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Abstract We develop a new technique for calculating the first cohomology of certain
classes of actions of higher-rank abelian grodsandR¥, k > 2) with values in a linear

Lie group. In this paper we consider the discrete-time case. Our results apply to cocycles
of different regularity, from lélder to smooth and real-analytic. The main conclusion is
that the corresponding cohomology trivializes, i.e. that any cocycle from a given class
is cohomologous to a constant cocycle. The principal novel feature of our method is its
geometric character; no global information about the action based on harmonic analysis
is used. The method can be developed to apply to cocycles with values in certain infinite
dimensional groups and to rigidity problems.

1. Introduction

1.1. Basic definitions. Let G be a group acting on a compact boundaryless Riemannian
manifold M by : G x M — M, (g,x) — az(x) = gx. LetT be some topological
group. A cocycles over the actionr is a continuous functiof : G x M — T such that

B(g182, x) = B(g1, g2x)B(g2, x), (1.1)

forall g1,g20€ G,x € M.

A geometric interpretation of a cocycle is the following: consider the trivial principal
I'-bundleE = M x I" over M. Then the cocyclegg described above corresponds to a
lift of the actiona to an actione : G x E — E by principal bundle maps. Namely,
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g € G induces the mag, : E — E given by(x, 1) — (ag(x), B(g, x)h). The cocycle
equation (1.1) is equivalent to the fact tlaails an action, i.ea,, &y, = g ,-

If ' = Aut(F) for some spacé’, then a cocyclg : G x M — T also corresponds to
a lift of o to an action by bundle maps on the trivial bundfex F. In this caseg € G
acts by(x, &) — (ag(x), B(g, x)(£)). Here ‘Aut(-)’ has the meaning appropriate for the
structure ofF. It can be GI¢-) for F a linear space, or Diff) for F a manifold.

The natural equivalence relation for cocycles is the cohomology. Two coggclmsd
B2 are called cohomologous if there exists a continuous map/ — I' such that

B1(g, x) = P(gx)p2(g, x)P(x) "1, (1.2)

forall g € G,x € M. Such a maP is called atransfer map
A cocyclepg is cohomologous to a constant cocycle if there exists a continuous function
P : M — T" and a homomorphism : G — I" such that

B(g.x) = P(gx)m(g) P(x)~ L.

In particular, if is the trivial homomorphisnmg is said to be cohomologous to the trivial
cocycle. In order for a cocycle to be cohomologically trivial, it has to satisfy thosing
conditions B(g, x) = Idr for all g € G andx € M such thaigx = x.

One of the central questions in studying cocycles over group actiond/ien is a
cocycle cohomologous to a constant (trivial) cocycle?

Remark.For brevity, we use the termmall for a cocycle whose values are close to the
identity, on a compact generating set in the group whose action we consider.

We recall the definition of a partially hyperbolic diffeomorphism.

Let M be a compact manifold. AC! diffeomorphism7 : M — M is called
partially hyperbolicif there is a continuous invariant splitting of the tangent bundle
TM = ES(T) @ EO(T) @® E"(T) and constant€ = C(T), A+ = A (T), LE = Xi(T),
C>00<A_ < §X+ <Ay, Ao <1< Ay, suchthatfon € Z,n > 0:

[DT"v*|| < CAZL|IV'|l, ' € EN(T),
IDT"v"|| < CAL" V"I, v" € E"(T),
IDT="°) < CAZ" 01, v° e BN (D),
IDT™O) < CA" W0, v e EX(T).
If EC = {0} then the diffeomorphisri is calledAnosov
The sub-bundle€*(T) and E*(T) are called thestableand, respectivelywinstable
distributions. These distributions are integrable. We denot&bgx; T) and W (x; T),
respectively, the stable and unstable manifolds of the po@tV. The stable and unstable

foliations are Hlder foliations. If the diffeomorphisii € CX (M), then the leaves of the
stable and unstable foliations a¢& too.

1.2. Historic remarks and outline. The study of cocycles over (transitive) Anosov
diffeomorphisms and flows (i.e. actions®findR, respectively) was started in two papers
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by Livsic (more appropriately spelled Livshitd)il, Li2 ], which became very influential
and generated extensive literature.

Livsic proved that a real-valuedditier cocycle which satisfies the closing conditions
is cohomologous to the trivial cocycl&ill]. He also proved a similar result for small
cocycles with values in a finite-dimensional Lie groli?]]. In the same paper he claims
a global result for cocycles with values in arbitrary Lie groups. His argument works for
solvable groups but it is mistaken for the general case. This question is still open.

Some early applications of Livsic's results appearedLi8][ where, in particular, a
necessary and sufficient condition for the existence of an absolutely continuous invariant
measure for an Anosov system is given.

Several major developments followed the work of Livsic. One direction is concerned
with the regularity of the (essentially unique, if it exists) soluti®rof the cohomological
equation

B(g.x) = P(gx)P(x)~L.

Livsic showed that if a real-valued cocygiieover an Anosov system i1, then the
transfer mapP is alsoC? [Li1]. For some linear actions on a torus he also showed that
if the cocycle isC*, respectivelyC®, then so is the solutiorL2]; this was obtained by
studying the decay of the Fourier coefficients.

