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Abstract. We develop a new technique for calculating the first cohomology of certain
classes of actions of higher-rank abelian groups (Zk andRk, k ≥ 2) with values in a linear
Lie group. In this paper we consider the discrete-time case. Our results apply to cocycles
of different regularity, from H¨older to smooth and real-analytic. The main conclusion is
that the corresponding cohomology trivializes, i.e. that any cocycle from a given class
is cohomologous to a constant cocycle. The principal novel feature of our method is its
geometric character; no global information about the action based on harmonic analysis
is used. The method can be developed to apply to cocycles with values in certain infinite
dimensional groups and to rigidity problems.

1. Introduction
1.1. Basic definitions. Let G be a group acting on a compact boundaryless Riemannian
manifoldM by α : G × M → M, (g, x) 7→ αg(x) ≡ gx. Let 0 be some topological
group. A cocycleβ over the actionα is a continuous functionβ : G×M → 0 such that

β(g1g2, x) = β(g1, g2x)β(g2, x), (1.1)

for all g1, g2 ∈ G, x ∈ M.
A geometric interpretation of a cocycle is the following: consider the trivial principal

0-bundleE = M × 0 over M. Then the cocycleβ described above corresponds to a
lift of the actionα to an actionα̃ : G × E → E by principal bundle maps. Namely,
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g ∈ G induces the map̃αg : E → E given by(x, h) 7→ (αg(x), β(g, x)h). The cocycle
equation (1.1) is equivalent to the fact thatα̃ is an action, i.e.̃αg1α̃g2 = α̃g1g2.

If 0 = Aut(F ) for some spaceF , then a cocycleβ : G×M → 0 also corresponds to
a lift of α to an action by bundle maps on the trivial bundleM × F . In this caseg ∈ G

acts by(x, ξ) 7→ (αg(x), β(g, x)(ξ)). Here ‘Aut(·)’ has the meaning appropriate for the
structure ofF . It can be GL(·) for F a linear space, or Diff(·) for F a manifold.

The natural equivalence relation for cocycles is the cohomology. Two cocyclesβ1 and
β2 are called cohomologous if there exists a continuous mapP : M → 0 such that

β1(g, x) = P(gx)β2(g, x)P (x)−1, (1.2)

for all g ∈ G, x ∈ M. Such a mapP is called atransfer map.
A cocycleβ is cohomologous to a constant cocycle if there exists a continuous function

P : M → 0 and a homomorphismπ : G→ 0 such that

β(g, x) = P(gx)π(g)P (x)−1.

In particular, ifπ is the trivial homomorphism,β is said to be cohomologous to the trivial
cocycle. In order for a cocycleβ to be cohomologically trivial, it has to satisfy theclosing
conditions: β(g, x) = Id0 for all g ∈ G andx ∈ M such thatgx = x.

One of the central questions in studying cocycles over group actions is:When is a
cocycle cohomologous to a constant (trivial) cocycle?

Remark.For brevity, we use the termsmall for a cocycle whose values are close to the
identity, on a compact generating set in the group whose action we consider.

We recall the definition of a partially hyperbolic diffeomorphism.
Let M be a compact manifold. AC1 diffeomorphismT : M → M is called

partially hyperbolic if there is a continuous invariant splitting of the tangent bundle
T M = Es(T )⊕ E0(T ) ⊕ Eu(T ) and constantsC = C(T ), λ± = λ±(T ), λ̃± = λ̃±(T ),
C > 0, 0< λ− < λ̃− ≤ λ̃+ < λ+, λ− < 1 < λ+, such that forn ∈ Z, n ≥ 0:

‖DT nvs‖ ≤ Cλn−‖vs‖, vs ∈ Es(T ),

‖DT −nvu‖ ≤ Cλ−n+ ‖vu‖, vu ∈ Eu(T ),

‖DT −nv0‖ ≤ Cλ̃−n− ‖v0‖, v0 ∈ Es(T ),

‖DT nv0‖ ≤ Cλ̃n+‖v0‖, v0 ∈ Es(T ).

If E0 = {0} then the diffeomorphismT is calledAnosov.
The sub-bundlesEs(T ) andEu(T ) are called thestableand, respectively,unstable,

distributions. These distributions are integrable. We denote byWs(x; T ) andWu(x; T ),
respectively, the stable and unstable manifolds of the pointx ∈ M. The stable and unstable
foliations are H¨older foliations. If the diffeomorphismT ∈ CK(M), then the leaves of the
stable and unstable foliations areCK too.

1.2. Historic remarks and outline. The study of cocycles over (transitive) Anosov
diffeomorphisms and flows (i.e. actions ofZ andR, respectively) was started in two papers
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by Livsic (more appropriately spelled Livshits) [Li1, Li2 ], which became very influential
and generated extensive literature.

Livsic proved that a real-valued H¨older cocycle which satisfies the closing conditions
is cohomologous to the trivial cocycle [Li1 ]. He also proved a similar result for small
cocycles with values in a finite-dimensional Lie group [Li2 ]. In the same paper he claims
a global result for cocycles with values in arbitrary Lie groups. His argument works for
solvable groups but it is mistaken for the general case. This question is still open.

Some early applications of Livsic’s results appeared in [LS], where, in particular, a
necessary and sufficient condition for the existence of an absolutely continuous invariant
measure for an Anosov system is given.

Several major developments followed the work of Livsic. One direction is concerned
with the regularity of the (essentially unique, if it exists) solutionP of the cohomological
equation

β(g, x) = P(gx)P (x)−1.

Livsic showed that if a real-valued cocycleβ over an Anosov system isC1, then the
transfer mapP is alsoC1 [Li1 ]. For some linear actions on a torus he also showed that
if the cocycle isC∞, respectivelyCω, then so is the solution [Li2 ]; this was obtained by
studying the decay of the Fourier coefficients.

Later Guillemin and Kazhdan [GK1, GK2] showed theC∞ regularity of the solutions
in the case of geodesic flows on negatively curved surfaces. Collet, Epstein and Gallavotti
[CEG] proved aCω version for geodesic flows on surfaces of constant negative curvature.

The complete solution for theC∞ case appears in the paper by de la Llave, Marco and
Moriyon [LMM ]. They showed that if a real-valued cocycle over aC∞ Anosov system
is cohomologically trivial andC∞, then the transfer map isC∞. This follows from a
general theorem from harmonic analysis which asserts that if a function is smooth along
two transverse foliations which are absolutely continuous and whose Jacobians have some
regularity properties, then it is smooth globally. This theorem was proved in [LMM ]
using properties of elliptic operators. Later a more general result was proved by Journ´e
[J], relying mainly on Taylor expansions and the estimate of the error: if a function is
CK+α along the leaves of two transverse foliations with uniformly smooth leaves, then the
function isCK+α , (0 < α < 1, K = 1, 2, . . . ,∞). Another approach is presented by
Hurder and Katok [HK ], based on an unpublished idea of C. Toll, in which the decay of
the Fourier coefficients is used to characterize smoothness. The method can be applied
for spanning families of foliations which have the same property as those used in [LMM ].
Note that foliations arising from Anosov diffeomorphisms have this property. Using the
approach in [HK ], de la Llave proved the analytic case in [Ll1 ].

In [NT1] the second and third authors proved that a small cocycle with values in the
diffeomorphism group of a compact manifold with trivial tangent bundle is cohomologous
to the trivial cocycle, provided the closing conditions hold. The regularity results were
extended to cocycles with values in Diff and Lie groups in [NT2, NT3]. See Theorem 5.5
later for such a statement. The results in [NT3] are optimal, as far as the initial regularity
of the transfer map is concerned. Several improvements of [NT1] are presented in [Ll2 ],
as well as a different treatment of Livsic’s results.
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For Anosov actions of groups other thanZ andR the situation may be quite different.
While in the above cases the closing conditions imply infinitely many independent
obstructions to trivialization, for actions of many other groups various rigidity phenomena
appear. For ‘large’ groups, such as lattices in higher-rank Lie groups, this is related to
the super-rigidity theorem of Zimmer [Z] and are not a consequence of hyperbolicity. For
other groups (e.g. free non-abelian groups) rigidity does not take place. Note, however,
that forgenericactions of any group that contain a transitive Anosov element, the closing
conditions still imply triviality of the cocycle (see [NT1, §5]).

On the other hand, for actions of higher-rank abelian groups (e.g.Zk andRk for k ≥ 2),
cocycle rigidity appears in connection with hyperbolic behavior.

Nevertheless, the proofs of these rigidity results relied on harmonic analysis (abelian
and non-abelian), more specifically on the exponential decay of Fourier coefficients for
smooth functions on a torus and exponential decay of matrix coefficients for irreducible
representations of semisimple Lie groups. Using these methods, Katok and Spatzier
showed in [KSp1, KSp2, KSp3] that real-valued cocycles over certain AnosovRk

and Zk actions,k ≥ 2, are cohomologous to constant cocycles. Related results for
expansiveZk actions by automorphisms of compact abelian groups were found by Katok
and Schmidt [KSch], and for higher-dimensional shifts of finite type were found by
Schmidt [Sch1, Sch2]. Katok and Katok proved in [KK ] similar results for higher-order
cohomologies.

A different approach was suggested by Katok in the spring of 1994, based on the notion
of TNS (i.e.totally non-symplectic)Zk action. His original argument provided a geometric
(i.e. independent of harmonic analysis) proof for some of the results in [KSp1, KSp2].
This method does not require algebraicity of the action, but assumes a special structure
of the stable and unstable manifolds of various elements of the action. Using the notion
of TNS actions, Nit¸ică and Török proved cocycle rigidity for some Diff- and Lie-valued
cocycles.

The current paper represents an account of these developments. We restrict ourselves to
the case ofR and Lie-group valued cocycles. Our results give a partial answer to a question
asked by Katok and Spatzier in the introduction of [KSp1] about the generalization of their
rigidity results to cocycles with values in non-abelian groups. The results for cocycles with
values in diffeomorphism groups are be presented elsewhere [NT4]. These are used in the
study of partially hyperbolic actions of higher-rank abelian groups, and to prove local
rigidity of some partially hyperbolic actions of lattices in higher-rank Lie groups.

We describe the necessary notions and formulate the results in §2. In §3 we consider
in detail the case of real-valuedC∞ cocycles. This emphasizes the main geometric idea
of the method, namely that the expected solution of the cohomological equation is first
constructed as a differential 1-form, the TNS condition implying that the form is closed.
The fact that this form is exact follows from the hyperbolicity of the induced action on
homology. This method can be extended to some situations where the TNS condition
does not hold, e.g. Weyl chamber flows [FK ]. In that case the constant cocycles do not
correspond to closed forms anymore, however, their exterior derivatives are of a particular
form, and one can show that for an arbitrary sufficiently smooth cocycle the exterior
derivative of the corresponding form is also of this special form.



