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1 Introduction

In CR geometry, by spherical CR manifold, we mean a (2n+1)-dimension CR manifold M
that is locally CR equivalent to a piece of the sphere 9B"! in C"*!. In general, the universal
covering space of a spherical CR manifold may not be OB"™! and the fundamental group
of M may not be finite. For example, Burns-Schnider [BS76] constructed a compact real
analytic CR spherical submanifold of dimension 3 in C* with fundamental group of infinite
order. However, it is proved by Huang ([HO06], corollary 3.3) that any 2n + 1-dimensional
compact (Nash) algebraic spherical CR submanifold of C™, with n > 1, is CR equivalent
to OB" /T where I' C Aut(B"*!) is a finite unitary group with the only free points at 0
and Aut(B"!) is the group of biholomorphisms of B"**. This implies that if M C 9BV *!
is a compact spherical CR submanifold of dimension 2n + 1, by the argument in [H06],
theorem 3.1, M is Nash algebraic if and only if M = F(0B""!) where F : B — BN+!
is a proper rational holomorphic map. By Klein’s Erlanger program, we should study such
submanifolds M C OBV *! and the invariant properties under the transitive action of the
automorphism group Aut(OBN*!) where Aut(OBY*!) is the group of CR automorphisms.
Elements in both Aut(BY ) and Aut(OBN*!) are linear fractional.

Let us denote by Prop(B"™!, BN the space of all proper holomorphic maps from the
unit ball B"™ C C*™! to B! and denote by Prop,(B"™, BY*!) the space Prop(B""!,
BN NCF(BrFL). Write H' ' = {(2,w) € C*xC : Im(w) > |2|?} for the Siegel upper-half
space. Similarly, we can define the space Prop(H"*!, HN*1) and Prop,(H"!, HN*!). By

the Cayley transformation p,1 : H™™ — B™™, p, (2, w) = (2=, 12%), we can identify




a map I € Propy(B""',BY*!) with py, o F o p,i1 in the space Prop,(H"", HN*!). For
any map F' € Propy(H" HV*!), the restriction F : 9H"* — OHN*! is a C%-smooth CR
map.

For F' € Prop,(H"™, HV ™), we denote M = F(OH™"!) which is an immersed C?-smooth
CR submanifold. It is known that the following statements are equivalent:

e [ is linear fractional.
e The geometric rank of F' is zero (cf. [H03|, and [HJO1], proposition 2.2).

e The CR second fundamental form I1{* = 0 (cf. [JY10]. Although the smoothness
condition was required there, by checking the proof, C? smoothness is sufficient. For
the definition of IT{%, also see (33) below).

TI§ was defined by Cartan’s moving frame theory. Again by Cartan’s moving frame
theory, another second fundamental form /7, can be naturally defined (see the definition
n (31) below). We observe that F is linear fractional if and only if /1), = 0 (see Corollary
5.2 below).

In this paper, we want to prove the following criterion for linearity.

Theorem 1.1 Let F' € Props(H" ™ HY ™) with4 <n+1< N +1<4n—3. Then F is
linear fractional if and only if
Iy — 117 =0. (1)

Roughly speaking, by the decomposition TM = T'M @ RE in (6), we obtain the
decomposition 11y, = TI$E @ (11 — TI$F). While 1), =0 < I = 0, the above shows
that it is also equivalent to I1y; — I1§* = 0. For the definition of 11y, — II{?, see (35).
By the condition that N + 1 < 4n — 3 together with the inequality N > n + w (cf.
Lemma 2.1 (i)), it implies the geometric rank o of F satisfies ko < 2. The condition that
4 < n+1 is used to ensure the inequality ko < n—1 holds, which allows us to apply the semi-
linearity property (cf. [H03]). The conditions N + 1 < 4n — 3 and F' € Propz(H"™ HY 1)
also imply that F' is a rational map ([HJX05], corollary 1.3) so that we indeed deal with real
analytic CR manifolds and CR maps in this paper.

The condition I1y; — IT{ = 0 indeed means (see (73) below):

g : nil
7|0:0, V(],Z)GS, 1§k’§l‘€0, VpG@H . (2)
8Zkaw
As an explicit example, we would like to mention a map F' € Rat(H*, H) in ([JX04], theorem
6.1) which is not linear, and does not satisfy (2).

The authors conjecture that the coniditon “N + 1 < 4n — 3”7 in Theorem 1.1 can be

dropped.



2 Preliminaries

On CR mappings between Heisenberg hyperplanes We say that F' and G €
Prop(B™1 BN *1) are equivalent if there are automorphisms o € Aut(B"*!) and 7 € Aut(
BN+1) such that F' = 70G oo. We say that F' and G € Prop(H""!, HN*1) are equivalent if
there are automorphisms o € Aut(H"*!) and 7 € Aut(HY*!) such that F =70G oo.

We denote by OH"™ = {(z,w) € C* x C: Im(w) = |2|*} the Heisenberg hypersurface.
For any map F' € Prop,(H"™ HY ), by restricting to OH" ™, we can regard F as a C? CR
map from OH"™! to OHNT! and we denote it as F' € C'Ry(OH" ™, OHN*1). We say that F
and G € CRy(OH", OHN*1) are equivalent if there are automorphisms o € Aut(OH" ) ~
Aut(H") and 7 € Aut(OHN ) ~ Aut(HN*1) such that F =70Goo.

We can parametrize OH" by (z,%,u) through the map (2,z,u) — (z,u + i|z]?). In
what follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-

negative integer m, a function h(z Z,u) defined over a small ball U of 0 in 9H" ™! is said to
if h(tz,tz,t%u)

i — 0 uniformly for (z,u) on any compact subset of U as

be of quantity o,;(m)
t(e R) — 0. N

Let I = <f7 ¢7g) = (fvg) = <f17 e 7fTL7 P1y 7¢N—n7g) < CRQ(aHn+178HN+1> with
F(0) = 0. For each p = (20, wp) € JH""', we write 0) € Aut(H"™") with ¢)(0) = p and
7l e Aut(HY!) with 7 (F(p)) = 0 for the maps

0,(z,w) = (2 + 20, w + wo + 2i(z, %)), (3)
T (2% w*) = (2* = flz0,wo), w* — g(z0, wo) — 2i(2*, f(20, wp))). (4)

For each p € 9H"', there is an automorphism 7 € Auto(H"™") such that (cf, [HJO1],

lemma 2.1) F}* := 7% o I, = (f;*, ¢5*, g»*) satisfies

f;* =+ ée;)( )’LU“‘Owt( ) gb** = ¢(2 ( )—I—Owt(Q), g;* = w+0wt(4)

with (2, el (2))]2]2 = |67 (2)|? where we denote by h¥)(z) a certain weighted holomorphic
homogeneous polynomial with weighted degree j.

Let A(p) = —2@(%@135”. We call the rank of A(p), which we denote by Rkr(p),

the geometric rank of F at p. Rkp(p) depends only on p and F', and is a lower semi-continuous
function on p. We define the geometric rank of I to be ro(F) = maz,comn+1 Rkp(p). Notice
that we always have 0 < kg < n. We define the geometric rank of ' € Prop,(B"™!, BV 1)
to be the one for the map py' o F o p,, € Prop,(H"+! HN*!).



