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1. Introduction

In this article, we give a survey on the recent studies of two classical problems in several
complex variables. The first problem concerns the geometric structure for proper holomor-
phic mappings between balls in complex spaces of different dimensions . We will be mainly
focusing on our investigation on the gap phenomenon carried out in [HJX2] [HJY]. We will
also formulate a general conjecture to guide the further study along these lines of research.
The second topic to be touched here is on the normal form theory for a Bishop surface with
a vanishing Bishop invariant. We will discuss a recent joint work of the first and the third
authors [HY]. We will also pose two open problems motivated from the papers of [MW]
[HY].
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2. Gap phenomenon for proper holomorphic mappings

between balls

Write Bn for the unit ball in the complex space Cn. Write Prop(Bn,BN) for the set of proper
holomorphic maps from Bn into BN . Namely, F ∈ Prop(Bn,BN) if F is a holomorphic map
from Bn into BN such that for any compact subset K ⊂⊂ BN , F−1(K) is also a compact
subset of Bn. Roughly speaking, the properness of the map F says that F maps the boundary
of Bn into the boundary of BN .

Write Propk(Bn,BN) for the set of proper holomorphic maps from Bn into BN , which
are Ck-smooth up to the boundary for a non-negative integer k. We say that F and G ∈
Prop(Bn,BN) are equivalent if there are automorphisms σ ∈ Aut(Bn) and τ ∈ Aut(BN) such
that F = τ ◦ G ◦ σ. A research field in several complex variables, that has attracted much
attention in the past two decades, is to classifiy proper holomorphic mappings between balls
under such an equivalence relation. The interested reader may consult the articles of [Fr1]
[Hu2] and [HJ] for surveys from various aspects of studies in this direction. In this article,
we only address recent studies on the gap property for mappings bewteen balls.

For a proper holomorphic map F ∈ Prop(Bn,BN), one can always add zero components
to F and then compose it with automorphisms from Aut(BN) to produce other proper
holomorphic maps from Bn into BN ′

with N ′ > N . However, maps obtained in this manner
have the same geometric character as that of the original F and should not be regarded as
‘different maps’. Motivated by this construction, one gives the following definition (see also
[DL] [DLP] for related definitions):

Definition 2.1: A map F ∈ Prop(Bn,BN) is said to be minimum if F is not equivalent
to a map of the form (G, 0), where G is a proper holomorphic map from Bn into BN ′

with
N ′ < N .

Since a linear fractional transformation in Aut(Bm) maps an affine complex hyperplane
in Cm to an affine complex hyperplane in Cm, it is not hard for us to see that a map
F ∈ Prop(Bn,BN) is minimum if and only if the image of Bn under F is not contained in an
affine complex hyperplane of CN . This simple fact will be very useful for us to test whether
a map is minimum or not.

A minimum proper holomorphic map can not be constructed with the above mentioned
simple method. It is easy to verify that there is no proper holomorphic map from Bn to BN

when N < n. By definition, Prop(Bn,Bn) includes Aut(Bn) which is isomorphic to SU(n, 1)
modifying {±Id} and thus is a non-compact Lie group. At this point, we should mention a
result of Alexander [Alx] stating that Prop(Bn,Bn) = Aut(Bn) for n > 1. In what follows,
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we will always make the assumption that N ≥ n > 2. In 1979, S. Webster proved that any
proper holomorphic map in Prop3(Bn,BN) with N = n + 1 > 4 is equivalent to the map
(Id, 0) and thus is not minimum. After the work of many people (see [Fa] [Fr2], etc), the
following was proved by the first author in [Hu4]:

Theorem 2.2 (Huang [Hu4]): Let F ∈ Prop2(Bn,BN) with n < N ≤ 2n − 2. Then f
is equivalent to the ‘big circle embedding’ (Id, 0).

In particular, Theorem 2.2 says that there are no minimum proper holomorphic maps
which are C2-smooth up to the boundary from Bn into BN when n < N ≤ 2n− 2.

Recall that the Whitney map Wn,1 := (z′, znz) for z = (z′, zn) ∈ Cn is a proper quadratic
polynomial map from Bn into B2n−1. Wn,1 is minimum, for, otherwise, by Theorem 2.2, Wn,1

would have degree one. For λ ∈ [0, 1] and a holomorphic map h from Bn
into CN ′

, define
Wn,1(z; h, λ) := (z′, λzn,

√
1− λ2znh(z)). When h = z, Wn,1(z; z, λ) is a proper quadratic

polynomial map from Bn into B2n. When λ ∈ (0, 1), Wn,1(z; z, λ) is minimum; for, otherwise,
there would be complex numbers {µj}2n

j=0, not all zero, such that

n−1∑
j=1

µjzj + µnλzn +
√

1− λ2

n∑
j=1

znµj+nzj = µ0.

