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1 Introduction

In CR geometry, by spherical CR manifold, we mean a (2n+1)-dimension CR manifoldM
that is locally CR equivalent to a piece of the sphere ∂Bn+1 in Cn+1. In general, the universal
covering space of a spherical CR manifold may not be ∂Bn+1 and the fundamental group
of M may not be finite. For example, Burns-Schnider [BS76] constructed a compact real
analytic CR spherical submanifold of dimension 3 in C3 with fundamental group of infinite
order. However, it is proved by Huang ([H06], corollary 3.3) that any 2n + 1-dimensional
compact (Nash) algebraic spherical CR submanifold of C

m, with n ≥ 1, is CR equivalent
to ∂Bn+1/Γ where Γ ⊂ Aut(Bn+1) is a finite unitary group with the only free points at 0
and Aut(Bn+1) is the group of biholomorphisms of Bn+1. This implies that if M ⊂ ∂BN+1

is a compact spherical CR submanifold of dimension 2n + 1, by the argument in [H06],
theorem 3.1, M is Nash algebraic if and only if M = F (∂Bn+1) where F : Bn+1 → BN+1

is a proper rational holomorphic map. By Klein’s Erlanger program, we should study such
submanifolds M ⊂ ∂BN+1 and the invariant properties under the transitive action of the
automorphism group Aut(∂BN+1) where Aut(∂BN+1) is the group of CR automorphisms.
Elements in both Aut(BN+1) and Aut(∂BN+1) are linear fractional.

Let us denote by Prop(Bn+1,BN+1) the space of all proper holomorphic maps from the
unit ball Bn+1 ⊂ Cn+1 to BN+1, and denote by Propk(B

n+1,BN+1) the space Prop(Bn+1,
BN+1)∩Ck(Bn+1). Write Hn+1 := {(z, w) ∈ Cn×C : Im(w) > |z|2} for the Siegel upper-half
space. Similarly, we can define the space Prop(Hn+1,HN+1) and Propk(H

n+1,HN+1). By
the Cayley transformation ρn+1 : H

n+1 → B
n+1, ρn+1(z, w) = ( 2z

1−iw
, 1+iw

1−iw
), we can identify
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a map F ∈ Propk(B
n+1,BN+1) with ρ−1

N+1 ◦ F ◦ ρn+1 in the space Propk(H
n+1,HN+1). For

any map F ∈ Prop2(H
n+1,HN+1), the restriction F : ∂Hn+1 → ∂HN+1 is a C2-smooth CR

map.
For F ∈ Prop2(H

n+1,HN+1), we denoteM = F (∂Hn+1) which is an immersed C2-smooth
CR submanifold. It is known that the following statements are equivalent:

• F is linear fractional.

• The geometric rank of F is zero (cf. [H03], and [HJ01], proposition 2.2).

• The CR second fundamental form IICR
M ≡ 0 (cf. [JY10]. Although the smoothness

condition was required there, by checking the proof, C2 smoothness is sufficient. For
the definition of IICR

M , also see (33) below).

IICR
M was defined by Cartan’s moving frame theory. Again by Cartan’s moving frame

theory, another second fundamental form IIM can be naturally defined (see the definition
in (31) below). We observe that F is linear fractional if and only if IIM ≡ 0 (see Corollary
5.2 below).

In this paper, we want to prove the following criterion for linearity.

Theorem 1.1 Let F ∈ Prop3(H
n+1,HN+1) with 4 ≤ n + 1 < N + 1 ≤ 4n − 3. Then F is

linear fractional if and only if
IIM − IICR

M ≡ 0. (1)

Roughly speaking, by the decomposition TM = T 1,0M ⊕ Rξ in (6), we obtain the
decomposition IIM = IICR

M ⊕ (IIM − IICR
M ). While IIM ≡ 0⇔ IICR

M ≡ 0, the above shows
that it is also equivalent to IIM − IICR

M ≡ 0. For the definition of IIM − IICR
M , see (35).

By the condition that N + 1 ≤ 4n− 3 together with the inequality N ≥ n+ (2n+1−κ0)κ0

2
(cf.

Lemma 2.1 (i)), it implies the geometric rank κ0 of F satisfies κ0 ≤ 2. The condition that
4 ≤ n+1 is used to ensure the inequality κ0 ≤ n−1 holds, which allows us to apply the semi-
linearity property (cf. [H03]). The conditions N + 1 ≤ 4n− 3 and F ∈ Prop3(H

n+1,HN+1)
also imply that F is a rational map ([HJX05], corollary 1.3) so that we indeed deal with real
analytic CR manifolds and CR maps in this paper.

The condition IIM − IICR
M ≡ 0 indeed means (see (73) below):

∂2φ∗∗∗
jl,p

∂zk∂w
|0 = 0, ∀(j, l) ∈ S, 1 ≤ k ≤ κ0, ∀p ∈ ∂H

n+1. (2)

As an explicit example, we would like to mention a map F ∈ Rat(H4,H9) in ([JX04], theorem
6.1) which is not linear, and does not satisfy (2).

The authors conjecture that the coniditon “N + 1 ≤ 4n − 3” in Theorem 1.1 can be
dropped.
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2 Preliminaries

On CR mappings between Heisenberg hyperplanes We say that F and G ∈
Prop(Bn+1,BN+1) are equivalent if there are automorphisms σ ∈ Aut(Bn+1) and τ ∈ Aut(
BN+1) such that F = τ ◦G ◦ σ. We say that F and G ∈ Prop(Hn+1,HN+1) are equivalent if
there are automorphisms σ ∈ Aut(Hn+1) and τ ∈ Aut(HN+1) such that F = τ ◦G ◦ σ.

We denote by ∂H
n+1 = {(z, w) ∈ C

n × C : Im(w) = |z|2} the Heisenberg hypersurface.
For any map F ∈ Prop2(H

n+1,HN+1), by restricting to ∂Hn+1, we can regard F as a C2 CR
map from ∂Hn+1 to ∂HN+1, and we denote it as F ∈ CR2(∂Hn+1, ∂HN+1). We say that F
and G ∈ CR2(∂Hn+1, ∂HN+1) are equivalent if there are automorphisms σ ∈ Aut(∂Hn+1) ≃
Aut(Hn+1) and τ ∈ Aut(∂HN+1) ≃ Aut(HN+1) such that F = τ ◦G ◦ σ.

We can parametrize ∂Hn+1 by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). In
what follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-
negative integer m, a function h(z, z, u) defined over a small ball U of 0 in ∂Hn+1 is said to

be of quantity owt(m) if h(tz,tz,t2u)
|t|m → 0 uniformly for (z, u) on any compact subset of U as

t(∈ R)→ 0.

Let F = (f, φ, g) = (f̃ , g) = (f1, · · · , fn, φ1, · · · , φN−n, g) ∈ CR2(∂Hn+1, ∂HN+1) with
F (0) = 0. For each p = (z0, w0) ∈ ∂Hn+1, we write σ0

p ∈ Aut(Hn+1) with σ0
p(0) = p and

τF
p ∈ Aut(HN+1) with τF

p (F (p)) = 0 for the maps

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉), (3)

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉). (4)

For each p ∈ ∂Hn+1, there is an automorphism τ ∗∗p ∈ Aut0(HN+1) such that (cf, [HJ01],
lemma 2.1) F ∗∗

p := τ ∗∗p ◦ Fp = (f ∗∗
p , φ∗∗

p , g
∗∗
p ) satisfies

f ∗∗
p = z +

i

2
e(1)p (z)w + owt(3), φ∗∗

p = φ(2)
p (z) + owt(2), g∗∗p = w + owt(4)

with 〈z, e(1)p (z)〉|z|2 = |φ(2)
p (z)|2 where we denote by h(j)(z) a certain weighted holomorphic

homogeneous polynomial with weighted degree j.

Let A(p) = −2i(
∂2(fp)∗∗l

∂zj∂w
|0)1≤j,l≤n. We call the rank of A(p), which we denote by RkF (p),

the geometric rank of F at p. RkF (p) depends only on p and F , and is a lower semi-continuous
function on p. We define the geometric rank of F to be κ0(F ) = maxp∈∂Hn+1RkF (p). Notice
that we always have 0 ≤ κ0 ≤ n. We define the geometric rank of F ∈ Prop2(B

n+1,BN+1)
to be the one for the map ρ−1

N ◦ F ◦ ρn ∈ Prop2(H
n+1,HN+1).

3



Lemma 2.1 ([H03], Lemma 3.2 and 3.3) (i) Let F be a C2-smooth CR map from an open

piece M ⊂ ∂Hn+1 into ∂HN+1 with F (0) = 0 and RkF (0) = κ0. Let P (n, κ0) = κ0(2n−κ0+1)
2

.
Then N ≥ n+ 1 + P (n, κ0) and there are σ ∈ Aut0(∂Hn+1) and τ ∈ Aut0(∂HN+1) such that
F ∗∗∗

p = τ ◦ F ◦ σ := (f, φ, g) satisfies the following normalization conditions:




fj =zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj =zj + owt(3), j = κ0 + 1, · · · , n
φjl =µjlzjzl + owt(2), with (j, l) ∈ S,
g =w + owt(4),

(5)

where µjl > 0 for (j, l) ∈ S0, and µjl = 0 otherwise. More precisely, µjl =
√
µj + µl for

j, l ≤ κ0 j 6= l, µjl =
√
µj if j ≤ κ0 and l > κ0 or if j = l ≤ κ0.

(ii) If, in addition, F ∈ Prop3(B
n+1,BN+1) with 0 < κ0 < n, then

∂2φjl

∂zk∂w
|0 = 0,

∂2φjl

∂w2
|0 = 0, ∀(j, l) ∈ S, k > κ0.

On CR submanifolds Let M be a smooth strictly pseudoconvex (2n+1)-dimensional CR
manifold. We denote by HM ⊂ TM its maximal complex tangent bundle with the complex
structure J : HM → HM . Suppose that M is of hypersurface type, i.e., dimRHM = 2n.
Consider the natural extension of J on HM⊗C ⊂ TM⊗C. The eigenvalues of J in HM⊗C

is ±i. We denote by T 1,0M and T 0,1M the eigenspaces of J and have the decomposition
HM ⊗ C = T 1,0M ⊕ T 0,1M . All HM , T 1,0M and T 0,1M are complex vector bundles over
M of rank n. There is a C-linear isomorphism: HM → T 1,0M , v 7→ 1

2
(v − iJ(v)).

Let H0M be the annihilator bundle of HM which is a rank one subbundle. It is known
that there exist a real globally defined nowhere zero 1-form θ ∈ Γ(M,H0M) such that
Ker(θ) = HM . If M is locally defined by a defining function r, then we can take θ = i∂r.
The Levi-form Lθ with respect to θ is defined by Lθ(X, Y ) := −idθ(X∧J(Y )) = iθ([X, JY ]),
∀X, Y ∈ Γ(M,HM). By HM ≃ T 1,0M , we have

Lθ(u, v) := −idθ(u ∧ v) = iθ([u, v]), ∀u, v ∈ T 1,0
p (M), ∀p ∈M.

