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Abstract

Background: Difficulties associated with implementing gene therapy are caused by the complexity of the underlying
regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks
are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state
measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain
a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray
experiments. Furthermore, error estimates of the network make verifiable predictions impossible.

Methodology/Principal Findings: Here, we propose an alternative approach. Rather than attempting to derive an accurate
model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More
importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be
used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed
using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to
make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the
steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use
previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and
use it to predict gene expression levels on a double mutant. The predictions are significantly different from the
experimental results for less than 30% of genes.

Conclusions/Significance: The constraints imposed by gene expression levels of mutants can be used to address a selected
set of questions about a gene network.
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Introduction

Living systems are typically able to maintain their physiological

state under environmental changes and isolated genetic mutations

[1]. This robustness, referred to as homeostasis [2] or canalization

[3,4], is achieved through feedback within highly connected

regulatory networks of genes, proteins and metabolites [5–10]. For

example, an action that reduces the expression of one gene may

cause coordinate changes in other nodes to leave the physiological

state unaffected. If a genetic mutation blocks one pathway, other

avenues on the associated network may take its place. Unfortu-

nately, this systemic stability often makes it difficult to eliminate

defects in a biological network, as evidenced by the surprising lack

of efficacy of many drugs that were designed to act on single

molecular targets [11,12]. The coupling can also lead to side

effects from medications. For example, anti-inflammatory COX-2

inhibitors (e.g., Vioxx) cause adverse cardiovascular effects due to a

concomitant imbalance of the lipids prostacyclin and thrombox-

ane A2, which lie on the same network [13]. Clearly, the most

effective and least detrimental changes in a biological process are

implemented by altering the system in its entirety. This task

requires predictive mathematical models which can be constructed

from experimental data. In this paper, we propose an approach for

such a construction.

There are hundreds of genes, proteins, and other molecular

participants associated with most biological processes. Gene

regulatory networks model all interactions between these nodes.

However, the forms of these dependencies, as well as kinetic

parameters such as reaction rates and diffusion constants are, at

best, only known approximately [14]. It is unlikely that gene

regulatory networks which are sufficiently accurate to make

quantitative predictions on the underlying biological processes will

be available in the near future [15,16].

Many approaches to reduce the complexity of regulatory

networks have been proposed [5]. Small modules or network

motifs [17,18] associated with specific tasks have been identified.

Boolean variables [19] can reduce the complexity, although the

coarse-graining will limit predictability to qualitative characteris-
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tics such as bifurcations. In gene influence networks [14,20], a gene, its

transcript, and protein are represented by a single node, which is

quantified by the expression level of the mRNA. Regulatory

interactions between nodes of an influence network include actions

mediated by other components in the network.

Consider an influence network containing N genes

G~ G1,G2, . . . ,GNf g; denote the expression level of the Kth gene

by XK and the state of the network by X: X1,X2, . . . XNf g. The

influence network can be modeled by a set of ordinary differential

equations F : RN?RN

_XX 1 ~ F1(X)

_XX 2 ~ F2(X)

. . . : . . .

_XX N ~ FN (X):

ð1Þ

Steady states of influence networks can be obtained from DNA

microarray experiments [5]. However, most influence networks

contain hundreds of genes; thus, even if FK (X) are assumed to

have a simple (e.g., linear) form [21], a prohibitively large number

of microarray experiments will need to be conducted in order to

compute F. Moreover, gene expression levels in microarray

experiments have large (*10%) error bars; when N is large, the

inversions needed to compute F will exacerbate the uncertainty to

a level which will make predictions difficult. One possibility is to

only extract partial information on these networks through

inference algorithms such as Network Identification by Multiple

Regression [14], and Mode-of-action by Network Identification

[22].

We propose an alternative approach. Rather than attempting to

construct an accurate model of a gene network, we ask what

questions on the network can be addressed (perhaps approxi-

mately) using low-dimensional and highly simplified effective

models constructed from empirical data. What data would be

needed for the construction? Will issues addressed through the

approach be useful in applications?