Non-abelian cohomology of abelian Anosov actions 263

In §4 we gathered some general results, independent of the TNS property, which are
used for the case of Lie-group valued or H¨older cocycles. As a substitute for the differential
1-form, one constructs an invariant foliation by putting together the ‘stable’ and ‘unstable’
foliations of the generators of the skew-product action determined by the cocycle. In §5
we complete the proofs of the theorems given in §2. Due to certain technical difficulties,
for Hölder cocycles we restrict ourselves to the case of an action on a torus. The results for
smooth cocycles are proven for actions on infranilmanifolds.

In §6 we use the main result to show that the derivative cocycle of a smallC1

perturbation of a linear TNSZk action on a torus is cohomologous to a constant cocycle
via a Hölder transfer map. The derivative cocycle of such an action is not a small cocycle,
but one can reduce it to that case by considering the splitting into Lyapunov spaces. Some
examples and related questions are included in §7.

2. The main results

The only manifolds which are known to admit Anosov diffeomorphisms are tori,
nilmanifolds and infranilmanifolds. It is an outstanding conjecture that these are the only
ones supporting Anosov diffeomorphisms (see [F2]).

A nilmanifold is the quotient of a connected, simply connected nilpotent Lie groupN

by a lattice0. All such lattices are cocompact, torsion free and finitely generated (see [Ra,
Theorems 2.1 and 2.18]). An infranilmanifold is finitely covered by a nilmanifold. More
precisely, letN be a connected, simply connected nilpotent Lie group andC a compact
group of automorphisms ofN . Let 0 be a torsion-free cocompact discrete subgroup of the
semi-direct productNC. Recall that an element(x, c) of NC (wherex ∈ N andc ∈ C)
acts onN by first applyingc and then left translating byx. By a result of Auslander (see
[A]), 0 ∩ N is a cocompact discrete subgroup ofN and0 ∩ N has finite index in0. The
quotient spaceN/0 is a compact manifold called an infranilmanifold.

Anosov diffeomorphisms on nilmanifolds and infranilmanifolds were introduced in
[Sm, F2, Sh]. Let f̄ : NC → NC be an automorphism for which̄f (0) = 0, f̄ (N) = N .
Then f̄ induces a diffeomorphismf : N/0 → N/0, called aninfranilmanifold
automorphism. If the derivativeDf̄ |N at the identity is hyperbolic, i.e. has all the
eigenvalues of absolute value different from one, thenf is an Anosov diffeomorphism.
Note that in this case the stable and unstable distributions are smooth.

In the sequel we considerZk actions only on infranilmanifolds.

Definition. We call an actionlinear if it is given by infranilmanifold automorphisms.

Recall the Franks–Manning classification of Anosov diffeomorphisms on infranilman-
ifolds (see [F1, Man] for the case of aZ action and [H1, proof of Proposition 2.18] for
the case of aZk-action). LetM be an infranilmanifold andα : Zk ×M → M an abelian
C1 action containing an Anosov diffeomorphism. Assume thatα has a fixed pointx0.
Then the actionα is Hölder conjugate to the linearZk action ᾱ : Zk × M → M given
by automorphisms induced by the map in homotopyα∗ : Zk × π1(M, x0) → π1(M, x0).
Note that the action always has a periodic point. In general, the action is H¨older conjugate
to an affine action, whose restriction to a subgroup ofZk of finite index is an action by
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linear automorphisms. Recall that Hurder constructed in [H2] abelian Anosov actions on
the torus by affine maps without fixed points.

Let α : Zk ×M → M be an abelianCK action. Viewα as a homomorphism fromZk

into DiffK(M) and denote byA ⊂ Diff K(M) its image.
In order to obtain the rigidity results about cocycles overZk actions, we introduce the

following.

Definition. We say that an actionα is TNS, if there is a familyS of partially hyperbolic
elements inA and a continuous splitting of the tangent bundleT M = ⊕m

i=1Ei into A-
invariant distributions such that:
(i) the stable and unstable distributions of any element inS are direct sums of a sub-

family of theEi ’s;
(ii) any two distributionsEi andEj , 1≤ i, j ≤ m, are included in the stable distribution

of some element inS.
If, moreover, the actionα is C∞ and each distributionEi is smooth, we say that the

action issmoothly-TNS.

Remarks.
(1) It is easy to see that given a TNS action, one can assume thatS consists only of

Anosov elements.
(2) Given a TNS action described byS ⊂ A with all elements ofS Anosov and a

splitting T M = ⊕m
i=1Ei , one can replace the distributions{Ei} by the non-zero

intersections
⋂

a∈S Eσ(a)(a), whereσ(a) ∈ {u, s}. Indeed, denote the new splitting
by T M = ⊕k

i=1Fi . It obviously satisfies (i), and (ii) can be checked as follows:
givenFi andFj , there are 1≤ i ′, j ′ ≤ m such thatEi′ ⊂ Fi andEj ′ ⊂ Fj and
a ∈ S such thatEi′, Ej ′ ⊂ Es(a); thenFi, Fj ⊂ Es(a), by the choice of the new
splitting.
If the original splitting was smooth, so will be the new one.

(3) In view of the above, one can always assume that the distributionsEi are integrable.
(4) By Remarks (1) and (2), any linear TNS action on an infranilmanifold is actually

smoothly-TNS. If the linear action is on a torus, one can assume that the distributions
Ei are constant (i.e. given by translates of some fixed vector subspaces).

(5) Consider a TNSZk actionα on an infranilmanifoldM. Since it contains Anosov
elements, there is a subgroup0 ⊂ Zk of finite index acting with a fixed point, say
x0, and by the Franks–Manning classificationα|0 is conjugated to the linear action
ᾱ := (α|0)∗ induced onπ1(M, x0). Using Remark (1) and the fact that the elements
of S ⊂ Zk can be replaced by their powers, one can assume thatS ⊂ 0 andS

consists of Anosov elements only. Then, by Remark (2), the actionᾱ is TNS as well,
because the TNS property can be described in terms of the intersections of the stable
and unstable foliations of the elements ofS.

Let G ⊂ GL(d,R) be a closed subgroup, with the metric induced by the matrix norm
on GL(d,R).

The following theorems apply forG-valued cocycles that are small. However, the
smallness assumption is not necessary in the proof ifG = R. Since anyR-valued cocycle
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can be made arbitrarily small by multiplying it by some non-zero number, we will not
make this distinction in the sequel.

For Hölder cocycles, our result is as follows.

THEOREM 2.1. LetM be a torus andα : Zk×M → M a TNS action. Letβ : Zk×M →
G be a smallδ-Hölder cocycle overα. Thenβ is cohomologous to a constant cocycle, i.e.
there is aδ-Hölder functionP : M → G and a representationπ : Zk → G such that

β(a, x) = P(ax)−1π(a)P (x).

Moreover, ifα and β are CK , K = 1, 2, . . . ,∞, ω, thenP is CK−ε, for any small
ε > 0. (K − ε = K for K ∈ {1,∞, ω}).

The main part of the proof is to deal with H¨older cocycles over a linear action.

THEOREM 2.2. Let M be a torus andα : Zk × M → M a linear TNS action. Let
β : Zk × M → G be a smallδ-Hölder cocycle overα. Thenβ is cohomologous to a
constant cocycle through aδ-Hölder transfer map.

The reduction to this case essentially involves the Franks–Manning classification and
previous regularity results.

ForC∞ cocycles we do not have to require that the manifold be a torus.

THEOREM 2.3. Let M be an infranilmanifold andα : Zk × M → M a smoothly-TNS
action. Letβ : Zk ×M → G be a smallC∞ cocycle overα. Thenβ is cohomologous to
a constant cocycle through aC∞ transfer map.

Moreover, ifα andβ areCω, then the transfer map isCω.

Remark.As can be seen from the proof, a similar result holds for cocycles that are only
finitely smooth. In that case there is a loss of regularity for the transfer map.

We now introduce some notation which will be used in the sequel.
Let a be a partially hyperbolic diffeomorphism. We denote byλ±(a) the contraction

and expansion coefficients ofa, defined by

λ−(a) := lim
n→∞‖D(na)|Es(a)‖1/n,

λ+(a) := lim
n→∞‖D(na)−1|Eu(a)‖−1/n.

(2.1)

Letβ : Zk×M → GL(d,R) be a cocycle anda ∈ Zk. We denote byµ±(a) = µ±(β, a)

the contraction and expansion coefficients forβ|〈a〉, defined by

µ−(a) := lim
n→∞ inf

x∈M ‖β(na, x)−1‖−1/n,

µ+(a) := lim
n→∞ sup

x∈M
‖β(na, x)‖1/n.

(2.2)

Note that infx∈M ‖β(a, x)−1‖−1 ≤ µ−(a) ≤ µ+(a) ≤ supx∈M ‖β(a, x)‖.
If the cocycle takes values inR (which we see as the additive group) thenµ± = 1

becauseβ acts by translations.
If W is a foliation ofM andx ∈ M, denote byWloc(x) the path-connected component

of {y ∈ W(x) | distM(x, y) < δ0} which containsx, whereδ0 > 0 is small and fixed. The
constantδ0 is called thesizeof the local foliation.
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3. Proof for real-valued cocycles
We prove here a special case of Theorem 2.3 in order to illustrate the main geometric idea
of the method (as mentioned in the introduction).

THEOREM 3.1. Let M be an infranilmanifold andα : Zk × M → M a linear TNSZk

action. Letβ : Zk × M → R be aC∞ cocycle overα. Thenβ is cohomologous to a
constant cocycle through aC∞ transfer map.

By Remark (4) in §2, we can assume that the distributionsEi are smooth.
The proof will follow from a sequence of lemmas. The TNS property is required only

for Lemma 3.3.
Assume thatβ : Zk ×M → R is a real-valued cocycle over the TNS linear actionα,

i.e.
β(a1+ a2, x) = β(a1, a2x)+ β(a2, x), for all a1, a2 ∈ Zk, x ∈ M.

We want to show that, under certain regularity conditions,β is cohomologous to a
constant cocycle, i.e. there is a functionP : M → R and a homomorphismπ : Zk → R
such that

β(a, x) = P(ax)+ π(a)− P(x).

The idea of the proof is to construct aC∞ 1-form onM which is closed and determines
aZk-invariant class in cohomology. Since the action induced in cohomology is hyperbolic,
the above form has to be exact. This allows us to recover the homomorphismπ and the
transfer mapP .

We also mention a second argument, which will be developed in detail for the case of
Lie-group valued cocycles. Namely, since the form is closed, it describes a foliation of
M ×R with leaves of dimensionm = dimM. Considering the holonomy of this foliation,
one can show that the leaves are closed and coverM simply (i.e. the form is actually exact).