Recall that (M, θ) is strictly pseudoconvex if the Levi-form Lθ is positive definite for all
z ∈ M . Such real non-vanishing 1-form θ over M is a contact form because it satisfies:
θ ∧ (dθ)n 6= 0. Associated with a contact form θ, there is a unique Reeb vector field ξ,
defined by the equations: (i) θ(ξ) ≡ 1, (ii) dθ(ξ,X) ≡ 0 for any smooth vector field X over
M . We have orthogonal decomposition TM ≃ HM ⊕Rξ, or by HM ≃ T 1,0M , we have

TM ≃ T 1,0M ⊕ Rξ. (6)

Here gθ|HM = Lθ and gθ(ξ, ξ) = 1 defines the Webster metric associated to θ.
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3 Cartan’s moving frame theory

Q-frames We consider the real hypersurface Q in CN+2 defined by the homogeneous
equation

〈Z,Z〉 :=
∑

A

ZAZA +
i

2
(ZN+1Z0 − Z0ZN+1) = 0, (7)

where Z = (Z0, ZA, ZN+1)t ∈ CN+2. This can be extended to the scalar product

〈Z,Z ′〉 :=
∑

A

ZAZ ′A +
i

2
(ZN+1Z ′0 − Z0Z ′N+1), (8)

for any Z = (Z0, ZA, ZN+1)t, Z ′ = (Z ′0, Z ′A, Z ′N+1)t ∈ CN+2. This product has the prop-
erties: 〈Z,Z ′〉 is linear in Z and anti-linear in Z ′; 〈Z,Z ′〉 = 〈Z ′, Z〉; and Q is defined by
〈Z,Z〉 = 0.

Let SU(N+1, 1) be the group of unimodular linear homogeneous transformations of CN+2

that leave the form 〈Z,Z〉 invariant (cf. [CM74]). By a unimodular of linear homogeneous
transformation, in terms of a matrix A, we mean det(A) = 1.

By a Q-frame is meant an element E = (E0, EA, EN+1) ∈ GL(CN+2) satisfying (cf.
[CM74, (1.10)])

{
det(E) = 1,
〈EA, EB〉 = δAB, 〈E0, EN+1〉 = −〈EN+1, E0〉 = − i

2
,

(9)

while all other products are zero.
There is exactly one transformation of SU(N + 1, 1) which maps a given Q-frame into

another. By fixing one Q-frame as reference, the group SU(N + 1, 1) can be identified
with the space of all Q-frames. Then SU(N + 1, 1) ⊂ GL(CN+2) is a subgroup with the
composition operation.
The Q-frame bundle over CPN+1 Consider an element A ∈ GL(CN+2):

A = (a0, ..., aN+1) =




a
(0)
0 a

(0)
1 ... a

(0)
N+1

a
(1)
0 a

(1)
1 ... a

(1)
N+1

...
...

...

a
(N+1)
0 a

(N+1)
1 ... a

(N+1)
N+1


 , (10)

where each aj is a column vector in CN+2, 0 ≤ j ≤ N + 1. This A is associated to an
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automorphism A⋆ ∈ Aut(CPN+1) given by

A⋆

([
z0 : z1 : ... : zN+1

])
=

[
A




z0
...

zN+1



]

=

[N+1∑

j=0

a
(0)
j zj :

N+1∑

j=0

a
(1)
j zj : ... :

N+1∑

j=0

a
(N+1)
j zj

]
.

(11)

When a
(0)
0 6= 0, in terms of the non-homogeneous coordinates (w1, ..., wN+1), A

⋆ is a
linear fractional from C

N+1 which is holomorphic near (0, ..., 0):

A⋆
(
w1, ..., wN+1

)
=

(∑N+1
j=0 a

(1)
j wj

∑N+1
j=0 a

(0)
j wj

, ...,

∑N+1
j=0 a

(N+1)
j wj

∑N+1
j=0 a

(0)
j wj

)
, where wj =

zj

z0
. (12)

We define a bundle map:

π : GL(CN+2) → CPN+1

A = (a0, a1, ..., aN+1) 7→ π0(a0)

where
π0 : C

N+2 − {0} → CP
N+1, (z0, ...., zN+1) 7→ [z0 : ... : zN+1], (13)

be the standard projection. By taking restriction, we have the projection

π : SU(N + 1, 1)→ ∂H
N+1, (Z0, ZA, ZN+1) 7→ span(Z0). (14)

which is called a Q-frames bundle. We get ∂HN+1 ≃ SU(N + 1, 1)/P2 where P2 is the
isotropy subgroup of SU(N + 1, 1). SU(N + 1, 1) acts on ∂HN+1 effectively.
The Maurer-Cartan form over SU(N +1, 1) Consider E = (E0, EA, EN+1) ∈ SU(N +
1, 1) as a local lift. Then the Maurer-Cartan form Θ on SU(N + 1, 1) is defined by dE =
(dE0, dEA, dEN+1) = EΘ, or Θ = E−1 · dE, i.e.,

d
(
E0 EA EN+1

)
=
(
E0 EB EN+1

)



Θ0
0 Θ0

A Θ0
N+1

ΘB
0 ΘB

A ΘB
N+1

ΘN+1
0 ΘN+1

A ΘN+1
N+1


 , (15)

where ΘB
A are 1-forms on SU(N+1, 1). By (9) and (15), the Maurer-Cartan form Θ satisfies

Θ0
0 + ΘN+1

N+1 = 0, ΘN+1
0 = ΘN+1

0 , Θ0
N+1 = Θ0

N+1,

ΘN+1
A = 2iΘA

0 , ΘA
N+1 = − i

2
Θ0

A, ΘA
B + ΘB

A = 0, Θ0
0 + ΘA

A + ΘN+1
N+1 = 0,

(16)
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where 1 ≤ A,B ≤ N . For example, from 〈EA, EB〉 = δAB, by taking differentiation, we
obtain

〈dEA, EB〉+ 〈EA, dEB〉 = 0.

By (15), we have





dE0 = E0Θ
0
0 +

∑
B EBΘB

0 + EN+1Θ
N+1
0 ,

dEA = E0Θ
0
A +

∑
B EBΘB

A + EN+1Θ
N+1
A ,

dEN+1 = E0Θ
0
N+1 +

∑
B EBΘB

N+1 + EN+1Θ
N+1
N+1.

Then

〈E0Θ
0
A +

∑

C

ECΘC
A + EN+1Θ

N+1
A , EB〉+ 〈EA, E0Θ

0
B +

∑

D

EDΘD
B + EN+1Θ

N+1
B 〉 = 0,

which implies ΘB
A + ΘA

B = 0. In particular, from (16), Θ0
A = −2iΘA

N+1. Θ satisfies

dΘ = −Θ ∧Θ. (17)

CR submanifolds of ∂HN+1 Let H : M ′ → ∂HN+1 be a CR smooth embedding where
M ′ is a strictly pseudoconvex smooth real hypersurface in Cn+1. We denote M = H(M ′).

Let ξM ′ be the Reeb vector field of M ′ with respect to a fixed contact form on M ′. By
(6), we have:

TM ′ ≃ HM ′ ⊕ RξM ′ ≃ T 1,0M ′ ⊕RξM ′. (18)

For example, if M ′ = ∂H
n+1 = {(z1, ..., zn, zn+1) | Im(zn+1) = |z|2}, then the above isomor-

phism is given by

n∑

j=1

(aj

∂

∂xj

+ bj
∂

∂yj

) + cξM ′ 7→
n∑

j=1

(aj + ibj)
∂

∂zj

+ cξM ′, where aj , bj, c ∈ R. (19)

Since H is a CR embedding, we have

H∗(T
1,0M ′) = T 1,0M ⊂ T 1,0(∂H

N+1), (20)

TM ≃ H∗(T
1,0M ′)⊕H∗(RξM ′) ⊂ T (∂H

N+1). (21)

First-order adapted lifts In order to define more specific lifts, we need to give some
relationship between geometry on ∂HN+1 and on CN+2 as follows. For any subset X ⊂
∂HN+1, we denote X̂ := π−1

0 (X) where π0 : CN+2−{0} → CPN+1 is the standard projection
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map (13). In particular, for any x ∈ M , x̂ is a complex line and for the real submanifold
M2n+1, the real submanifold M̂2n+3 is of dimension 2n+ 3.

For any x ∈M , we take v ∈ x̂ = π−1
0 (x) ⊂ CN+2 − {0}, and we define

T̂xM = TvM̂ and T̂ 1,0
x M = T 1,0

v M̂.

These definitions are independent of choice of v. Notice that T̂xM = π−1
0 (TxM) ∪ {0} and

T̂ 1,0
x M = π−1

0 (T 1,0
x M) ∪ {0}. We denote R̂ξM,x := π−1

0 (RξM,x) ∪ {0}.
Let M ⊂ ∂H

N+1 be the image of H : M ′ → ∂H
N+1 where M ′ ⊂ C

n+1 is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M →֒ ∂HN+1 and a C2-
smooth lift e = (e0, eα, eν , eN+1) of M where 1 ≤ α ≤ n and n+ 1 ≤ ν ≤ N

SU(N + 1, 1)
eր ↓ π

M →֒ ∂HN+1

We call e a first-order adapted lift if for any x ∈M ,





π0

(
e0(x)

)
= x,

C⊗ {e0 +
∑

α aαeα | aα ∈ C}|x = T̂ 1,0
x M,

C⊗ {e0 +
∑

α aαeα + beN+1 |aα ∈ C, b ∈ R}|x = T̂ 1,0
x M ⊕ R̂ξM,x.

(22)

Locally first-order adapted lifts always exist (cf. [JY10], theorem 7.1). We have the restric-
tion bundle F0

M := SU(N + 1, 1)|M over M . The subbundle π : F1
M → M of F0

M is defined
by

F1
M = {(e0, ej, eµ, eN+1) ∈ F0

M | [e0] ∈M, (22) are satisfied}.

Local sections of F1
M are exactly all local first-order adapted lifts of M . The fiber of π :

F1
M →M over a point is isomorphic to the group

G1 =

{
g =




g0
0 g0

β g0
ν g0

N+1

0 gα
β gα

ν gα
N+1

0 0 gµ
ν 0

0 0 0 gN+1
N+1


 ∈ SU(N + 1, 1)

}
, (23)

where we use the index range 1 ≤ α, β ≤ n and n+ 1 ≤ µ, ν ≤ N .

By (9), we have 〈g0, gN+1〉 = − i
2
, it implies g0

0 · gN+1
N+1 = 1 so that gN+1

N+1 = 1

g0
0

. Since

〈g0, gµ〉 = 0 and g0
0 6= 0, it implies gN+1

µ = 0. Since 〈gα, gβ〉 = δαβ , it implies that the matrix
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(gβ
α) is unitary. Since det(g) = 1, it implies g0

0 · det(gβ
α) · det(gν

µ) · gN+1
N+1 = 1. By (19) and

(22), gN+1
N+1 is a real if g0

N+1 = 0; gN+1
N+1/g

0
N+1 is real if g0

N+1 6= 0.
We pull back the Maurer-Cartan form from SU(N +1, 1) to F1

M by a first-order adapted
lift e of M as

ω =




ω0
0 ω0

β ω0
ν ω0

N+1

ωα
0 ωα

β ωα
ν ωα

N+1

ωµ
0 ωµ

β ωµ
ν ωµ

N+1

ωN+1
0 ωN+1

β ωN+1
ν ωN+1

N+1


 .