Later Guillemin and KazhdardK1, GK2] showed theC* regularity of the solutions
in the case of geodesic flows on negatively curved surfaces. Collet, Epstein and Gallavotti
[CEG] proved aC® version for geodesic flows on surfaces of constant negative curvature.

The complete solution for th€> case appears in the paper by de la Llave, Marco and
Moriyon [LMM ]. They showed that if a real-valued cocycle ovef ® Anosov system
is cohomologically trivial andC®°, then the transfer map i€°°. This follows from a
general theorem from harmonic analysis which asserts that if a function is smooth along
two transverse foliations which are absolutely continuous and whose Jacobians have some
regularity properties, then it is smooth globally. This theorem was provetdNfM ]
using properties of elliptic operators. Later a more general result was proved by Journ”
[J], relying mainly on Taylor expansions and the estimate of the error: if a function is
CK+e along the leaves of two transverse foliations with uniformly smooth leaves, then the
function isCX*+* (0 < « < 1, K = 1,2,...,00). Another approach is presented by
Hurder and Katok K], based on an unpublished idea of C. Toll, in which the decay of
the Fourier coefficients is used to characterize smoothness. The method can be applied
for spanning families of foliations which have the same property as those udgdin [.

Note that foliations arising from Anosov diffeomorphisms have this property. Using the
approach inHK], de la Llave proved the analytic case ld1].

In [NT1] the second and third authors proved that a small cocycle with values in the
diffeomorphism group of a compact manifold with trivial tangent bundle is cohomologous
to the trivial cocycle, provided the closing conditions hold. The regularity results were
extended to cocycles with values in Diff and Lie groupsNiTR, NT3]. See Theorem 5.5
later for such a statement. The resultsNTB] are optimal, as far as the initial regularity
of the transfer map is concerned. Several improvementd®1] are presented inLj2],
as well as a different treatment of Livsic’s results.
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For Anosov actions of groups other tharandR the situation may be quite different.
While in the above cases the closing conditions imply infinitely many independent
obstructions to trivialization, for actions of many other groups various rigidity phenomena
appear. For ‘large’ groups, such as lattices in higher-rank Lie groups, this is related to
the super-rigidity theorem of ZimmeE] and are not a consequence of hyperbolicity. For
other groups (e.g. free non-abelian groups) rigidity does not take place. Note, however,
that forgenericactions of any group that contain a transitive Anosov element, the closing
conditions still imply triviality of the cocycle (sed\[T1, §5]).

On the other hand, for actions of higher-rank abelian groupsZ&.gndR* for k > 2),
cocycle rigidity appears in connection with hyperbolic behavior.

Nevertheless, the proofs of these rigidity results relied on harmonic analysis (abelian
and non-abelian), more specifically on the exponential decay of Fourier coefficients for
smooth functions on a torus and exponential decay of matrix coefficients for irreducible
representations of semisimple Lie groups. Using these methods, Katok and Spatzier
showed in KSpl, KSp2, KSp3 that real-valued cocycles over certain Anosi{
and Z* actions,k > 2, are cohomologous to constant cocycles. Related results for
expansiveZt actions by automorphisms of compact abelian groups were found by Katok
and Schmidt KSch], and for higher-dimensional shifts of finite type were found by
Schmidt Bchl, Sch? Katok and Katok proved inKK ] similar results for higher-order
cohomologies.

A different approach was suggested by Katok in the spring of 1994, based on the notion
of TNS (i.e.totally non-symplectiZ* action. His original argument provided a geometric
(i.e. independent of harmonic analysis) proof for some of the result€$pl, KSpZ.

This method does not require algebraicity of the action, but assumes a special structure
of the stable and unstable manifolds of various elements of the action. Using the notion
of TNS actions, Nica and itk proved cocycle rigidity for some Diff- and Lie-valued
cocycles.

The current paper represents an account of these developments. We restrict ourselves to
the case oR and Lie-group valued cocycles. Our results give a partial answer to a question
asked by Katok and Spatzier in the introductionk8p1] about the generalization of their
rigidity results to cocycles with values in non-abelian groups. The results for cocycles with
values in diffeomorphism groups are be presented elsewNdi][ These are used in the
study of partially hyperbolic actions of higher-rank abelian groups, and to prove local
rigidity of some partially hyperbolic actions of lattices in higher-rank Lie groups.

We describe the necessary notions and formulate the results in 2. In 83 we consider
in detail the case of real-valugt cocycles. This emphasizes the main geometric idea
of the method, namely that the expected solution of the cohomological equation is first
constructed as a differential 1-form, the TNS condition implying that the form is closed.
The fact that this form is exact follows from the hyperbolicity of the induced action on
homology. This method can be extended to some situations where the TNS condition
does not hold, e.g. Weyl chamber flow=K]]. In that case the constant cocycles do not
correspond to closed forms anymore, however, their exterior derivatives are of a particular
form, and one can show that for an arbitrary sufficiently smooth cocycle the exterior
derivative of the corresponding form is also of this special form.
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In 84 we gathered some general results, independent of the TNS property, which are
used for the case of Lie-group valued aolHér cocycles. As a substitute for the differential
1-form, one constructs an invariant foliation by putting together the ‘stable’ and ‘unstable’
foliations of the generators of the skew-product action determined by the cocycle. In 85
we complete the proofs of the theorems given in 82. Due to certain technical difficulties,
for Holder cocycles we restrict ourselves to the case of an action on a torus. The results for
smooth cocycles are proven for actions on infranilmanifolds.