Let a ∈ Zk be a hyperbolic element. Assume thatx ∈ M andy is in the stable leaf of
a throughx, Ws(x; a). Then the following sum is convergent inC∞ (see, for example,
[LMM , proof of Lemma 2.2]; note that ifβ is only Hölder then the sum still converges
in C0)

P−a (y; x) := −
∞∑

n=0

[β(a, (na)y)− β(a, (na)x)],

and we can define a 1-formω−a onEs
x(a) by taking the differential ofP−a in they-variable

along the stable leaf. Actually, the differential ofP−a (·; x)|Ws(x;a) defines the form on the
wholeT Ws(x; a) and it does not depend on the pointx chosen on the stable leaf.

Similarly, for x ∈ M andz ∈ Wu(x; a) = Ws(x; −a), let the 1-formω+a on Eu
x (a) be

defined as thez-differential ofP−−a(z; x) along the unstable leaf ofa. Consider the form
ωa = ω+a ⊕ ω−a onTxM = Eu

x (a)⊕ Es
x(a).

We will show that for a large set of hyperbolic elements inZk the above construction
leads to the same form. Moreover, this form is smooth and closed. We introduce first the
notions of the Lyapunov exponent and the Weyl chamber, which we use only in this section
(see [KSp4] for more details).

The action of the derivativeα∗ of the actionα on the tangent bundle of the universal
cover ofM is determined by commuting invertible matrices. There are linear functionals
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Lj : Zk → R, called Lyapunov exponents, whose values for eacha ∈ Zk are given
by the logarithms of the absolute values of the eigenvalues of the matrix corresponding
to the derivative ofα(a). Each Lyapunov exponent can be extended to a linear map
Lj : Rk → R, also called the Lyapunov exponent. There is a splitting of the tangent
bundle intoZk-invariant sub-bundlesT M = ⊕jFj such that the Lyapunov exponent of
v ∈ Fj with respect toα(a) is given byLj(a). We callFj a Lyapunov spaceor Lyapunov
distribution for the action. The kernel of each Lyapunov exponent is a hyperplaneHj in
Rk. We denote byH−j the half-space whereLj is negative. The connected components of

Rk − ∪Hj are called Weyl chambers.
Note that using Lyapunov exponents, the TNS property can be characterized by

Lj = cLi for some constantc H⇒ c > 0.

LEMMA 3.2. Consider a linearZk action α which contains an Anosov element. Then
there is a subsetS ⊂ Zk of hyperbolic generators ofZk which contains elements from
each Weyl chamber, and with the property that ifa, b ∈ S then

ωa = ωb.

Proof. Let λj := exp◦Lj : Zk → [0,∞), and denote byFj the foliation corresponding
to Fj .

Assume first thata, b ∈ Zk are partially hyperbolic,Fj ⊂ Es(a) ∩ Es(b) andλj (b),
the contraction coefficient alongFj , is smaller than the inverse of the Lipschitz norm of
α(a − b). Let z ∈ Fj (x) ⊂ Ws(x; a) ∩Ws(x; b). Using the cocycle relation we find that

n−1∑
k=0

β(a, (ka)z) = β(na, z),

β(na, z)− β(nb, z) = β(n(a − b), (nb)z),

and similarly forx instead ofz. Therefore, in order to show thatP−a (z; x) = P−b (z; x),
and consequently thatωa|Fj = ωb|Fj , it is enough to show that

lim
n→∞(β(n(a − b), (nb)z)− β(n(a − b), (nb)x)) = 0.

But

|β(n(a − b), (nb)z)− β(n(a − b), (nb)x)|

=
∣∣∣∣ n−1∑

k=0

(β(a − b, [nb + k(a − b)]z)− β(a − b, [nb + k(a − b)]x))

∣∣∣∣
≤ ‖β(a − b, ·)‖Hölder

[ n−1∑
k=0

distM(α(nb + k(a − b))(z), α(nb + k(a − b))(x))δ
]

≤ ‖β(a − b, ·)‖Hölder · λj (b)nδ · C · (distM(z, x))δ
n−1∑
k=0

‖α(a − b)‖kδ
Lip,

whereC is a constant that is independent ofn. Sinceλj (b) < 1 andλj (b) · ‖α(a − b)‖Lip

< 1, the conclusion follows. 2
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We now construct the setS ⊂ Zk. Consider first a finite setF of elements inZk

close to the origin, which contains aZ basis ofZk. There is a constantM > 1 such that
‖α(c)‖Lip ≤ M, for all c ∈ F . Let Lj : Rk → R be thej ’s Lyapunov exponent andHj

the hyperplane inRk determined by the kernel ofλj . Then there exist a ballB around the
origin and conesC(Hj ) ⊂ H−j intersecting all Weyl chambers inH−j , such that for each

j and any elementb ∈ C(Hj ) ∩ (Zk − B) we have

Lj < − logM,

and therefore

λj (b) < M−1. (3.1)

Consider two elementsa, b ∈ C(Hj ) ∩ (Zk − B). We can joina andb by a sequence
of elements inC(Hj ) ∩ (Zk − B) adding at each step an element fromF . Formula (3.1)
allows us to apply the first part of the proof repeatedly and deduce that

ωa |Fj = ωb|Fj . (3.2)

By the construction of the 1-form, (3.2) still holds ifa andb are in the union ofC(Hj )

with the opposite cone,−C(Hj ).
Define the setS to be

S =
[ m⋂

j=1

(C(Hj ) ∪ (−C(Hj )))

]
∩ (Zk − B).

LEMMA 3.3. If the linearZk action is TNS then the formω ≡ ωa , a ∈ S constructed
above is smooth and closed.

Proof. Denotem = dimM. Let U ⊂ M be a small-enough open set.
Since the distributionsEi are smooth, one can find a frame of smooth vector fields

{Xj }j=1,m overU such that each fieldXj is contained in someEi . Let {ηj }j=1,m be the
dual frame of 1-forms overU , and write

ω|U =
m∑

j=1

fj ηj , wherefj = ω(Xj ).

We will show that each functionfj is smooth along all the distributionsEi and the
derivatives are continuous onU . However, this implies that eachfj is smooth onU (in
some cases one can use the characterization of smoothness via a Fourier transform, or the
theorem of Journ´e; in general, one needs [HK , Theorem 2.6]).

Indeed, in order to show thatfj is smooth alongEi , pick an Anosov elementa ∈ S such
thatXi,Ej ⊂ Es(a). SinceP−a (·, x) is smooth alongWs(x; a) and varies continuously
in theC∞ topology withx ∈ M, one concludes thatω−a |Es(a) is continuouslyC∞ along
Ws(a). By Lemma 3.2, this proves our assertion.

To show thatω is closed, use again the TNS condition and Lemma 3.2. Clearly
ω−a |Ws(x;a) is exact, hence, using the fact that pull-back and exterior differentiation
commute,

(dω)|Ws(x;a) = d(ω|Ws(x;a)) = 0 for a ∈ S.

Since overU any two directionsXi andXj are included in the stable subspace of some
hyperbolic elementa ∈ S, we obtain that(dω)|U = 0. 2
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LEMMA 3.4. The cohomology class ofω in H1(M,R) is Zk invariant, hence it has to be
zero, i.e.ω is exact.

Proof. Let a ∈ Zk be hyperbolic andωa = ω+a ⊕ω−a onT M = Eu(a)⊕Es(a) (as defined
at the beginning of this section). Then

b∗ωa = ωa + dβ(b, ·) (3.3)

for any diffeomorphismb ∈ Zk . Indeed, sinceab = ba, the cocycle relation (1.1) implies
that

β(a, bt) = β(a, t)+ β(b, at)− β(b, t),

and therefore

P−a (by, bx) = P−a (y, x)+ [β(b, y)− β(b, x)],
P−−a(bz, bx) = P−−a(z, x)+ [β(b, z)− β(b, x)]

for y ∈ Ws(x; a) andz ∈ Wu(x; a). Hence, forξ ∈ Es
x(a),

(b∗ω−a )x(ξ) = (ω−a )bx(Db(ξ))

= d−P−a (·, bx)(Db(ξ)) = d−P−a (b·, bx)(ξ)

= d−[P−a (·, x)+ β(b, ·)− β(b, x)](ξ) = ω−a (ξ)+ d−β(b, ·)(ξ),

whered− denotes the differential alongEs(a). A similar computation forω+a completes
the proof of (3.3). This shows that the classω̄ ∈ H1(M,R) corresponding toω is Zk

invariant.
Thatω is exact (i.e. that̄ω = 0) now follows from the fact that any linear hyperbolic

automorphism of an infranilmanifold induces a hyperbolic map of the first cohomology
group, and therefore the only invariant class is the trivial one.

Indeed, let the infranilmanifold beM = N/0 where0 ⊂ NC is a lattice, and
let Ā : NC → NC be an automorphism which leaves invariant bothN and 0, is
hyperbolic onN and induces the infranilmanifold automorphismA : M → M (we use the
notations introduced at the beginning of §2). Thenπ1(M) = 0, H1(M,Z) = 0/[0,0],
H1(M,R) = H1(M,Z) ⊗ZR and H1(M,R) is the dual of H1(M,R) in a natural way,
where[0,0] is the commutator subgroup of0. Note thatĀ invariates[0,0], hence it
defines a map on0/[0,0], which induces the action ofA on H1(M,R).

Let 00 := 0 ∩N , which has finite index in0 and is anĀ-invariant lattice ofN . Recall
that a lattice in a simply connected nilpotent Lie group and any subgroup of such a lattice
is finitely generated [Ra, Theorems 2.10 and 2.7].

Since00/(00 ∩ [0,0]) ↪→ 0/[0,0] is of finite index and both are finitely generated
abelian groups,(00/(00 ∩ [0,0])) ⊗Z R ∼= (0/[0,0]) ⊗Z R in a way that identifies
the natural actions ofĀ. Therefore, it is enough to show that the action ofĀ on
(00/(00∩ [0,0]))⊗ZR is hyperbolic. Since[00, 00] ⊂ 00∩ [0,0], the above statement
follows once we show that̄A acts hyperbolically on(00/[00, 00])⊗ZR, because

00/(00 ∩ [0,0]) ∼= 00/[00, 00]
(00 ∩ [0,0])/[00, 00] ,

and all of the above quotient groups are finitely generated abelian.
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Consider the short exact sequence of finitely generated abelian groups

{1} → (00 ∩ [N,N])/[00, 00] → 00/[00, 00] → 00/(00 ∩ [N,N])→ {1}.
Since both00 ∩ [N,N] and [00, 00] are cocompact in[N,N] [Ra, Corollary 1 of
Theorem 2.3 and proof of Theorem 2.1], the left-hand group in the above sequence is finite.
On the other hand,00/(00 ∩ [N,N]) ↪→ N/[N,N] and the action ofĀ on the abelian
groupN/[N,N] is hyperbolic because the derivative ofĀ is hyperbolic at the origin of
N . These two observations complete the proof of the fact thatA acts hyperbolically on
H1(M,R), hence on H1(M,R) as well. 2

Once we know thatω is exact, the conclusion of Theorem 3.1 follows easily. Let
P : M → R be aC∞ function such thatω = dP (P can be chosenC∞ becauseω is
smooth). From (3.3) we obtain that

d[β(b, ·)− P ◦ b(·)+ P(·)] = 0

for eachb ∈ Zk. We are done, because this means that the cocycle cohomologous toβ

given byβ̃(b, ·) := β(b, ·)− P ◦ b(·)+ P(·) : M → R is constant for allb ∈ Zk . 2

4. Some general results
We describe in this section a few lemmas and constructions that will be used for the proof
of Theorems 2.1, 2.2 and 2.3. The results of this section are independent of the TNS
property.