Since ω = e−1de, i.e., eω = de. Then we have de0 = e0ω
0
0 +
∑

α eαω
α
0 +
∑

µ eµω
µ
0 +eN+1ω

N+1
0 .

On the other hand, we have (cf.[JY10]) de0 = e0ω
0
0 +

∑
α eαω

α
0 + eN+1ω

N+1
0 so that ωµ

0 =
0, ∀µ. By the Maurer-Cartan equation dω = −ω ∧ ω, one gets 0 = dων

0 = −
∑

α ω
ν
α ∧ ωα

0 −
ων

N+1 ∧ ωN+1
0 , i.e., 0 = −

∑
j∈{1,2,...,n,N+1} ω

ν
j ∧ ωj

0. Then by Cartan’s lemma,

ων
k =

∑

j

qν
jkω

j
0, (24)

for some functions qν
jk = qν

kj.
Second fundamental form and CR second fundamental form For any first-order
adapted lift s = (e0, ej , eµ, eN+1) with π0(e0) = x, we have ej ∈ T̂ 1,0

x M . Recall TEG(k, V ) ≃
E∗ ⊗ (V/E) where G(k, V ) is the Grassmannian of k-planes that pass through the origin in
a vector space V over R or C and E ∈ G(k, V ) ([IL03], p.73). Then TxM ≃ (x̂)∗⊗ (T̂xM/x̂).
The vector ej induces ej ∈ TxM by

ej = e0 ⊗
(
ej mod(e0)

)
∈ T[e0]M, ∀j ∈ {1, 2, ..., n,N + 1}

where we denote by (e0, ej , eµ, eN+1) the dual basis of (CN+2)∗. Similarly, we let

eµ = e0 ⊗
(
eµ mod(T̂[e0]M)

)
∈ N[e0]M, (25)

where NM is the normal bundle of M defined by NxM = Tx(∂HN+1)/TxM .
We claim that∑

j,k∈{1,2,...,n,N+1},n+1≤µ≤N

qµ
jkω

j
0ω

k
0 ⊗ eµ, is independent of choice of the lift s. (26)

In fact, suppose that s and s̃ are both such lifts. Then

s̃ = sg = s




g0
0 g0

k g0
µ g0

N+1

0 gj
k gj

µ gj
N+1

0 0 gν
µ 0

0 0 0 gN+1
N+1


 (27)
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where g is some map from M to G1 ⊂ SU(N +1, 1). By the general transformation formula
ω̃ = g−1ωg + g−1dg (cf. (1.19) in [IL03]), we have




ω̃0
0 ω̃0

k ω̃0
ν ω̃0

N+1

ω̃j
0 ω̃j

k ω̃j
ν ω̃j

N+1

0 ω̃µ
k ω̃µ

ν ω̃µ
N+1

ω̃N+1
0 ω̃N+1

k 0 ωN+1
N+1




=




h0
0 h0

t h0
κ h0

N+1

0 hj
t hj

κ hj
N+1

0 0 hµ
κ 0

0 0 0 hN+1
N+1







ω0
0 ω0

s ω0
ℓ ω0

N+1

ωt
0 ωt

s ωt
ℓ ωt

N+1

0 ωκ
s ωκ

ℓ ωκ
N+1

ωN+1
0 ωN+1

s 0 ωN+1
N+1


 .




g0
0 g0

k g0
ν g0

N+1

0 gs
k gs

ν gs
N+1

0 0 gℓ
ν 0

0 0 0 gN+1
N+1




+




h0
0 h0

t h0
κ h0

N+1

0 hj
t hj

κ hj
N+1

0 0 hν
κ 0

0 0 0 hN+1
N+1







dg0
0 dg0

k dg0
ν dg0

N+1

0 dgt
k dgt

ν gt
N+1

0 0 dgκ
ν 0

0 0 0 dgN+1
N+1




where h = g−1. Then we find

ω̃j
0 =

∑

t

g0
0h

j
tω

t
0, ω̃µ

k =
∑

κ,s

hµ
κω

κ
s g

s
k, j, k, t, s ∈ {1, 2, ..., n,N + 1}, n+ 1 ≤ µ, κ ≤ N. (28)

Also, from s̃ = s · g, we obtain

ẽ0 = h0
0e

0, ẽµ =
∑

k∈{1,2,...,n,N+1},n+1≤ν≤N

(g0
µe0 + gk

µek + gν
µeν).

Applying those formulas into ω̃µ
k =

∑
j q̃

µ
jkω̃

j
0, we obtain

∑
κ,s h

µ
κq

κ
t sg

s
k =

∑
j,t q̃

µ
jkg

0
0h

j
t , i.e.,

q̃µ
jk = h0

0

∑

κ,t,s

hµ
κg

s
kg

t
jq

κ
ts, (29)

which implies ∑

µ,j,k

q̃µ
jkω̃

j
0ω̃

k
0 ⊗ ẽµ =

∑

µ,j,k

qµ
jkω

j
0ω

k
0 ⊗ eµ. (30)

Thus (26) is proved so that the form

IIM =
∑

j,k∈{1,2,...,n,N+1},n+1≤µ≤N

qµ
jkω

j
0ω

k
0 ⊗ eµ ∈ Γ(M,S2T ∗M ⊗NM) (31)
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is independent of choice of first-order adapted lift s from M into SU(N +1, 1). IIM is called
the second fundamental form of M .

Comparing the identity (30):

∑

j,k∈{1,2,...,n,N+1},n+1≤µ≤N

q̃µ
jkω̃

j
0ω̃

k
0 ⊗ ẽµ =

∑

j,k∈{1,2,...,n,N+1},n+1≤µ≤N

qµ
jkω

j
0ω

k
0 ⊗ eµ,

it also holds that

∑

j,k∈{1,2,...,n},n+1≤µ≤N

q̃µ
jkω̃

j
0ω̃

k
0 ⊗ ẽµ =

∑

j,k∈{1,2,...,n},n+1≤µ≤N

qµ
jkω

j
0ω

k
0 ⊗ eµ, mod(ωN+1

0 ). (32)

From this, we define the CR second fundamental form IICR
M by moduling ωN+1

0 :

IICR
M =

∑

j,k∈{1,2,...,n},n+1≤µ≤N

qµ
jkω

j
0ω

k
0 ⊗ eµ ∈ Γ(M,S2T 1,0∗M ⊗NM). (33)

Remark

1. The definition of IIM in (31) is similar to the one of the projective second fundamental
form for complex submanifolds (cf. [IL03]).

2. The IICR
M defined in (33) was studied in [Wang09] and in [JY10]. It was proved that

IICR
M ≡ 0 if and only if F is linear fractional [JY10].

3. Let s, s(1), s(2) be three first-order adapted lifts with IIs
M =

∑
j,k,µ q

µ
jkω

j
0ω

k
0⊗eµ, II

s(1)

M =
∑

j,k,µ q
(1)µ
jk ωj

0ω
k
0 ⊗ eµ, and IIs(2)

M =
∑

j,k,µ q
(2)µ
jk ωj

0ω
k
0 ⊗ eµ. Let s(1) = sg1 and s(2) = sg2

be as in (27). Suppose g1(p) = g2(p) holds at one point p ∈M . Then by (29), we have

q
(1)µ
jk (p) = q

(2)µ
jk (p) (34)

for any j, k ∈ {1, 2, ..., n,N + 1} and n+ 1 ≤ µ ≤ N .

By inclusion T 1,0∗M →֒ T ∗M ≃ T 1,0∗M ⊕ (Rξ)∗, we can regard IICRM ∈ Γ(M,T ∗M ⊗
NM). Then by (31) and (33), we have defined a section IIM − IICR

M ∈ Γ(M,T ∗M ⊗NM),
i.e., in terms of local coordinates,

IIM − IICR
M =

∑

1≤j,k≤n,n+1≤µ≤N

(
qµ
jN+1ω

j
0ω

N+1
0 + qµ

N+1kω
N+1
0 ωk

0 + qµ
N+1N+1ω

N+1
0 ωN+1

0

)
⊗ eµ.

(35)
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Pulling back a lift Let M ⊂ ∂HN+1 be as above with a point Q ∈M . Let A ∈ SU(N +

1, 1), A⋆ ∈ Aut(∂HN+1) with A⋆(Q) = P and M̃ = A⋆(M). Let s̃ : M̃ → SU(N + 1, 1) be a
lift. We claim:

s(Q) := (A−1 · s̃)(A⋆(Q)) (36)

is also a lift from M into SU(N + 1, 1). In fact, in order to prove that s is a lift from
M into SU(N + 1, 1), it suffices to prove: πs = Id. In fact, write s̃ = (ẽ0, ẽA, ẽN+1) and
s = (e0, eA, eN+1) = (A−1ẽ0, A

−1ẽA, A
−1ẽN+1). Here [ẽ0](P ) = P and [e0](Q) = Q. Then

πs(Q) = [A−1ẽ0](Q) = [e0](Q) = Q so that our claim is proved.

If, in addition, s̃ is a first-order adapted lift of M̃ into SU(N +1, 1), s is also a first-order
adapted lift of M into SU(N + 1, 1).

Let Ω be the Maurer-Cartan form over SU(N+1, 1). Denote ω = s∗Ω and ω̃ = s̃∗Ω. Since
A is a matrix with constant entries, ω = (s)−1ds = (A−1 · s̃)−1d(A−1s̃) = s̃−1 · A · A−1ds̃ =
s̃−1ds̃, i.e.,

ω = (A⋆)∗ω̃ (37)

so that ωα
0 = (A⋆)∗ω̃α

0 and ωµ
β = (A⋆)∗ω̃µ

β . The last equality yields

qµ
αβ = q̃µ

αβ ◦ A⋆. (38)

[Example] Consider the maps in (3) and (4):

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉),

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉)
where p = (z0, w0), z ∈ Cn, w = zn+1, σ

0
p ∈ Aut(∂Hn+1), and τF

p ∈ Aut(∂HN+1).
By (10) and (12), these two maps correspond to two matrices:

Aσ0
p

=




1 0 ... 0 0
z01 1 ... 0 0
...

...
. . .

...
...

z0n 0 ... 1 0
w0 2iz01 ... 2iz0n 1



∈ SU(n+ 1, 1) (39)

and

AσF
p

=




1 0 ... 0 0

−f̃01 1 ... 0 0
...

...
. . .

...
...

