu_{1}-C^{(17)}\right) \overline{\eta^{\beta}} \wedge \eta^{\beta}-2 i \overline{\eta^{\beta}} \wedge \frac{i}{2}\left(\overline{C^{(17)}}+\mu_{1}\right) \eta^{\beta}$. Here we also use the fact that $\theta_{\alpha^{\prime}}^{\alpha^{\prime \prime}}=\theta_{n-1}^{n}$ by Step 2(D). Hence $C^{(17)}+\overline{C^{(17)}}=-\mu_{1}$ (known) and

$$
\sum_{b}\left|C_{\alpha}^{(2) b}\right|^{2}=\sum_{b}\left|C_{\beta}^{(2) b}\right|^{2}, \quad \sum_{b}\left|B_{\alpha}^{(2) b}\right|^{2}=\sum_{b}\left|B_{\beta}^{(2) b}\right|^{2}, \quad \alpha \neq \beta
$$

It means that $\sum_{b}\left|C_{\alpha}^{(2) b}\right|^{2}$ and $\sum_{b}\left|B_{\alpha}^{(2) b}\right|^{2}$ are independent of α. Recall $\sum_{b} B_{\alpha}^{(2) b} \overline{B_{\beta}^{(2) b}}=$ $\sum_{b} C_{\alpha}^{(2) b} \overline{C_{\beta}^{(2) b}}=0$ for $\alpha \neq \beta$ in Step 6 and Step 7. Recall $b \in\{3 n, 3 n+1, \ldots, N\}$ and denote $\vec{x}_{\alpha}:=C_{\alpha}^{(2) b}$. Then the set of vectors $\left\{\vec{x}_{\alpha}\right\}_{\alpha \in\{1,2, \ldots, n-2\}} \subset \mathbb{C}^{N-3 n+1}$ satisfies

$$
\left\langle\vec{x}_{\alpha}, \vec{x}_{\beta}\right\rangle=0, \quad \forall \alpha \neq \beta ; \quad\left\langle\vec{x}_{\alpha}, \vec{x}_{\alpha}\right\rangle=c
$$

where c is independent of α. By the hypothesis $N+1 \leq 4 n-3$, we have $\left\{\vec{x}_{\alpha}\right\}_{\alpha \in\{1,2, \ldots, n-2\}} \subset$ $\mathbb{C}^{(4 n-4)-3 n+1}=\mathbb{C}^{n-3}$. Since $\#\{1,2, \ldots, n-2\}=n-2$, it implies

$$
C_{\alpha}^{(2) b}=B_{\alpha}^{(2) b}=0 .
$$

Step 9 Now $\theta_{n_{12}}^{\gamma^{\prime}}=0$ by Step 2(C); $\theta_{n_{12}}^{\gamma^{\prime \prime}}=0$ by Step $2(\mathrm{D}) ; \theta_{\beta}^{n}=0$ by Step 2(A) and $G_{\beta}^{(3)}=0\left(\operatorname{Step} 2\left(\mathrm{~A}^{\prime}\right)\right) ; \theta_{n_{11}}^{\gamma^{\prime}}=0$ by Step $1(\mathrm{~A})$ and by $\theta_{\beta}^{n}=0$ and by $A^{(1)_{\beta}}=0$ (Step 4) and by $B_{\beta}^{(1)}=0(\operatorname{Step} 2(\mathrm{D})) ; \theta_{n_{22}}^{\gamma^{\prime}}=0$ by Step $2(\mathrm{C}) ;$ and $\theta_{b}^{\gamma^{\prime}}=0$ by Step $1(\mathrm{~B})$ and $B_{\beta}^{(2) b}=C_{\beta}^{(2) b}=0$ (Step 8).

8 Proof of Theorem 1.1

Proof of Theorem 1.1: If F is linear fractional, $I I_{M} \equiv 0$ and $I I_{M}^{C R} \equiv 0$ by Corollary 5.2 and [JY10]. Then $I I_{M}-I I_{M}^{C R} \equiv 0$.

Conversely, if $I I_{M}-I I_{M}^{C R} \equiv 0$, we want to show: F is linear fractional. Recall that F is linear fractional if and only if $\kappa_{0}=0$. Suppose that F is not linear fractional, i.e., $\kappa_{0} \geq 1$. We seek a contradiction.