In §6 we use the main result to show that the derivative cocycle of a stall
perturbation of a linear TNEX action on a torus is cohomologous to a constant cocycle
via a Holder transfer map. The derivative cocycle of such an action is not a small cocycle,
but one can reduce it to that case by considering the splitting into Lyapunov spaces. Some
examples and related questions are included in 87.

2. The main results

The only manifolds which are known to admit Anosov diffeomorphisms are tori,
nilmanifolds and infranilmanifolds. It is an outstanding conjecture that these are the only
ones supporting Anosov diffeomorphisms (seg]].

A nilmanifold is the quotient of a connected, simply connected nilpotent Lie ghdoup
by a latticel". All such lattices are cocompact, torsion free and finitely generatediRsge [
Theorems 2.1 and 2.18]). An infranilmanifold is finitely covered by a nilmanifold. More
precisely, letN be a connected, simply connected nilpotent Lie group @radcompact
group of automorphisms @¥. LetI" be a torsion-free cocompact discrete subgroup of the
semi-direct producN C. Recall that an elemertt, ¢) of NC (wherex € N andc € C)
acts onN by first applyinge and then left translating hy. By a result of Auslander (see
[A]), ' N N is a cocompact discrete subgroupMfandI’ N N has finite index im". The
quotient spac&//I' is a compact manifold called an infranilmanifold.

Anosov diffeomorphisms on nilmanifolds and infranilmanifolds were introduced in
[Sm, F2, SR. Let f : NC — NC be an automorphism for which(I') = T, f(N) = N.
Then f induces a diffeomorphisnf : N/I' — N/T, called aninfranilmanifold
automorphism If the derivative D f|y at the identity is hyperbolic, i.e. has all the
eigenvalues of absolute value different from one, tifeis an Anosov diffeomorphism.
Note that in this case the stable and unstable distributions are smooth.

In the sequel we consid&F actions only on infranilmanifolds.

Definition. We call an actiodinear if it is given by infranilmanifold automorphisms.

Recall the Franks—Manning classification of Anosov diffeomorphisms on infranilman-
ifolds (see F1, Man] for the case of & action and H1, proof of Proposition 2.18] for
the case of &f-action). LetM be an infranilmanifold and : Z*¥ x M — M an abelian
¢! action containing an Anosov diffeomorphism. Assume thdtas a fixed poinky.
Then the actionr is Hélder conjugate to the lined&* actiona : Z¥ x M — M given
by automorphisms induced by the map in homotepy ZF x 71(M, xg) — m1(M, xo).
Note that the action always has a periodic point. In general, the actionlieHconjugate
to an affine action, whose restriction to a subgrougbfof finite index is an action by
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linear automorphisms. Recall that Hurder constructedHi2] fabelian Anosov actions on
the torus by affine maps without fixed points.

Leta : Z¥ x M — M be an abeliaX action. Viewa as a homomorphism frots*
into Diff € (M) and denote byl c Diff X (M) its image.

In order to obtain the rigidity results about cocycles d€ractions, we introduce the
following.

Definition. We say that an actioa is TNS, if there is a familyS of partially hyperbolic
elements ind and a continuous splitting of the tangent bundlél = @7 ; E; into A-
invariant distributions such that:
(i) the stable and unstable distributions of any elemerf are direct sums of a sub-
family of the E;’s;
(i) anytwo distributionsE; andE;, 1 < i, j < m, are included in the stable distribution
of some element ifs.
If, moreover, the actio is C*° and each distributioik; is smooth, we say that the
action issmoothly-TNS

Remarks.

(1) Itis easy to see that given a TNS action, one can assumes tbamsists only of
Anosov elements.

(2) Given a TNS action described I c .4 with all elements ofS Anosov and a
splitting 7TM = @} ,E;, one can replace the distributiofis;} by the non-zero
intersectiong ), E°“(a), whereo (a) € {u, s}. Indeed, denote the new splitting
by TM = eaf.‘le,». It obviously satisfies (i), and (ii) can be checked as follows:
given F; and F;, there are 1< i’, j* < m such thatE;, C F; andE; C F; and
a € Ssuchthatty, E;; C E*(a); thenF;, F; C E*(a), by the choice of the new
splitting.

If the original splitting was smooth, so will be the new one.
(3) Inview of the above, one can always assume that the distributipage integrable.
(4) By Remarks (1) and (2), any linear TNS action on an infranilmanifold is actually

smoothly-TNS. If the linear action is on a torus, one can assume that the distributions

E; are constant (i.e. given by translates of some fixed vector subspaces).

(5) Consider a TNZX actiona on an infranilmanifoldM. Since it contains Anosov
elements, there is a subgrolipc Z* of finite index acting with a fixed point, say
xo0, and by the Franks—Manning classificatiolr is conjugated to the linear action
a = (a|r)« induced onr1(M, xp). Using Remark (1) and the fact that the elements
of S ¢ Z* can be replaced by their powers, one can assumeSthatI" and §
consists of Anosov elements only. Then, by Remark (2), the agtieMNS as well,

because the TNS property can be described in terms of the intersections of the stable

and unstable foliations of the elementsSof

Let G ¢ GL(d, R) be a closed subgroup, with the metric induced by the matrix norm
on GL({d, R).