−f̃0N 0 ... 1 0

−g(z0, w0) −2if̃1(z0, w0) ... −2if̃N (z0, w0) 1



∈ SU(N + 1, 1) (40)
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where z0 = (z01, ..., z0n) and w0 = z0n+1.
[Example] Consider the map Fλ,r,~a,U = (f, g) ∈ Aut0(∂Hn+1)

f(z) =
λ(z + ~aw)U

1− 2i〈z,~a〉 − (r + i‖~a‖2)w
, g(z) =

λ2w

1− 2i〈z,~a〉 − (r + i‖~a‖2)w
where λ > 0, r ∈ R,~a ∈ C

n and U = (uαβ) is an (n− 1)× (n− 1) unitary matrix. By (10)
and (12), its corresponding matrix,

AFλ,r,~a,U
=




1 −2ia1 ... −2ian −(r + i‖~a‖2)
0 λu11 ... λu1n λa1
...

...
. . .

...
...

0 λun1 ... λunn λan

0 0 ... 0 λ2



, (41)

is not in SU(n + 1, 1) in general. In fact, we can write

Fλ,r,~a,U = Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id. (42)

or AFλ,r,~a,U
= AFλ,0,0,Id

· AF1,0,0,U
· AF1,r,~a,Id

. Here AF1,0,0,U
and AF1,r,~a,Id

are in SU(N + 1, 1);
while AFλ,0,0,Id

is in SU(N + 1, 1) if and only if λ = 1. Therefore

AFλ,r,~a,U
is in SU(n + 1, 1) if and only if λ = 1. (43)

[Example] Let G ∈ Aut(∂HN+1). Then G can be written as G = σ0
F (0) ◦ Fρ,r,~a,U where

Fρ,r,~a,U ∈ Aut0(∂HN+1) as in the previous example. By (42), we have

G = σ0
F (0) ◦ Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id. (44)

[Example] Let A ∈ SU(N + 1, 1). From above, we know AFλ,0,0,Id
· A may not be in

SU(N + 1, 1) unless λ = 1. However, it is possible to modify it so that the modified map is
in SU(N + 1, 1), namely, for any real number λ ∈ R, we have

AFλ,0,0,Id
· A · AFλ,0,0,Id

−1 ∈ SU(N + 1, 1). (45)

In fact, we write A = (Aij). Then AFλ,0,0,Id
◦ A · AFλ,0,0,Id

−1 =



1 0 ... 0 0
0 λ ... 0 0
...

...
. . .

...
...

0 0 . . . λ 0
0 0 . . . 0 λ2







A00 A01 ... A0N A0,N+1

A10 A11 ... A1N A1,N+1
...

...
. . .

...
...

AN,0 AN,1 . . . AN,N AN,N+1

AN+1,0 AN+1,1 . . . AN+1,N AN+1,N+1







1 0 ... 0 0
0 1

λ
... 0 0

...
...

. . .
...

...
0 0 . . . 1

λ
0

0 0 . . . 0 1
λ2
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=




A00 A01 ... A0N A0,N+1

λA10 λA11 ... λA1N λA1,N+1
...

...
. . .

...
...

λAN,0 λAN,1 . . . λAN,N λAN,N+1

λ2AN+1,0 λ2AN+1,1 . . . λ2AN+1,N λ2AN+1,N+1







1 0 ... 0 0
0 1

λ
... 0 0

...
...

. . .
...

...
0 0 . . . 1

λ
0

0 0 . . . 0 1
λ2




=




A00
1
λ
A01 ... 1

λ
A0N

1
λ2A0,N+1

λA10 A11 ... A1N
1
λ
A1,N+1

...
...

. . .
...

...
λAN,0 AN,1 . . . AN,N

1
λ
AN,N+1

λ2AN+1,0 λAN+1,1 . . . λAN+1,N AN+1,N+1



∈ SU(N + 1, 1).

If s is a first-order adapted lift, we can define s̃ = AFλ,0,0,Id
·s ·A−1

Fλ,0,0,Id
. Recall the pulling

back Maurer-Cartan form by s is ω = s−1ds. Since ω̃ = s̃−1ds̃ = (AsA−1)−1d(AsA−1) =
A · s−1ds ·A−1 = A · ω ·A−1. As above, we have




ω̃0
0 ω̃0

1 ... ω̃0
N ω̃0

N+1

ω̃1
0 ω̃1

1 ... ω̃1
N ω̃1

N+1
...

...
. . .

...
...

ω̃N
0 ω̃N

1 . . . ω̃N
N ω̃N

N+1

ω̃N+1
0 ω̃N+1

1 . . . ω̃N+1
N ω̃N+1

N+1




=




ω0
0

1
λ
ω0

1 ... 1
λ
ω0

N
1
λ2ω

0
N+1

λω1
0 ω1

1 ... ω1
N

1
λ
ω1

N+1
...

...
. . .

...
...

λωN
0 ωN

1 . . . ωN
N

1
λ
ωN

N+1

λ2ωN+1
0 λωN+1

1 . . . λωN+1
N ωN+1

N+1



.

4 Geometric Rank, IIM and IICRM

Lemma 4.1 (i) ([JY10], theorem 7.1) Let F ∈ CRk(∂H
n+1, ∂H

N+1) with k ≥ 2 and F (0) =
0. Then there exists a neighborhood of 0 in M := F (∂Hn+1) and a Ck−1-smooth first-order
adapted lift e : U → SU(N + 1, 1)

e = (e0, ej, eb, eN+1) ∈ SU(N + 1, 1), 1 ≤ j ≤ n, n + 1 ≤ b ≤ N. (46)

(ii) ([JY10], Step 3 of the proof of Theorem 1.1) Let F = F ∗∗∗ = (f, φ, g), the induced
first-order adapted lift s, and notation be as in Lemma 2.1. Then

hµ
j,k|0 =

∂2φµ

∂zj∂zk

∣∣
0
, j, k ∈ {1, 2, ..., n,N + 1} (47)

where hµ
jk are defined in (31) and in (33).
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Theorem 4.2 Let F ∈ CR2(∂Hn+1, ∂HN+1). Then its geometric rank κ0 equals to

κ0 = sup
p∈∂Hn+1

[
n− dimC{ν | IICR

M,F (p)(ν, ν) = 0}
]

where IICR
M,F (p) is the CR second fundamental form of the submanifold M at the point F (p).

Here {ν | IICR
M,F (p)(ν, ν) = 0} is a vector space over C.

Let M ⊂ ∂HN+1 be a CR submanifold which is the image of a smooth CR hypersurface
in Cn+1 by a C2-smooth CR map. Fixing one first-order adapted lift s, we write IICR

M =∑
α,β,µ q

µ
αβω

α
0ω

β
0 ⊗ eµ, mod(ωN+1

0 ). Consider the set of vectors in Cn, which is a variety
defined by a quadratic polynomial and is called the set of asymptotic directions, defined by

Baseloc|IICR
M,x| := {v = (vα) ∈ C

n |
∑

α,β

qµ
αβ(x)vαvβ = 0, ∀n + 1 ≤ µ ≤ N} (48)

which is independent of the choice of the lift s.
Recall from [H99], lemma 5.3, that for any p ∈ ∂Hn, the induced map F = F ∗∗ satisfies

〈z, e(1)(z)〉|z|2 = |φ(2)(z)|2, ∀z ∈ ∂H
n. (49)

where e(1)(z) = −2i
∑

j
∂2f

∂zj∂w
|0zj .

Then by Lemma 4.1 (ii), any vector v = (v1, ..., vn) ∈ Baseloc|IICR
M,F (0)| if and only if

∑
i,j

∂2φµ

∂zi∂zj
|0vivj = 0, ∀µ. Then by (49), the statement is equivalent to 〈v, e(1)(v)〉 = 0. Since

the matrix (−2i ∂2f

∂zj∂w
|0) is semi-positive, the statement is equivalent to e(1)(v) = 0, i.e.,

Baseloc|IICR
M,0| =

{
v : −2i

∑

j

∂2f

∂zj∂w

∣∣∣∣
0

vj = 0

}
, (50)

which is a vector space over C, so that it makes sense to define its dimension. Recall
RkF (p) = rank(A(p)). By the formulas of fj in Lemma 2.1, we have

RkF (0) = n− dimC Baseloc|IICR
M,0|. (51)

Proof of Theorem 4.2: Step 1. The lift s∗∗∗p It suffices to prove

RkF (p) = n− dimC Baseloc|IICR
M,F (p)|, ∀p ∈ ∂H

n+1. (52)

The case when p = 0 has been proved in (51). Let us consider p ∈ ∂Hn+1 with P := F (p) 6= 0.
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By the definition,
RkF (p) = RkF ∗∗∗

p
(0). (53)

Here we write F ∗∗∗
p = Gp ◦ τF

p ◦ F ◦ σ0
p ◦ Hp where τF

p is as in (4), σ0
p is as in (3), Hp ∈

Aut0(∂H
n+1) and Gp ∈ Aut0(∂H

N+1). Since M is a real analytic hypersurface containing
the point P = F (p), Gp ◦ τF

p (M) is a real analytic hypersurface containing 0 = τF
0 (P ).

We consider

(M,P )
Gp◦τF

p−−−−→
(
Gp ◦ τF

p (M), 0
)

↑ F ↑ F ∗∗∗
p

(∂Hn+1, p)
σ0

p◦Hp←−−− (∂Hn+1, 0)

(54)

Now from F ∗∗∗
p : ∂H

n+1 → Gp ◦ τF
0 (M), we can construct a first-order adapted lift s∗∗∗p

of Gp ◦ τF
0 (M) as we constructed s from the map F in (46). Since F ∈ Propk(H

n+1,HN+1),
the lift s∗∗∗p is Ck−1 smooth. Write the CR second fundamental form of Gp ◦ τF

0 (M) with
respect to the lift s∗∗∗p as

II
CR(s∗∗∗p )

M,P = q
µ(s∗∗∗p )

ij ω
i(s∗∗∗p )

0 ω
j(s∗∗∗p )

0 ⊗ e(s
∗∗∗

p )
µ . (55)

Step 2. Construct the lift sp

Now we may try to define a first-order adapted lift from M into SU(N + 1, 1) by (36):

sp = (τF
p )−1 ◦Gp

−1 ◦ s∗∗∗p ◦Gp ◦ τF
p . (56)

Unfortunately, this lift sp may not be a lift of M into SU(N + 1, 1) ( See the example in
(43)). We have to modify the construction of (56) so that it is a first-order adapted lift of
M into SU(N + 1, 1) as follows.

Since Gp ∈ Aut0(∂HN+1), we can write it as in (44):

Gp = Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id. (57)

Here F1,0,0,U , F1,r,~a,Id ∈ SU(N + 1, 1), but Fλ,0,0,Id ∈ SU(N + 1, 1) if and only if λ = 1.
Now we begin to modify the sp in (56).
• Lift from Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id ◦ τF

p (M) For any P ∈ Gp ◦ τF
p (M), the map

P 7→ s∗∗∗p |P (58)

is a first-ordered adapted lift from G ◦ τF
p (M) into SU(N + 1, 1).