Lemma 2.1 ([H03/, Lemma 3.2 and 3.3) (i) Let F be a C*-smooth CR map from an open
piece M C OH™t into OHN ' with F(0) = 0 and Rkp(0) = ko. Let P(n,kg) = M
Then N > n+1+ P(n, ko) and there are o € Auty(OH™™) and 7 € Auty(OHN ) such that
Fy* =10l o0 :=(f ¢,9) satisfies the following normalization conditions:

r . 2
fi=z+ %Z]‘w + 0ui(3), gu{; (0)=0, j=1--- Ko, p1j >0,
fi=2i+0u(3), j=ro+1,---,n (5)
i1 =pj1ziz + 0w (2),  with (4,1) € S,

| 9 =w +oui(4),

where py > 0 for (j,1) € Sy, and pj = 0 otherwise. More precisely, p = /{t; + fu for
Gl <Ko J# L = /1ty if j < ko and I > Ko orif j =1 < K.
(ii) If, in addition, F' € Props(B"™ BN with 0 < ko < n, then

82¢jl | o 82¢jl

8zk8w 0=
On CR submanifolds Let M be a smooth strictly pseudoconvex (2n+1)-dimensional CR
manifold. We denote by HM C T'M its maximal complex tangent bundle with the complex
structure J : HM — HM. Suppose that M is of hypersurface type, i.e., dimg HM = 2n.
Consider the natural extension of J on HM @C C TM ®C. The eigenvalues of J in HM ®C
is i. We denote by T1°M and T%'M the eigenspaces of J and have the decomposition
HM @ C =T"“M @ T M. All HM, T'*°M and T%'M are complex vector bundles over
M of rank n. There is a C-linear isomorphism: HM — T"°M, v — (v —iJ(v)).

Let HM be the annihilator bundle of HM which is a rank one subbundle. It is known
that there exist a real globally defined nowhere zero 1-form 6 € T'(M, H°M) such that
Ker(0) = HM. If M is locally defined by a defining function r, then we can take 6 = ior.
The Levi-form Ly with respect to 6 is defined by Lg(X,Y) := —idd( X ANJ(Y)) = i0([X, JY]),
VX, Y € (M, HM). By HM ~ TY°M, we have

Lo(u,v) :== —idf(u AD) = i0([u,D]), Vu,veT,°(M), Vpe M.

Slo=0, V(4,0) €S, k> ko

Recall that (M, 0) is strictly pseudoconvez if the Levi-form Ly is positive definite for all
z € M. Such real non-vanishing 1-form 6 over M is a contact form because it satisfies:
0 A (dO)™ # 0. Associated with a contact form 6, there is a unique Reeb vector field &,
defined by the equations: (i) (¢) = 1, (ii) df(&, X) = 0 for any smooth vector field X over
M. We have orthogonal decomposition TM ~ HM ® RE, or by HM ~ THM, we have

TM ~T"M ®RE. (6)
Here gg|par = Lo and gg(€, &) = 1 defines the Webster metric associated to 6.

4



3 Cartan’s moving frame theory

Q-frames  We consider the real hypersurface @ in CV*? defined by the homogeneous
equation

(2,2):=Y 277 ¢ %(ZN“ﬁ — 27N+ =, (7)
A
where Z = (Z°, Z4, ZN*1)* € CN+2. This can be extended to the scalar product

(2,7') = Z ZAZIA | %(ZNHW _ ZOZ,N+1)’ (8)
A

for any Z = (20,24, ZN+0t 70 = (7°, 74, 2’V Tt € CN¥2. This product has the prop-
erties: (Z,Z') is linear in Z and anti-linear in Z’; (Z, 7'y = (Z', Z); and @ is defined by
(Z,7Z) = 0.

Let SU(N+1,1) be the group of unimodular linear homogeneous transformations of CN+2
that leave the form (Z, Z) invariant (cf. [CM74]). By a unimodular of linear homogeneous
transformation, in terms of a matrix A, we mean det(A) = 1.

By a Q-frame is meant an element E = (Ey, Ea, Eny1) € GL(CN™?) satisfying (cf.
[CM74, (1.10)])

{ det(F) =1, . ()
(Ea, Ep) = daB, (Eo, Ent1) = —(Eng1, Eo) = —3,

while all other products are zero.

There is exactly one transformation of SU(N + 1,1) which maps a given @Q-frame into
another. By fixing one Q-frame as reference, the group SU(N + 1,1) can be identified
with the space of all Q-frames. Then SU(N + 1,1) € GL(CN*?) is a subgroup with the
composition operation.

The Q-frame bundle over CP¥*!  Consider an element A € GL(CN+2):

© L0 0

" ) i
a a e a
A:(GO>-~-,CLN+1): (:) 1 N:H ) (10)
N+1 J\}+1 N+1
gD N N

where each a; is a column vector in CN*2 0 < j < N+ 1. This A is associated to an



automorphism A* € Aut(CPN*1) given by

20 N41 N+1 N+1
A*([zo D21 zN+1}) = {A ] = {Zago)zj : Z ag-l)zj D Z ag-NH)zj}
ZN+1 7=0 =0 J=0

(11)
When a(()o) # 0, in terms of the non-homogeneous coordinates (wq, ..., wyn11), A* is a
linear fractional from CN¥*! which is holomorphic near (0, ..., 0):

N+1 (1 N+1 (N+1
A (w1, oy wy) = (Zj:o a§» )wj 2 a§. )wj) where w; = 2 (12)
s = SRR ~ T : ;= —.
St aPw, St aPw, 2
We define a bundle map:
T GL(CN*?) — CPN*!

A:(a0>a1a~-~>aN+1) = 7To(ao)

where
mo: CNP2 {0} — CPY 'Y, (20, .0, 2n41) = [20 0 e 0 Zn4a, (13)

be the standard projection. By taking restriction, we have the projection
7 SU(N +1,1) — OHN™ | (Zy, Za, Zn 1) > span(Zy). (14)

which is called a Q-frames bundle. We get OHN* ~ SU(N + 1,1)/P, where P, is the
isotropy subgroup of SU(N +1,1). SU(N +1,1) acts on OHN*! effectively.

The Maurer-Cartan form over SU(N +1,1) Consider £ = (Ey, Ea, Ent+1) € SU(N +
1,1) as a local lift. Then the Maurer-Cartan form © on SU(N + 1,1) is defined by dE =
(dEy,dE A, dExn+1) = EO, or © = E-L . dE, ie.,

0 0% O}y
d(Ey Ex Eny1)=(Ey Ep Enp) | ©F 05 ©%F. ], (15)
oyt eftt exh

where ©F are 1-forms on SU(N +1,1). By (9) and (15), the Maurer-Cartan form © satisfies

0 N+l N+l _ ANHL a0 _ &0
Oy +On11=0, 07" =67, Oy, =06%,,

L — 0 16
O =20f, O3,, = -16Y, 05 +05 =0, )+ 64+ 637, =0, 1o



where 1 < A, B < N. For example, from (E4, Eg) = dap, by taking differentiation, we
obtain
(dE 4, Eg) + (E4,dEg) = 0.

By (15), we have

dEy = Eg©Y + > 5 EgOF + Ex 100,
dEa = Eg©Y + 3" 5 EpOf + Ex 00,
dEN+1 = E0@9V+1 ‘I’ ZB EB@]%-H[ _I_ EN-i-l@%I%

Then

(Eo®% + > EcOf + ExnON", Ep) + (Ea, E0% + > EpOf + ExOF ) =0,
C D

which implies ©F 4+ ©4 = 0. In particular, from (16), 04 = —2i0% . O satisfies
dO =-0AN0. (17)

CR submanifolds of OHY™!  Let H : M’ — OHN*! be a CR smooth embedding where
M’ is a strictly pseudoconvex smooth real hypersurface in C"*'. We denote M = H(M’).
Let &y be the Reeb vector field of M’ with respect to a fixed contact form on M’. By
(6), we have:
TM ~ HM ©REy ~ THM @ REy. (18)

For example, if M" = OH"™ = {(z1, ..., 2n, 2n41) | Im(zne1) = |2|?}, then the above isomor-
phism is given by

9 0 - 0
Z(a]%—i—b]@)—'—CgM/ — Z(a]—i-lbj)a—z—i_CgM/’ Where aj,bj,ceR. (19)
J J J

j=1 7j=1

Since H is a CR embedding, we have
H(TYM') =T"M c TH(OHN ), (20)

TM ~ H,(T"°M') @ H,(REyy) C T(OHNT). (21)

First-order adapted lifts In order to define more specific lifts, we need to give some
relationship between geometry on JHY*' and on CV*? as follows. For any subset X C
OHN*! | we denote X := 7, (X) where 7y : CN*72 — {0} — CPN*! is the standard projection



map (13). In particular, for any x € M, Z is a complex line and for the real submanifold
M?"+1 the real submanifold M?"*3 is of dimension 2n + 3.
For any x € M, we take v € & = m; *(z) C CVN*2 — {0}, and we define

T,M = T,M and T*°M = T M.