The following theorems apply fo6G-valued cocycles that are small. However, the
smallness assumption is not necessary in the pra@f# R. Since anyR-valued cocycle
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can be made arbitrarily small by multiplying it by some non-zero number, we will not
make this distinction in the sequel.
For Holder cocycles, our result is as follows.

THEOREM2.1. LetM be atorusandr : ZK x M — M a TNS action. Lep : Zk x M —
G be a smalB-Holder cocycle ovew. Theng is cohomologous to a constant cocycle, i.e.
there is as-Holder functionP : M — G and a representation : Z¥ — G such that

B(a, x) = P(ax) ‘n(a)P(x).

Moreover, ifa and g are CX, K = 1,2,..., 00, w, thenP is CK=¢, for any small
e>0.(K—¢e¢=KforK €{1, o0, w}).

The main part of the proof is to deal witholitifer cocycles over a linear action.

THEOREM2.2. Let M be a torus andx : Z¥ x M — M a linear TNS action. Let
B : 7ZF x M — G be a smalls-Holder cocycle over:. Thenp is cohomologous to a
constant cocycle through&Hdlder transfer map.

The reduction to this case essentially involves the Franks—Manning classification and
previous regularity results.
For C*° cocycles we do not have to require that the manifold be a torus.

THEOREM2.3. Let M be an infraniimanifold andr : Z¥ x M — M a smoothly-TNS
action. Letg : Z¥ x M — G be a smallC*® cocycle over.. Theng is cohomologous to
a constant cocycle through@® transfer map.

Moreover, ifa and 8 are C®, then the transfer map 56«

Remark.As can be seen from the proof, a similar result holds for cocycles that are only
finitely smooth. In that case there is a loss of regularity for the transfer map.

We now introduce some notation which will be used in the sequel.

Let a be a partially hyperbolic diffeomorphism. We denotey(a) the contraction
and expansion coefficients of defined by

h—(@) == lim | D(na)l s ™",
n—o0
; -1 —1/n (21)
Ay(a) == lim [|D(na)™"|gu@ll™ """
n—oo

LetB : Z¥xM — GL(d, R) be acocycle and € ZF. We denote by (a) = u+ (B, a)

the contraction and expansion coefficientsgtg,, defined by

p—(a) = lim inf [|B(na, x)~ 7",
n—0o0 XEM

2.2
m(a) = n|Lmoo sup||B(na, x)||¥". (2.2)

xeM
Note thatinfep [|8(a, x) 7171 < u—(a) < p4(a) < sUp.ey IBGa, 1)
If the cocycle takes values iR (which we see as the additive group) then = 1
because acts by translations.
If W is a foliation of M andx € M, denote byWqc(x) the path-connected component
of {y € W(x) | disty;(x, y) < 8o} which contains:, wheredg > 0 is small and fixed. The
constan®g is called thesizeof the local foliation.
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3. Proof for real-valued cocycles
We prove here a special case of Theorem 2.3 in order to illustrate the main geometric idea
of the method (as mentioned in the introduction).

THEOREM3.1. Let M be an infranilmanifold andr : Z¥ x M — M a linear TNSZ*
action. Lets : Z¥ x M — R be aC®™ cocycle ovew. Thenp is cohomologous to a
constant cocycle through@* transfer map.

By Remark (4) in 82, we can assume that the distributi&nare smooth.
The proof will follow from a sequence of lemmas. The TNS property is required only
for Lemma 3.3.
Assume thap : Z¥ x M — R is a real-valued cocycle over the TNS linear actign
i.e.
Bla1 + a2, x) = B(a1, axx) + B(az, x), forallay,as e 7k, x e M.

We want to show that, under certain regularity conditiohss cohomologous to a
constant cocycle, i.e. there is a functiBn: M — R and a homomorphism : Z¥ — R
such that

B(a,x) = P(ax) + n(a) — P(x).

The idea of the proof is to construct&® 1-form onM which is closed and determines
aZF-invariant class in cohomology. Since the action induced in cohomology is hyperbolic,
the above form has to be exact. This allows us to recover the homomorphésrd the
transfer mapP.

We also mention a second argument, which will be developed in detail for the case of
Lie-group valued cocycles. Namely, since the form is closed, it describes a foliation of
M x R with leaves of dimensiom = dim M. Considering the holonomy of this foliation,
one can show that the leaves are closed and dgva@mply (i.e. the form is actually exact).

Leta e ZF be a hyperbolic element. Assume that M andy is in the stable leaf of
a throughx, W¥(x; a). Then the following sum is convergent @& (see, for example,
[LMM , proof of Lemma 2.2]; note that i is only Holder then the sum still converges
in C9)

(e.¢]
Py (y;x) :=— Y _[B(a, (na)y) — B(a, (na)x)],
n=0
and we can define a 1-foray, on E$(a) by taking the differential o, in the y-variable
along the stable leaf. Actually, the differential Bf (-; x)|ws(x.q) defines the form on the
wholeT W (x; a) and it does not depend on the painthosen on the stable leaf.