We first note that genes in an influence network can be

partitioned into strongly coupled subgroups or clusters. This

partition can be made either using co-expression under genetic

perturbations [23–25], or through the use of the Gene Ontology

(GO) database (http://geneontology.org). Our main assumption is

that the behavior of all nodes within a cluster can be controlled by

imposing suitable changes in a small, specially chosen, subset of its

members. The set could include genes that translate to

transcription factors, and would hence influence many other

genes [26,27]. It may also include microRNAs within the cluster,

each of which affect many genes through post-transcriptional

regulation [28,29], even though their fold induction on each gene

is small.

Suppose we have partitioned the N genes of the influence

network into clusters, and identified a small number of genes/

microRNAs from each cluster that can be used to control the

expression levels of the remaining genes. Denote the set of these

nodes by S. The number n of nodes in S is much smaller than N.

We will represent their expression levels by x~ x1,x2, . . . ,xnf g,
and re-index the variables so that the remaining expression levels

are fXnz1, . . . ,XNg. With the new ordering, we write the state of

the network as X~ xint,Xextf g where we will refer to xint~
x1,x2, . . . ,xnf g and Xext~ Xnz1, . . . ,XNf g, as ‘‘internal’’ and

‘‘external’’ variables respectively.

In this paper, we limit consideration to networks with steady

state solutions. When external perturbations are made on genes

within S, expression levels of the remaining genes at equilibrium

are determined by Eqn. (1). These steady states lie on an n-

dimensional surface in RN , which we denote by SS . Figure 1(a)

shows a schematic (2-dimensional) solution surface for the synthe-

tic network introduced in the Results Section.

We make the following observations on solutions of the system
_XX~F Xð Þ. First, we assume that the unconstrained system has a

unique stable steady state which we denote by P(0)~ p
(0)
int ,

n

P
(0)
extg~ p

(0)
1 , . . . ,p(0)

n ,P
(0)
nz1, . . . ,P

(0)
N

n o
. It satisfies the N equations

F P(0)
� �

~0. The point P0 representing it lies on SS . Next,

consider the single knockout mutant DGm (assumed to be viable)

obtained by knocking out the mth gene. Since xm is set externally,

the mth equation of (1) is no longer valid. The solution for the

expression levels is obtained by solving the remaining (N{1)

equations. We denote this equilibrium by P(m)~ p
(m)
int ,P

(m)
ext

n o
with

p(m)
m ~0, and represent it by Pm. Since the equilibrium is

associated with changes made within the set S, Pm lies on SS .

Figure 1. Example of an n-dimensional solution surface SS of (1). The example is chosen from the synthetic network introduced in the Results
Section. (a) The surface shown represents the expression levels of the external variable X7 as the internal variables x1 and x2 are modified. (b) The
point P0 representing expression levels of the wildtype and points Pm , m~1,2 representing expression levels of single knockout mutants DGm lie on
this surface. The EES is defined so that its solutions lie on the unique 2-dimensional plane (blue) HS passing through P0 , and Pm , m~1,2. As can be
seen, due to restrictions imposed on the EES, the surfaces SS and HS are close.
doi:10.1371/journal.pone.0013080.g001
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Consequently, P0 as well as Pm for m~1,2, . . . ,n lie on SS , see

Figure 1(b).

Our goal is to construct a system, referred to as the ‘‘effective

empirical subnetwork’’ (EES), that can be computed using the

gene expression levels of mutants discussed above, and whose

equilibria are close to SS . Observe that P0 and the n points Pm

define a unique n-dimensional plane in RN , which we denote by

HS . Figure 1(b) shows the surface for the example above. The EES

describes the set HS as parametrized by the internal variables.

Since both SS and HS contain the points P0, and Pm,

m~1,2, . . . ,n), we expect them to be close in the region of interest.

Observe that the EES : Rn?RN is a linear function determined

by P0, and Pm, (m~1,2, . . . ,n), but is otherwise independent of F.