These definitions are independent of choice of v. Notice that T,M = w3 (T, M) U {0} and
THOM = 7y (THOM) U {0}. We denote RE,, == 75 (RE, ) U {0},

Let M C OHV*! be the image of H : M’ — OHY*! where M’ C C"*! is a CR strictly
pseudoconvex smooth hypersurface. Consider the inclusion map M — OHY*! and a C%-
smooth lift e = (eq, ey, €, enr1) of M where l <a<nandn+1<v <N

SU(N +1,1)

e/ I
M PN aHN—I—l

We call e a first-order adapted lift if for any x € M,

o (eo(2)) = =,
C{eo+ Y., anta | aa € C}, =THM, (22)
C®{eo+ Y, data +benti |aq € C,b € R}, = THOM @ RE, .

Locally first-order adapted lifts always exist (cf. [JY10], theorem 7.1). We have the restric-
tion bundle Fy, := SU(N + 1,1)|5s over M. The subbundle 7 : Fi, — M of FY; is defined
by

Fir = {(eo, 5, eu,ent1) € Fip | [eo] € M, (22) are satisfied}.

Local sections of F}; are exactly all local first-order adapted lifts of M. The fiber of 7 :
Fi — M over a point is isomorphic to the group

9 9% 9% 9%

0 « ,(/x (e}
Glz{g: 0 gu o eSU(N+1,1)}, (23)

0 0 0 gy

where we use the index range 1 < a,f <nandn+1< u,v < N.

By (9), we have (go, gn+1) = —%, it implies g) - gni1 = 1 so that gy = g%. Since

0
(90, 9p) = 0 and gy # 0, it implies g/ ™" = 0. Since (ga, gs) = dags, it implies that the matrix

8



(¢99) is unitary. Since det(g) = 1, it implies g - det(g?) - det(g4) - gyt = 1. By (19) and
(22), g1 is areal if g%, = 0; gnT1 /g%, is real if g%, # 0.

We pull back the Maurer-Cartan form from SU(N +1,1) to F}, by a first-order adapted
lift e of M as

0 0 0 0

Wy w3 wy Wi
(07 o (7 (07

_ wo Wa Wy Wi
W= wh wh wh Wk

Nl MM Nl N

+ + N+1 +

Wy Wy w? Wi

Since w = e~'de, i.e., ew = de. Then we have deg = ewg + Y-, €awl + 3., €uwh +enp1wg -

On the other hand, we have (cf.[JY10]) deg = eqw + >, eaws + eniwp T so that wl =
0, Vu. By the Maurer-Cartan equation dw = —w A w, one gets 0 = dwy = — > Wi Awf —
WX Awd T e, 0= — D je(ia. N1y @f A w}. Then by Cartan’s lemma,

(“)Ilfl = Z q;kwgv (24)
J

for some functions gj, = gy

Second fundamental form and CR second fundamental form For any first-order
adapted lift s = (eq, ¢, €1, en41) With m(eo) = , we have e; € THOM. Recall TpG/(k, V) ~
E*® (V/E) where G(k, V) is the Grassmannian of k-planes that pass through the origin in
a vector space V over R or C and E € G(k, V) ([IL03], p.73). Then T,M ~ (2)*® (T, M/).
The vector e; induces e; € T, M by

e = & ® <ej mod(eg)) € TieqgM, Vje{l,2,..,n,N+1}
where we denote by (e, ¢/, e, eN 1) the dual basis of (CV72)*. Similarly, we let
€, = e ® <€ﬂ mod(T[eO}M)) c N[GO]M, (25)

where N'M is the normal bundle of M defined by N, M = T, (0HN™") /T, M.
We claim that
Z qg.‘kwgwg ® e, is independent of choice of the lift s. (26)
jke{1,2,n, N+1},n+1<pu<N
In fact, suppose that s and s are both such lifts. Then
9 913 92 QJO_V+1
J j J
0 g gfL IN+1 (27)
0 0 g, 0

0 0 0 gnit

S=59=35



where ¢ is some map from M to G; C SU(N +1,1). By the general transformation formula
0 =g 'wg+gtdg (cf. (1.19) in [IL0O3]), we have

~0 ~0 ~0 ~0

Wo Wi Wy Wy
O Y
0 @ & Wy,
A 0 Wi
ho hi hy By wé] ws‘z wg wgm 90 9 9 9N
0 h h, h§v+1 Wo Ws Wy Wy 0 9% 9, 9yva
0 0 A 0 0 wtowh w00 ¢ 0
0 0 0 AT \wd™ oM 0wy 0 0 0 gyit
hy by hg M dg) dglg dgl? dgi?v +1
|0 hi hl hyi, 0 dg. dg, 9y
0 0 hr 0 0 0 dg¢ 0
N+1 N+1
0 0 0 Ayl 0 0 0 dg¥h

where h = g~!. Then we find

s

a;é = Zg(())hiw(tb EJIZ = thwﬁgli j> k>ta8 € {172a "'>n>N+ ]-}7 n+1< Hy K < N. (28)
t

K,S
Also, from s = s - g, we obtain

~0 100 >~ _ 0 k v
¢ =hye”, €, = E (9.0 + guer + gpew).
ke{1,2,...n,N+1} n+1<v<N

Applying those formulas into wy = > @;‘k&g, we obtain > hlgr.gr =), @ykggh{, ie.,

T = ho D _ higigiats. (29)
K,t,s
which implies
Z a;lka(])&g ® EM = Z qéfk(’u(])(‘d(l]C ® Qu' (30)
/Mj,k) Mvjvk
Thus (26) is proved so that the form
Iy = > ¢hwiws @ e, € D(M, S*T*M @ NM) (31)

G k€{1,2,n N+1},nt1<pu< N

10



is independent of choice of first-order adapted lift s from M into SU(N +1,1). 11, is called
the second fundamental form of M.
Comparing the identity (30):

~p~J~k o Ho,og,0k
E qpWowy @ €, = E q;,Wowo @ €,
G k{12, m, N+1 1 <p<N Gk€{1,2,m, N+1} 1 <p<N

it also holds that
TipWowp ® ¢, dipwowy @ €,  mod(wy .
jkE{1,2,...n} nF1<p<N GkE{L,2,...,n} nt1<p<N

From this, we define the CR second fundamental form II$ by moduling wi' ™

TIGE = > ¢wiws ® e, € T(M, S*T"* M @ NM). (33)
5,ke{1,2,...n}n+1<u<N
Remark

1. The definition of I, in (31) is similar to the one of the projective second fundamental
form for complex submanifolds (cf. [IL03]).

2. The II§ defined in (33) was studied in [Wang09] and in [JY10]. It was proved that
II§ = 0 if and only if F is linear fractional [JY10].

3. Let 5,5, 52 be three first-order adapted lifts with 115, = D ik qfkwéwé“@%, 1750 =

D j e D j
> ik q](.k)”wéwg ®e,, and 113, =37, q§ Mk ®e,. Let s = sg; and s = sg,

be as in (27). Suppose g1(p) = g2(p) holds at one point p € M. Then by (29), we have

1 2
a5 () = 4" (p) (34)
for any j,k € {1,2,...,n,N+1}andn+1<pu < N.

By inclusion T M «— T*M ~ T4 M & (RE)*, we can regard I19%M € T'(M, T*M ®
NM). Then by (31) and (33), we have defined a section Iy, — [I{F € T(M,T*M @ NM),
i.e., in terms of local coordinates,

CR __ Iz j N+1 H N+1, k i N+1, N+1
Iy — 1" = E (qjN—i-lewO T dniWo  Wo T AyianiiWo | W )®§,u‘

1<j,k<n,n+1<p<N

(35)

11



Pulling back a lift Let M C OHY*! be as above with a point Q € M. Let A € SU(N +
1,1), A* € Aut(OHN ) with A*(Q) = P and M = A*(M). Let 5: M — SU(N +1,1) be a
lift. We claim:

s(Q) = (A" 3)(A"(Q)) (36)
is also a lift from M into SU(N + 1,1). In fact, in order to prove that s is a lift from
M into SU(N + 1,1), it suffices to prove: ws = Id. In fact, write s = (€y, €4, ens1) and
s = (eg,ea,eny1) = (A71ey, A7ley, A7 eny1). Here [¢o](P) = P and [ep](Q) = Q. Then
7s(Q) = [A71e](Q) = [e0](Q) = Q so that our claim is proved.