• Lift from F1,0,0,U ◦ F1,r,~a,Id ◦ τF
p (M) Then we consider Fλ,0,0,Id

−1 ◦ s∗∗p ◦ Fλ,0,0,Id:
∀P ∈ F1,0,0,U ◦ F1,r,~a,Id ◦ τF

p (M), by a similar formula in (36) and a modification in (45), we

define
(
Fλ,0,0,Id

−1 ◦ s∗∗∗p ◦ Fλ,0,0,Id

)
·AFλ,0,0,Id

; more precisely, ∀P ∈ F1,0,0,U ◦ F1,r,~a,Id ◦ τF
p (M),

P 7→
(
Fλ,0,0,Id

−1 ◦ s∗∗∗p ◦ Fλ,0,0,Id

)∣∣∣∣
P

·
(
AFλ,0,0,Id

)∣∣∣∣
P

, (59)
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which is a first-ordered adapted lift from F1,0,0,U ◦ F1,r,~a,Id ◦ τF
p (M) into SU(N + 1, 1).

• Lift from F1,r,~a,Id ◦ τF
p (M) ∀P ∈ F1,r,~a,Id ◦ τF

p (M), by (36), the map

P 7→
(
F1,0,0,U

−1 ◦ Fλ,0,0,Id
−1 ◦ s∗∗∗p ◦ Fλ,0,0,Id ◦ F1,0,0,U

)∣∣∣∣
P

·
(
AFλ,0,0,Id

)∣∣∣∣
F1,0,0,U (P )

(60)

is a first-ordered adapted lift from F1,r,~a,Id ◦ τF
p (M) into SU(N + 1, 1).

• Lift from τF
p (M) Similarly, ∀P ∈ τF

p (M), by (36), the map

P 7→
(
F1,r,~a,Id

−1 ◦ F1,0,0,U
−1 ◦ Fλ,0,0,Id

−1 ◦ s∗∗∗p ◦ Fλ,0,0,Id ◦ F1,0,0,U ◦ F1,r,~a,Id

)∣∣∣∣
P

·

·
(
AFλ,0,0,Id

)∣∣∣∣
F1,0,0,U◦F1,r,~a,Id(P )

is a first-ordered adapted lift from τF
p (M) into SU(N + 1, 1). In other words,

P 7→
(
Gp

−1 ◦ s∗∗∗p ◦Gp

)∣∣∣∣
P

·
(
AFλ,0,0,Id

)∣∣∣∣
F1,0,0,U◦F1,r,~a,Id(P )

(61)

• Lift from M Finally, ∀P ∈M , by (36), the map

P 7→
(

(τF
p )−1 ◦Gp

−1 ◦ s∗∗∗p ◦Gp ◦ τF
p

)∣∣∣∣
P

·
(
AFλ,0,0,Id

)∣∣∣∣
F1,0,0,U◦F1,r,~a,Id◦τF

p (P )

(62)

is a first-ordered adapted lift sp from M into SU(N + 1, 1). Without cause confusion, we
denote

sp =
(
(τF

p )−1 ◦Gp
−1 ◦ s∗∗∗p ◦Gp ◦ τF

p

)
· AFλ,0,0,Id

. (63)

Here we recall from §7 that for any P ∈M ,

AFλ,0,0,Id
(P ) =




1 0 ... 0 0
0 λ ... 0 0
...

...
. . .

...
...

0 0 . . . λ 0
0 0 . . . 0 λ2




(P ) (64)

where λ = λ(P ) is defined in (57). Since F ∈ Propk(∂Hn+1, ∂HN+1), by the construction, λ
is a Ck−1-smooth positive function, and hence the lift sp is Ck−1-smooth.
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Step 3. Construct the lift sp Write the CR second fundamental form of M with
respect to the lift sp as

II
CR(sp)
M,P = q

µ(sp)
ij ω

i(sp)
0 ω

j(sp)
0 ⊗ e(sp)

µ . (65)

Then by (38), for P = F (p) we have

q
µ(sp)
ij (P ) = q

µ(s∗∗∗p )

ij (0)(Gp ◦ τF
0 )(0). (66)

This implies from (54)

dimC Baseloc|IICR
M,P | = dimC Baseloc|IICR

Gp◦τF
0 (M),0| = dimC Baseloc|IICR

F ∗∗∗

p (M),0|. (67)

By (53), (67) and (51), we prove (52). �

5 A Lift with Special Property

Theorem 5.1 Let F = F ∗∗∗ ∈ Propk(H
n+1,HN+1) where k ≥ 2 and M = F (∂Hn+1). For

any point of M , there exists a neighborhood U of this point in M and a Ck−1-smooth first-
order adapted lift s of U into SU(N + 1, 1) where U is a neighborhood of 0 in M such that
the coefficient functions qµ

ij of IIM satisfy

qµ
ij(P ) = λ(P )

∂2(φ∗∗∗
p )µ

∂zi∂zj

∣∣∣∣
0

, i, j ∈ {1, 2, ..., n,N + 1}, n+ 1 ≤ µ ≤ N, (68)

∀p ∈ ∂Hn+1 with P = F (p) ∈ U , where λ is a positive Ck−1 smooth function defined on U ,
and F ∗∗∗

p = (f ∗∗∗
p , φ∗∗∗

p , g∗∗∗p ).

Proof of Theorem 5.1 Step 1. Start with the lift s Let s : U → SU(N + 1, 1) be
the Ck−1-smooth first-order adapted lift of F defined in Theorem 5.1 where U ⊂ M is a
neighborhood of 0. Since F (0) = 0, we can choose small neighborhoods Ũ of 0 in ∂Hn+1

and U of 0 in M such that F : Ũ → U is diffeomorphic. Then for any P ∈ U , there is a
unique p ∈ Ũ with F (p) = P .

The second fundamental form with respect to s can be expressed as

II
(s)
M,0(P ) =

∑

j,k

q
(s)µ
jk (P )ω

(s)j
0 ω

(s)k
0 ⊗ e(s)µ ,

Here the coefficient functions q
(s)µ
jk satisfy the formulas in Lemma 4.1 above at P = 0. In

order to prove Theorem 5.1, we need to modify the lift s to construct a new first-order
adapted lift ŝ of M into SU(N + 1, 1):

ŝ(P ) = s(P ) · ψ(P ), ∀P ∈ U, (69)
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where ψ : U → G1 is some Ck−2-smooth map where G1 is defined in (23) such that the
coefficients of the second fundamental form with respect to ŝ satisfy the formulas in (68) at
any P ∈ U .

Step 2. Construct the lift sp For any point P ∈ U , by Step 2 of the proof of
Theorem 4.2, there is a first-order adapted lift sp defined on a neighborhood Up of P in M
into SU(N + 1, 1). Then there exists a Ck−1 smooth map ap : Up → G1 such that

sp = s · ap on Up (70)

In fact ap := s−1 · sp.
Step 3. Construct the lift ŝ Now we define Ck−1-smooth a first-order adapted lift

ŝ from a neighborhood U of 0 in M into SU(N + 1, 1) given by

ŝ(p) = s(p) · ap(p), ∀p ∈ U (71)

where ap is defined in Step 2. Write the second fundamental form with respect to ŝ as

II
(ŝ)
M,p̂ =

∑

j,k

q
(ŝ)µ
jk ω

(ŝ)j
0 ω

(ŝ)k
0 ⊗ e(ŝ)µ, mod(ηN+1).

We claim:
q
(ŝ)µ
jk (p) = q

(sp)µ
jk (p), ∀p ∈M (72)

so that the coefficients q
(ŝ)µ
jk satisfy the formulas in Theorem 5.1. In fact, for any p0 ∈ M ,

setting s1(q) := aq(q), ∀q ∈M and s2 := ap0. Since s1(p0) = s2(p0), by (34), we prove Claim
(72). �

Corollary 5.2 Let M and F be as above. IIM ≡ 0 if and only if F is linear fractional.

Proof: In fact, if IIM ≡ 0, then IICR
M ≡ 0 by the definitions so that F is linear fractional

by [JY10]. Conversely, if F is linear fractional, then ∂2φ∗∗∗

∂zi∂zj
|0 = 0 for F ∗∗∗ = (f ∗∗∗, φ∗∗∗, g∗∗∗)

where we use notation in Lemma 2.1 by standard calculation. Then
∂2φ∗∗∗

p

∂zi∂zj
|0 = 0 for any

F ∗∗∗
p for any p ∈ ∂Hn+1 where we use the notation in Lemma 2.1. We apply Theorem 5.1

to conclude that qµ
ij(P ) = 0 for any p ∈ ∂Hn+1 with P = F (p), and hence IIM ≡ 0. �

Now let F = F ∗∗∗ ∈ Prop3(H
n+1,HN+1) with κ0 ≤ n− 1 and 3 ≤ n ≤ N − 1. By (35),
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for any P = F (p) where p ∈ ∂Hn+1,

(IIM − IICR
M )(P )

=
∑

1≤j,k≤n,n+1≤µ≤N

(
qµ
jN+1ω

j
0ω

N+1
0 + qµ

N+1kω
N+1
0 ωk

0 + qµ
N+1N+1ω

N+1
0 ωN+1

0

)
⊗ eµ|P

=
∑

1≤j,k≤n,n+1≤µ≤N

( ∂2(φ∗∗∗
p )µ

∂zj∂zN+1

|0ωj
0ω

N+1
0 +

∂2(φ∗∗∗
p )µ

∂zN+1∂zk

|0ωN+1
0 ωk

0

+
∂2(φ∗∗∗

p )µ

∂zN+1∂zN+1

|0ωN+1
0 ωN+1

0

)
⊗ eµ (By Theorem 5.1)

=
∑

1≤j,k≤κ0,n+1≤µ≤N

(∂2(φ∗∗∗
p )µ

∂zj∂w
|0ωj

0ω
N+1
0 +

∂2(φ∗∗∗
p )µ

∂w∂zk

|0ωN+1
0 ωk

0

)
⊗ eµ.

Here the last equality holds because
∂2(φ∗∗∗

p )µ

∂zj∂w
|0 = 0 for j ≥ κ0 hold by Lemma 2.1(ii). Then

IIM − IICR
M ≡ 0 means

∂2(φ∗∗∗
p )µ

∂zj∂w
|0 = 0, ∀1 ≤ j ≤ n, ∀n + 1 ≤ µ ≤ N, ∀p ∈ ∂H

n+1. (73)

6 Maps between balls with rank two

Let F = F ∗∗∗ ∈ Prop3(H
n+1,HN+1) with rank(F ) = RkF (0) = 2 and 3 ≤ n and 3n ≤ N+1.