Letting z = 0, we get µ0 = 0. Comparing the coefficients of znzj and zj for j = 1, · · · , n, we
get µj = 0 for j = 1, · · · , 2n. This is a contradiction.

Wn,1(z; z, λ) was first constructed by D’Angelo and is also called the D’Angelo family
[DA] as λ varies from 0 to 1.

We say that proper holomorphic maps between balls possess the first gap phenomenon
when the target dimension N satisfies the property that n < N < 2n− 1. In a recent joint
paper of the first two authors with Xu, we proved the following:

Theorem 2.3(Huang-Ji-Xu [HJX2]): Let F ∈ Prop3(Bn,BN) with 2n < N < 3n − 3.
Then F is equivalent to a quadratic polynomial map of the form (Wn,1(z; z, λ), 0) for a certain
λ ∈ [0, 1]

Define the generalized Whitney map Wn,k for 1 ≤ k ≤ n as follows:
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Example 2.4 ([Hu5]): Let

ψ1 = (z1,
√

2z2, · · · ,
√

2zk, zk+1, · · · , zn),

ψ2 = (z2,
√

2z3, · · · ,
√

2zk, zk+1, · · · , zn),
· · ·
ψk−1 = (zk−1,

√
2zk, zk+1, · · · , zn)

ψk = (zk, zk+1, · · · , zn),
ψk+1 = (zk+1, · · · , zn).

(2..1)

Let Wn,k = (z1ψ1, · · · , zkψk, ψk+1). Then Wn,k is a proper quadratic polynomial map

from Bn into BN with N = Q(n, k), where Q(n, k) = (k + 1)n − k(k+1)
2

. As in the case for
Wn,1(z; z, λ), one can similarly verify the following:

Proposition 2.5: Wn,k is minimum.

Let ψj be defined as in Example 2.4. For an integer τ with 1 ≤ τ ≤ k, positive numbers
λj ∈ (0, 1) with 1 ≤ j ≤ τ , we define

Wn,k(λ1, · · · , λτ ) := (z1ψ̃1, · · · , zkψ̃k, ψk+1, λ1z1, · · · , λτzτ ). (2..2)

Here

µjl =
√

1− λ2
l for j ≤ l ≤ τ and µjl = 1 for l > τ,

ψ̃1 = (
√

1− λ2
1z1,

√
1− λ2

1 + µ2
12z2, · · · ,

√
1− λ2

1 + µ2
1kzk,

√
1− λ2

1zk+1, · · · ,
√

1− λ2
1zn),

ψ̃2 = (
√

1− λ2
2z2,

√
1− λ2

2 + µ2
23z3, · · · ,

√
1− λ2

2 + µ2
2kzk,

√
1− λ2

2zk+1, · · · ,
√

1− λ2
2zn),

· · ·
ψ̃τ = (

√
1− λ2

τzτ ,
√

1− λ2
τ + µ2

τ(τ+1)zτ+1, · · · ,
√

1− λ2
τ + µ2

τkzk,
√

1− λ2
τzk+1, · · · ,√

1− λ2
τzn) for τ < k and

ψ̃τ = (
√

1− λ2
τzk,

√
1− λ2

τzk+1, · · · ,
√

1− λ2
τzn) for τ = k,

ψ̃j = ψj when τ < k and τ < j ≤ k.
(2..3)

For convenience, we allow τ = 0 in (2..2). In this case, Wn,k(λ1, · · · , λτ ) is simply
defined to be Wn,k. We then have the following

Proposition 2.6: For any 0 < λj < 1, (j ≤ τ ≤ k ≤ n), Wn,k(λ1, · · · , λτ ) is a
minimum proper monomial map from Bn into BN with

N = n + (n− 1) + · · ·+ (n− k) + τ = Q(n, k) + τ = (k + 1)n− k(k + 1)

2
+ τ.



5

Proof of Proposition 2.6: It is straightforward to verify that Wn,k(λ1, · · · , λτ ) is indeed
a proper monomial map from Bn into BN with N = Q(n, k) + τ. Notice that

ψ̃j = 0 mod(zj · · · , zn).