If, in addition, s is a first-order adapted lift of M into SU (N+1,1), s is also a first-order
adapted lift of M into SU(N +1,1).

Let © be the Maurer-Cartan form over SU(N+1,1). Denote w = s*Q2 and w = 5*Q2. Since
A is a matrix with constant entries, w = (s)'ds = (A7' - 3)1d(A718) =51 A- A7 lds =

5715, e,
w=(A")® (37)
so that wf = (A*)*&g and wy = (A*)*wjs. The last equality yields
qgﬁ = ngﬁ o A”. (38)

[Example] Consider the maps in (3) and (4):

op(z,w) = (2 + 20, w + wo + 2i(2, 7)),

7{(2*’1”*) = (2" — f(20,wo), w* — g(20, wo) — 2i(z", f(20,w0)))

where p = (20, wo), 2 € C", w = 241, 0 € Aut(OH"™'), and 77 € Aut(OHV ).
By (10) and (12), these two maps correspond to two matrices:

1 0 0 O
201 1 0 0
Agg = | oo il € SUMn+1,1) (39)
Zon 0 1 0
\wo 2i%r ... 2%, 1]
and
[ 1 0 0]
— for 1 0 0
Ayr = : : - : | e SUN +1,1) (40)
—fon 0 1 0
| —9(20, wo) —2if1(z0,wo) ... —2ifn (20, w0) 1]
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where 29 = (201, ..., 20n) and wy = zop11-
[Example] Consider the map F), 20 = (f, g) € Auto(OH" )

B Az + dw)U (2) = A2w
1 —2i(z,a) — (r +i||d@||2)w’ g 1 —2i(z, @) — (r +il|@)|?)w

where A > 0,7 € R,@ € C" and U = (uqp) is an (n — 1) x (n — 1) unitary matrix. By (10)
and (12), its corresponding matrix,

f(2)

(1 —2iay ... —2ia, —(r+i||d@|?
0 )\UH )\uln )\CLl
Ap a0 =0 0 : : (41)
0 Aupt ... A Aa,,
o 0 .. 0 A2 |

is not in SU(n + 1, 1) in general. In fact, we can write

Fyrav = Fxo0.14° 10000 Firar1d- (42)

or Ap, 2o = Arvoora " AFioow = AF a0 Here Ap o, and Ap ., are in SU(N + 1,1);

while Ap, ;. is in SU(N + 1,1) if and only if A = 1. Therefore

a,ld

Apyap 18 SUM+1,1) if and only if X = 1. (43)

[Example] Let G € Aut(0HN*!). Then G can be written as G = Ty © Fprau Where
F,.av € Auto(O0HN ') as in the previous example. By (42), we have

0
G = o) © Fro0,1a° Fio0v © Fira1d- (44)

[Example] Let A € SU(N +1,1). From above, we know Ap, ,,,, - A may not be in
SU(N +1,1) unless A = 1. However, it is possible to modify it so that the modified map is
in SU(N + 1, 1), namely, for any real number A € R, we have

AF)\,O,O,Id A AFA,O,O,Id_l S SU(N + 1, 1)' (45)

In fact, we write A = (A;;). Then Ap, ., 0 A Ap, oo =

1 0 .. 0 O AOO AOl AON AO,N—i—l 1 0 0 O
0OXxX .. 00 AlO All AlN Al,N-i-l 0 % 0 O
00 ... A 0 Avo  Ani ... Axn  Axnno 00 0
00 ... 0 )\2_ | Av+10 Aviin oo Avpiy Avpant| |00 .0 %_
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AO() AOl AON AO,N-‘,—l 1 0 0 O
Mg My o My A1 N 0 + 0 0
My M1 ... Myw NN N1 00 0
_>\2AN+1,0 NAniia . NAnpw )\2AN+1,N+1_ 00 ... 0 %_
[ Ago A0 .. FAon %AO,NH-
Ao Apy AN TA N+
= : : : : € SU(N +1,1).
AN Avi ... Avn  FANN
NAnpio Mypn oo Myan Avpiv

If s is a first-order adapted lift, we can define s = Ag, ;"5 A;Alo o, Recall the pulling
back Maurer-Cartan form by s is w = s 'ds. Since © = 5 'ds = (AsA™1)"1d(AsA™1) =
A-s7lds- A1 =A-w- A" As above, we have

[ ~0 ~0 ~0 ~0 ] B 0 1.0 1.0 1,0
Wy Wy .. Wy Wy Awp wh Wy TWN 1
~N ~N ~N  ~N N N N 1, ,N
P o\ 0. 55 I I I P VR A o
~N+1 ~N+ ~N+1 ~N+ 2 N+ + + +
Wy w o W W | A wy Aw; S Awy Wyl |

4 Geometric Rank, /[; and II]\%R

Lemma 4.1 (i) ([JY10], theorem 7.1) Let F € CRy,(OH™™!, OHN ™) with k > 2 and F(0) =
0. Then there exists a neighborhood of 0 in M := F(OH"*) and a C*~1-smooth first-order
adapted lift e : U — SU(N + 1,1)

e = (eo,ej,epeni1) €ESUN+1,1), 1<j<n n+1<b<N. (46)

(i) ([JY10], Step 3 of the proof of Theorem 1.1) Let F' = F*** = (f, ¢, q), the induced
first-order adapted lift s, and notation be as in Lemma 2.1. Then

0%
H — M ;
hj,k|0 — 82]02k }09 Js ke {1927 "'>n>N+ 1} (47)

where Yy are defined in (31) and in (53).
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Theorem 4.2 Let F' € CRy(OH" Y, OHN*Y). Then its geometric rank kg equals to

ko= sup |n—dimc{v | II%{F@)(V, v) =0}
pEOHN+1
where I]A%FF@) is the CR second fundamental form of the submanifold M at the point F(p).
Here {v | IIA(“}{%F@)(V, v) =0} is a vector space over C.

Let M C OHY*! be a CR submanifold which is the image of a smooth CR. hypersurface
in C"*! by a C%smooth CR map. Fixing one first-order adapted lift s, we write II{F =
> eafp qgﬁw(‘}wg ® ey, mod(w)' ™). Consider the set of vectors in C", which is a variety
defined by a quadratic polynomial and is called the set of asymptotic directions, defined by

xT

Baseloc|IIf{%] == {v = (v*) € C" | Y q¢iy(x)v*v’ =0, Vn+1<u< N} (48)
a,B

which is independent of the choice of the lift s.
Recall from [H99], lemma 5.3, that for any p € OH", the induced map F' = F** satisfies

(z,eW(2))2]* = 162 (2)]?, ¥z € OH". (49)

. 2
where eV (2) = =2 ) (r)fj—a]lusz.
Then by Lemma 4.1 (ii), any vector v = (vy,...,v,) € Baseloc\[[ﬁf%F(o)\ if and only if
2
D i ;ngjbvivj =0, V. Then by (49), the statement is equivalent to (7, e (v)) = 0. Since
9% f

R o) is semi-positive, the statement is equivalent to e (v) = 0, i.e.,

the matrix (—2i

CR N~ _Of
Baseloc|I Iy o| = v - —2@2
J

u=o}, (50)
0
which is a vector space over C, so that it makes sense to define its dimension. Recall
Rkp(p) = rank(A(p)). By the formulas of f; in Lemma 2.1, we have

Rkp(0) = n — dimg Baseloc| 11} (51)
Proof of Theorem 4.2: Step 1. The lift s;™ It suffices to prove