Similarly, forx € M andz € W"(x; a) = W*(x; —a), let the 1-formw} on E%(a) be
defined as the-differential of P, (z; x) along the unstable leaf af. Consider the form
wa =0l ®w, onTxM = E'(a) ® E(a).

We will show that for a large set of hyperbolic element&Zinthe above construction
leads to the same form. Moreover, this form is smooth and closed. We introduce first the
notions of the Lyapunov exponent and the Weyl chamber, which we use only in this section
(see KSp4] for more details).

The action of the derivative, of the actione on the tangent bundle of the universal
cover of M is determined by commuting invertible matrices. There are linear functionals
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L; : ZF — R, called Lyapunov exponents, whose values for each Z* are given
by the logarithms of the absolute values of the eigenvalues of the matrix corresponding
to the derivative ofx(a). Each Lyapunov exponent can be extended to a linear map
L;: R*¥ — R, also called the Lyapunov exponent. There is a splitting of the tangent
bundle intoZ*-invariant sub-bundleg M = @; F; such that the Lyapunov exponent of
v € F; with respect tax(a) is given byL ;(a). We call F; aLyapunov spacer Lyapunov
distributionfor the action. The kernel of each Lyapunov exponent is a hypergigna
R*. We denote b)H]T the half-space wherk; is negative. The connected components of
RF — UM are called Weyl chambers.

Note that using Lyapunov exponents, the TNS property can be characterized by

L; = cL; for some constant = ¢ > 0.

LEMMA 3.2. Consider a linearZ* action @ which contains an Anosov element. Then
there is a subse§ c Z* of hyperbolic generators df* which contains elements from
each Weyl chamber, and with the property that,ib € S then

wg = Wp.

Proof. LetA; := expoL; : Z* — [0, 00), and denote byF; the foliation corresponding
tOF}.

Assume first thati, b € Z* are partially hyperbolicF; c E*(a) N E*(b) and; (),
the contraction coefficient along;, is smaller than the inverse of the Lipschitz norm of
a(a —b). Letz € F;(x) C W'(x;a) N W¥(x; b). Using the cocycle relation we find that

n—1

Y B(a, (ka)z) = B(na, 2),

k=0
B(na,z) — B(nb,z) = B(n(a — b), (nb)z),

and similarly forx instead ofz. Therefore, in order to show th#, (z; x) = P, (z; x),
and consequently thata|pj = wplF;s it is enough to show that

nleoo(ﬂ(n(a —b), (nb)z) — B(n(a — b), (nb)x)) = 0.
But
|B(n(a — b), (nb)z) — B(n(a — b), (nb)x)|

n—1
Z(,B(a —b,[nb+k(a —b)]z) — B(a — b, [nb+ k(a — b)]x))‘
k=0

n

-1
disty; (a(nb + k(a — b))(z), a(nb + k(a — b))(x))8i|
k=0

< |B(a—b, ‘)||Hb|der[

n—1
< [IB@ — b, llHsider- »j (b)" - C - (dist (z.x))° > llee(a = b)|If3,.
k=0
whereC is a constant that is independentofSincei ; (b) < 1 andi;(b) - |la(a — b)||Lip
< 1, the conclusion follows. O
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We now construct the set ¢ Z*. Consider first a finite seF of elements inZk
close to the origin, which containsZabasis ofZ. There is a constari > 1 such that
le()llLip < M, forallc € F. LetL; : R¥ — R be thej’s Lyapunov exponent ant(;
the hyperplane ifR* determined by the kernel of;. Then there exist a baB around the
origin and cone€' (H;) C H; intersecting all Weyl chambers ihjf, such that for each

j and any elemerit € C(H;) N (Z¥ — B) we have
L; <—logM,
and therefore
Ajb) < M7 (3.1)

Consider two elements, b € C(H;) N (Z¥ — B). We can joina andb by a sequence
of elements inC(H;) N (Z¥ — B) adding at each step an element frémFormula (3.1)
allows us to apply the first part of the proof repeatedly and deduce that

walF; = op|F;- (3.2)
By the construction of the 1-form, (3.2) still holdsdfandb are in the union o (¥ ;)

with the opposite conesC ().
Define the sef to be

m
S = [ﬂ(C(H,-) U (—C(Hj)))} Nz - B).
j=1
LEMMA 3.3. If the linear Z* action is TNS then the form = w,, a € S constructed
above is smooth and closed.

Proof. Denotemn = dimM. LetU C M be a small-enough open set.

Since the distribution€; are smooth, one can find a frame of smooth vector fields
{X;}j=1m overU such that each field ; is contained in somé&;. Let{n;};—1. be the
dual frame of 1-forms ovdv, and write

m
wly :ijr/j, wheref; = w(X;).
j=1
We will show that each functiory; is smooth along all the distributions; and the
derivatives are continuous dn. However, this implies that eacfy is smooth onl (in
some cases one can use the characterization of smoothness via a Fourier transform, or the
theorem of Joure;"in general, one needdK, Theorem 2.6]).