Suppose that Wn,k(λ1, · · · , λτ ) is not minimum. Notice that the map preserves the origin.
Then, we have a non-zero complex vector ~µ of length N such that the inner product <
~µ,Wn,k(λ1, · · · , λτ ) >≡ 0. Now, comparing the coefficients of terms with z1, z2, · · · , zn-
factor, respectively, as in the case of Wn,1(z; z, λ), we conclude that ~µ = 0. This is a
contradiction.

Let F be a holomorphic mapping defined over Bn
. We can modify the above defined

Wn,k(λ1, · · · , λτ ) to construct a new map, denoted by Wn,k(λ1, · · · , λτ , F ) by simply changing

ψ̃1 above as follows, while keeping all the others the same:

ψ̃1 = (
√

1− λ2
1z1F,

√
1− λ2

1 + µ2
12z2, · · · ,

√
1− λ2

1 + µ2
1kzk,

√
1− λ2

1zk+1, · · · ,
√

1− λ2
1zn).

Then, when F is a proper polynomial minimum map from Bn into BN∗
with F (0) = 0,

then
Wn,k(λ1, · · · , λτ , F ) (2..4)

can be easily seen to be also a minimum polynomial proper map from Bn into BN with
N = N∗ − 1 + Q(n, k) + τ . In the definition of Wn,k(λ1, · · · , λτ , F ), we also allow τ = 0. In
this case, we define Wn,k(λ1, · · · , λτ , F ) to be constructed through Wn,k and F in the same
way as for the case of τ > 0. We first notice that there are minimum monomial maps from
Bn into Bln for any l ≥ 1. Letting N∗ = (k − k0)n for k > k0 > 0 and replacing k by k0 in
(2..4), we get the following:

Proposition 2.7: Let F be a minimum proper polynomial map from Bn into Bn(k−k0)

with k > k0 > 0 and F (0) = 0. Then Wn,k0(λ1, · · · , λτ , F ) (0 ≤ τ ≤ k0 ≤ n) is a proper
polynomial minimum map from Bn into BN with

N = (k + 1)n− k0(k0 + 1)

2
+ τ − 1.

Also, there are minimum proper monomial maps from Bn into Bkn for any k ≥ 1.

Proof of Proposition 2.7: It suffices for us to construct minimum proper monomial maps
from Bn into Bkn for any k ≥ 1. We do it by induction. The statement is obvious when
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k = 1. Suppose we have a proper monomial minimum map F from Bn into B(k−1)n. Let
λ ∈ (0, 1). Then (λznF,

√
1− λ2zn, z

′) is easily seen to be a minimum proper monomial map
from Bn into Bkn.

Combining Proposition 2.6 with Proposition 2.7, we obtain the following:

Theorem 2.8: Let N ≥ n > 2 be such that there does not exist a positive integer k
such that kn < N < (k+1)n− k(k+1)

2
. Then there is a minimum proper monomial map from

Bn into BN . Equivalently, for n > 2, let K(n) = max{m ∈ Z+ : m(m + 1)/2 < n} and let
Ik := {m ∈ Z+ : kn < m < (k + 1)n− k(k + 1)/2} for 1 ≤ k ≤ K(n). Then for any N ≥ n

with N 6∈ ∪K(n)
k=1 Ik, there is a minimum proper monomial map from Bn into BN .

We notice that minimum proper monomial maps from Bn into BN when N ≥ n2−2n+2
were also constructed in a recent preprint of D’Angelo and Lebl [DL].

Proof of Theorem 2.8: We need to construct minimum proper monomial map from Bn

into BN under the assumption that either (k + 1)n − k(k + 1)/2 ≤ N ≤ (k + 1)n with

k ≤ K(n) or N ≥ (K(n) + 1)n− K(n)(K(n)+1)
2

. Apparently, K(n) ≤ √
2n.