Consider aZk actionα on M and a smallδ-Hölder cocycleβ : Zk × M → G ⊂
GL(d,R) over it. The smallness of the cocycle is specified by the conditions given after
Lemma 4.2 and by Lemma 4.5.

We can see the cocycle as taking values in GL(d,R). Moreover, sinceG was assumed
closed and the construction of the transfer mapP and of the representationπ will
involve only limits of products of the cocycle values, it is enough to deal with the case
G = GL(d,R).

Define the extended actioñα : Zk × (M ×GL(d,R))→ M ×GL(d,R) by

α̃(a)(x, g) = (ax, α(a)g).

The main step in the proof of the theorems is to construct anα̃-invariant (topological)
foliationFβ of M ×GL(d,R) with leaves of dimension equal to dimM. It is here where
the TNS property plays a role. Then, using a holonomy argument and the hyperbolicity of
the action, we show that all the leaves of the foliation are closed manifolds, which cover
M simply. This fact and the invariance of the foliation allow us to find the representation
π and the transfer mapP .

We begin with some results about H¨older cocycles over a partially hyperbolic action.
The following lemma gives a family of invariant foliations for a H¨older cocycle over a

partially hyperbolic diffeomorphism.

LEMMA 4.1. Leta be a partially hyperbolic diffeomorphism ofM, β a cocycle overa and
{W(x)}x∈M ana-invariant foliation ofM whose leaves are included in the stable foliation
of a.
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(i) Assume thatβ(a, ·) is δ-Hölder and

λ−(a)δ < µ+(a)−1 · µ−(a).

(Note that this condition is automatically satisfied if the range of the cocycle is a
compact Lie group.)
Then, for anyx ∈ M, there is aδ-Hölder functionγ a,W

x : W(x) → GL(d,R) such
that:
(1) γ

a,W
x (x) = I ;

(2) the family of ‘graphs’W(x; g) := {(t, γ a,W
x (t)g) | t ∈ W(x)}, x ∈ M,

g ∈ GL(d,R), gives añα(a)-invariant foliation ofM ×GL(d,R).
These functions are defined by the formula

γ a,W
x (t) = lim

n→∞ β(na, t)−1β(na, x), t ∈ W(x), (4.1)

and depend continuously on the pointx ∈ M. Moreover, these are the only functions
that are uniformlyδ-Hölder onWloc and satisfy conditions (1) and (2).

(ii) If, moreover, the cocycleβ isC∞ and the foliation{W(x)} has smooth leaves varying
continuously in theC∞ topology, then each functionγ a,W

x is smooth alongW(x),
with derivatives varying continuously onM.

Remarks. 1.If the foliation{W(x)} is the stable foliation ofa then we denoteγ a,W
x by γ a

x .
By the last statement of the lemma, the functionsγ

a,W
x are the restrictions ofγ a

x to W(x).
2. The proof of part (ii), withδ = 1, is essentially contained in [NT3, Theorem 6.1].

The Hölder case is proved along the same lines. One can also prove these results by the
methods of [HPS, Chapter 5].

Proof of Lemma 4.1(i).In order to simplify the notation, we writeγx for γ
a,W
x .

The invariance property of the family{W(x; g)}x,g is equivalent to the relation

β(a, t)γx(t) = γax(at)β(a, x), t ∈ W(x), (4.2)

or

γx(t) = β(a, t)−1γax(at)β(a, x). (4.3)

Iterating (4.3) we obtain that

γx(t) = β(na, t)−1γna(x)(na(t))β(na, x). (4.4)

Sinceγna(x)(na(t)) should approach the identity asn → ∞, formula (4.4) suggests the
definition (4.1) ofγx .

Note that it is enough to construct eachγx onWloc(x), and then extend them using (4.3).
We prove first the uniqueness of the functions{γx}x∈M . Assume{γx} and {γ̃x} are

two families that both satisfy the conditions (1) and (2) given in Lemma 4.1. Let
Rx(t) := γ̃x(t)

−1γx(t). ThenRx(x) = I and, by (4.4),

Rx(t) = β(na, x)−1Rna(x)(na(t))β(na, x).
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By restrictingWloc, we may assume that theδ-Hölder norm ofRx |Wloc(x) is bounded by
some constantC∗ <∞, uniformly with respect tox ∈ M.

Chooseκ− > λ−(a), 0 < ν− < µ−(a) andν+ > µ+(a) such thatν+ · ν−1− · κδ− < 1.
There is a constantC > 0 such that forn ≥ 0 andt ∈ Ws

loc(x; a)

‖D(na)|Es (a)‖ ≤ Cκn−,

distM(na(t), na(x)) ≤ Cκn− distM(t, x),

sup
y∈M
‖β(na, y)−1‖ ≤ Cν−n− ,

sup
y∈M
‖β(na, y)‖ ≤ Cνn+.

Then, fort ∈ Wloc(x) andn ≥ 0,

‖Rx(t)− I‖ = ‖β(na, x)−1[Rna(x)(na(t))− Rna(x)(na(x))]β(na, x)‖
≤ ‖β(na, x)−1‖ · C∗ · distM(na(x), na(t))δ · ‖β(na, x)‖
≤ C2+δC∗(ν−1− ν+κδ−)n distM(t, x)δ,

henceRx(·) ≡ I .

We prove now the existence of the family{γx}. Denoteβ(a, ·) by βa(·). Consider the
functionsγx,n : W(x)→ GL(n,R) given by

γx,n(t) := β(na, t)−1β(na, x).

We show that the sequence{γx,n} is uniformly Cauchy onWloc(x). In particular, there
is a constantC2 > 0 such that supx∈M{‖γx(t)‖ | t ∈ Wloc(x)} < C2. Indeed, letm > n be
positive integers andt ∈ Wloc(x). Then:

‖γx,m(t)− γx,n(t)‖ ≤
m−1∑
k=n

‖γx,k+1(t)− γx,k(t)‖

=
m−1∑
k=n

‖β(ka, t)−1βa((k + 1)a(t))−1βa((k + 1)a(x))β(ka, x)

− β(ka, t)−1βa((k + 1)a(t))−1βa((k + 1)a(t))β(ka, x)‖

≤
m−1∑
k=n

C2 · ν−k−1− νk+ · ‖βa((k + 1)a(x))− βa((k + 1)a(t))‖

≤ C2+δν−1+
m−1∑
k=n

(ν−1− ν+κδ−)k+1‖βa‖HölderdistM(t, x)δ

≤ C1(ν
−1− ν+κδ−)n,

where the constantC1 does not depend onm, n, x or t .

We show next that the functionsγx |Wloc(x) are δ-Hölder, and their H¨older norm is
bounded by some constantC3, independently ofx ∈ M. Let t, t ′ ∈ Wloc(x) andn > 0.
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Then:

‖γx,n+1(t)− γx,n+1(t
′)‖

= ‖β−1
a (t) · · ·β−1

a (na(t))βa(na(x)) · · ·βa(x)

− β−1
a (t ′) · · ·β−1

a (na(t ′))βa(na(x)) · · ·βa(x)‖

≤
n∑

k=0

‖β−1
a (t ′) · · ·β−1

a ((k − 1)a(t ′))β−1
a (ka(t))

· β−1
a ((k + 1)a(t)) · · ·β−1

a (na(t))βa(na(x)) · · ·βa(x)

− β−1
a (t ′) · · ·β−1

a ((k − 1)a(t))β−1
a (ka(t ′))

· β−1
a ((k + 1)a(t)) · · ·β−1

a (na(t))βa(na(x)) · · ·βa(x)‖

≤
n∑

k=0

‖β(ka, t ′)−1‖ · ‖β−1
a (ka(t ′))− β−1

a (ka(t))‖

· ‖γ(k+1)a(x),n−k((k + 1)a(t))‖ · ‖β((k + 1)a, x)‖

≤
n∑

k=0

(Cν−k− ) · (‖β−1
a ‖Hölder(Cκk− distM(t ′, t))δ) · C2 · (Cνk+1+ )

≤ C3 distM(t, t ′)δ,

whereC3 does not depend onn, x, t or t ′. Now take the limit asn→∞.

In particular, sinceγx(x) = I and it is uniformlyδ-Hölder on the local leaves,γx(t) is
an invertible matrix fort ∈ Wloc(x), distM(x, t) < C

−1/δ

3 .

The remaining claims follow from the identitiesγx,n(t) = γx ′,n(t)γx,n(x
′) and

γx,n+1(t) = β(a, t)−1γa(x),n(a(t))β(a, x). 2

In the following lemma we prove some properties ofγ a
x .

LEMMA 4.2. Leta andb be two commuting diffeomorphisms which generate the abelian
group〈a, b〉 in Diff 1(M). Letβ : 〈a, b〉 ×M → GL(d,R) be aδ-Hölder cocycle. Assume
thata is partially hyperbolic andλ−(a)δ < µ−(a)µ+(a)−1.

(i) If b is partially hyperbolic andλ−(b)δ < µ−(b)µ+(b)−1, then

γ a
x |Ws(x;a)∩Ws(x;b) = γ b

x |Ws(x;a)∩Ws(x;b);

(ii) β(b, t)γ a
x (t) = γ a

bx(bt)β(b, x), for t ∈ Ws(x; a);
(iii) γ a

x1
(xn) = γ a

xn−1
(xn) . . . γ a

xk
(xk+1) . . . γ a

x1
(x2), for x1, x2, . . . , xn ∈ Ws(x; a).