Indeed, in order to show thgi is smooth alond:;, pick an Anosov elemet € S such
thatX;, E; C E*(a). SinceP; (-, x) is smooth alongV*(x; a) and varies continuously
in the C* topology withx € M, one concludes that; | s, iS continuouslyC* along
W+ (a). By Lemma 3.2, this proves our assertion.

To show thatw is closed, use again the TNS condition and Lemma 3.2. Clearly
o7 lwsx:a) 1S €xact, hence, using the fact that pull-back and exterior differentiation
commute,

(dw)lws (x;a) = d(@|ws(x;0) =0 fora e S.

Since overU any two directionsX; and X ; are included in the stable subspace of some
hyperbolic element € S, we obtain thatdw)|y = 0. O
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LEMMA 3.4. The cohomology class afin HY(M, R) is Z* invariant, hence it has to be
zero, i.ew is exact.

Proof. Leta € Z* be hyperbolic and, = ol ®w; onTM = E"(a)® E* (a) (as defined
at the beginning of this section). Then

b*wy = wy +dB(b, ) (3.3)

for any diffeomorphisnb € Z*. Indeed, sincab = ba, the cocycle relation (1.1) implies
that

Bla,bt) = B(a,t) + B(b,at) — B(b, 1),
and therefore

P (by,bx) = P, (y,x)+[B(b,y) — B(b,x)],
P_,(bz,bx) = P_,(z,x) + [B(b,2) — B(b, x)]

fory € W¥(x; a) andz € W*(x; a). Hence, foit € ES(a),

("0, )x(§) = (w, )bx (Db(§))
=d_P, (-,bx)(Db(§)) =d_P, (b-, bx)(§)
=d_ [P, (x)+ BD, ) — (b, )]E) = w, () +d-_B(b, ) (),

whered_ denotes the differential along*(a). A similar computation fow} completes
the proof of (3.3). This shows that the classe H1(M,R) corresponding ta is Z¥
invariant.

Thatw is exact (i.e. thab = 0) now follows from the fact that any linear hyperbolic
automorphism of an infranilmanifold induces a hyperbolic map of the first conomology
group, and therefore the only invariant class is the trivial one.

Indeed, let the infranilmanifold b/ = N/T wherel’ ¢ NC is a lattice, and
let A : NC — NC be an automorphism which leaves invariant bathand T', is
hyperbolic onV and induces the infranilmanifold automorphigm M — M (we use the
notations introduced at the beginning of 82). ThatiM) = TI', Hi(M,Z) = T/[T, '],
Hi(M,R) = H1(M,Z) ®z R and H(M, R) is the dual of H(M, R) in a natural way,
where[I', I'] is the commutator subgroup ®f. Note thatA invariates(I", I'], hence it
defines a map oh/[I", I'], which induces the action of on Hy (M, R).

Let'o := I’ N N, which has finite index il" and is anA-invariant lattice ofN. Recall
that a lattice in a simply connected nilpotent Lie group and any subgroup of such a lattice
is finitely generatedRa, Theorems 2.10 and 2.7].

Sincel'g/(I'o N [T, T']) < I'/[I', I'] is of finite index and both are finitely generated
abelian groups(I'o/(I'o N [T, T'])) ®7z R = (I'/[I,T']) ®7 R in a way that identifies
the natural actions ofA. Therefore, it is enough to show that the action ofon
(T'o/(ToN[I, T])) ®7 R is hyperbolic. Sincél'o, I'g] C I'oN [T, I'], the above statement
follows once we show that acts hyperbolically otil'o/[To, I'ol) ®7 R, because

I'o/[To, I'o]
(ToN [T, T1)/[To. Tol’
and all of the above quotient groups are finitely generated abelian.

Fo/(To N[, T']) =
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Consider the short exact sequence of finitely generated abelian groups
{1} > (o N[N, ND)/[To, T'ol = T'o/[T'0, I'ol = I'o/(To N[N, N]) — {1}.

Since bothI'g N [N, N] and [T'g, I'p] are cocompact ifN, N] [Ra, Corollary 1 of
Theorem 2.3 and proof of Theorem 2.1], the left-hand group in the above sequence is finite.
On the other hand;o/(I'o N [N, N]) < N/[N, N] and the action oA on the abelian
groupN/[N, N] is hyperbolic because the derivative &fis hyperbolic at the origin of

N. These two observations complete the proof of the fact #hatts hyperbolically on
H1(M,R), hence on Hi(M, R) as well. O

Once we know thatv is exact, the conclusion of Theorem 3.1 follows easily. Let
P : M — R be aC® function such thato = dP (P can be chose@ > becausev is
smooth). From (3.3) we obtain that

d[B(b,) —Pob()+ P()] =0

for eachb € ZF. We are done, because this means that the cocycle cohomologgus to
given byB (b, ) :== B(b,-) — P o b(-) + P(-) : M — R is constant for alb € Z*. O

4. Some general results

We describe in this section a few lemmas and constructions that will be used for the proof
of Theorems 2.1, 2.2 and 2.3. The results of this section are independent of the TNS
property.

Consider aZ* actiona on M and a smalb-Holder cocyclef : ZK x M — G C
GL(d, R) over it. The smallness of the cocycle is specified by the conditions given after
Lemma 4.2 and by Lemma 4.5.