Let k ≤ n. By Proposition 2.6, we see the existence of minimum proper monomial
maps from Bn into BN when (k + 1)n − k(k + 1)/2 ≤ N ≤ (k + 1)n − k(k − 1)/2. If
k − 1 > 0, applying Proposition 2.7 with k0 = k − 1 and τ = 0, · · · , k − 1, we see the
existence of minimum proper monomial maps from Bn into BN with (k +1)n−k(k−1)/2 ≤
N ≤ (k + 1)n − (k − 1)(k − 2)/2 − 1. Again, applying Proposition 2.7 with k0 = k − 2 (if
k − 2 > 0) and τ = 0, · · · , k − 2, we see the existence of minimum proper monomial maps
from Bn into BN with (k +1)n− (k− 1)(k− 2)/2− 1 ≤ N ≤ (k +1)n− (k− 2)(k− 3)/2− 1.
By an inductive use of Proposition 2.7, we see the existence of the required maps for N with
(k + 1)n− k(k + 1)/2 ≤ N ≤ (k + 1)n for k ≤ n.

Next, letting k = n + 1 in Proposition 2.7 and inductively applying Proposition 2.7
with k0 = n, n − 1, · · · ,, we conclude the existence of the required maps when (n + 2)n −
n(n + 1)/2− 1 ≤ N ≤ (n + 2)n. In particular, this would give the existence of the required
maps when (n + 1)n ≤ N ≤ (n + 2)n. Applying an induction argument, we easily conclude
the existence of the required maps for any N ≥ (n + 1)n. This concludes the proof of the
theorem.

Theorem 2.2 shows that there are no minimum proper holomorphic maps from Bn into
BN that are C2-smooth up to the boundary when N ∈ I1; and Theorem 2.3 shows that
there are no minimum proper holomorphic maps from Bn into BN that are C3-smooth up
to the boundary when N ∈ I2. We say that proper holomorphic maps between balls have
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the second gap when the target dimension N ∈ I2. In a recent not-yet published preprint
of the authors, we proved the following:

Theorem 2.9 (Huang-Ji-Yin [HJY]): There are no minimum proper holomorphic maps
from Bn into BN , that are C3-smooth up to the boundary, when N ∈ I3.

More generally, let K(n) be defined as above. We conjecture that there are precisely
K(n) gaps for proper holomorphic maps between balls with the source dimension n, that
are three-times differentiable up to the boundary. More precisely, we pose the following:

Conjecture 2. 10: Let K(n) be the largest positive integer m such that n > m(m+1)/2.
Then, there are no minimum proper holomorphic maps from Bn into BN , that are three times
differentiable, if and only if N ∈ Ik for a certain 1 ≤ k ≤ K(n). Here Ik is the collection
of integers m such that kn < m < (k + 1)n− k(k + 1)/2.

We briefly discuss in the rest of this section another type of gap phenomena for holomor-
phic maps between the generalized balls in the complex projective spaces, that was motivated
from a joint paper of the first author with S. Baouendi [BH]. In [BH], among other things, it
is proved that any proper holomorphic map from Bn

` into BN
` with N ≥ n > 2, 0 < ` < n−1

must be a linear map and thus is equivalent to a map of the form (Id, 0). Here, we recall
that for 0 ≤ ` < n, we denote by Bn

` the domain in CPn given by

Bn
` := {[z0, · · · , zn] ∈ CPn : |z0|2 + · · ·+ |z`|2 > |z`+1|2 + · · ·+ |zn|2}.

When ` = 0, Bn
` is simply the realization of the unit ball of Cn in the projective space CPn.

Also, as in the ball case, two proper holomorphic maps from Bn
` into BN

`′ are said to be
equivalent if there are σ ∈ Aut(Bn

` ) and τ ∈ Aut(BN
`′ ) such that F = τ ◦G ◦ σ. In a recent

joint paper of the first author with Baouendi and Ebenfelt, we proved the following:

Theorem 2.11 (Baouendi-Ebenfelt-Huang [BEH]): Let F be a proper holomorphic map
from Bn

` to BN
`′ . Assume that ` ≤ `′ < 2` and 2` ≤ (n− 1), 2`′ ≤ (N − 1). Then, F (Bn

` ) is
contained in a linear projective subspace of CPN of dimension n + `′ − `.

Comparing Theorem 2.11 with Theorems 2.2, 2.3, 2.9, we see that in the generalized ball
case, the difference of the signatures plays the role of the codimension in the ball case. We
certainly believe that there are other gap phenomena to be explored when ` > 0. However,
instead of formulating more conjectures along these lines, we mention here the following
elementary lemma that is essential for the statement of Theorem 2.11 to hold. It seems to
us that any generalization of Theorem 2.11 should be started with a better formulation this
lemma:
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Lemma 2.12: Let ϕ : (Cn−1, 0) −→ (CN−n, 0) be the germ of a holomorphic map. Let
A(z, z) be a scalar real analytic function near 0. If 3 < n ≤ N, ` < `′ < 2`, 0 < ` ≤ n−1

2

and

A(z, z)|z|2` = −
τ∑

j=1

|ϕj(z)|2 +
N−n∑

j=τ+1

|ϕj(z)|2

with τ = `′− `. Then A(z, z) ≡ 0 and (ϕτ+1, · · · , ϕN−n) = (ϕ1, · · · , ϕτ ) · U with U ·U t
= Id,

where U is a constant matrix. Here we define |z|` = −∑
j≤` |zj|2 +

∑n−1
j=` |zj|2.