Proof. We derive first (ii). Consider the familỹγx : Ws(x; a)→ GL(d,R) given by

γ̃x(t) := β(b, t)−1γ a
bx(bt)β(b, x)

(sinceb commutes witha, it invariates the stable foliation ofa). Clearly γ̃x(x) = I . We
will show that γ̃x satisfies (4.2) and then the uniqueness part of Lemma 4.1 implies that
γ̃x = γ a

x , i.e. (ii).
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Indeed, sinceab = ba, the cocycle equation (1.1) givesβ(b, ax)β(a, x) =
β(a, bx)β(b, x). Together with (4.2), this yields:

β(a, t)γ̃x(t) = [β(a, t)β(b, t)−1]γ a
bx(bt)β(b, x)

= β(b, at)−1[β(a, bt)γ a
bx(bt)]β(b, x)

= β(b, at)−1γ a
ab(x)(ab(t))[β(a, bx)β(b, x)]

= [β(b, at)−1γ a
ab(x)(ab(t))β(b, ax)]β(a, x)

= γ̃ax(at)β(a, x),

as claimed.
To prove (i), notice thatγ a

x satisfies condition (2) (i.e. equation (4.2)) in the
characterization ofγ b

x : indeed, this is exactly (ii). Therefore, in view of the Remark
following Lemma 4.1, we obtain the equality (i) by applying again the uniqueness part
of Lemma 4.1 forb, theb-invariant foliationW := Ws(x; a) ∩Ws(x; b) ⊂ Ws(x; b) and
γ a

x |W .
Finally, (iii) follows from formula (4.1), the definition ofγ a

x . 2

After these preliminaries, we describe the construction of the foliation mentioned at
the beginning of this section. More precisely, we will construct a family of plaques. This
construction requires only one Anosov diffeomorphism; the TNS condition is used to show
that the result is indeed a foliation.

Consider aδ-Hölder cocycleβ which is small enough forλ−(a)δ < µ−(a)µ+(a)−1 to
hold for alla ∈ S ∪ (−S). Further smallness requirements will be imposed by Lemma 4.5.
As mentioned in Remark (1) of §2, we may assume thatS contains an Anosov element,
saya. Due to the product structure of the stable and unstable foliations ofa, the following
holds:
(P0) there areK0 > 0 and a sizeδ0 of the local foliation such that ifx, y ∈ M and

distM(x, y) < δ0, thenWs
loc(x; a)

⋂
Wu

loc(x; a) contains a unique point, and its
distance to bothx andy is at mostK0 distM(x, y).

We want to obtain a continuousA-invariant foliationFβ of M ×GL(d,R). The leaves
are determined locally by graphs of functions{FU,x}x∈U to be introduced as follows.

Let U ⊂ M be a open set of diameter less thanδ0; U is foliated by the local (un)stable
manifolds ofa. By (P0) for anyx ∈ U , Ws

loc(x; a) intersects any local unstable manifold
foliating U (not necessarily at a point inU ). Then the functionFU,x : U → GL(d,R) is
defined by: ifz ∈ U , let u be the unique point inWs

loc(x; a) ∩Wu
loc(z; a) and set

FU,x(z) := γ−a
u (z)γ a

x (u)

(this function should be denotedFa
U,x , but no confusion will arise from the simplification).

Note thatFU,x(x) = I andFU,x is continuous.
Consider the foliation chart whose plaques (local leaves) are given by the graphs of the

functionsFU,x(·)h whereh ∈ GL(d,R). The local leaves can be extended to a global
foliation if the standard cocycle condition is satisfied by the foliation charts (see [Re]). In
our case this is equivalent to the following fact: letU ⊂ M be as above,x, y ∈ U and
g1, g2 ∈ GL(d,R); if the graphs of the functionsFU,x · g1 andFU,y · g2 have a common
point, then the two functions coincide onU .
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FIGURE 1.

In order to prove this, it is enough to consider the case wheng1 = I and the common
point is the center of one of the plaques. Assume therefore that the common point is
(y, FU,x(y)); theng2 = FU,x(y), and one has to show thatFU,x(z) = FU,y(z)FU,x(y) for
z ∈ U .

Let z ∈ U . Denoteu := Ws
loc(x; a) ∩Wu

loc(z; a), w1 := Wu
loc(y; a) ∩Ws

loc(x; a) and
w2 := Ws

loc(y; a) ∩Wu
loc(z; a) (see Figure 1). Using Lemma 4.2(iii),

FU,x(z) = γ−a
u (z)γ a

x (u) = γ−a
w2

(z)γ−a
u (w2)γ

a
w1(u)γ a

x (w1)

and

FU,x(y) = γ−a
w1

(y)γ a
x (w1), FU,y(z) = γ−a

w2
(z)γ a

x (w2).

Hence the identityFU,x(z) = FU,y(z)FU,x(y) is equivalent to

γ−a
u (w2)γ

a
w1

(u) = γ a
y (w2)γ

−a
w1

(y). (4.5)

Remark.Our goal is to obtain a foliation by ‘integrating’ the foliations described by
Lemma 4.1 fora and−a (these can be seen, respectively, as the stable and unstable
foliations ofα̃(a)). The functionsFU,x describe plaques obtained by stacking the unstable
leaves along one stable leaf. Equation (4.5) is the standard condition for two foliations to
commute, and hence to span together a new foliation.

We postpone the proof of (4.5), respective to the fact that the above construction yields
a foliation, to §5 (see Lemmas 5.4 and 5.6). This is where the TNS property is used. We
continue with the other results necessary for the proof of the main theorems.

For the rest of this sectionwe assume that (4.5) holds, for diamM(U) small enough. We
denote the obtained foliation byFβ .

Once we obtained the foliation, we want to deduce that the cocycleβ is constant. The
first observation is the following.
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LEMMA 4.3. Assume that (4.5) holds. Then the foliationFβ is A invariant and has
δ-Hölder local leaves.

Proof. The invariance ofFβ is the consequence of the fact that it is obtained by integrating
two A-invariant foliations. Indeed, letb ∈ A. Using Lemma 4.2(ii) for−a and b,
respectivelya andb, we have:

α̃(b)(z, FU,x(z)h) = (bz, β(b, z)γ−a
u (z)γ a

x (u)h)

= (bz, γ−a
bu (bz)β(b, u)γ a

x (u)h)

= (bz, γ−a
bu (bz)γ a

bx(bu)β(b, x)h)

= (bz, FbU,bx(bz)β(b, x)h)

wherez ∈ U , u = Ws
loc(x; a) ∩Wu

loc(z; a) andh ∈ GL(d,R). Therefore the local leaves
are carried bỹα(b) into local leaves, which shows thatFβ isA invariant.

The remaining statement follows from the fact thatFU,x is δ-Hölder. To see this,
in view of (P0), it is enough to show thatFU,x is Hölder when restricted to either
Ws

loc(z; a) or Wu
loc(z; a), for any z ∈ U . For the restriction toWu

loc(z; a) use the
definition of FU,x and the fact thatγ−a

u is Hölder (see Lemma 4.1). For the restriction
to Ws

loc(z; a) use the commutation relation (4.5) to writeFU,x(z) = γ a
v (z)γ−a

x (v) where
v := Wu

loc(x; a) ∩Ws
loc(z; a) and then apply the same argument. 2

The next step is to show thatFβ has closed leaves. Moreover, these leaves cover simply
M under the projectionM ×GL(d,R)→ M.

A leaf is a component ofM × GL(d,R) in the leaf topology, i.e. the topology
induced by the topology of the local leaves. Pick a pointx0 ∈ M which is fixed by
some hyperbolic element ofA. Due to the way the foliationFβ was constructed, it
is clear that each leaf is a covering space ofM. Therefore one can define a group
homomorphismH : π1(M, x0) → Maps(GL(d,R)x0, GL(d,R)x0), where GL(d,R)x0

stands for the fiber overx0. This map is obtained by associating to a loopγ ∈ �(M, x0)

andh ∈ GL(d,R)x0 the endpoint of the lift ofγ in Fβ(h) starting ath. SinceFβ is
invariant under right multiplication by GL(d,R), the range of the above map is actually in
{φ : GL(d,R)→ GL(d,R) | φ(h) = φ(I)h} ∼= GL(d,R). Hence there is a well defined
holonomy mapH : π1(M, x0)→ GL(d,R). Our next goal is to show thatH is the trivial
homomorphism, in view of the following lemma.

LEMMA 4.4. The cocycleβ is cohomologous to a constant cocycle via aδ-Hölder transfer
map if and only if (4.5) holds and the holonomy of the foliationFβ is trivial.

If the foliationFβ has smooth leaves, then the transfer map is also smooth.

Proof. Assume first thatβ is cohomologous to a constant cocycle via aδ-Hölder transfer
map. This gives an invariant H¨older foliation which, by the uniqueness result of
Lemma 4.1, has to coincide withFβ . The statement about the holonomy follows.

For the converse implication, assume that the holonomyH is trivial. Then one can
find a global horizontal sectionF : M → GL(d,R) of Fβ , given by a Hölder function.
If the leaves of the foliation are smooth, thenF will be smooth too. Note that up to
right multiplication by appropriate elements of GL(d,R), F |U coincides withFU,x for
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anyx ∈ U ⊂ M. ThisF will be the transfer mapP . The desired conclusion follows from
the invariance ofFβ under the actioñα.

Indeed, leta ∈ A andx, y ∈ M. Since(x, F (x)) and(y, F (y)) are in the same leaf of
Fβ , so are their images underα̃(a); i.e. there is somet ∈ GL(d,R) such that

α̃(a)(x, F (x)) = (ax, β(a, x)F (x)) = (ax, F (ax)t)

and
α̃(a)(y, F (y)) = (ay, β(a, y)F (y)) = (ay, F (ay)t),

which shows that

F(ax)−1β(a, x)F (x) = F(ay)−1β(a, y)F (y).

Thereforeπ : A→ GL(d,R) defined by

π(a) := F(ax)−1β(a, x)F (x)

does not depend onx and satisfiesβ(a, x) = F(ax)π(a)F (x)−1. 2

SinceFβ is α̃ invariant, the holonomy map is equivariant in the sense that

H(α(a′)∗γ ) = β(a′, x0)H(γ )β(a′, x0)
−1,

for anyγ ∈ π1(M, x0) anda′ ∈ Ax0 := {a ∈ A | a(x0) = x0}.
Moreover, it is clear from the construction of the holonomy map and the H¨older

estimates on the foliationFβ that by requiring the cocycleβ to be close enough to the
identity one can obtain that a set of generators ofπ1(M) be mapped byH into an arbitrarily
small neighborhood of the identity in GL(d,R).

These last two properties of the holonomy map imply thatH has to be trivial forβ
small. We prove this in three steps, first forM a torus, then for a nilmanifold and finally
for any infranilmanifold. Note thatAx0 does not have to be of rank higher than one.

Although we need the next lemma only for GL(d,R), we state it for a general finite-
dimensional Lie group. We apply this lemma forH : π1(M, x0) → GL(d,R) the
holonomy ofFβ , ρ the action induced by some Anosov elementa ∈ Ax0 on π1(M, x0)

andḡ = β(a, x0). We denote an inner automorphism of a group by Intg : h 7→ ghg−1.

LEMMA 4.5. Let M be an infranilmanifold anda ∈ Diff (M) an Anosov diffeomorphism
which fixes a pointx0 ∈ M. Fix a setT of generators ofπ1(M, x0). Consider the
automorphismρ ∈ Aut(π1(M, x0)) induced bya (by the Franks–Manning classification,
ρ is ‘hyperbolic’).