We can see the cocycle as taking values iNd5[R). Moreover, sincés was assumed
closed and the construction of the transfer mRpand of the representatiom will
involve only limits of products of the cocycle values, it is enough to deal with the case
G =GL{d, R).

Define the extended actiéh: Z* x (M x GL(d,R)) — M x GL(d, R) by

a(a)(x, g) = (ax,a(a)g).

The main step in the proof of the theorems is to constru@-amvariant (topological)
foliation Fg of M x GL(d, R) with leaves of dimension equal to di#f. It is here where
the TNS property plays a role. Then, using a holonomy argument and the hyperbolicity of
the action, we show that all the leaves of the foliation are closed manifolds, which cover
M simply. This fact and the invariance of the foliation allow us to find the representation
7 and the transfer map.

We begin with some results aboubldér cocycles over a partially hyperbolic action.

The following lemma gives a family of invariant foliations for aldéer cocycle over a
partially hyperbolic diffeomorphism.

LEMMA 4.1. Leta be a partially hyperbolic diffeomorphism #f, 8 a cocycle over and
{W(x)},em ana-invariant foliation of M whose leaves are included in the stable foliation
ofa.
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(i) Assume thaB(a, -) is §-Holder and
(@ < py@ ™t p_(a).

(Note that this condition is automatically satisfied if the range of the cocycle is a
compact Lie group.)
Then, for any € M, there is aB-HbIderfunctionyf’W : W(x) — GL(d, R) such
that:
Q) W' =1
(2) the family of ‘graphs’W(x; g) := {(, yf’W(t)g) |t € W)}, x € M,
g € GL(d, R), gives arix(a)-invariant foliation ofM x GL(d, R).
These functions are defined by the formula

yaW() = lim B(na, N"1B(na,x), te W), (4.1)

and depend continuously on the paingE M. Moreover, these are the only functions
that are uniformlys-Holder onWjoc and satisfy conditions (1) and (2).

(i)  If, moreover, the cocycle is C*° and the foliation{ W (x)} has smooth leaves varying
continuously in theC* topology, then each functionﬁ"w is smooth alongV (x),
with derivatives varying continuously a.

Remarks. 1If the foliation {W (x)} is the stable foliation of then we denotg{" by yi.
By the last statement of the lemma, the functiq)ﬁ§V are the restrictions of¢ to W (x).
2. The proof of part (ii), with§ = 1, is essentially contained ilN[T'3, Theorem 6.1].
The Holder case is proved along the same lines. One can also prove these results by the
methods of HPS, Chapter 5].

Proof of Lemma 4.1(i)In order to simplify the notation, we writg, for yf’W.
The invariance property of the familyV (x; g)}. ¢ iS equivalent to the relation

Bla, )yx(t) = yax(at)Ba,x), 1€ W(x), (4.2)
or
ye(t) = B(a, 1) Lyax(@n)B(a, x). (4.3)

Iterating (4.3) we obtain that

ye(0) = B(na, 1) Yaco (na(t)) B(na, x). (4.4)

Sincey,q(x)(na(t)) should approach the identity as— oo, formula (4.4) suggests the
definition (4.1) ofy;.
Note that it is enough to construct eaghon Wipc(x), and then extend them using (4.3).
We prove first the uniqueness of the functidps}iey. Assume{y,} and{y.} are
two families that both satisfy the conditions (1) and (2) given in Lemma 4.1. Let
R (1) := 7:(t) " Lyc (). ThenR,(x) = I and, by (4.4),

Ry (1) = B(na, x)  Rua(x)(na(0))f(na, x).
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By restrictingWioc, we may assume that ttfeHolder norm ofR, |w;,.x) iS bounded by
some constar, < oo, uniformly with respectta € M.

Choosec_ > A_(a), 0 < v— < u—_(a) andvy > uy(a) such thatvy - vt <1,
There is a constar > 0 such that for > 0 andt € Wi .(x; a)

| D(na)|gs @)l < Ck”,
distyy (na(t), na(x)) < Ck" disty (¢, x),

supllf(na, y)7| < cvz",
yeM

sup||B(na. y)|| < Cv.
yeM
Then, fort € Wjgc(x) andn > 0,

IR (t) — I = [ B(na, x) " Rua(x)(na(1)) = Rua(x)(nax))1B(na, x)||
< |B(na, x)7Y| - Cs - disty (na(x), na(1))’ - | B(na, x)||

< C?HC, (v tvyk® ) disty (1, x)°,

henceR,(-) = 1.
We prove now the existence of the family,}. DenoteB(a, -) by B,(-). Consider the
functionsy, , : W(x) — GL(n, R) given by

Yen(t) = B(na, )~ 1B (na, x).