Lemma 2.12 was discovered and proved when the authors of [BEH] were working on
Theorem 2.11. It follows from the work [BH] on the study of degeneracy for holomoprhic
mappings from hyperquadrics in Cn into hyperqudrics in CN (namely, Lemma 4.1 of [BH]
(or Theorem 1.6(ii)) and Lemma 2.1 of [BH]) as follows: First assume that φj 6≡ 0 for
some 1 ≤ j ≤ τ , for, otherwise, it following from [§2, BH] that ϕ ≡ 0 and thus Lemma
I follows. Applying a Cayley transformation in the standard way [see (5.1), pp 396, BH]
to the map Φ = [ϕ1, · · · , ϕN−n] obtained from Lemma 2.12, we immediately have a map
F = (f, ψ, g) := ΨN−n−1 ◦ Φ ◦ Ψ−1

n−1 mapping an open piece M of the hyperqudric Hn−2
`−1

into the hyperquadric HN−n−1
τ−1 (see [BH] for the definition). Now, by the assumption that

τ < `, one concludes from [Lemma 2.1, BH] that the Hopf lemma property can not hold
for F at any point in M (namely, the normal component has vanishing normal derivative),
for, otherwise, [Lemma 2.1 (b)(c), BH] would imply that τ ≥ `. Finally, letting F# =
(f1, · · · , fτ , 0

′, fτ+1, · · · , fn−3, φ, g) with 0′ a zero vector with (` − τ) components, we can
apply [Lemma 4.1, BH] (or even [Theorem 1.6(ii), BH]) with `′ = ` to conclude that F# maps
a neighborhood of M in Cn−2 into HN−n−1

`−1 , which is equivalent to the conclusion in Lemma
2.12. At this point, we should mention a later generalization of Lemma 2.12 in [BER2]
(obtained by studying the degeneracy of mappings from a more general hypersurface in Cn

into a hyperquadric in CN), which may find nice applications in the further investigation on
the gap phenomenon.

3. Bishop surfaces with a vanishing Bishop invariant

In this section, we discuss a recent study, carried out in [HY], on the precise holomorphic
structure of a real analytic Bishop surface near a complex tangent point with a vanishing
Bishop invariant. A Bishop surface is a generically embedded real surface in the complex
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space of dimension two. The interesting points on a Bishop surface are points with a non-
trivial complex tangent, namely, points with a non-trivial complex tangent space of type
(1, 0). The study of Bishop surfaces was initiated by Bishop in 1965 in his paper [Bis], where
for a point p on a Bishop surface M with a complex tangent, he defined an invariant λ now
called the Bishop invariant. Bishop showed that there is a holomorphic change of variables,
that maps p to 0, such that M , near p = 0, is defined in the complex coordinates (z, w) ∈ C2

by
w = zz + λ(z2 + z2) + o(|z|2), (3..5)

where λ ∈ [0,∞]. When λ = ∞, (3..5) is understood as w = z2 + z2 + o(|z|2). It is now
a standard terminology to call p a point with an elliptic, hyperbolic or parabolic complex
tangent, according to whether λ ∈ [0, 1/2), λ ∈ (1/2,∞) or λ = 1/2,∞, respectively.
When p ∈ M has an elliptic complex tangent, Bishop proved the existence of a family
of holomorphic disks attached to M shrinking down to p. In his famous paper [Bis], he
formulated several problems concerning the uniqueness and regularity of the geometric object
obtained by taking the union of all locally attached holomorphic disks. These problems,
including their higher dimensional cases, were completely answered in the paper of the first
author [Hu3], based on the previous work by Kenig-Webster [KW1-KW2], Moser-Webster
[MW], Moser [Mos] and Huang-Krantz [HK].