Given a finite-dimensional Lie groupG, there is a neighborhoodU of the identity inG
with the following property: ifρ̃ := Intḡ ∈ Aut(G) with ḡ ∈ U andH : π1(M, x0)→ G

is a ρ–ρ̃ equivariant homomorphism (i.e.H ◦ ρ = ρ̃ ◦ H ) which mapsT into U , thenH

is the trivial homomorphism.

Proof. Case 1:M = Tn. Note that it is enough to prove the conclusion for the canonical
set of generators ofZn ∼= π1(Tn). We denote it byT = {fi}i=1,...,n, and letA = (aij )i,j

be the hyperbolic matrixρ ∈ Aut(π1(Tn)) ∼= GL(n,Z).
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Denote byg the Lie algebra ofG. By Ado’s theorem [P, Lecture 10], we may assume
thatg is the Lie algebra of a matrix Lie group to whichG is locally isomorphic. Choose
a neighborhoodU0 ⊂ g of O, the origin ing, such that the exponential map exp: U0 ⊂
g→ G is a diffeomorphism onto its image and its inverse, log:= exp−1 : exp(U0)→ U0,
admits a power series expansion on exp(U0) (see [P]). Let U1 ⊂ 1

2U0 be a neighborhood
of O such that

Xi ∈ U1 for all i = 1, . . . , n H⇒
n∑

i=1

aijXi ∈ U0 for all j = 1, . . . , n,

and setU := exp(U1) ∩ {g ∈ G | spec(Adg) ∩ spec(A) = ∅, Adg(U1) ⊂ U0}, where
Adg ∈ Aut(g) denotes the differential of Intg .

Assume now thatH(T ) ⊂ U and ḡ ∈ U . Let fi := log(H(fi)) ∈ U1 and define a
linear mapH : Zn → g by H(fi) = fi . Since log is given by a power series,{fi}i ⊂ g is a
commutative family, hence exp◦H = H . Using the identity Intg(expX) = exp(Adg(X))

for g ∈ G, X ∈ g, the equivariance property ofH yields

exp(H(Afj )) = H(Afj) = Intḡ(Hfj ) = Intḡ(exp(fj ))

= exp(Adḡ(fj )) = exp(Adḡ (Hfj )),

for j = 1, . . . , n. By our choice ofU this implies thatH ◦ A = Adḡ ◦H (note that
H(Afj ) = ∑n

i=1 aij fi ). However, this is possible only ifH = 0 becauseH intertwines
the linear mappingsA and Ad̄g that have disjoint spectra.

Indeed, assume that the linear mapsA ∈ End(E), B ∈ End(F ), C : E → F satisfy
CA = BC. Consider the induced mapŝA ∈ End(E/ KerC), B̂ ∈ End(Im C) and
Ĉ : E/ KerC → Im C. If C 6= 0 thenĈ is invertible, thereforeĈÂ = B̂Ĉ implies
that spec(Â) = spec(B̂), and clearly spec(Â) ⊂ spec(A), spec(B̂) ⊂ spec(B).

Case 2:M is a nilmanifold.Assume thatM = N/0, whereN is a connected, simply
connected nilpotent Lie group and0 is a lattice inN .

Thenπ1(M) ∼= 0 andρ ∈ Aut(0) is the restriction to0 of some automorphism ofN
whose differential at the identity has no eigenvalues of absolute value one. We denote this
automorphism byA.

Via the exponential map we can identifyN with its Lie algebran; in this identification
the automorphismA becomes a linear hyperbolic mapping.

Consider the upper central sequence of normal subgroups

Nm+1 = {0} $ Nm $ · · · $ N1 = N,

whereNk = [N,Nk−1]. These correspond to Lie subalgebras inn; A invariates the
subgroupsNk and induces hyperbolic automorphisms on bothNk andN/Nk .

We proceed by induction on the depthm of N , assuming only that0 is a finitely-
generated subgroup of a connected, simply connected nilpotent Lie groupN and is
invariant under a hyperbolic automorphism ofN . In particular, such a group0 is torsion
free, becauseN is (see the proof of Theorem 2.18 in [Ra]).

If m = 1 thenN is abelian and we are done by Case 1. Let0m := 0 ∩ Nm,
which is normal in0. If 0m = {0}, then we can reduce the problem to one about
0 ∼= 0/Nm ⊂ N/Nm.
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Assume therefore thatm > 1 and0m 6= {0}. Then0m is free abelian and finitely
generated (see [Ra], Theorem 2.7: every subgroup of a finitely generated nilpotent group
is finitely generated) and we can invoke Case 1 to obtain thatH is trivial on 0m for U

chosen correspondingly. However, then there is a well defined mapĤ : 0/0m → G and
the problem is reduced to one about0/0m

∼= 0/Nm ⊂ N/Nm.

Case 3: M is an infranilmanifold.Recall that an infranilmanifold is a quotientN/0,
whereN is a connected, simply connected nilpotent Lie group, and0 is a lattice in
the semi-direct productNC of N by a compact group of automorphismsC. Hence
π1(M) ∼= 0. From the previous discussion it follows that0 ∩ N is included in the kernel
of H , providedU is chosen correspondingly. Consider thenĤ : 0/0 ∩ N → G, which
is a homomorphism of a finite group into a Lie group. Since a Lie group has no small
subgroups, we conclude thatH is trivial for the appropriate choice ofU . 2

5. Proofs for Lie-group valued cocycles
According to §4, what remains to be proven is the relation (4.5), i.e. the existence of the
foliation integrating the stable and unstable foliations ofα̃(a) for somea ∈ S Anosov (the
leaves of these foliations are given by the graphs ofγ a

x , respectivelyγ−a
x , x ∈ M).

We will do this for Hölder cocycles over a TNS linear action on a torus in Lemma 5.4,
thus proving Theorem 2.2. From this, the Franks–Manning classification and the results of
§4 one can deduce Theorem 2.1. The reason we can prove Theorem 2.2 only for actions
on a torus is that for (infra-)nilmanifolds the foliations obtained by intersecting stable and
unstable foliations of commuting linear Anosov elements need not commute.

For smooth cocycles however, we can decide integrability on the level of distributions,
via the theorem of Frobenius. This is done in Lemma 5.6. Note that this parallels the proof
of Theorem 3.1: one can prove integrability of the corresponding distribution by showing
that theg-valued 1-formω onM satisfies the equationdω + 1

2ω ∧ ω = 0.

Proof of Theorem 2.2.As mentioned in Remark (4) of §2, we may assume that the
distributionsEi are constant. Call the foliations ofM corresponding to theEi ’s minimal
foliations.

Since M is a torus, any subset of minimal foliationsF1,F2, . . . ,Fk generates an
integrable foliation. If the integrable foliation isF , we writeF = {F1,F2, . . . ,Fk}.

The following lemma is immediate.

LEMMA 5.1. Denote byN(α) the number of minimal foliations of the actionα.
There are constantsK1 > K0 > 1, ε0 > 0, δ1 > 0 and a sizeδ0 > 0 for the local

foliations, ε0 < δ0 < δ1/N(α), such that given two disjoint familiesF1,F2, . . . ,Fk

and G1,G2, . . . ,Gl of minimal foliations andF := {F1, . . . ,Fk}, G := {G1, . . . ,Gl},
H := {F ,G}, the following properties hold.
(P1) For any x ∈ M, y ∈ F loc(x), z ∈ G loc(x) such thatdistM(y, z) < ε0,

there is a uniquew := F loc(z) ∩ G loc(y), and max{distM(w, y), distM(w, z)} ≤
K1 distM(y, z).

(P2) For anyx, y ∈ M such thatdistM(x, y) < ε0 andy ∈ Hloc(x), there is a unique
w := F loc(x) ∩ G loc(y), andmax{distM(w, x), distM(w, y)} ≤ K1 distM(x, y).
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(P3) If x, y ∈ M are such thaty ∈ H(x), x andy can be joined inH(x) by a path of
length less thanδ1 anddistM(x, y) < δ0, theny ∈ Hloc(x).

In the rest of the proof the size of the local foliations will be theδ0 given by the above
lemma.

LEMMA 5.2. There is a constantε1, 0 < ε1 < ε0 such that the following holds: given
any foliationF = {F1,F2, . . . ,Fk}, where theFi ’s are minimal foliations, andx ∈ M,
z ∈ F loc(x) with distM(x, z) < ε1, there existy1 ∈ F loc

1 (x), y2 ∈ F loc
2 (y1), . . . , yk−1 ∈

F loc
k−1(yk−2) such thatz ∈ F loc

k (yk−1). Moreover,

max
i
{distM(x, yi), distM(z, yi)} ≤ K1 distM(x, z). (5.1)

Proof. Let ε1 ≤ ε0/(K
2
1 +K1).

We construct the pointsyi as follows. The families of foliationsF1,F2, . . . ,Fi

andFi+1,Fi+2, . . . ,Fk are both integrable; denoteGi := {F1,F2, . . . ,Fi} and G̃i :=
{Fi+1,Fi+2, . . . ,Fk}. Then, by (P2) of Lemma 5.1, the local leavesG loc

i (x) andG̃ loc
i (z),

which are both included inF(x), intersect in a unique pointyi , which satisfies (5.1) as
well.

It remains to show thatyi ∈ F loc
i (yi−1). By our choice ofε1 the distance between the

pointsz andyi−1 is smaller thanε0. Apply property (P2) for the foliationsFi and G̃i ,
which spañGi−1(z), andyi−1 ∈ G̃ loc

i−1(z). It follows thatF loc
i (yi−1) andG̃ loc

i (z) intersect
in a unique pointζ . Moreover,

distM(ζ, x) ≤ distM(ζ, yi−1)+ distM(yi−1, x)

≤ K1 distM(yi−1, z)+K1 distM(x, z) ≤ (K2
1 +K1) distM(x, z)

≤ (K2
1 +K1)ε1 ≤ ε0 < δ0.

Sinceζ ∈ F loc
i (yi−1) and yi−1 ∈ G loc

i−1(x), it follows that there is a path inGi (x)

betweenx andζ of length at most 2δ0, and then (P3) implies thatζ ∈ G loc
i (x). However,

G loc
i (x) intersectsG̃ loc

i (z) in a unique point,yi . Henceζ has to coincide withyi , and
thereforeyi ∈ F loc

i (yi−1). 2

Before we prove the main lemma, let us notice that a commutation similar to (4.5)
automatically holds in some cases.

LEMMA 5.3. Leta, b, c ∈ S be partially hyperbolic diffeomorphisms. AssumeF1 andF2

are minimal foliations such thatF1 ⊂ Ws(a) ∩ Ws(c) andF2 ⊂ Ws(b) ∩ Ws(c). Then
for anyx ∈ M, y ∈ F loc

1 (x), z ∈ F loc
2 (x) andw = F loc

2 (y) ∩ F loc
1 (z) we have

γ c
x (w) = γ b

y (w)γ a
x (y) = γ a

z (w)γ b
x (z).