In particular, each XK is a linear function of x1, . . . ,xn. Since P0

lies on HS

XK{P
(0)
K ~

Xn

i~1

aKi xi{p
(0)
i

� �
, ð2Þ

for each K~(nz1), . . . ,N. The coefficients aKi can be evaluated

by noting that P1,P2, . . . ,Pn lie on HS . There is one additional

complication, that we illustrate using the following example.

Suppose we consider a mutant where only x1 is externally set. The

remaining expression levels of the steady state of this mutant are

solved using the last (N{1) components of Eqn. (1). In particular,

the expression levels x2,x3, . . . ,xn of the internal variables in this

mutant depend on x1. In general, the internal variables themselves

depend on the gene expression levels whose values are externally

imposed. Thus, we expect there to be relationships between the

internal variables as well. As we show in the Methods Section,

these dependencies can be assumed to take the form

xk{p
(0)
k ~

X
i=k

aki xi{p
(0)
i

� �
, ð3Þ

for k~1,2, . . . ,n.

We have thus implemented two significant simplifications. The

original system F : RN?RN contained a large number (N*
several hundred) of nonlinearly coupled variables. In contrast, the

EES : Rn?RN has a small number (n*10) of internal variables,

is linear, and can be constructed using the steady state solutions of

the original system (wild-type) and n single knockout mutants.

Clearly, the EES is not an accurate representation of the original

network. The issue is whether there are questions about F that can

be addressed using the EES. As we show below, this is indeed the

case due to geometrical constraints imposed on the solution

surface. Specifically, the EES can be used to predict, approxi-

mately, the expression levels of all nodes in F, when external

changes are made within S; e.g., double knockout mutants. The

validity of the EES construction can be tested by comparing its

predictions with microarray data from such mutants. More

significantly, the EES can be used to compute how the equilibrium

of the system can be moved from its initial state P0 to a pre-

specified set of expression levels defined by a point Paim,

see Figure 2. Since Paim will, in general, not lie on the solu-

tion surface, it cannot be reached through changes within S.

Instead, we can use the EES to compute Plin, which is the closest

point to Paim on the plane HS , see Figure 2. Since the surfaces

SS and HS are close, changes imposed on the system by the

external actions are expected to be close to those computed from

the EES. Below, we verify this proximity in a synthetic influence

network.

Results

A Synthetic Influence Network
In the model system, FK (X) is a linear combination of sigmoidal

Hill functions; specifically,

FK (X)~XK

XN

I~1

aKI H XI ; cKIð Þ{H P
(0)
I ; cKI

� �h i
, ð4Þ

where H(X ; c)~X h= X hzch
� �

is the Hill function and the Hill

index h is chosen to be 2. The action of the I th gene on the Kth one

is characterized by parameters aKI and cKI , which are assumed to

be independent of the state X of the system. The action is

activating if aKIw0 and inhibiting if aKIv0. The system is

constructed so that P(0) is a steady state of Eqns. (1). Numerically,

we find that model systems defined by Eqns. (1) and (4), have at

most one stable equilibrium. We suspect that this is due to

restrictions imposed by the fact that the sign of each partial

derivative LFK=LXI is independent of the state of the system.

In order to compute the solutions to the knockout mutant DGk,

we set xk~0, and solve the remaining equations of (1) as a

nonlinear least squares problem. When the normalized residue

fails to fall below 10{10, it is assumed that the corresponding

solution does not exist.