Bishop invariant is a quadratic invariant. The celebrated work of Moser-Webster [MW]
first investigated the much more subtle higher order invariants. In [MW], Moser-Webster
discovered an intrinsic pair of involutions on the complexification of the surface near a non-
exceptional complex tangent, which were related to the higher order holomorphic invariants
of M near p. Here, we recall that the Bishop invariant is said to be non-exceptional if
λ 6= 0, 1/2,∞ or if λν2 − ν + λ = 0 has no roots of unity in the variable ν. Moser-Webster
proved that, near a non-exceptional complex tangent, M can always be mapped, at least,
by a formal transformation to the normal form defined by:

w = zz + (λ + εws)(z2 + z2), ε ∈ {0, 1,−1}, s ∈ Z+ (3..6)

Moser-Webster also provided a convergence proof of the above mentioned formal trans-
formation for the non-exceptional elliptic case: 0 < λ < 1/2. However, the elliptic case with
λ = 0 has to be excluded from their theory. Instead, Moser in [Mos] carried out a study for
λ = 0 from a more formal power series point of view. Moser derived the following formal
pseudo-normal form for M with λ = 0:

w = zz + zs + zs + 2Re{
∑

j≥s+1

ajz
j}. (3..7)
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Here s is the simplest higher order invariant of M at a complex tangent with the vanishing
Bishop invariant, which we call the Moser invariant. Moser showed that when s = ∞, M is
then holomorphically equivalent to the quadric M∞ = {(z, w) ∈ C2 : w = |z|2}.

Moser’s formal pseudo-normal form is still subject to the simplification of a very compli-
cated infinitely dimensional group aut0(M∞), the formal self-transformation group of M∞.
And it was left open from the work of Moser [Mos] to derive any higher order invariant other
than s from the Moser pseudo-normal form. Based on his previous work with Webster [MW]
and his own work [Mos], Moser posed two basic problems concerning a Bishop surface with
a vanishing Bishop invariant. The first one is concerning the analyticity of the geometric
object formed by the attached disks up to the complex tangent point. This was answered
in the affirmative in [HK]. Hence, the work of [HK], together with that of Moser-Webster
[MW], shows that, as far as the analyticity of the local hull of holomorphy is concerned, all
elliptic Bishop surfaces are of the same character. The second problem that Moser asked
is concerning the higher order invariants. Notice that by the Moser-Webster normal form,
an analytic elliptic Bishop surface with λ 6= 0 is holomorphically equivalent to an algebraic
one and possesses at most two more higher order invariants. Moser asked if M with λ = 0
is of the same character as that for elliptic surfaces with λ 6= 0. Is the equivalence class of
a Bishop surface with λ = 0 determined by an algebraic surface obtained by truncating the
Taylor expansion of its defining equation at a sufficiently higher order level? Gong showed
in [Gon2] that under the equivalence relation of a smaller class of transformation group,
called the group of holomorphic symplectic transformations, M with λ = 0 does have an
infinite set of invariants. However, under this equivalence relation, elliptic surfaces with
non-vanishing invariants also have infinitely many invariants. Gong’s work later on (see, for
example, [Gon2-3]) demonstrates that as far as many dynamical properties are concerned,
exceptional and non-exceptional hyperbolic complex tangents are not much different from
each other.

In [HY], a joint paper of the first and the third authors, we derived a complete formal
normal form for a Bishop surface near a vanishing Bishop invariant. We obtained a com-
plete set of invariants under the action of the formal transformation group. We showed, in
particular, that the modular space for Bishop surfaces with a vanishing Bishop invariant
and with a fixed (finite) Moser invariant s is an infinitely dimensional manifold in a Frèchet
space. This then provides an answer, in the negative, to Moser’s problem concerning the
determination of a Bishop surface with a vanishing Bishop invariant from a finite truncation
of its Taylor expansion. Furthermore, it was also used to show that most Bishop surfaces
with λ = 0, s 6= ∞ are not holomorphically equivalent to algebraic surfaces. Hence, one
sees a striking difference of an elliptic Bishop surface with a vanishing Bishop invariant from
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elliptic Bishop surfaces with non-vanishing Bishop invariants:

Theorem 3.1 (Huang-Yin [HY]): Let M be a formal Bishop surface in C2 with an
elliptic complex tangent at 0, whose Bishop invariant λ = 0 and whose Moser invariant
s < ∞ (s ≥ 3). Namely, let M be defined by w = |z|2 + zs + zs + o(|z|s) with s < ∞. Then
There exists a formal transformation,

(z′, w′) = F (z, w) = (f̃(z, w), g̃(z, w)), F (0, 0) = (0, 0),

such that in the (z′, w′) coordinates, M ′ = F (M) is represented near the origin by a formal
equation of the following normal form:

w′ = z′z̄′ + z′s + z̄′s + ϕ(z′) + ϕ(z′)

where

ϕ(z′) =
∞∑

k=1

s−1∑
j=2

aks+jz
′ks+j.