Since $N+1 \leq 4 n-3$, by the inequality $N \geq n+\frac{\left(2 n+1-\kappa_{0}\right) \kappa_{0}}{2}$ (cf. Lemma 2.1 (i)), it implies that the geometric rank κ_{0} of F satisfies $\kappa_{0} \leq 2$. Then its geometric rank $\kappa_{0}=1$ or 2.

Suppose first that $\kappa_{0}=2$. Then $N \geq n+\frac{\left(2 n+1-\kappa_{0}\right) \kappa_{0}}{2}=3 n-1$, i.e., $N+1 \geq 3 n$.

If $\kappa_{0}=2$ with $N+1>3 n$, by Lemma 7.1(i), we have $\theta_{n_{12}}^{\alpha^{\prime}}=0$. Differentiating, we obtain $\theta_{n_{12}}^{\gamma} \wedge \theta_{\gamma}^{\alpha^{\prime}}+\theta_{n_{12}}^{n-1} \wedge \theta_{n-1}^{\alpha^{\prime}}+\theta_{n_{12}}^{n} \wedge \theta_{n}^{\alpha^{\prime}}+\theta_{n_{12}}^{\gamma^{\prime}} \wedge \theta_{\gamma^{\prime}}^{\alpha^{\prime}}+\theta_{n_{12}}^{\gamma^{\prime \prime}} \wedge \theta_{\gamma^{\prime \prime}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{11}} \wedge \theta_{n_{11}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{22}} \wedge \theta_{n_{22}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{12}} \wedge \theta_{n_{12}}^{\alpha^{\prime}}+$ $\theta_{n_{12}}^{b} \wedge \theta_{b}^{\alpha^{\prime}}+\theta_{n_{12}}^{N+1} \wedge \theta_{N+1}^{\alpha^{\prime}}=0$. By $\S 6$ and Lemma 7.1(i), we obtain $-\sqrt{\mu_{1}+\mu_{2}} \overline{\eta^{n-1}} \wedge \sqrt{\mu_{1}} \eta^{\alpha}=0$, but this is a contradiction.

If $\kappa_{0}=2$ with $N+1=3 n$, by Lemma 7.1(ii), we have $\theta_{n_{12}}^{\alpha^{\prime}}=0$, i.e., $\theta_{n_{12}}^{\gamma} \wedge \theta_{\gamma}^{\alpha^{\prime}}+\theta_{n_{12}}^{n-1} \wedge$ $\theta_{n-1}^{\alpha^{\prime}}+\theta_{n_{12}}^{n} \wedge \theta_{n}^{\alpha^{\prime}}+\theta_{n_{12}}^{\gamma^{\prime}} \wedge \theta_{\gamma^{\prime}}^{\alpha^{\prime}}+\theta_{n_{12}}^{\gamma^{\prime \prime}} \wedge \theta_{\gamma^{\prime \prime}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{11}} \wedge \theta_{n_{11}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{22}} \wedge \theta_{n_{22}}^{\alpha^{\prime}}+\theta_{n_{12}}^{n_{12}} \wedge \theta_{n_{12}}^{\alpha^{\prime}}+\theta_{n_{12}}^{N+1} \wedge \theta_{N+1}^{\alpha^{\prime}}=0$. By $\S 6$ and Lemma 7.1(ii), we obtain the same contradiction as above.

Next suppose that $\kappa_{0}=1$. By Theorem 3.1 in [HJX06], we can write

$$
\left\{\begin{array}{l}
f_{1}=z_{1} f_{1}^{*} \\
f_{j}=z_{j}, \quad \forall 2 \leq j \leq n \\
\phi_{l k}=\mu_{l k} z_{l} z_{k}+z_{1} \phi_{l k}^{*}, \quad \forall(l, k) \in \mathcal{S}_{0} \\
\phi_{l k}=z_{1} \phi_{l k}^{*}, \quad \forall(l, k) \in \mathcal{S} \backslash \mathcal{S}_{0} \\
g=w
\end{array}\right.
$$

where $f_{1}^{*}=1+\frac{i \mu_{1}}{2} w+O\left(|(z, w)|^{2}\right)$, and $\phi_{l k}^{*}=O_{w t}(2), \forall(l, k) \in \mathcal{S}_{0}$. Since $F(z, w) \in \partial \mathbb{H}^{N+1}$, we have

$$
\operatorname{Im}(w)=\left|z_{1} f_{1}^{*}\right|^{2}+\left|z_{2}\right|+\ldots+\left|z_{n}\right|^{2}+\left|z_{1}\right|^{2} \sum_{(l, k) \in \mathcal{S}}\left|\phi_{l k}^{*}\right|^{2}, \quad \forall \operatorname{Im}(w)=|z|^{2},
$$

i.e.,

$$
0=\left|f_{1}^{*}\right|^{2}-1+\sum_{(l, k) \in \mathcal{S}}\left|\phi_{l k}^{*}\right|^{2}, \quad \forall \operatorname{Im}(w)=|z|^{2}
$$