We report on a model system containing 21 nodes and shown

schematically in Figure 3. We start with the three subnetworks,

each of size 7. The vector P(0) for each of these subgroups consists

of random entries between 0.5 and 1.5, and the matrix (cKI )
contains random values between 0 and 2. The entries of the

Jacobian of the system given by Eqns. (1) and (4) at P(0) are

JK I~aK I H
0
(P(0); cKI ); thus aKI can be computed for a given set

Figure 2. Moving the equilibrium from P0 to Paim by
implementing changes within S. In general this is not possible
because interactions between nodes force the equilibrium to remain on
SS . However, it is possible to compute Plin, the point closest to Paim

that can be reached by the EES. Due to the proximity of SS andHS , the
point Psys obtained by projecting Plin to SS is close to Plin. Thus, it is
possible to pre-determine if the movement of the equilibrium forced by
the changes made in S are acceptable.
doi:10.1371/journal.pone.0013080.g002
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of JKI ’s. Since we require P(0) to be stable, we insist that all

eigenvalues of the Jacobian be negative. This is guaranteed by

starting with a diagonal matrix with negative entries and performing

a (random) orthonormal transformation. Once three such subnet-

works are computed, their nodes are coupled by sparse, weak

interactions. Each node in a subnetwork is coupled to only one from

each of the other subnetworks, and the mean coupling strength is

chosen to be 0.1 of the average coupling within subgroups.

The EES is to be constructed using the expression levels of

single knockout mutants. As illustrated in Figure 3, mutants DG1,

DG3, DG8, DG10, DG15, DG18, DG20, and DG21 in our example

are not viable; i.e., when the corresponding X is set to zero, the

system (1) does not have a solution. The subset on which to

construct the EES can contain any of the other nodes. In the work

reported here, S~fG2,G4,G9,G11,G16,G19g (genes marked in red

in Figure 3). The variables XK , K~7,8, . . . ,21 are re-indexed as

described before. The EES : R6?R21 is computed using the

expression levels of all 21 genes at P0, P1, P2, P3, P4, P5 and P6.

In order to illustrate the proximity of HS to SS , we use the

following example, see Figure 1. Since we need to reduce the

dimensionality for visualization, we fix the expression levels of (the

re-indexed genes) G3, G4, G5, and G6 at their values at P0; for our

model, fx3,x4,x5,x6g~f1:1716,0:6279,0:5140,0:5128g. For each

pair of values for (x1,x2), we solve the model system (1) for the

remaining 15 expression levels. These solutions lie on 2-

dimensional surface in R17. The gray surface of Figure 1 is

X7 x1,x2ð Þ. The 2-dimensional plane HS of the EES contains

points P0, P1, and P2.

Next, we compare expression levels of double knockout mutants

predicted by the EES with the corresponding solutions of the

model system (1). The 14 viable double knockout mutants of the

system are DG1DG2, DG1DG3, DG1DG4, DG1DG5, DG1DG6,

DG2DG3, DG2DG4, DG2DG5, DG2DG6, DG3DG5, DG3DG6,

DG4DG5, DG4DG6, and DG5DG6. In each case, the expression

levels of the 4 remaining nodes in S, and the 15 nodes outside of S
are compared. We differentiate between these two groups.

Results for the first group (genes in S) are as follows. Of the 56

comparisons, 46 EES predictions are within 1% of the expression

levels computed from (1), 3 others are between 1{5%, and 3

between 5{10%. Results for the second group (genes outside of S)

are as follows. Of the 210 expression levels to be compared, 170

EES predictions are within 1% of the expression levels computed

from (1), 30 more are between 1{5%, and 7 others are between

5{10%.

We finally demonstrate how the equilibrium of the system can

be moved (near) to a pre-specified set of expression levels. The

original equilibrium of our example is P(0)~ p
(0)
int ,P

(0)
ext

n o
, with

p
(0)
int~f0:89,0:97,1:17,0:63,0:51,0:51g,

P
(0)
ext~f1:47,0:74,0:83,1:24,0:58,1:03,0:85,1:17,

0:96,1:39,1:40,0:53,1:21,0:68,1:15g:

We want to find out how the expression levels of genes in S need

to be changed so that the system moves to, or as close as possible

to, a pre-specified set of expression levels for all genes. As an

example, we attempt to change the equilibrium of the system to

Paim (see Figure 2) given by P(aim)~fp(aim)
int ,P

(aim)
ext g, where

p
(aim)
int ~f0:8,0:6,1:3,0:7,0:6,0:6g,

P
(aim)
ext ~f1:6,0:8,0:9,1:3,0:5,1:1,0:9,1:2,0:9,1:2,1:5,0:4,1:3,0:6,1:1g:

Since we have computed the EES, we can calculate the projection

Plin of Paim on HS . It is given by P(lin)~fp(lin)
int ,P

(lin)
ext g, where

p
(lin)
int ~f0:87,0:75,1:30,0:75,0:57,0:45g,

P
(lin)
ext ~f1:49,0:73,0:84,1:08,0:56,1:03,0:89,1:18,

0:87,1:22,1:48,0:46,1:22,0:67,1:15g:

Finally, we use the model system Eqns. (1) and (4) to compute the

external variables when internal variables are fixed at P
(lin)
int . It is

found to be P(sys)~fp(sys)
int ,P

(sys)
ext g, where p

(sys)
int ~p

(lin)
int , and

P
(sys)
ext ~f1:48,0:75,0:85,1:11,0:58,1:00,0:91,1:21,

0:95,1:25,1:39,0:54,1:21,0:67,1:14g:

The Euclidean distances between the points are

d P0,Paimð Þ~0:55, d P0,Plinð Þ~0:40, d Paim,Plinð Þ~0:38, and

d Plin,Psys

� �
~0:15. Thus, we attempted to move the equilibrium

from P0 to a point Paim that was a distance 0.55 away, but were

only able to move it onHS to a point Plin, which is a distance 0.40

away from Paim. However, Plin is only a distance 0.15 from the

point Psys, which is the solution of the original system when

expression levels of the internal variables are set to p
(lin)
int . We have

found that Plin and Psys are close in studies of several model

systems and for many points Paim. Thus, the EES can be used to

pre-determine, approximately, the equilibrium of the original

network when changes made within S.

Transcriptional Regulatory Network in E.coli
The EES can be constructed using microarray data from the

wildtype and single knockout mutants of genes in S. It can then be

used to predict gene expression levels of other mutants. This

observation is of interest due to the availability of previously

Figure 3. A schematic of the synthetic network. The 21 genes in
the system consists of 3 groups, each with 7 genes. Genes within a
cluster are coupled by interactions whose intensity is chosen randomly.
Genes between clusters are weakly coupled. The ‘‘mutants’’ DGK shown
in black are not viable; i.e., the corresponding set of equations do not
have a solution. Genes shown in red are used to construct the effective
empirical subnetwork.
doi:10.1371/journal.pone.0013080.g003
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published data on an oxygen deprivation network in E.coli [30,31].

Ref. [32] reports gene expression levels in the wildtype and in

single knockout mutants of key transcriptional regulators in the

oxygen response, namely DarcA, DappY , Dfnr, DoxyR, and

DsoxS, as well as in the double knockout mutant DarcADfnr, in

aerobic and anaerobic glucose minimal medium conditions. Since

the oxygen deprivation network is not fully active under aerobic

conditions, we focus on the behavior of E.coli under anaerobic

conditions.

It should be noted that gene expression levels in E.coli are

unlikely to be in a steady state; rather, the expression levels

reported in Ref. [32] are averages from a group of cells in various

stages in the cell cycle. The analysis in this Section assumes that

the computation of the EES and its predictions are valid for these

averages. Preliminary results from our current work on systems

exhibiting circadian rhythms validate this assumption.

We construct G as follows. In the Gene Ontology classification

assigned by Affymetrix, the five genes arcA, appY , fnr, oxyR, and

soxS have a common term ‘‘GO:0006355, Regulation of

transcription, DNA-dependent.’’ Moreover, this is the only

common classification for the five genes. We choose G to be the

set of all genes carrying this term. The full list of 299 genes is given

in Supporting Information S1.