Then we can write F = (f1, f2, fp, φp′, φn′, φp′′, φ(n−1)′′ , φb, g), where

f1 = z1 + iµ1(0)
2
z1w + owt(3),

f2 = z2 + iµ2(0)
2
z2w + owt(3),

fp = zp, 3 ≤ p ≤ n,

φ1p =
√
µ1(0)z1zp +

∑
q≥3 0zqw + owt(2), 3 ≤ p ≤ n,

φ2p =
√
µ2(0)z2zp +

∑
q≥3 0zqw + owt(2), 3 ≤ p ≤ n,

φ11 =
√
µ1(0)z1z1 +

∑
q≥3 0zqw + owt(2),

φ12 =
√
µ1(0) + µ2(0)z1z2 +

∑
q≥3 0zqw + owt(2),

φ22 =
√
µ2(0)z2z2 +

∑
q≥3 0zqw + owt(2),

{φ33, φ34, ..., φ3,N−3n+3} = {φb}
Other φ∗ = 0 + owt(2),
g = w.
In the rest of the paper, we set up the following index ranges:

1 ≤ α, β, γ ≤ n− 2, α′ = n + α, α′′ = 2n+ α, n + 1 ≤ µ ≤ N. (74)
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When n ≥ 4, we also denote 3n ≤ a, b, c ≤ N . By replacing 1 and 2 with n and n − 1, we
write F as

F = (fα, fn−1, fn, φα′, φα′′ , φn11, φn22 , φn12, φb, g), where
fα = zα + 0zαw + owt(3),

fn−1 = zn−1 + iµ1(0)
2
zn−1w + owt(3),

fn = zn + iµ2(0)
2
znw + owt(3),

φα′ = φ1α =
√
µ1(0)znzα +

∑
σ 0zσw + owt(2),

φα′′ = φ2α =
√
µ2(0)zn−1zα +

∑
σ 0zσw + owt(2),

φn11 =
√
µ1(0)znzn +

∑
σ 0zσw + owt(2),

φn22 =
√
µ2(0)zn−1zn−1 +

∑
σ 0zσw + owt(2),

φn12 =
√
µ1(0) + µ2(0)zn−1zn +

∑
σ 0zσw + owt(2),

φb = 0 +
∑

σ 0zσw + owt(2).
Let F be as above. Let M = F (∂Hn+1). Then the following holds in a neighborhood of

0 = F (0) in M by Theorem 5.1 :
hα′

βγ = 0, hα′

β n = λδαβ
√
µ1, hα′

β n−1 = hα′

n n = hα′

n−1, n−1 = hα′

n,n−1 = hα′

β,N+1 = hα′

n−1,N+1 =

hα′

n,N+1 = hα′

N+1,N+1 = 0,

hα′′

βγ = hα′′

β n = 0, hα′′

β n−1 = λδαβ
√
µ2, hα′′

n n = hα′′

n−1, n−1 = hα′′

n,n−1 = hα′′

β,N+1 = hα′′

n−1,N+1 =

hα′′

n,N+1 = hα′′

N+1,N+1 = 0,
hn11

βγ = hn11
β n = hn11

β n−1 = 0, hn11
n n = 2λ

√
µ1, hn11

n−1 n−1 = hn11
n n−1 = hn11

β N+1 = hn11
n−1 N+1 =

hn11
n N+1 = hn11

N+1 N+1 = 0,
hn22

βγ = hn22

β n = hn22

β n−1 = hn22
n n = 0, hn22

n−1 n−1 = 2λ
√
µ2, hn22

n n−1 = hn22

β N+1 = hn22
n−1 N+1 =

hn22
n N+1 = hn22

N+1 N+1 = 0,
hn12

βγ = hn12
β n = hn12

β n−1 = hn12
n n = hn12

n−1 n−1 = 0, hn12
n n−1 = λ

√
µ1 + µ2, hn12

β N+1 =
hn12

n−1 N+1 = hn12
n N+1 = hn12

N+1 N+1 = 0.
hb

βγ = hb
β n = hb

β n−1 = hb
n n = hb

n−1, n−1 = hb
n,n−1 = hb

β,N+1 = hb
n−1 N+1 = hb

n N+1 =

hb
N+1, N+1 = 0,

where λ is a positive C2-smooth function, and µ1, µ2 are C1-smooth functions in the neigh-
borhood of 0 in M .

Recall from (15), any first-order adapted lift s = (e0, ej , eµ, eN+1) : M → SU(N + 1, 1)
of F where 1 ≤ i, j ≤ n, n + 1 ≤ µ, ν ≤ N , we have ds = sθ where θ is the pull-back of the
Maurer-Cartan form from SU(N + 1, 1):

d(e0, ej , eµ, eN+1) = (e0, ei, eν , eN+1)




θ0
0 θ0

j θ0
µ θ0

N+1

θi
0 θi

j θi
µ θi

N+1

0 θν
j θν

µ θν
N+1

θN+1
0 θN+1

j 0 θN+1
N+1


 .
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Recall θµ
j = hµ

jiη
i + hµ

j N+1η and θµ
N+1 = hµ

N+1 iη
i + hµ

N+1 N+1η. We still use notation in (74)
and we write F as F = (fα, fn−1, fn, φα′, φα′′ , φn11, φn22 , φn12, φb, g).

For simplicity, we replace λ
√
µ1 by

√
µ1; replace λ

√
µ2 by

√
µ2; and replace λ

√
µ1 + µ2

by
√
µ1 + µ2, by changing notation. Then by the formulas above, we have

θα′

β = hα′

β γη
γ + hα′

β n−1η
n−1 + hα′

β nη
n + hα′

β N+1η = δαβ
√
µ1η

n,

θα′

n−1 = hα′

n−1 γη
γ + hα′

n−1 n−1η
n−1 + hα′

n−1 nη
n + hα′

n−1 N+1η = 0,

θα′

n = hα′

n γη
γ + hα′

n n−1η
n−1 + hα′

n nη
n + hα′

n N+1η =
√
µ1η

α,

θα′

N+1 = hα′

N+1 γη
γ + hα′

N+1 n−1η
n−1 + hα′

N+1 nη
n + hα′

N+1 N+1η = 0,

θα′′

β = hα′′

β γη
γ + hα′′

β n−1η
n−1 + hα′′

β nη
n + hα′′

β N+1η = δαβ
√
µ2η

n−1,

θα′′

n−1 = hα′′

n−1 γη
γ + hα′′

n−1 n−1η
n−1 + hα′′

n−1 nη
n + hα′′

n−1 N+1η =
√
µ2η

α,

θα′′

n = hα′′

n γη
γ + hα′′

n n−1η
n−1 + hα′′

n nη
n + hα′′

n N+1η = 0,

θα′′

N+1 = hα′′

N+1 γη
γ + hα′′

N+1 n−1η
n−1 + hα′′

N+1 nη
n + hα′′

N+1 N+1η = 0,
θn11

β = hn11
β γη

γ + hn11
β n−1η

n−1 + hn11
β nη

n + hn11
β N+1η = 0,

θn11
n−1 = hn11

n−1 γη
γ + hn11

n−1 n−1η
n−1 + hn11

n−1 nη
n + hn11

n−1 N+1η = 0,
θn11

n = hn11
n γη

γ + hn11
n n−1η

n−1 + hn11
n nη

n + hn11
n N+1η = 2

√
µ1η

n,
θn11

N+1 = hn11
N+1 γη

γ + hn11
N+1 n−1η

n−1 + hn11
N+1 nη

n + hn11
N+1 N+1η = 0,

θn22
β = hn22

β γη
γ + hn22

β n−1η
n−1 + hn22

β nη
n + hn22

β N+1η = 0,
θn22

n−1 = hn22
n−1 γη

γ + hn22
n−1 n−1η

n−1 + hn22
n−1 nη

n + hn22
n−1 N+1η = 2

√
µ2η

n−1,
θn22

n = hn22
n γη

γ + hn22
n n−1η

n−1 + hn22
n nη

n + hn2
n N+1η = 0,

θn22
N+1 = hn22

N+1 γη
γ + hn22

N+1 n−1η
n−1 + hn22

N+1 nη
n + hn22

N+1 N+1η = 0,
θn12

β = hn12

β γη
γ + hn12

β n−1η
n−1 + hn12

β nη
n + hn12

β N+1η = 0,
θn12

n−1 = hn12
n−1 γη

γ + hn12
n−1 n−1η

n−1 + hn12
n−1 nη

n + hn12
n−1 N+1η =

√
µ1 + µ2η

n,
θn12

n = hn12
n γη

γ + hn12
n n−1η

n−1 + hn12
n nη

n + hn12
n N+1η =

√
µ1 + µ2η

n−1,
θn12

N+1 = hn12
N+1 γη

γ + hn12
N+1 n−1η

n−1 + hn12
N+1 nη

n + hn12
N+1 N+1η = 0,

θb
β = hb

β γη
γ + hb

β n−1η
n−1 + hb

β nη
n + hb

β N+1η = 0,

θb
n−1 = hb

n−1 γη
γ + hb

n−1 n−1η
n−1 + hb

n−1 nη
n + hb

n−1 N+1η = 0,
θb

n = hb
n γη

γ + hb
n n−1η

n−1 + hb
n nη

n + hb
n N+1η = 0,

θb
N+1 = hb

N+1 γη
γ + hb

N+1 n−1η
n−1 + hb

N+1 nη
n + hb

N+1 N+1η = 0,
where µ1 and µ2 are C1-smooth positive functions defined on M .

7 Lemma for mappings of rank 2

Let F ∈ CR2(∂Hn+1, ∂HN+1) with geometric rank κ0 = 2. Then by the inequality N ≥
n + (2n+1−κ0)κ0

2
(cf. Lemma 2.1 (i)), N ≥ n+ (2n+1−κ0)κ0

2
= 3n− 1, i.e., N + 1 ≥ 3n. In the

remaining of the paper, Einstein summation notation is used without mentioning it.
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Lemma 7.1 Let F ∈ Prop3(∂Hn+1, ∂HN+1) with the expression in above section and with
4 ≤ n + 1 ≤ N + 1 ≤ 4n − 3 and κ0 = 2. If N + 1 > 3n. Then θγ′

n12
= θγ′′

n12
= θn

β = θγ′

n11
=

θγ′

n22
= θγ′

b = 0. If N + 1 = 3n and 4 ≤ n, then θγ′

n12
= θγ′′

n12
= θn

β = θγ′

n11
= θγ′

n22
= 0.

Proof of Lemma: It suffices to prove the case N+1 > 3n for the proof of the case N+1 = 3
is similar. We use the notation in the section 6. The facts that θγ′

n12
= θγ′′

n12
= θn

β = θγ′

n11
=

θγ′

n22
= θγ′

b = 0 will be proved in Step 2(C), 2(D), 2(A’), 4, 2(C) and 9 below, respectively.
Step 1(A) Differentiating θn11

β = 0, we get dθn11
β = 0. By dω = −ω ∧ ω, we have

−θn11
0 ∧θ0

β−θn11
α ∧θα

β−θn11
n−1∧θn−1

β −θn11
n ∧θn

β−θn11

α′ ∧θα′

β −θn11

α′′ ∧θα′′

β −θn11
n11
∧θn11

β −θn11
n22
∧θn22

β −θn11
n12
∧

θn12
β −θn11

b ∧θb
β−θn11

N+1∧θN+1
β = 0, i.e., by §6, 2

√
µ1θ

n
β∧ηn+

√
µ1η

n∧θn11

β′ +
√
µ2η

n−1∧θn11

β′′ = 0,
i.e., ηn∧√µ1(θ

n11

β′ −2θn
β)+ηn−1∧√µ2θ

n11

β′′ = 0. By Cartan’s lemma, there are some coefficients

A
(1)
β , B

(1)
β and D

(1)
β such that

(√
µ1(θ

n11

β′ − 2θn
β)√

µ2θ
n11
β′′

)
=

(
A

(1)
β B

(1)
β

B
(1)
β D

(1)
β

)(
ηn

ηn−1

)
.