Then the mapping $(z, w) \mapsto\left(f_{1}^{*}, \phi_{l k}^{*}\right)$ is a proper holomorphic mapping from $\partial \mathbb{H}^{n+1}$ into $\partial \mathbb{B}^{N-n+1}$. Since $f_{1}^{*}=1+\frac{i \mu_{1}}{2} w+O\left(|(z, w)|^{2}\right)$, we conclude that at least one of the components $\left\{\phi_{l k}^{*}\right\}_{(l, k) \in \mathcal{S}}$ must contain a nonzero w term. This is a contradiction with (73).

Acknowledgments The authors would like to express our gratitude to the referee for pointing our some errors in the original version of this paper. The second author would like to thank Prof. Qing-zhong Li who kindly made arrangement for his visits at the Department of mathematics, Capital Normal University, in 2009 winter and 2010 summer, and would like to thank Prof. X. Huang for his discussion on this problem.

References

[BS76] D. jr. Burns and S. Shnider, Spherical hypersurfaces in complex manifolds, Invent. Mat. 33(1976), 223-246.
[Car] É. Cartan, Sur les variétés pseudo-conformal des hypersurfaces de l'espace de deux variables complexes, Ann. Mat. Pura Appl. (4) 11(1932), 17-90.
[CM] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219-271.
[H99] X. Huang, On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions, J. of Diff. Geom. 51(1999), 13-33.
[H03] X. Huang, On a semi-rigidity property for holomorphic maps, Asian J. Math. Vol(7) No. 4(2003), 463-492.
[Hu04] X. Huang, Lectures on the Local Equivalence Problems for Real Submanifolds in Complex Manifolds, Lecture Notes in Mathematics 1848 (C.I.M.E. Subseries), SpringerVerlag, 2004, 109-163.
[H06] X. Huang, Isolated complex singularities and their CR links, Science in China Sereis A: Mathematics, vol.49(2006), No.11, 1441-1450.
[HJ01] X. Huang and S. Ji, Mapping \mathbb{B}^{n} into $\mathbb{B}^{2 n-1}$, Invent Math, 145(2001), 219-250.
[HJX05] X. Huang, S. Ji and D. Xu, Several Results for Holomorphic Mappings from \mathbb{B}^{n} into \mathbb{B}^{N}, Geometric analysis of PDE and several complex variables, 267-292, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005.
[HJX06] X. Huang, S. Ji and D. Xu, A new gap phenomenon for proper holomorphic mappings from \mathbb{B}^{n} into \mathbb{B}^{N}, Math. Research Letter, $\mathbf{1 3}(2006) 4,509-523$.
[IL03] T.A. Ivey and J. Landsberg, Cartan for beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Graduate Studies in Math, Vol. 61, AMS. 2003.
[JX04] S. Ji and D. Xu, Maps between \mathbb{B}^{n} and \mathbb{B}^{N} with Geometric Rank κ_{0} less than $n-1$ and Minimum N, Asian J. Math, Vol.8, No.2(2004), 233-258.
[JY10] S. Ji and Y. Yuan, Flatness of CR submanifolds in a sphere, submitted, 2010.
[Wang09] S. H. Wang, Rigidity of proper holomorphic maps from \mathbb{B}^{n+1} to $\mathbb{B}^{3 n-1}$, J. Korean Math. Soc. 46(2009), no. 5, 895-905.

Xiaoliang Cheng (chengxiaoliang92@163.com), department of mathematics, Capital Normal University, Beijing, 100048, China, and department of mathematics, Jilin Normal University, Siping, 136000, China

Shanyu Ji (shanyuji@math.uh.edu), Department of Mathematics, University of Houston, Houston, TX 77204, USA.