The data set GSE1121 of the GEO site (www.ncbi.nlm.nih.gov)

[32] provides gene expression levels for four replicates of the

wildtype and three each for the mutants. The replicates are used to

estimate the mean and standard deviation for the expression levels

of each gene in G, see Supporting Information S1. Since the EES

is linear, we rescale the expression levels of each gene by its (mean)

value in the wildtype. Table 1 gives these rescaled expression levels

for the internal variables ½arcA�, ½appY �, ½fnr�, ½oxyR�, and ½soxS�
under anaerobic glucose minimal medium conditions.

Note that error estimates for the expression levels of several genes

is large. This is the reason that a reduced network is essential in

order to make useful predictions. Second, as seen from Table 1,

reported expression levels of the gene Gk in the mutant DGk is non-

zero. Presumably, what is measured are non-functional analogs of

the corresponding genes. In calculating the EES, we set these

expression levels (shown in parentheses in Table 1) to zero.

The component of the EES for the internal variables is

B
(E:coli)
int ~

1:00 {0:62 {0:66 0:72 {0:07

{0:21 1:00 0:15 {0:26 {0:20

0:25 {0:30 1:00 0:23 0:13

{0:24 0:16 {0:01 1:00 0:20

{0:01 0:06 {0:26 {0:08 1:00

0
BBBBBB@

1
CCCCCCA
: ð5Þ

The next step is to compute the EES predictions for ½appY �,
½oxyR�, and ½soxS� in the double knockout DarcADfnr. This is

done using the matrix (5) and setting ½arcA� and ½fnr� to zero.

Expression levels of the remaining genes in S, predicted using the

EES, are ½appY �EES~{0:23, ½oxyR�EES~0:91, and ½soxS�EES~

0:78. We need to determine, at a 5% level of confidence, if these

predicted values are consistent with those from the replicates of the

double mutant. The comparison is made using the t-test (ttest in

MATLAB, The Mathworks, Inc.), and it is found that the null

hypothesis, that experimental data comes from a (normal)

distribution with mean equal to the computed gene expression

level, is rejected at the 5% level only for appY.

Next, we implement the analysis for genes outside of S. The null

hypothesis cannot be rejected at the 5% level for 213 of the 294
genes. The three experimental values of the expression level of

each gene in the double knockout, the corresponding predictions

of the EES, and the test statistic t are given in Supporting

Information S1. Since the Student’s distribution associated with

the comparison has two degrees of freedom, the null hypothesis is

rejected when tw4:303. The histogram of the test statistic for the

299 genes is shown in Figure 4(a). In Supporting Information S1,

we highlight the genes for which the null hypothesis is rejected. We

emphasize that, unlike in many prior studies whose assertions are

limited to whether genes in mutants are up/down regulated, our

predictions are quantitative.

The proximity of the predicted and experimental values is not

due to a lack of variability in the expression levels of genes in G.

We verify this by computing the differential expression of

genes in the mutants. Figure 4(b) shows the histogram of

the largest deviations from the wildtype, normalized by the

standard deviation (between replicates) in the wildtype. Expres-

sion levels of over half the genes deviate by more than 2 standard

deviations.

Discussion

An accurate model of the gene regulatory network associated

with a hereditary disease can be used to compute the most effective

and least detrimental treatment to prevent its onset. Unfortunately

these networks contain hundreds of genes, proteins, and other

molecules whose interactions are only partially known [5,8–10]. It

is unlikely that detailed models of such networks will be available

in the near future. The question raised in the paper is whether

information needed to move the steady state of a network can be

deduced from an analysis of highly simplified, empirically

determined models. The data used for analysis is obtained from

microarray experiments.

Our approach is as follows. We first identify a (relatively) small

set S of n nodes (internal variables) in the influence network which

Table 1. Normalized gene expression levels in the wildtype and mutants.