REkp(p) =n — dime Baseloc|]lﬂ(’;}7%F(p)|, Vp € OH™ . (52)

The case when p = 0 has been proved in (51). Let us consider p € OH"™! with P := F(p) # 0.
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By the definition,

Rke(p) = Rl (0). (53)
Here we write F** = G, o 7)" o F o o) o H, where 7" is as in (4), o) is as in (3), H, €

p
Auto(OH™ 1) and G, € Auto(OHN ). Since M is a real analytic hypersurface containing
the point P = F(p), G, o 71 (M) is a real analytic hypersurface containing 0 = 74 (P).
We consider .
Gporp
(M,P) — (G,o7l(M),0)

TF T F™ (54)

aloH,

(OH",p) ——  (OH"*',0)

Now from F;** : 9H"™" — G, o 74 (M), we can construct a first-order adapted lift %
of G, o7l (M) as we constructed s from the map F in (46). Since F' € Propy(H"! HNT!),
the lift s3* is C*~! smooth. Write the CR second fundamental form of G, o 75" (M) with
respect to the lift s;™ as

FICRS™) _ 5 65 g5 g (657, (55)

Step 2. Construct the lift s,

Now we may try to define a first-order adapted lift from M into SU(N + 1,1) by (36):

sp=(170) oG, T os ™ oGyor). (56)

Unfortunately, this lift s, may not be a lift of M into SU(N + 1,1) ( See the example in
(43)). We have to modify the construction of (56) so that it is a first-order adapted lift of
M into SU(N + 1,1) as follows.

Since G, € Auto(OHN 1), we can write it as in (44):

Gp = Fxo0,1d4° Fip00 0 Firard (57)

Here Fy 000, Firaia € SUN +1,1), but F)o1a € SU(N +1,1) if and only if A = 1.
Now we begin to modify the s, in (56).
e Lift from F\ 0740 Fioov © Firgrao7 (M) Forany P € G,o Tf(M), the map

(58)

***‘
p P

is a first-ordered adapted lift from G o 7F'(M) into SU(N + 1,1).

e Lift from Figoy o Fiyama0 7 (M)  Then we consider Fyog 4 ' © si* 0 Foo,1a:

VP e Figou o Fipgrao, (M), by a similar formula in (36) and a modification in (45), we

-1 ) . F
define (F,\70,071d 08 o FMO’O,M) - Ap, 40145 more precisely, VP € Figov o Fipg1407, (M),

' (AFA,O,O,Id>
P

Pr—s

—1 ok ok
P <F,\,0,0,1d s, OF,\,o,o,Id)

, (59)
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which is a first-ordered adapted lift from Fj g0 0 Fi,a14 © Tf (M) into SU(N + 1,1).

e Lift from Fy,zq07) (M) VP € Fi,a1q907, (M), by (36), the map

p
’ (AF,\,o,o,Id)
P

is a first-ordered adapted lift from Fj , z 40 7{ (M) into SU(N +1,1).
e Lift from 7/ (M)  Similarly, VP € 7F(M), by (36), the map

p

—1 -1 Kok
P (Fl,o,o,U o F,\,o,o,fd ©s, © F,\,o,o,fd o Fl,o,o,U)

Fi0,0,0(P)

—1 —1 -1 ok
P <F1,r,a,1d o Fioou  ©Fxoora  ©8, ©Fxoo1a0 Froou© Fl,r,d,]d)

' (AFA,O,O,Id)
Fy0,0,u0F v a,1a(P)

is a first-ordered adapted lift from 7.1'(M) into SU(N +1,1). In other words,

’ (AF,\,o,o,Id)
P

e Lift from M  Finally, VP € M, by (36), the map

' (AFA,O,O,Id)
P

P

P— (Gp_l o s;‘,** o Gp)

F10,0,00F1 r.a,14(P)

P— <(7{)_1 o Gp_1 o s;** oG,o 7{)

Fy0,0,u0F1 r,a,1407} (P)

(62)

is a first-ordered adapted lift s, from M into SU(N + 1,1). Without cause confusion, we

denote
o F\—1 —1 *okok F
5y = ((Tp ) oG, os, OGpO’Tp ) -AFX,O'O’M.

Here we recall from §7 that for any P € M,

(10 .. 0 0]

O X .. 0 0
AFA,O,O,Id(P) = |: : . (P)

00 ... A 0

_0 0O ... 0 )\2_

(63)

(64)

where A = A\(P) is defined in (57). Since F' € Prop(0H" ™, 0HN 1), by the construction, A

is a C*~l-smooth positive function, and hence the lift s, is C*~!-smooth.
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Step 3. Construct the lift s, Write the CR second fundamental form of M with
respect to the lift s, as

IIACE%SP) — qélj(sp)wé(sp)wg(sp) ®§/(f,,) (65)
Then by (38), for P = F(p) we have

Sp (S;;**)
¢ (P) = g (0)(G, 0 7)(0). (66)
This implies from (54)

dime Baseloc| [ 15| = dime Baseloc|IIGT ¢ o| = dime Baseloc|IIg % ol (67)

By (53), (67) and (51), we prove (52). O

5 A Lift with Special Property

Theorem 5.1 Let F = F*** € Propy(H" ", HVY) where k > 2 and M = F(OH"™). For
any point of M, there exists a neighborhood U of this point in M and a C*~'-smooth first-
order adapted lift s of U into SU(N + 1,1) where U is a neighborhood of 0 in M such that
the coefficient functions qu of 1y satisfy

02 (¢;**)u
8zi8zj 0’

Vp € OH" ! with P = F(p) € U, where X is a positive C¥~1 smooth function defined on U,

p ’gp
Proof of Theorem 5.1  Step 1. Start with the lift s Let s: U — SU(N + 1,1) be
the C*~l-smooth first-order adapted lift of F' defined in Theorem 5.1 where U C M is a
neighborhood of 0. Since F(0) = 0, we can choose small neighborhoods U of 0 in 9H"™!
and U of 0 in M such that F : U—Uis diffeomorphic. Then for any P € U, there is a
unique p € U with F(p) = P.
The second fundamental form with respect to s can be expressed as

s s s)j (s)k s
HIP) = S P s ),
7,k

gl (P) = \(P) i,je{1,2,..,n,N+1}, n+1<pu <N, (68)

Here the coefficient functions q](.z)“ satisfy the formulas in Lemma 4.1 above at P = 0. In

order to prove Theorem 5.1, we need to modify the lift s to construct a new first-order
adapted lift § of M into SU(N +1,1):

S$(P)=s(P)-y(P), YPeU, (69)
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where ¢ : U — G is some C*~2-smooth map where G is defined in (23) such that the
coefficients of the second fundamental form with respect to § satisfy the formulas in (68) at
any P e U.

Step 2. Construct the lift s,  For any point P € U, by Step 2 of the proof of
Theorem 4.2, there is a first-order adapted lift s, defined on a neighborhood U, of P in M
into SU(N + 1,1). Then there exists a C*~! smooth map a, : U, — Gy such that

sp==s-a, onU, (70)
In fact a, := s - s,
Step 3. Construct the lift 5 Now we define C*~!-smooth a first-order adapted lift
§ from a neighborhood U of 0 in M into SU(N + 1, 1) given by

8(p) = s(p) - ap(p), VpeEU (71)

where a, is defined in Step 2. Write the second fundamental form with respect to s as

[[](\f[p Zq]kuwéw (8)k G )W mod(nNH).

We claim: )
¢\ () = ¢ (p), VYpeM (72)
(3)

so that the coefficients qjk“ satisfy the formulas in Theorem 5.1. In fact, for any pg € M,
setting s1(q) 1= aq4(q), Vg € M and sy := ay,. Since s1(pg) = s2(po), by (34), we prove Claim
(72). O

Corollary 5.2 Let M and F' be as above. 11y =0 if and only if F is linear fractional.