Proof. Apply first Lemma 4.2(iii) forγ c and the families of points{x, y,w} and{x, z,w},
and then use Lemma 4.2(i). 2

LEMMA 5.4. There is a constantε2, 0 < ε2 < ε1 with the following property: let
a ∈ S be any Anosov diffeomorphism andy, u ∈ M such thatdistM(y, u) < ε2. If
w1 = Wu

loc(y; a) ∩Ws
loc(u; a) andw2 = Ws

loc(y; a) ∩Wu
loc(u; a), then

γ−a
u (w2)γ

a
w1

(u) = γ a
y (w2)γ

−a
w1

(y).



Non-abelian cohomology of abelian Anosov actions 281

FIGURE 2.

Proof. Let {F1,F2, . . . ,Fk} and{G1,G2, . . . ,Gl} be the two disjoint families of minimal
foliations such thatWs(a) = {F1,F2, . . . ,Fk} andWu(a) = {G1,G2, . . . ,Gl}.

Use Lemma 5.2 to findx11= w1, x12, . . . , x1,k+1 = u such that

x12 ∈ F loc
1 (w1), x13 ∈ F loc

2 (x12), . . . , x1,k+1 ∈ F loc
k (x1k).

andx21, . . . , xl+1,1 = y such that

x21 ∈ G loc
1 (x11), x31 ∈ G loc

2 (x21), . . . , xl+1,1 ∈ G loc
l (xl1).

We define recurrently the pointsxij for all 1 ≤ i ≤ l + 1 and 1≤ j ≤ k + 1 (Figure 2
illustrates the casel = 2 andk = 3): given the pointsxij , xi+1,j ∈ G loc

i (xij ) andxi,j+1 ∈
F loc

j (xij ), we apply (P1) of Lemma 5.1 to definexi+1,j+1 := F loc
j (xi+1,j ) ∩ G loc

i (xi,j+1).
Since there are only a finite number of minimal foliations, by takingε2 small enough we
can assume that all the points{xij } are in a neighborhood of diameterε0 of u andy.

We claim thatxl+1,k+1 = w2. Indeed, the family of local leaves

F loc
1 (xl+1,1),F loc

2 (xl+1,2), . . . ,F loc
k (xl+1,k)

is contained inWs(y; a), hence there is a path inWs(y; a) of length less thanN(α)δ0

connectingy = xl+1,1 andxl+1,k+1. Since distM(xl+1,k+1, y) < ε0 < δ0, property (P3)
implies thatxl+1,k+1 ∈ Ws

loc(y; a). Similarly, the family of local leaves

G loc
1 (x1,k+1),G loc

2 (x2,k+1), . . . ,G loc
l (xl,k+1)

is contained inWu(u; a), hence (P3) and distM(xl+1,k+1, u) < ε0 < δ0 imply that
xl+1,k+1 ∈ Wu

loc(u; a). But Wu
loc(u; a) and Ws

loc(y; a) havew2 as the unique point of
intersection, which shows thatxl+1,k+1 coincides withw2, as claimed.
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Since the action is TNS, for each pair of minimal foliationsFj , Gi there is a partially
hyperbolic diffeomorphism whose stable manifold contains both of them. Therefore each
quadruple{xij , xi+1,j , xi,j+1, xi+1,j+1} satisfies the hypothesis of Lemma 5.3 and we
obtain that

γ−a
xi,j+1

(xi+1,j+1)γ
a
xij

(xi,j+1) = γ a
xi+1,j

(xi+1,j+1)γ
−a
xij

(xi+1,j ). (5.2)

But (5.2) implies

γ−a
xl,k+1

(xl+1,k+1)γ
−a
xl−1,k+1

(xl,k+1) . . . γ−a
x1,k+1

(x2,k+1)

γ a
x1k

(x1,k+1)γ
a
x1,k−1

(x1k) . . . γ a
x11

(x12)

= γ a
xl+1,k

(xl+1,k+1)γ
a
xl+1,k−1

(xl+1,k) . . . γ a
xl+1,1

(xl+1,2)

γ−a
xl1

(xl+1,1)γ
−a
xl−1,1

(xl1) . . . γ−a
x11

(x21). (5.3)

To see this, define a total order on the set{(i, j) | 1 ≤ i ≤ l + 1, 1 ≤ j ≤ k + 1} of
indices by:(i1, j1) ≺ (i2, j2)⇐⇒ eitherj1 > j2 or j1 = j2 andi1 < i2. Now transform
the left-hand side of (5.3) as follows: for indices ordered increasingly with respect to ‘≺’,
at each step substitute the left-hand side of (5.2) by its right-hand side.

Finally, Lemma 4.2(iii) shows that (5.3) is equivalent to (4.5). 2

Proof of Theorem 2.1.Let β be aδ-Hölder cocycle.
Consider an arbitrary TNS actionα on a torusM. By Remark (5) of §2, there is a

subgroup0 ⊂ Zk such that the linear action̄α := (α|0)∗ determined by the action induced
on the first homotopy group is TNS.α|0 andᾱ are conjugated by a H¨older conjugacyh:
α(a) = h ◦ ᾱ(a) ◦ h−1 for a ∈ 0. Assume that bothh andh−1 areω-Hölder (0< ω ≤ 1).

Define β̄ : 0 × M → GL(d,R) by β̄(a, x) := β(a, h(x)). Thenβ̄ is a δω-Hölder
cocycle overᾱ. By Theorem 2.2, forβ small enough there is a(ωδ)-Hölder function
P̄ : M → GL(d,R) and a representationπ : 0→ GL(d,R) such that

β̄(a, x) = P̄ (ᾱ(a)x)π(a)P̄ (x)−1

for a ∈ 0. ThenP : M → GL(d,R) given byP(x) := P̄ (h−1(x)) is a (ω2δ)-Hölder
transfer map, andβ|0 is cohomologous toπ via P . This yields a0-invariant foliationF
of M ×GL(d,R) which has trivial holonomy and whose leaves are(ω2δ)-Hölder.

We will show thatF has actuallyδ-Hölder leaves and it is invariant for the fullZk

action, providedβ is small enough. This implies the desired conclusion (see the proof of
Lemma 4.4).

Indeed, choosea ∈ 0 such thatα(a) is an Anosov diffeomorphism. Assume thatβ is
so small that

λ−(a)ω
2δ < µ−(β, a)µ+(β, a)−1,

λ+(a)ω
2δ > µ−(β, a)−1µ+(β, a).

(5.4)

Then {γ a
x }x∈M and {γ−a

x }x∈M are uniquely determined by conditions (1) and (2) of
Lemma 4.1 in the(ω2δ)-Hölder class, although these functions are actuallyδ-Hölder.
But the foliationF gives a family of(ω2δ)-Hölder functions by restriction to the stable,
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respectively unstable, foliations ofa. Hence these functions coincide with{γ±a
x }x∈M , and

thenF hasδ-Hölder leaves too: the fact thatFa
U,x areδ-Hölder relies on the commutation

relation (4.5), which holds due to the fact that the functionsFa
U,x define a foliation. See

the proof of Lemma 4.3. The same proof showed that the foliation defined by the functions
Fa

U,x is invariant under any element commuting witha, henceF isZk invariant.
The statement about the regularity ofP follows from Theorem 2.4 in [NT3], which can

be applied if (5.4) holds. We reproduce here the part that is relevant:

THEOREM 5.5. [NT3] Let M be a compact manifold,a ∈ Diff K(M) an Anosov
diffeomorphism, andβ, β̃ two CK cocycles over the inducedZ action taking values in
GL(d,R), whereK = 1, 2, . . . , ω. Consider the expansion and contraction coefficients
λ± = λ±(a), µ± = µ±(β, a) defined by (2.1) and (2.2). Assume thatλ− < µ− · µ−1+ ≤
µ+ · µ−1− < λ+, and set

δ0 = max

{
ln(µ+/µ−)

ln λ+
,

ln(µ−/µ+)

ln λ−

}
.

If β and β̃ are cohomologous through a transfer mapP : M → GL(d,R) which is
δ-Hölder for someδ > δ0, thenP is CK−ε for any smallε > 0. (K − ε = K for
K ∈ {1,∞, ω}.)

An important tool in the proof of the above result is the following theorem of Journ´e [J]:
if a function isCK+α along the leaves of two transverse foliations with uniformly smooth
leaves, then the function isCK+α (K = 1, 2, . . . ,∞, 0 < α < 1). For the analytic case
one uses a theorem of de la Llave [Ll1 ] that relies on the cone method of [HK ]. 2

Proof of Theorem 2.3.By Remark (3) of §2, one can assume that the smooth distributions
Ei are integrable. Denote byWi the corresponding foliations ofM. As mentioned at the
beginning of §4, we may assume thatG = GL(d,R). Letβ be a smoothG-valued cocycle.

For anA-invariant foliationW of M contained in the stable foliation of some element
of S, denote byW̃ the foliation ofM ×G given by

W̃ (x; g) = {(t, γ c
x (t)g) | t ∈ W(x)}, x ∈ M,g ∈ G,

wherec ∈ S is such thatEi ⊂ Ws(c) (by Lemma 4.2(i), it does not matter whichc we
pick).

By Lemma 4.1(ii),̃Wi has smooth leaves which vary continuously in theC∞ topology;

let Ẽi be the distribution it determines inT (M × G). Similarly, for c ∈ S, let Ẽs(c) and

Ẽu(c) be the distributions determined bỹWs(c), respectivelỹWu(c), in T (M ×G).
According to the discussion following Lemma 4.2, we attempt to construct the foliation

Fβ as the span of̃Ws(a) andW̃u(a). Using distributions, this translates into showing that

the distributionD := Ẽs(a)+ Ẽu(a) =∑i Ẽi is integrable. In order to prove this, by the
theorem of Frobenius, we have to check thatD is involutive: if X andY are two (smooth
enough) vector fields inD, then[X,Y ] ∈ D.

LEMMA 5.6. Under the hypotheses of Theorem 2.3, the distributionD ⊂ T (M × G)

defined above is smooth and involutive.
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Proof. Let m = dimM and l = dimG. SinceG is parallelizable, one can choose a
smooth frame{Zk}k=1,l of T G. Let U ⊂ M be a small open set, and choose a smooth
frame{Xj }j=1,m of T M overU such that each fieldXj is contained in someEi . In view
of the construction ofD, one can find a unique frame{Yj }j=1,m overU ×G which spans
D and has the formYj = Xj +∑k βj,kZk, with βj,k : U ×G→ R.