Wildtype DappY DarcA Dfnr DoxyR DsoxS DarcADfnr

appY 1:00+0:34 (0:03+0:01) 0:31+0:13 0:35+0:02 1:66+0:76 0:72+0:14 0:34+0:04

arcA 1:00+0:20 0:72+0:05 (0:12+0:02) 0:93+0:08 0:86+0:01 0:77+0:11 (0:08+0:02)

fnr 1:00+0:17 1:21+0:02 0:88+0:02 (0:07+0:02) 1:04+0:07 1:09+0:03 (0:07+0:01)

oxyR 1:00+0:02 0:80+0:19 0:99+0:22 0:91+0:12 (0:09+0:03) 1:18+0:19 0:80+0:04

soxS 1:00+0:08 1:05+0:21 1:02+0:14 0:73+0:13 0:94+0:21 (0:04+0:01) 0:76+0:10

Rescaled expression levels of appY , arcA, fnr, oxyR, and soxS in the wildtype E.coli, single knockout mutants, and the double knockout mutant DarcADfnr under
anaerobic glucose minimal medium conditions. The data have been rescaled by the mean value of the expression levels in wildtype cells. The mean and standard errors
are calculated from the replicates given in the data set GSE1121 of the GEO site www.ncbi.nlm.nih.gov. The values in parentheses are set to zero in computing the EES.
doi:10.1371/journal.pone.0013080.t001
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can be used to affect the remaining genes. (Mathematically, for

each external variable XI , we require one or more of LFI=Lxk,

where xk are the internal variables, to be non-vanishing.) Next, we

limit consideration only to steady states of the network as internal

variables are modified. Finally, this solution surface SS is

approximated using the unique n-dimensional plane HS defined

by the gene expression levels of the wildtype and the n single

knockout mutants in S; the model system whose solutions lie on

the plane is the EES.

Some genes may be critical in the sense that the organism may

not be viable when they are knocked out. There were similar nodes

(shown in black in Figure 3) in our synthetic model. In our approach

they cannot be used as internal nodes. However, if they need to be

utilized, the EES can be computed using heterozygous mutants or

those where the expression level is up/down regulated to a value

other than zero through, for example, transfection [33,34].

We emphasize that, due to the reduced dimensionality and its

linearity, we do not expect the EES to be an accurate model of the

original system. However, because of the geometrical constraints,

it is possible to use the EES to (approximately) compute answers to

a very limited set of questions about the system. Specifically, they

are questions on gene expression levels when external changes are

made within S. As an example, the EES can predict gene

expression levels in double knockout mutants. We tested the

predictions using previously published data on a double knockout

mutant in an oxygen deprivation network of E.coli. (Here, as in

most cases, the underlying network is unknown.) We identified the

group of 299 genes to be studied using the Gene Ontology

database. The EES was computed using the expression levels of

five single knockout mutants, and used to predict their expression

levels in the double mutant. The predictions were significantly

different from the experimentally obtained expression levels for

less than 30% of genes.

Interestingly, the EES can be used to compute how expression

levels of genes within S need to be changed so that the equilibrium

of the entire network is moved from its initial state P0 to, or as

close as possible to, a pre-specified position Paim. We showed

through an example that the solution computed using the EES is

close to that of the full network. However, the efficacy of the move

depends on the proximity of Paim to the surface HS . If Paim is far

from HS , then the set of internal variables need to be expanded in

order to find acceptable solutions.

Before concluding, we briefly address a few issues; the first is the

observation that, in the parameter range considered, the model

system given by Eqns. (1) and (4) have at most one stable steady

state. Even though we required P(0) to be stable (by an appropriate

choice of eigenvalues of the linearization), non-linear systems can,

in general, be expected to have additional solutions. However, our

model has a special feature: the signs of the partial derivatives

LFK=LXJ are independent of the state of the system. The

analogous biological statement is that, if nodes J and K are

isolated, the action of node J on node K increases in magnitude as

XJ increases. Is this condition, combined with the choice of

eigenvalues, sufficient to guarantee a uniques stable solution? We

are currently studying this question. It should be noted that the

uniqueness of solutions has been proven for several other classes of

monotonic nonlinear systems [35–37].