Proof:  In fact, if 1Ty = 0, then I1{ = 0 by the definitions so that F is linear fractional

by [JY10]. Conversely, if F' is linear fractional, then 8z¢8z lo = 0 for F** = (f** ¢*** g***)
(bp**

where we use notation in Lemma 2.1 by standard calculation. Then mb = 0 for any

Fy** for any p € OH™! where we use the notation in Lemma 2.1. We apply Theorem 5.1
to conclude that ¢/;(P) = 0 for any p € 9H"™" with P = F(p), and hence 1y =0. O

Now let F' = F*** € Props(H"*, HN*1) with sp <n—1and 3 <n < N — 1. By (35),
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for any P = F(p) where p € OH" ™,
(1T = I3 (P)

_ n 7, N4+1 n N+1, k i N+1, N+1
= E : (%NH%WO + QNak W0 W F AW T wp ) ®e,lp
1<) k<n,nt1<p<N

2 2
- Z (%b J (J)V+1+m|owév+lwg
1<jk<nn+1<pu<N 02j02N+1 O0zn 4102

N 82(¢;**)u

Dzn 410241 lowy ™) @e,  (By Theorem 5.1)

82 EEES . 02 ok
_ > (Mlouﬂ N+l MMWNH“’S) e,

) 0z;0w 00 Owozy, 0
1<), k<ko,nt+1<p<N

Here the last equality holds because aza(fg;)“ lo =0 for j > ko hold by Lemma 2.1(ii). Then
Iy — I[I¢F = 0 means
(P . _
Zj w

6 Maps between balls with rank two

Let I = F** € Props(H"™!, HN*Y) with rank(F) = Rkr(0) = 2 and 3 < nand 3n < N+1.
Then we can write F' = (f1, f2, fp, Op/, Onr Oprs On1y7, P, g), where

fi=z+ Wzlw + 0u(3),

fo= 20+ @zgw + 0u(3),

f;l?:zpv 3<p<n,

P1p =V 111(0)212p + 30 55 02gw + 0we(2), 3<p <n,

Pap = V/112(0)222p + 3 o5 0zgw + 04i(2), 3 <p <,

b11 = /111(0)2121 + D 55 024w + 04 (2),

b12 = /111(0) + p2(0)z122 + 3 55 024w + 04t (2),

Paz = /p2(0) 2220 + 3 53 024w + 0,(2),

{#33, P34, B3 N—3n43} = {00}

Other ¢, = 0 + 0(2),

g=w.

In the rest of the paper, we set up the following index ranges:

1<a,B,7v<n-2, d=n+a, o =2n+a, n+1<pu<N. (74)

20



When n > 4, we also denote 3n < a,b,c < N. By replacing 1 and 2 with n and n — 1, we
write F' as

F = (faa fn—lv fna ¢a’7 (ba”v (bmla ¢n227 ¢n127 ¢b7 9)7 where

fo = Za + 024w + 04 (3),

froo1= 2Zpn_1+ W%_lw + 0wt (3),

fn=2n+ Wz(o) ZpW + 04 (3),

(ba’ = ¢1a = M1 (O)ana + Zo’ 0zow + Owt(2>a

(ba” = ¢2a = /~L2(0)Zn—lza + Zo’ 0z,w + Owt(2>7

Gnyy = V11(0) 2020 + D 025w + 041 (2),

Bngs = V12(0)2n—12n—1 + Y 025w + 0,1(2),

Gy =/ 111(0) + 12(0)zn—12, + 3, 025w + 041 (2),

G =0+, 0z,w + 041(2).

Let F be as above. Let M = F(OH"™). Then the following holds in a neighborhood of
0= F(0) in M by Theorem 5.1 :

=0, B = Mo, B s = B = B = B = B = B =

hg,Nﬂ/ = h%/—rl,NH = 07” . , , , ,

h%»y = hEHn =0, hg n—1 — )‘5a6\/m> hﬁ n h%—l, n—-1— hg,n—l = hg,NH = hz—l,N—i-l =
hg,N+1 = h%+1,N+1 =0,

hgff = hZ% = hglh_l =0, hal, =2 /1, bRty =Ryt = hglﬁvﬂ = hpty N =

n n n

h21}v+1 = hTJifl-lm N1 =0,
hE?f = hg?@ = h%_l =hpz =0, hy? = 20/, hph1 = hg2§v+1 = h,2 N+1 =
h%vﬂ = hr]ifzil N1 =0,
hn_}lLbN—l—l__hIfln N_—Hh; hN+1_N;:-bl —_0' hb _ hb _ hb _ hb _ hb _
By — "Bn T "B n-1 " ""nn — '"n-1, n-1 " ""mnn-1 7 "'FN+1 T ""n—1 N+1 T '"n N+1 T

= hp? o = 0, byt = A+ pe, h??\fﬂ =

h?\u—l, N1 =0,
where ) is a positive C?-smooth function, and yy, s are C'-smooth functions in the neigh-
borhood of 0 in M.

Recall from (15), any first-order adapted lift s = (eq,€;,e,,eny1) : M — SU(N +1,1)
of Fwhere 1 <i,j <n,n+1<pu,v<N,wehave ds = sf where ¢ is the pull-back of the
Maurer-Cartan form from SU(N + 1,1):

0 0 0 0
0 0 6 0,
0; 0. 0 0,
_ 0 N—+1
d(€0>€j>€u,€N+1) - (60,62',61/,6]\[4_1) 0 Hlj/ 95 Qv
Ni i YN+1
9N+1 4 +1 0 9N+1
0 J N+1
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Recall 0% = hiyn' + b o nand 0y = by 0"+ hiyyy vy We still use notation in (74)
and we erte F as F (fon fn 1, fm ¢oc ) ¢a”a ¢m1> ¢n22> ¢n12a ¢ba )
For simplicity, we replace A\/ui1 by /fi1; replace A\\/fiz by /fi2; and replace Ay/puy + fiz
by /i1 + 2, by changing notation. Then by the formulas above, we have
= hglﬂﬂ + h%/n_m"_l + hglnﬁ + hﬁ/N+177 = dagy/I1N",
o =ho S+ WSy "+ RS n77 +h8 ) yn =0,
o zh%nwhnn /A S L N RU ERV/ U
Nl—i-l N1 17 + Wit ne 177n_1 + hiy nn” +h v =0,
Qg hﬁ 777 + hﬁ o 177" Ly hﬁ T+ hﬁ Nl = 5a5\/777"‘1
_h'n 1’yll7ﬁ/+h'n BT Ly 1n77 + BTy v = /B2,
9,‘3‘ —ha n7+hnn 17]" L he” gt 4 b N+1n—0

o’

N1 = P Nk W1 ™+ B W1+ B v = 0,
HZH hnn n'y + h’gln 1nn 1 + hnnn + hglN—l—ln — 0
Onty = hml ST+ hoy ™™ / + hyty " Y v =0,
G = i+ s B v = 20/
Onir = th-lu A RN T RN G T AN v =0,
0 = Wy + W 4 W B =0
9n221 = hn221 /A s BT / + 20" R v = 24/
On22 = hyz2n? + by "+ B + by qn =0,
ONE = h%il NI R GRENRY "R h;ﬁl N =10,
03 = B + gt g + By an =0,

2121 = hnml 777"’ +hy T R+ R N1l =V + pen”,
Oz = hpzn 4 hy's 0" Ryt h"lNHn = V1 + ™
Onii = hr](/lil W + hr](/lil n_177n_1 + byt o0t AN v =0,

0, | = hb 1 WV + h’n 1n— 177n Y hb ot hh N =0,

0t = ht nV—i—hnn 177" 1+ nb n;r] +hnN+1n—0

01 = h N+1 AT+ hN+1 w1 By "+ By v =0,
where p; and po are Cl-smooth positive functions defined on M.