Such a formal transform is unique up to a composition from the left with a rotation of the
form:

z′′ = eiθz′, w′′ = w′, where θ is a constant with eisθ = 1.

When the M in Theorem 3.1 is real analytic, namely, the defining equation of M is
given by a convergent power series near 0, one would expect that its unique normal form
(up to a rotation) is also convergent. However, we were not able to answer such a problem
at the moment. Namely, the following conjecture remains unknown:

Conjecture 3.2: Under the same notation and assumption as in Theorem 3.1. Assume
that M is real analytic. Then its formal normal form is also convergent. More precisely,

w′ = z′z̄′ + z′s + z̄′s + ϕ(z′) + ϕ(z′)

with

ϕ(z′) =
∞∑

k=1

s−1∑
j=2

aks+jz
′ks+j.

being given by a convergent power series.

Concerning Conjecture 3.2, we were able to show in [HY] that if the formal normal form
is convergent, then the map transforming the surface to its normal form must be convergent
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in case the Moser invariant s 6= ∞. Remark that there are many non-convergent formal
maps transforming real analytic Bishop surfaces with a vanishing Bishop invariant and with
s = ∞ to the model surface M∞ defined before. (See [MW] [Mos] [Hu1]). This result
may also be compared with many recent studies concerning convergence of formal CR maps
between not too degenerate real analytic CR manifolds, though our method for proving such
a result is quite different from what is used in the CR setting. Indeed, the main idea in
[HY] for dealing with such a problem is to find a new hyperbolic geometry associated with
surfaces from the Bishop geometry. We refer the reader for the work done in the CR setting
to the papers of Baouendi-Ebenfelt-Rothschild [BER1], Baouendi-Mir-Rothschild [BMR],
Meylan-Mir-Zaitsev [MMZ], and the references therein.

As an application of Theorem 3.1, we also derived in [HY] the following:

Theorem 3.3: A generic real analytic Bishop surface with a vanishing Bishop invariant
and s 6= ∞ is not holomorphically equivalent to an algebraic surface in C2.

For a Bishop surface M with a non-exceptional hyperbolic complex tangent, Moser-
Webster [MW] showed that it must be formally equivalent to the model Mλ,ε,s = {(z, w) :
w = zz + (λ + εws)(z2 + z2)}, where s is a positive integer and ε ∈ {±1, 0}. Moser-Webster
and Gong [Gon3] also constructed various examples showing that the formal process is
divergent in general. A natural question is then the following:

Problem 3.4: Construct the modular space for germs of non-exceptional hyperbolic
Bishop surfaces, which are formally equivalent to Mλ,ε,s.

It seems reasonable to conjecture that such a modular space is of infinite dimension
modeled over a Banach space whose basis is uncountable. One may compare this with the
well-known modular space problem for germs of holomorphic maps of (C, 0) to itself with
the identity as their linear term (see [Vor]).

References

[Alx] H. Alexander, Proper holomorphic maps in Cn, Indiana Univ. Math. Journal 26, 137-
146, 1977.

[BER1] S. Baouendi, P. Ebenfelt and L. Rothschild, Local geometric properties of real sub-
manifolds in complex space, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 309–33.

[BER2] . Baouendi, P. Ebenfelt and L. Rothschild, Transversality of holomorphic mappings
between real hypersurfaces in different dimensions, preprint, 2007.

[BEH] S. Baouendi, P. Ebenefelt and X. Huang, Holomorphic mappings between hyper-
quadrics with small signature difference, preprint, 2007.



13

[BH] S. Baouendi and X. Huang, Super-rigidity for holomorphic mappings between hyper-
quadrics with positive signatures, Jour. of Diff. Geom. Vol. 69, 379-398, 2005.

[BMR] S. Baouendi, N. Mir and L. Rothschild, Reflection ideals and mappings between
generic submanifolds in complex space, J. Geom. Anal. 12 (2002), 543-580.

[Bis] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. (32),
1-21, 1965.
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