The second issue involves the partitioning of genes into clusters

and the choice of internal variables. Internal variables in the

oxygen deprivation network of E.coli were already determined

from the experiments reported in Ref. [32]. We used the GO

classification to identify nodes belonging to the network. Different

approaches can be used to partition genes into clusters when

biological classifications are not available. For example, one could

use topological (e.g., persistent homology [38,39]) or graph

theoretic (e.g., spectral clustering [23], community clustering

[24]) methods. Integrated genomic analysis, which successfully

identified subtypes of gliobastoma [40], can also be used in

clustering genes through the use of heat maps [41,42]. The choice

of internal variables requires biological input. Mathematically, the

requirement is that each node in the cluster can be affected by

suitable changes in internal variables. As we mentioned, genes that

translate to transcription factors, or microRNAs [28,29] within the

cluster, could act as internal nodes.

Third, can one estimate the proximity of HS to the solution

surface SS? Differences in gene expression levels of double

knockout mutants are one measure of the proximity. Alternatively,

we could use the corresponding differences in heterozygous single

knockouts (whose expression levels are roughly half of the

wildtype) and the predictions of the EES.

We believe that approaches similar to those outlined here can

prove useful in treating complex genetic diseases by helping

identify optimal combinations of up/down regulation of genes (or

optimal combinations of single target drugs) that have minimal

Figure 4. Comparison of EES predictions with experimental gene expression levels of DarcADfnr. (a) The histogram of the test statistic of
the Student’s distribution (two degrees of freedom) for the 299 genes chosen for the study. (b) The good agreement in (a) is not due to lack of
variation in the gene expression levels between the wildtype and mutants. The histogram shows the largest differential expression level of mutants,
normalized by the standard deviation for the wildtype (computed from the four replicates given in the data set GSE1121 of the GEO database [32]).
doi:10.1371/journal.pone.0013080.g004
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side effects and are most effective in moving the equilibrium of the

network in its entirety to a preferred state. We hope our work

motivates studies on this issue.

Methods

Construction of the EES
As illustrated in Figures 1, the EES is constructed so that, as

internal variables are modified, the solutions of the system lie on

the n-dimensional planeHS . Thus the external variables are linear

in xk’s, and consequently, have the form given by Eqns. (2). We

need to compute the coefficients aKi for K~(nz1),(nz2), . . . ,N
and i~1, . . . ,n. This is done by noting that the expression levels

p(m) of each of the n mutants DG1,DG2, . . . ,DGn satisfies Eqn. (2),

thus providing the conditions necessary to compute aKi’s.

We note, however, that the internal variables themselves are inter-

related. For example, in the single knockout mutant DG1, all

expression levels (other than x1) are determined by solving the last

(N{1) equations of (1). Thus, we need to derive relationships

between the internal variables. Consider for example, the depen-

dence of xn on the remaining internal variables. In order to find its

form, let us reduce the set of internal variables to x1,x2, . . . ,xn{1f g;
xn is now an external variable. Hence, with the approximations used

in the paper, xn is a linear combination of the remaining internal

variables. Since P(0) is one solution of the system

xk{p
(0)
k ~

Xn{1

i~1

aki xi{p
(0)
i

� �
: ð6Þ

Similar relationships are obtained for the other internal variables.

Supporting Information

Supporting Information S1 Tables showing (1) The set G of

299 genes chosen to study the oxygen deprivation network of

E.coli. These genes have the common biological function 0006355

‘‘regulation of transcription, DNA-dependent’’ (2) Mean values of

the 299 genes in the wildtype and the mutants. (3) Standard

deviation of 299 genes in the wildtype and mutants. (4) The

coefficients of the Effective Empirical Network. (5) Comparison

between the predicted and experimental gene expression levels for

the double knockout of fnr and arcA. The experimental data are

normalized by the corresponding mean value of the wildtype

replicates (item (2)).

Found at: doi:10.1371/journal.pone.0013080.s001 (0.20 MB

XLS)
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