7 Lemma for mappings of rank 2

Let F' € CRy(OH", OHN*1) with geometric rank o = 2. Then by the inequality N >
n+ W (cf. Lemma 2.1 (i)), N > n+ W =3n—1,1ie, N+12>3n. In the
remaining of the paper, Einstein summation notation is used without mentioning it.
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Lemma 7.1 Let F' € Props(OH™, OHN*Y) with the expression in above section and with
A<n+1<N+1<4n—-3and ko =2. If N+1>3n. Then 6}, =07 =03 =06)

ni2 ni2 ni1

0, =07 =0. IfN+1=3nand4 <n, then 0, =0 =03 =07 =07 =0.

n22 ni2 nii n22

Proof of Lemma: 1t suffices to prove the case N+1 > 3n for the proof of the case N+1 =3

is similar. We use the notation in the section 6. The facts that 6’2’12 = 6’2;’2 =05 = 92; L=

oy = 9;’, = 0 will be proved in Step 2(C), 2(D), 2(A’), 4, 2(C) and 9 below, respectively.

Step 1(A) Differentiating 03" = 0, we get dfj"' = 0. By dw = —w A w, we have
—05" NGOG — G /\93—9;”_;é /\19;‘1 — P NGO NG — O AOS —Om N — B NG — 0 A
052 =0y /\9%—917{&1/\96 =0, i.e., by §6, 2¢/mb5 A"+ /" A +w/u2n"_1/\92,1,1 =0,
Le, n"Ay/in (05 —207%)+1" "' A/120 = 0. By Cartan’s lemma, there are some coefficients

A(ﬁl), B[gl) and Dg) such that

(\/m(eg,“—%g)): Ay BY (n)
N By DY) \n"t)"

Step 1(A’) Differentiating 672 = 0, we get df?*> = 0. Similarly as in Step 1(A), we get

//“1“2(9212/2 _ 293—1) B Aglll) B(glll) 77"_1
7672 — \ g pam "
for some coefficients A&m), B and DY,
Step 1(B) Differentiating 0 = 0, we get df; = 0. As the calculation in Step 1(A) and

§6, this implies with /in™ A (9%, + Han™ A ng = 0. By Cartan’s lemma, there are some
coefficients C’g)b, Bg)b, and Déz)b so that

(2)b (2)b n
<m9:,): QCgb Bﬁzb <77 1)~
V20, BY" DY) \n"
Step 2(A) Differentiating 95‘/ = 0 with a # 3, we get d@g" = 0. By §6, this implies

05 N w//,um" + 05 A pan® + /pan” A 9§‘f + /™A 9;‘2 =0, ie, /i (0F — Qg,’) ANt —
V205, A "+ Vit An® = 0. By Cartan’s lemma

VG - 65) A N
V0%, =10 F7° Gj ), a# B,
—/Hb 0 Gy 0 n
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for some coefficients F “ and G( Here we use the facts that ¢} is independent of «, that
Hg‘, — 05 = —6’5, 07 by (16) and that the matrix is symmetric. So 6’;‘; =05, Va # 3.
Step 2(A’) Consider 67" =0, a # 3, and d¢?" = 0. Similarly as in Step 2(A), we get

N 0 0 0 n—1
\ﬁ_ 9 ) —lo Fé?’g?’) 8 Gg333) nnn
en 1 (333) ¢
— /i 0 G& 0 1

for some coefficients F G390 and G, Then 6’6 = 02, for any a # (. By comparing both
formulas for ng = —0” above and in Step 2(A), we get F =GP = ﬁ333 = G (533) — 0,

e

Va # (3. Then 92‘1 =03 = 0. Hence Hg‘,/, =0, Va # (.
Step 2(B) Differentiating ¢3* = 0, we get df;** = 0. Similarly as in Step 1(A), we get

() (5 %) ()

\/—eg}lz - Bé4) Eé4) nn—l

for some coefficients A(;), Bgl) and Egl)

Step 2(C) Differentiating 62", = 0, we get d#®" , = 0. By §6 and Qg_l = 0, this implies
Or_y A BIn® 4 n A0S + 23/t A0S, + i+ ™ A 05, = 0. Recall /0%, =
F(?’)an”_1+G(3) * =0 for @ # ~. Then 67_; A /in® +\/777 /\90/,+2\/777”_1/\

0+ Vi + pon™ A0S = 0. In other words, ™ A \/p1 + 2602, + 1" /\ 2/B20% + 1% A
(— /0", + /1z0%,) = 0. By Cartan’s lemma, there are coefficients A®)® etc. so that

/,Ul +M293i2 A(S)a B(S)a C(S)a nn
2\/79n22 — B(S)a D(5)a E(5)a nn—l
— /0 + /202 C®e e po) n“
Recall Step 1(A7) enlzz _ \/%(B&Hl)nn_l + D&Hl)nn)- Then 9322 _ _\/%(B((xlll)—nn_l +
D(lll)n ) so that, by comparing above, DG = p®a = iU — pI') — . Hence 9"22 =
Recall Step 2(B), /& Hnm = Agl B(4) n=1, From above we have /1 + poby,, =
AGagr . BEagn=1 4 CGlage Then Agw = g) _ 4Bk _ B _ 6k _  and g = 0.
Step 2(D) Differentiating Qﬁ" =0, we get d#°" = 0. Similarly as in Step Step 2(C), we get
magi’z A(BB5)B pE55)8  ((555) nn—l
2) /—ulgg;’l — | BB pEE5)E [(555) n"
\//71957 ! C(555)  E(555)  [(555) 0P
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for some coefficients A®5)8 BG®)8 OG55) DG [G55) and F©5) - By the formula for

05 in Step 1(A), it 1mphes Bél) = BO59)8 — DBIB = FG5) — (0 and 05" = 0. By the
formula for f73)* in Step 2(B), it implies Egl) = AR = OB — 0, and 02 = 0.

Step 3(A) Differentiating 0% = /", we get 0% = d(\/ir) An"™ + /fidn™. By §6 and
02 = 0, this implies 0% A /n™ + /g™ A 0% + it A0S, = d(\/in) An™ + /ir(6 A
0"+ NG+ AL 40" AG)), mod(n). By writing A, = 0% — 0% + 63 — 0", we have

0" A (Vi Aa + d(/m)) + 0" A (V0% — /pi0n_;) = 0, mod(n). By Cartan’s lemma,

VIS — b, = BOY = cOopn mod(n),
VA, = =d(/im) + CO% "t 4 AQ" - mod(n).

Recall from Step 2(C) that /6%, — /mbr_, = F®n*. Then F® = BOe = 0® = q,
Hence (/1602 = /1207 ".

Step 3(A’) Differentiating 02" = \/mn"~!, we get 0" = d(\/m2) A"t + \/aadn L
Similarly as in Step 3(A), there are some coefficeints Al660)a , B6%)a and F666) guch that

\/E( a” 9a+90 en—l) _ _d(\/f)+A(666)a77n—1+B(666)a77n’ mod(n)
\/mea, _ \/Iu—zez 1 B(666a n—1 E(666) ’f] 7 mod(n)

Recall Step 2(D), \/171057 — 20t = FE®)pf Then, from above, we obtain (%) =
B666)a — p666)e — (0 Hence ,/ulé’g,u = /120", Recall from Step 3(A) that /62 =
V0" Tt implies either py = po, 6% =671 or 8% =61 =0.

,u@zllt' li ither p L Qg in eg 9n1 0

Step 3(B) Differentiating 0,2 = /i1 + pan™, we get d6,*? = d(\/p1 + pio) AN" 4+ /11 + o
dn". By 86, 0 = 0 and 67/ = 0 in Step 2(D), this implies 011 A i+ ey + 00, A

Vi T+ pan™ ! i 2/p2n" ! A Oni2 + \/pa + pan™ A 0312 = d(\/jn + uz) A" 4\ (05 A
N+ A R+ " A0, mod(n). Denote A,_; = "2 — "1 + 603 — 6", Then 5" A

ni2

(Vin F peDn1 + d(Vn + p2)) + 0" A (24120012 — 23/l +u29n_1) = 0, mod(n). By

Cartan’s lemma,
Vi F Dy = —d(vi F p2) + A0 + BOyt mod(n),

2T — 2/ T iy = B+ OOl mod(n)
Step 4. Differentiating 62 = \/mn®, d0S = d(\/m) An® + /prdn®. By §6 677! and
0 = 0 and 67> = 0 in Step 2(C), this implies 0] A \/in® + \/pan” A 9‘1 + 2/t A0S =
d(y/11) An® +\/,171(98/\77“+7ﬂ/\9,‘;‘), mod(n), i.e., nA [/E1 (6% —93—1—90 o)+ d(y/m)] +
n" A (2\/_9nu) = 0, mod(n).
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VEL(02 — 02+ 05 — 07) = —d (/i) + AT+ BUDRyr mod(n),
2/, = BT’ + BTV mod(n).