Step 1(A′) Differentiating θn22
α = 0, we get dθn22

α = 0. Similarly as in Step 1(A), we get

(√
µ2(θ

n22

α′′ − 2θn−1
α )√

µ1θ
n22

α′

)
=

(
A

(111)
α B

(111)
α

B
(111)
α D

(111)
α

)(
ηn−1

ηn

)

for some coefficients A
(111)
α , B

(111)
α and D

(111)
α .

Step 1(B) Differentiating θb
β = 0, we get dθb

β = 0. As the calculation in Step 1(A) and

§6, this implies with
√
µ1η

n ∧ θb
β′ +
√
µ2η

n−1 ∧ θb
β′′ = 0. By Cartan’s lemma, there are some

coefficients C
(2)b
β , B

(2)b
β , and D

(2)b
β so that

(√
µ1θ

b
β′√

µ2θ
b
β′′

)
=

(
2C

(2)b
β B

(2)b
β

B
(2)b
β D

(2)b
β

)(
ηn

ηn−1

)
.

Step 2(A) Differentiating θα′

β = 0 with α 6= β, we get dθα′

β = 0. By §6, this implies

θα
β ∧
√
µ1η

n + θn
β ∧
√
µ1η

α +
√
µ1η

n ∧ θα′

β′ +
√
µ2η

n−1 ∧ θα′

β′′ = 0, i.e.,
√
µ1(θ

α
β − θα′

β′ ) ∧ ηn −√
µ2θ

α′

β′′ ∧ ηn−1 +
√
µ1θ

n
β ∧ ηα = 0. By Cartan’s lemma



√
µ1(θ

α′

β′ − θα
β )√

µ2θ
α′

β′′

−√µ1θ
n
β


 =




0 0 0

0 F
(3)α
β G

(3)
β

0 G
(3)
β 0







ηn

ηn−1

ηα


 , α 6= β,
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for some coefficients F
(3)α
β and G

(3)
β . Here we use the facts that θn

β is independent of α, that

θα′

β′ − θα
β = −θβ′

α′ + θβ
α by (16) and that the matrix is symmetric. So θα′

β′ = θα
β , ∀α 6= β.

Step 2(A′) Consider θβ′′

α = 0, α 6= β, and dθβ′′

α = 0. Similarly as in Step 2(A), we get



√
µ2(θ

β′′

α′′ − θβ
α)√

µ1θ
β′′

α′

−√µ2θ
n−1
α


 =




0 0 0

0 F
(333)β
α G

(333)
α

0 G
(333)
α 0





ηn−1

ηn

ηβ


 .

for some coefficients F
(333)β
α and G

(333)
α . Then θβ′′

α′′ = θβ
α, for any α 6= β. By comparing both

formulas for θα′

β′′ = −θβ′′

α′ above and in Step 2(A), we get F
(3)α
β = G

(3)
α = F

(333)α
β = G

(333)
β = 0,

∀α 6= β. Then θn−1
β = θn

β = 0. Hence θα′

β′′ = 0, ∀α 6= β.
Step 2(B) Differentiating θn12

β = 0, we get dθn12
β = 0. Similarly as in Step 1(A), we get

(√
µ1θ

n12
β′√

µ2θ
n12

β′′

)
=

(
A

(4)
β B

(4)
β

B
(4)
β E

(4)
β

)(
ηn

ηn−1

)

for some coefficients A
(4)
β , B

(4)
β and E

(4)
β .

Step 2(C) Differentiating θα′

n−1 = 0, we get dθα′

n−1 = 0. By §6 and θn−1
β = 0, this implies

θn
n−1 ∧

√
µ1η

α +
√
µ2η

γ ∧ θα′

γ′′ + 2
√
µ2η

n−1 ∧ θα′

n22
+
√
µ1 + µ2η

n ∧ θα′

n12
= 0. Recall

√
µ2θ

α′

γ′′ =

F
(3)α
γ ηn−1 + G

(3)
γ ηα = 0 for α 6= γ. Then θn

n−1 ∧
√
µ1η

α +
√
µ2η

α ∧ θα′

α′′ + 2
√
µ2η

n−1 ∧
θα′

n22
+
√
µ1 + µ2η

n ∧ θα′

n12
= 0. In other words, ηn ∧ √µ1 + µ2θ

α′

n12
+ ηn−1 ∧ 2

√
µ2θ

α′

n22
+ ηα ∧

(−√µ1θ
n
n−1 +

√
µ2θ

α′

α′′) = 0. By Cartan’s lemma, there are coefficients A(5)α etc. so that




√
µ1 + µ2θ

α′

n12

2
√
µ2θ

α′

n22

−√µ1θ
n
n−1 +

√
µ2θ

α′

α′′


 =



A(5)α B(5)α C(5)α

B(5)α D(5)α E(5)α

C(5)α E(5)α F (5)






ηn

ηn−1

ηα


 .

Recall Step 1(A’), θn22

α′ = 1√
µ1

(B
(111)
α ηn−1 + D

(111)
α ηn). Then θα′

n22
= − 1√

µ1
(B

(111)
α ηn−1 +

D
(111)
α ηn) so that, by comparing above, D(5)α = E(5)α = B

(111)
α = D

(111)
α = 0. Hence θn22

α′ = 0.

Recall Step 2(B),
√
µ1θ

α′

n12
= −A(4)

α ηn − B(4)
α ηn−1, From above we have

√
µ1 + µ2θ

α′

n12
=

A(5)αηn +B(5)αηn−1 + C(5)αηα. Then A
(4)
α = B

(4)
α = A(5)α = B(5)α = C(5)α = 0 and θα′

n12
= 0.

Step 2(D) Differentiating θβ′′

n = 0, we get dθβ′′

n = 0. Similarly as in Step Step 2(C), we get




√
µ1 + µ2θ

β′′

n12

2
√
µ1θ

β′′

n11√
µ1θ

β′′

β′ −√µ2θ
n−1
n


 =



A(555)β B(555)β C(555)

B(555)β D(555)β E(555)

C(555) E(555) F (555)





ηn−1

ηn

ηβ
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for some coefficients A(555)β , B(555)β , C(555), D(555)β , E(555) and F (555) . By the formula for
θn11

β′′ in Step 1(A), it implies B
(1)
β = B(555)β = D(555)β = E(555) = 0, and θn11

β′′ = 0. By the

formula for θn12

β′′ in Step 2(B), it implies E
(4)
β = A(555)β = C(555)β = 0, and θn12

β′′ = 0.

Step 3(A) Differentiating θα′

α =
√
µ1η

n, we get dθα′

α = d(
√
µ1) ∧ ηn +

√
µ1dη

n. By §6 and

θβ
n = 0, this implies θα

α ∧
√
µ1η

n +
√
µ1η

n ∧ θα′

α′ +
√
µ2η

n−1 ∧ θα′

α′′ = d(
√
µ1) ∧ ηn +

√
µ1(θ

0
0 ∧

ηn + ηγ ∧ θn
γ + ηn−1 ∧ θn

n−1 + ηn ∧ θn
n), mod(η). By writing ∆α := θα′

α′ − θα
α + θ0

0 − θn
n, we have

ηn ∧ (
√
µ1∆α + d(

√
µ1)) + ηn−1 ∧ (

√
µ2θ

α′

α′′ −√µ1θ
n
n−1) = 0, mod(η). By Cartan’s lemma,

√
µ2θ

α′

α′′ −√µ1θ
n
n−1 = B(6)αηn−1 + C(6)αηn, mod(η),

√
µ1∆α = −d(√µ1) + C(6)αηn−1 + A(6)αηn, mod(η).

Recall from Step 2(C) that
√
µ2θ

α′

α′′ − √µ1θ
n
n−1 = F (5)ηα. Then F (5) = B(6)α = C(6)α = 0.

Hence
√
µ1θ

α′

α′′ =
√
µ2θ

n−1
n .

Step 3(A′) Differentiating θα′′

α =
√
µ2η

n−1, we get dθα′′

α = d(
√
µ2) ∧ ηn−1 +

√
µ2dη

n−1.
Similarly as in Step 3(A), there are some coefficeints A(666)α, B(666)α and E(666)α such that

√
µ2(θ

α′′

α′′ − θα
α + θ0

0 − θn−1
n−1) = −d(√µ2) + A(666)αηn−1 +B(666)αηn, mod(η)

√
µ1θ

α′′

α′ −√µ2θ
n−1
n = B(666)αηn−1 + E(666)αηn, mod(η).

Recall Step 2(D),
√
µ1θ

β′′

β′ − √µ2θ
n−1
n = F (555)ηβ. Then, from above, we obtain F (555) =

B(666)α = E(666)α = 0. Hence
√
µ1θ

β′′

β′ =
√
µ2θ

n−1
n . Recall from Step 3(A) that

√
µ2θ

α′′

α′ =
√
µ1θ

n−1
n . It implies either µ1 = µ2, θβ′′

β′ = θn−1
n , or θβ′′

β′ = θn−1
n = 0.

Step 3(B) Differentiating θn12
n−1 =

√
µ1 + µ2η

n, we get dθn12
n−1 = d(

√
µ1 + µ2)∧ηn +

√
µ1 + µ2

dηn. By §6, θn
γ = 0 and θn12

γ′′ = 0 in Step 2(D), this implies θn−1
n−1 ∧

√
µ1 + µ2η

n + θn
n−1 ∧√

µ1 + µ2η
n−1 + 2

√
µ2η

n−1 ∧ θn12
n22

+
√
µ1 + µ2η

n ∧ θn12
n12

= d(
√
µ1 + µ2) ∧ ηn +

√
µ1 + µ2(θ

0
0 ∧

ηn + ηn−1 ∧ θn
n−1 + ηn ∧ θn

n), mod(η). Denote ∆n−1 := θn12
n12
− θn−1

n−1 + θ0
0 − θn

n. Then ηn ∧
(
√
µ1 + µ2∆n−1 + d(

√
µ1 + µ2)) + ηn−1 ∧ (2

√
µ2θ

n12
n22
− 2
√
µ1 + µ2θ

n
n−1) = 0, mod(η). By

Cartan’s lemma,

√
µ1 + µ2∆n−1 = −d(√µ1 + µ2) + A(7)ηn +B(7)ηn−1, mod(η),

2
√
µ2θ

n12
n22
− 2
√
µ1 + µ2θ

n
n−1 = B(7)ηn + C(7)ηn−1, mod(η).

Step 4. Differentiating θα′

n =
√
µ1η

α, dθα′

n = d(
√
µ1) ∧ ηα +

√
µ1dη

α. By §6 θn−1
α and

θn
α = 0 and θn12

α′ = 0 in Step 2(C), this implies θn
n ∧
√
µ1η

α +
√
µ1η

γ ∧ θα′

γ′ + 2
√
µ1η

n ∧ θα′

n11
=

d(
√
µ1)∧ηα +

√
µ1(θ

0
0 ∧ηα +ηγ ∧θα

γ ), mod(η), i.e., ηα∧
[√
µ1(θ

α′

α′ −θα
α +θ0

0−θn
n)+d(

√
µ1)
]
+

ηn ∧ (2
√
µ1θ

α′

n11
) = 0, mod(η).
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√
µ1(θ

α′

α′ − θα
α + θ0

0 − θn
n) = −d(√µ1) + A(77)βηβ +B(77)βηn, mod(η),

2
√
µ1θ

α′

n11
= B(77)βηβ + E(77)βηn, mod(η).