Clearly the functionsβj,k are smooth in theG variable. To show thatβj,k is smooth

alongEi , choose an elementc ∈ S for which Xj,Ei ⊂ Es(c). SinceYj ∈ Ẽs(c) ⊂ D,

the conclusion follows from the fact that̃Ws(c) has smooth leaves (by Lemma 4.2(ii)).
As in Lemma 3.3, this implies thatD is smooth. To complete the proof, letc ∈ S be

such thatXi,Xj ∈ Es(c)|U . ThenYi, Yj ∈ Ẽs(c), which is involutive (being tangent to a

foliation), hence[Yi, Yj ] ∈ Ẽs(c) ⊂ D. 2

This proves that the foliationFβ exists and has smooth leaves. The conclusion of
the theorem now follows from Lemmas 4.4 and 4.5. TheCω case follows from [NT3,
Theorem 2.4], (see Theorem 5.5 above). 2

6. The derivative cocycle of a TNS action
In this section we give an application of our results.

Let α, α̃ : Zk×Tn → Tn be two smooth abelian actions. Given a finite set of generators
{ai} of Zk, we say that̃α is C1 close toα if the diffeomorphismsα(ai) andα̃(ai) areC1

close for alli.
Let PTn be the principal bundle ofn-frames in the tangent bundleTTn. Let τ :

Tn → PTn denote the standard framing ofTn, corresponding to the natural identification
8 : TTn ∼→→Tn × Rn. Let γα : Zk × Tn → GL(n,R) denote the derivative cocycle of
the actionα with respect to the sectionτ , i.e.

Dα(a)τ(x) = τ (α(a)x)γα(a, x),

for all a ∈ Zk, x ∈ Tn.

THEOREM 6.1. Letα : Zk×Tn → Tn be a faithful linear TNS action and̃α : Zk×Tn →
Tn an actionC1 close toα. Then the derivative cocycleγα̃ is cohomologous to a constant
cocycle. The transfer map is Hölder.

Before starting the proof, we recall some facts from the theory of partially hyperbolic
diffeomorphisms, as presented in [BP].

Let M be a compact Riemannian manifold andf a smooth diffeomorphism ofM. We
consider the Banach space00(M) of continuous vector fields onM, on whichf acts as an
invertible bounded linear operatorf∗. We complexify00(M). The Mather spectrumσ(f )

of f is the spectrum off∗ on this complex Banach space. If the non-periodic points off

are dense inM thenσ(f ) is a union of circles{|z| = a}. See [Mat ].
Assume now that the spectrum off consists ofp components{Si}pi=1, whereSi is

contained in an annulus with radiiλi andµi ,

0 < λ1 ≤ µ1 < · · · < λp ≤ µp.
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Then there is a decomposition

00(M) = 01⊕ · · · ⊕ 0p,

where0i are f∗ invariant submodules of00(M) for which σ(f∗|0i ) = Si . To each
submodule0i there corresponds a distributionEi . The distributionsEi are η-Hölder
for someη that can be bounded from below by a quantity depending continuously on
{λi, µi}pi=1 (see [BP, Theorem 2.1 and relation (2.12)]). Denote bydC1 the metric in the
space ofC1 diffeomorphisms ofM induced by the Riemannian metric, and byd the metric
in the space of continuous distributions ofM:

d(E1, E2) = max
x∈M max

v1∈E1
max
v2∈E2

∥∥∥∥ v1

‖v1‖ −
v2

‖v2‖
∥∥∥∥ .

Then for anyε > 0 sufficiently small, there exists aδ > 0 such that for anyg
diffeomorphism withdC1(f, g) < δ, the spectrum ofg∗ is contained in a union of annuli

with radii λi − ε andµi + ε, andd(E
f
i , E

g
i ) < ε.

Proof of Theorem 6.1.Let a ∈ A := α(Zk) be a linear Anosov diffeomorphism. Then the
spectrum ofa∗ consists of a finite number of circles, and the distribution corresponding to
a given circle is invariant under the fullZk action. Moreover, considering intersections
of such invariant distributions for a finite number of elements inA, one can find an
A-invariant splitting of the tangent bundleTTn ∼= E1⊕ E2⊕ · · · ⊕ Ep with the property
that for eacha ∈ A − {I }, the spectrum ofa∗|Ei is contained in a circle. We will denote
by λi(a) the radius of the circle. Note thatλi : A→ R is a homomorphism. LetZ ⊂ Zk

be the pre-image underα of the set of elements introduced by the TNS condition.

Let ε > 0 be given. Taking̃α sufficientlyC1 close toα, one can find añα(Zk)-invariant
splitting of the tangent bundleTTn = Ẽ1 ⊕ Ẽ2 ⊕ · · · ⊕ Ẽp such that the spectrum of
α̃(a)∗|Ẽi

is pinched betweenλi(α(a))−ε andλi(α(a))+ε for anya ∈ Z, i = 1, 2, . . . , p.

Moreover, sinceẼi is close toEi and Hölder, one can choose a H¨older identification
betweenẼi and Ei (e.g. take the orthogonal projection in each fiber). Since the sub-
bundlesEi ⊂ TTn are smoothly trivial, we conclude that there are H¨older bundle maps
9i : 8(Ẽi)→ Tn × Vi , whereVi ⊂ Rn are vector subspaces.

Consider the H¨older cocyclesγi : Zk × Tn → GL(Vi) obtained by restricting the
derivative cocycleγα̃ to 8(Ẽi) and conjugating by9i . Note that the contraction and
expansion coefficients (2.2) ofγi |〈a〉 are exactly the radii of the annulus bounding the
spectrum of̃α(a)∗ onẼi . (Indeed, conjugation by a continuous bundle map does not affect
the spectrum and the equality follows from the spectral mapping theorem.) Hence, by
taking α̃ closer toα, the cocycleγ̄i(a, x) := λi(α(a))−1γi(a, x) can be made as small as
desired while keeping its H¨older class away from zero. Then, by Theorem 2.1, there are
homomorphismsπi : Zk → GL(Vi) and Hölder transfer mapsPi : Tn → GL(Vi) such
that

γi(x, a) = Pi(α(a)x)(λi(α(a))πi(a))Pi(x)−1.

Thereforeγα̃ is cohomologous to⊕λi ◦ α · πi via the Hölder transfer map⊕9−1
i Pi . 2



286 A. Katok et al

7. Examples of TNS actions and related questions

Example 1.Let SL(n,R) be the group of invertible matrices of determinant one. Let
T ⊂ SL(n,R) be a maximal torus such thatT ∼= Rn−1. It follows from a theorem
of Prasad–Raghunathan (see [PR, Theorem 7.1]), that there isg ∈ SL(n,R) such that
A := gTg−1 ∩ SL(n,Z) is a cocompact lattice inT. In particular, it follows that:
(1) A− {I } consists of hyperbolic matrices;
(2) the elements ofA are simultaneously diagonalizable overR;
(3) A is isomorphic to a free abelian group of rankn− 1;
(4) if v1, . . . , vn ∈ Rn is a basis of simultaneous eigenvectors for the groupA, and

λi : A→ Rn is the character ofA defined viaAv := λ(A)vi, A ∈ A, then for any
strictly non-empty subsetJ of {1, . . . , n}, there existsA ∈ A, such thatλj (A) < 1,
for j ∈ J , andλi(A) > 1, for i /∈ J .

Using property (4), it follows that the natural action ofA onTn is a TNSZn−1 action.
This example was investigated by Katok and Lewis in [KL ]. They proved that the

natural action ofA onTn is C∞ rigid.

Example 2.Consider the following two matrices in SL(4,Z):

A =


6 13 1 −4
4 10 1 −3
3 7 1 −2
2 5 1 −1

 and B =


−1 0 1 0
0 −1 0 1
−1 −1 2 1
−1 −2 2 3

 .

One can check thatA andB are hyperbolic andAB = BA. ThereforeA andB generate
an AnosovZ2 actionα onT4.

There is an ordered base{e1, e2, e3, e4} inR4 in which bothA andB are diagonalizable.
The signs of the Lyapunov exponents are(+,−,−,−) for A, (−,−,−,+) for B and
(+,−,−,+) for AB. DenoteV1 = span{e1}, V2 = span{e2, e3}, V3 = span{e4}. Then
V1, V2, V3 induce a splitting of the tangent bundleTT4 which satisfies the definition of a
TNS action. The setS is {A,B,B−1A−1}.
Example 3.We describe now an example of a TNSZ3 action on a nilmanifold. In our
search for this example [Q] was useful. Letn be the 2-step nilpotent Lie algebra generated
by {ei; 1 ≤ i ≤ 10}, with the relations[e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7,
[e2, e3] = e8, [e2, e4] = e9, [e3, e4] = e10, and all the other brackets between the
generators are zero. LetC = spanZ{ei}. DenoteN = exp(n) and0 = exp(2C). ThenN

is a connected, simply connected nilpotent Lie group, and0 is a cocompact lattice inN .
Consider the standard representation of SL(4,Z) on span{ei; 1 ≤ i ≤ 4}. Then, using

the relations betweenei ’s, we find a representation of SL(4,Z) on span{ei; 5≤ i ≤ 10}. So
we have a representation of SL(4,Z) onn, and therefore an action onN , which invariates
0. An abelian subgroup generated by three hyperbolic matrices can be found in SL(4,Z),
using the theorem of Prasad–Raghunathan. Using the property (4) exhibited in Example 1,
it is easy to verify that theZ3 action on the nilmanifoldN/0 is a TNS action.

Finally, we would like to mention that so far we have not found an example of a linear
TNS action on an infranilmanifold that is not a nilmanifold. It would also be interesting to
find examples of linear TNS actions that are non-diagonalizable.
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[NT4] V. Niţ ică and A. Török. Local rigidity of certain partially hyperbolic actions of product type.Preprint.
[PR] G. Prasad and M. S. Raghunathan. Cartan subgroups and lattices in semisimple groups.Ann. Math.96

(1972), 296–317.
[P] M. Postnikov.Lie Groups and Lie Algebras. Mir, Moscow, 1986.
[Q] N. Qian. Anosov automorphisms for nilmanifolds and rigidity of group actions.Ergod. Th. & Dynam.

Sys.15 (1995), 341–359.
[Ra] M. S. Raghunathan.Discrete Subgroups of Lie Groups. Springer, Berlin, 1972.
[Re] B. L. Reinhart.Differential Geometry of Foliations. Springer, Berlin, 1983.
[Sch1] K. Schmidt. The cohomology of higher-dimensional shifts of finite type.Pacific J. Math.170(1995),

237–269.
[Sch2] K. Schmidt. Cohomological rigidity of algebraicZd-actions.Ergod. Th. & Dynam. Sys.15 (1995),

759–805.
[Sh] M. Shub. Endomorphisms of compact differentiable manifolds.Amer. J. Math.91 (1969), 175–199.
[Sm] S. Smale. Differentiable dynamical systems.Bull. Amer. Math. Soc.73 (1967), 747–817.
[Z] R. Zimmer.Ergodic Theory and Semisimple Groups. Birkhauser, Boston, 1984.