By Step 1(A), /035" = 77" It implies Aﬁ = BB = p(MB — 0 and 6 =

ni1

By Step 3(A), \/_A = (\/_) + A©®2pn - mod(n), it implies A®)* = 0.
Step 5 Consider 5 = 0. Then dfj; = 0. By §6 and 6’;‘1 = 0 = 0, this implies n A (—03) —

pan™ AnP + 22’?/\9]’{#1 = 0. Hence ™ A (=605 — 1an®) +nB A (2003, 1) = 0. Then by Cartan’s
lemma,

—05 — pun® = AUy 4 OUT0,

2i0 ., = Oy + F<17>776.

Hence FU7 = 0. Recalling 69 = —2i05,,, we obtain —2i6y,, = AGDFRT + (1 + COD)pP
Step 6 From 95;/ = 0 for a # [ by Step 2(A), d@g;/ = 0. By the known formulas, this
implies 95 /\95,” + 6% A ng +60% A 95” = (0. By Step 2(A) and 2(A’), Gﬁ: = 07 and Gﬁ,,,, =05,
Va # (3. By Step 1(B), \/%(20,32)1)77" + BOP -y A L (— B(2) nt — D(2) n"=1) = 0. Then

\ﬁ

Cff)bBéz)b _ C(g2)bDé2 _ B B _ Bﬁf)ng)b =0, a#/p.

Step 7 Consider 6’5: = 0 where o # 3 by Step 2(A). Then d@gi = df”. By the known
formulas, —07 A 0% — 00, A6), — 0] AL = —05 A0S — 05 NOL — 0%, AONH, e,
. Ta 6] Y G’ o’ G’ G’ G’ 1 (2)b, n (2)b_n—1
n® A n +Zﬂ,¢a59a NOL 405 N + 00, ANOg + =207 0" + Ba7'n" ) A
2)b— 2 _ .

%_(—20[2) 7 — BT = (—py — CONE AP + 52 L 500 A 02 A +02 A 65 + 62 A
Hﬁ—l—Qmo‘/\ 5 (i + CUM)yP. Since S e O /\Hﬁ,, =3, 7&&590‘/\95/\ 90‘ —0Y =
Hg, Hg and ng 0 Ya # [, the above 1dent1ty becomes —pun® A nP + ( 0(2 o

2)b 2)b— 21 a a
+BPr ) A (=20 - B ) = (—p — C( D)0 AP+ 207 A g (M1+C”)

Then we obtain C''" 4+ C07) = —y; again and > Ca 0(2 =0, Ya # 3.

Step 8 Notice 0%, — 6% = Hg, — Hg, Va # (3 (see Step 6). Then df%, — d§> = dﬁg - d@g.
By the known formulas, df%, — d0% = —pu ™ A" — n® An® + 0% A 0%, + (20&2)17

B =) A (208" — BE ) = (=i — CODY A 4 ™ AT+ pron ™ AT —
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2% A (—3)(—=CUD — pi)n®. Since A, = 0% — 02+ 65 — 0" is independent of a by its formula
in Step 3(A) we have df, — df% = d@ﬁ/ d@ﬁ, Le., —un® An®+ (20&2)177)" + B,g?)bn"_l) A
(202" — BE"T) — (= — CODYiE A — 2i% A L(CTD + p)n™ = —nP A +
(205 b,r]n_'_Blé2 ,r]n—l) (_2022)b77—n_3é2)b77n—1) _ (_,ul _0(17) ),r]_ﬁ/\nﬁ _27[7]_5/\%(0(17) _'_Iul)nﬁ
Here we also use the fact that 62 = 67_, by Step 2(D). Hence C17) +C07) = —y;; (known)

and
D ICPE =) 10 Z\B@ Z\B@ L atf
b b

It means that 3, [C°2 and ¥, |BE"[? are independent of . Recall 37, B,g?)bBéz)b =
Zb C’(2 =0 for a # 3 in Step 6 and Step 7. Recall b € {3n,3n+1,..., N} and denote

Ty 1= C’g . Then the set of vectors {Z4 }acf1,2,..n—2y C CN 73"+ satisfies

(To, @) =0, Ya# 3; (Ta,Za)=c

where ¢ is independent of o. By the hypothesis N +1 < 4n — 3, we have {Z, }acf1,2,..n—2) C
CUn=H=3n+1 — Cn=3_ Since #{1,2,...,n — 2} = n — 2, it implies

P — pEr .

Step 9 Now 6} = 0 by Step 2(C); 6}, = 0 by Step 2(D); 03 = 0 by Step 2(A) and
G(ﬁ?’) = 0 (Step 2(A?)); 6 = 0 by Step 1(A) and byIH" =0 and by AMs =0 (Step 4) and by
Bg) =0 (Step 2(D)); 67, = 0 by Step 2(C); and 6] = 0 by Step 1(B) and Bg)b = C’g)b
(Step 8). O

8 Proof of Theorem 1.1

Proof of Theorem 1.1: If F is linear fractional, 11y, = 0 and II{# = 0 by Corollary 5.2
and [JY10]. Then Iy — II{E =

Conversely, if 1y, — II{F = 0 we want to show: F'is linear fractional. Recall that F'is
linear fractional if and only if kg = 0. Suppose that F' is not linear fractional, i.e., ko > 1.
We seek a contradiction.

Since N 4+ 1 < 4n — 3, by the inequality N > n 4+ E_r0)50 (of  Lemma 2.1 (1)), it

2
implies that the geometric rank xy of F' satisfies kg < 2. Then its geometric rank kg = 1 or

2.
Suppose first that kg = 2. Then N > n + w =3n—1,ie, N+1>3n.
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If ko =2 with N+1 > 3n, by Lemma 7. 1( ), we have 6% = 0. Differentiating, we obtain

ni2

o n—1 ' o o a n o' n o' n le"
O, NOS +00 A0+, NO —1—«9%12/\«9 +9,Z12/\«9 W HOTIAGS 012 NG 0TI NG+
0b NG +ONFIAGS = 0. By §6 and Lemma 7.1(i), we obtain —y/p1 + pan™ A /fiin® = 0,

but this is a contradiction.
If kg = 2 with N + 1 = 3n, by Lemma 7.1(ii), we have 6%, =0, i.e., 6, A6 + 62 1 A

ni2 ni2 ni2

0O N O NG 0 NG O AN 02 NG 012 NG +9N+1/\6’j‘{,+1—0.

ni2 ni2 ni2 ni2 ni1 ni2 n22 ni2 ni12 ni2
By §6 and Lemma 7. 1(11) we obtaln the same contradiction as above.

Next suppose that kg = 1. By Theorem 3.1 in [HJX06], we can write

(f1 = 217,

fj:Zj7 V2§j§n,

ik = iz + 2105, V(LK) € So,

ik = 2195, V(I k) € S\So,

(g=w

where fi =1+ Llw+ O(|(z,w)[?), and ¢}, = Ow(2), V(I k) € Sy. Since F(z,w) € OHN*!,

we have

Im(w) = |z f{|* + |z2] + - + |2a]* + |21]? Z [03l?, VIm(w) = |z]?,
(Lk)eS
ie.,
0= =14 Y |l VIm(w) = [z
(Lk)eS

Then the mapping (z, w) — (ff,®5.) is a proper holomorphic mapping from OH""! into
OBN -1, Since fi = 14+ w+0(|(z, w)|?), we conclude that at least one of the components
{&5%} @.r)es must contain a nonzero w term. This is a contradiction with (73). O
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