By Step 1(A),
√
µ1θ

n11
β′ = A

(1)
β ηn. It implies A

(1)
β = B(77)β = E(77)β = 0 and θα′

n11
= 0.

By Step 3(A),
√
µ1∆α = −d(√µ1) + A(6)αηn, mod(η), it implies A(6)α = 0.

Step 5 Consider θn
β = 0. Then dθn

β = 0. By §6 and θn−1
β = θn

β = 0, this implies ηn∧ (−θ0
β)−

µ1η
n∧ηβ +2iηβ ∧θn

N+1 = 0. Hence ηn∧ (−θ0
β−µ1ηβ)+ηβ ∧ (2iθn

N+1) = 0. Then by Cartan’s
lemma,

−θ0
β − µ1ηβ = A(17)βηn + C(17)ηβ,

2iθn
N+1 = C(17)ηn + F (17)ηβ.

Hence F (17) = 0. Recalling θ0
β = −2iθβ

N+1, we obtain −2iθβ
N+1 = A(17)βηn + (µ1 + C(17))ηβ.

Step 6 From θβ′′

α′ = 0 for α 6= β by Step 2(A), dθβ′′

α′ = 0. By the known formulas, this

implies θβ′

α′ ∧ θβ′′

β′ + θα′′

α′ ∧ θβ′′

α′′ + θb
α′ ∧ θβ′′

b = 0. By Step 2(A) and 2(A’), θβ′

α′ = θβ
α and θβ′′

α′′ = θβ
α,

∀α 6= β. By Step 1(B), 1√
µ1

(2C
(2)b
α ηn +B

(2)b
α ηn−1) ∧ 1√

µ2
(−B(2)b

β ηn −D(2)b
β ηn−1) = 0. Then

C(2)b
α B

(2)b
β = C(2)b

α D
(2)b
β = B(2)b

α B
(2)b
β = B(2)b

α D
(2)b
β = 0, α 6= β.

Step 7 Consider θβ′

α′ = θβ
α where α 6= β by Step 2(A). Then dθβ′

α′ = dθβ
α. By the known

formulas, −θβ′

n ∧ θn
α′ − θβ′

γ′ ∧ θγ′

α′ − θβ′

b ∧ θb
α′ = −θβ

0 ∧ θ0
α − θβ

γ ∧ θγ
α − θβ

N+1 ∧ θN+1
α , i.e.,

−µ1ηα ∧ ηβ +
∑

γ 6=α,β θ
γ′

α′ ∧ θβ′

γ′ + θα′

α′ ∧ θβ′

α′ + θβ′

α′ ∧ θβ′

β′ + 1√
µ1

(2C
(2)b
α ηn + B

(2)b
α ηn−1) ∧

1√
µ1

(−2C
(2)b
β ηn − B

(2)b
β ηn−1) = (−µ1 − C(17))ηα ∧ ηβ +

∑
γ 6=α,β θ

γ
α ∧ θβ

γ ∧ +θα
α ∧ θβ

α + θβ
α ∧

θβ
β + 2iηα ∧ i

2
(µ1 + C(17))ηβ. Since

∑
γ 6=α,β θ

γ′′

α′ ∧ θβ′

γ′′ =
∑

γ 6=α,β θ
γ
α ∧ θβ

γ∧, θα′

α′ − θα
α =

θβ′

β′ − θβ
β and θα′

β′′ = 0 ∀α 6= β, the above identity becomes −µ1ηα ∧ ηβ + 1√
µ1

(2C
(2)b
α ηn

+B
(2)b
α ηn−1) ∧ 1√

µ1
(−2C

(2)b
β ηn −B(2)b

β ηn−1) = (−µ1 −C(17))ηα ∧ ηβ + 2iηα ∧ i
2
(µ1 +C(17))ηβ.

Then we obtain C(17) + C(17) = −µ1 again and
∑

bC
(2)b
α C

(2)b
β = 0, ∀α 6= β.

Step 8 Notice θα′

α′ − θα
α = θβ′

β′ − θβ
β , ∀α 6= β (see Step 6). Then dθα′

α′ − dθα
α = dθβ′

β′ − dθβ
β .

By the known formulas, dθα′

α′ − dθα
α = −µ1ηn ∧ ηn − µ1ηα ∧ ηα + θα′′

α′ ∧ θα′

α′′ + (2C
(2)b
α ηn +

B
(2)b
α ηn−1) ∧ (−2C

(2)b
α ηn −B(2)b

α ηn−1)− (−µ1 − C(17))ηα ∧ ηα + µ1η
n ∧ ηn + µ2η

n−1 ∧ ηn−1 −
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2iηα∧ (− i
2
)(−C(17)−µ1)η

α. Since ∆α = θα′

α′ −θα
α +θ0

0−θn
n is independent of α by its formula

in Step 3(A), we have dθα′

α′ − dθα
α = dθβ′

β′ − dθβ
β , i.e., −µ1ηα ∧ ηα + (2C

(2)b
α ηn + B

(2)b
α ηn−1) ∧

(−2C
(2)b
α ηn − B(2)b

α ηn−1) − (−µ1 − C(17))ηα ∧ ηα − 2iηα ∧ i
2
(C(17) + µ1)η

α = −µ1ηβ ∧ ηβ +

(2C
(2)b
β ηn+B

(2)b
β ηn−1)∧(−2C

(2)b
β ηn−B(2)b

β ηn−1)−(−µ1−C(17))ηβ∧ηβ−2iηβ∧ i
2
(C(17)+µ1)η

β.

Here we also use the fact that θα′′

α′ = θn
n−1 by Step 2(D). Hence C(17) +C(17) = −µ1 (known)

and ∑

b

|C(2)b
α |2 =

∑

b

|C(2)b
β |2,

∑

b

|B(2)b
α |2 =

∑

b

|B(2)b
β |2, α 6= β

It means that
∑

b |C
(2)b
α |2 and

∑
b |B

(2)b
α |2 are independent of α. Recall

∑
bB

(2)b
α B

(2)b
β =

∑
bC

(2)b
α C

(2)b
β = 0 for α 6= β in Step 6 and Step 7. Recall b ∈ {3n, 3n+ 1, ..., N} and denote

~xα := C
(2)b
α . Then the set of vectors {~xα}α∈{1,2,...,n−2} ⊂ CN−3n+1 satisfies

〈~xα, ~xβ〉 = 0, ∀α 6= β; 〈~xα, ~xα〉 = c

where c is independent of α. By the hypothesis N +1 ≤ 4n− 3, we have {~xα}α∈{1,2,...,n−2} ⊂
C(4n−4)−3n+1 = Cn−3. Since #{1, 2, ..., n− 2} = n− 2, it implies

C(2)b
α = B(2)b

α = 0.

Step 9 Now θγ′

n12
= 0 by Step 2(C); θγ′′

n12
= 0 by Step 2(D); θn

β = 0 by Step 2(A) and

G
(3)
β = 0 (Step 2(A’)); θγ′

n11
= 0 by Step 1(A) and by θn

β = 0 and by A(1)β = 0 (Step 4) and by

B
(1)
β = 0 (Step 2(D)); θγ′

n22
= 0 by Step 2(C); and θγ′

b = 0 by Step 1(B) and B
(2)b
β = C

(2)b
β = 0

(Step 8). �

8 Proof of Theorem 1.1

Proof of Theorem 1.1: If F is linear fractional, IIM ≡ 0 and IICR
M ≡ 0 by Corollary 5.2

and [JY10]. Then IIM − IICR
M ≡ 0.

Conversely, if IIM − IICR
M ≡ 0, we want to show: F is linear fractional. Recall that F is

linear fractional if and only if κ0 = 0. Suppose that F is not linear fractional, i.e., κ0 ≥ 1.
We seek a contradiction.

Since N + 1 ≤ 4n − 3, by the inequality N ≥ n + (2n+1−κ0)κ0

2
(cf. Lemma 2.1 (i)), it

implies that the geometric rank κ0 of F satisfies κ0 ≤ 2. Then its geometric rank κ0 = 1 or
2.

Suppose first that κ0 = 2. Then N ≥ n+ (2n+1−κ0)κ0

2
= 3n− 1, i.e., N + 1 ≥ 3n.
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If κ0 = 2 with N+1 > 3n, by Lemma 7.1(i), we have θα′

n12
= 0. Differentiating, we obtain

θγ
n12
∧θα′

γ +θn−1
n12
∧θα′

n−1+θ
n
n12
∧θα′

n +θγ′

n12
∧θα′

γ′ +θγ′′

n12
∧θα′

γ′′ +θn11
n12
∧θα′

n11
+θn22

n12
∧θα′

n22
+θn12

n12
∧θα′

n12
+

θb
n12
∧θα′

b +θN+1
n12
∧θα′

N+1 = 0. By §6 and Lemma 7.1(i), we obtain−√µ1 + µ2ηn−1∧√µ1η
α = 0,

but this is a contradiction.
If κ0 = 2 with N + 1 = 3n, by Lemma 7.1(ii), we have θα′

n12
= 0, i.e., θγ

n12
∧ θα′

γ + θn−1
n12
∧

θα′

n−1 +θn
n12
∧θα′

n +θγ′

n12
∧θα′

γ′ +θγ′′

n12
∧θα′

γ′′ +θn11
n12
∧θα′

n11
+θn22

n12
∧θα′

n22
+θn12

n12
∧θα′

n12
+θN+1

n12
∧θα′

N+1 = 0.
By §6 and Lemma 7.1(ii), we obtain the same contradiction as above.

Next suppose that κ0 = 1. By Theorem 3.1 in [HJX06], we can write




f1 = z1f
∗
1 ,

fj = zj , ∀2 ≤ j ≤ n,

φlk = µlkzlzk + z1φ
∗
lk, ∀(l, k) ∈ S0,

φlk = z1φ
∗
lk, ∀(l, k) ∈ S\S0,

g = w

where f ∗
1 = 1 + iµ1

2
w+O(|(z, w)|2), and φ∗

lk = Owt(2), ∀(l, k) ∈ S0. Since F (z, w) ∈ ∂HN+1,
we have

Im(w) = |z1f ∗
1 |2 + |z2|+ ... + |zn|2 + |z1|2

∑

(l,k)∈S
|φ∗

lk|2, ∀Im(w) = |z|2,

i.e.,

0 = |f ∗
1 |2 − 1 +

∑

(l,k)∈S
|φ∗

lk|2, ∀Im(w) = |z|2.

Then the mapping (z, w) 7→ (f ∗
1 , φ

∗
lk) is a proper holomorphic mapping from ∂H

n+1 into
∂BN−n+1. Since f ∗

1 = 1+ iµ1

2
w+O(|(z, w)|2), we conclude that at least one of the components

{φ∗
lk}(l,k)∈S must contain a nonzero w term. This is a contradiction with (73). �
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