We show that the sequengg, ,} is uniformly Cauchy orWjec(x). In particular, there
is a constan€, > 0 such that sup,{lly: (Il | € Wioe(x)} < C2. Indeed, lein > n be
positive integers ande Wioc(x). Then:

m—1
1Ve,m (@) — Ve n (DI = Z 1V, k41(8) = Ve k (Ol

k=n
m—1

=Y lIBtka, )" Ba((k + Da() " Ba((k + Da(x))B(ka, x)
k=n
— Blka, ) B ((k + Da(1)) " Ba((k + Da(0)B(ka, x)||

m—1
<Y TN Bk + Da(x)) — Ba((k + Da ()|
k=n

m—1
2+8 1 1 8\k+1 ; B
<y E W= k) Ba lHoiderdisty (7, x)
k=n

< Cr(wZlogd)yr,

where the constartf; does not depend on, n, x ort.
We show next that the functiong|w,.») ares-Holder, and their llder norm is
bounded by some constafig, independently ok € M. Lett, 1’ € Wige(x) andn > 0.
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Then:

||yx,n+l(t) - Vx,n+1(t/)||
= 18,1@) - B (na(0)) Ba(na(x)) - - - Ba(x)
— B - B ma(t)) Ba(na(x)) - - - B ()|

<Y B - Bk = Dat)) B (ka 1))
k=0

: ﬂ;l((k + Da(r)) - ~ﬂ;1(na(t))ﬁa(na(X)) - Balx)
— B - BNk — Da() B, Lka(t)))
BN+ Da(0) - - B na ) Ba(na(x)) - - - Ba(x)

<Y lIBtka, i)y M - 18, (ka(t)) — B (ka ()]
k=0

NVt Dagy .tk + Da@)l - 1Bk + Da, 1)
<Y (@F) - (18, Hivoided Cx* dist (1, 1)%) - C2 - (CVEH
k=0

< Cadisty (7, 1)°,

whereCs does not depend on x, r or t’. Now take the limit ag — co.
In particular, since/, (x) = I and it is uniformlys-Holder on the local leaves, (1) is

an invertible matrix for € Wige(x), distys(x, 1) < Cgl/‘s.
The remaining claims follow from the identitieg, ,(t) = ¥y, (*)yx.n(x’) and
Vent1(t) = Bla, 1) a(.n(a(0)Bla, x). O

In the following lemma we prove some propertieggt

LEMMA 4.2. Leta andb be two commuting diffeomorphisms which generate the abelian
group(a, b) in Diff}(M). LetB : (a, b) x M — GL(d, R) be as-Holder cocycle. Assume
thata is partially hyperbolic and._(a)® < u_(a)pu(a)~2.

(i) If bis partially hyperbolic and._ (b)* < u_(b)pu4(b)~1, then

V;?lWS(x;a)ﬂWS(x;b) = V;)|W5(x;a)ﬂWS(x;b)§

(i)  BO.OYI) =y (bDB(D, x),fort € W (x; a);
(iii) Vo, () = v Gon) vy (k1) - - vy, (x2), for x1, x2, ..., x, € W¥(x; a).

Proof. We derive first (ii). Consider the family, : W*(x; a) - GL(d, R) given by
P(t) = Bb, )y (b)B(b, x)

(sinceb commutes withz, it invariates the stable foliation a@f). Clearlyy,(x) = 1. We
will show thaty, satisfies (4.2) and then the uniqueness part of Lemma 4.1 implies that

e =y, i.e. (ii).
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Indeed, sinceab = ba, the cocycle equation (1.1) give8(b,ax)B(a,x) =
B(a, bx)B(b, x). Together with (4.2), this yields:

Bla,Hi(t) = [Bla, Db, 1)yt () B(b, x)
= B(b.at) M[B(a, bt)yg.(b1)1B(b, x)
= B(b.at) " yf, . (ab®))[B(a, bx)B(b, x)]
= [B(b. at) 1yl @b(®))B(b, ax)1B(a. x)
= Yax(at)B(a, x),

as claimed.

To prove (i), notice thaty! satisfies condition (2) (i.e. equation (4.2)) in the
characterization of/?: indeed, this is exactly (ii). Therefore, in view of the Remark
following Lemma 4.1, we obtain the equality (i) by applying again the uniqueness part
of Lemma 4.1 fow, theb-invariant foliationW := W*(x; a) N W¥(x; b) C W*(x; b) and
Yilw.

Finally, (iii) follows from formula (4.1), the definition of¢. |

After these preliminaries, we describe the construction of the foliation mentioned at
the beginning of this section. More precisely, we will construct a family of plagues. This
construction requires only one Anosov diffeomorphism; the TNS condition is used to show
that the result is indeed a foliation.

Consider a-Holder cocycled which is small enough fax_(a)? < pu_(a)pus(a)~1to
hold for alla € SU (—S). Further smallness requirements will be imposed by Lemma 4.5.
As mentioned in Remark (1) of 82, we may assume thabntains an Anosov element,
saya. Due to the product structure of the stable and unstable foliatiomstb& following
holds:

(PO) there arekp > 0 and a sizeSg of the local foliation such that ik, y € M and
distys (x,y) < o, thenW; (x:a) (W}, .(x:a) contains a unique point, and its
distance to botl andy is at mostKg disty (x, y).

We want to obtain a continuous-invariant foliationFg of M x GL(d, R). The leaves
are determined locally by graphs of functidif, . }rev to be introduced as follows.

LetU c M be a open set of diameter less tidgnU is foliated by the local (un)stable
manifolds ofa. By (PO) for anyx € U, Wi.(x; a) intersects any local unstable manifold
foliating U (not necessarily at a point itf). Then the functiorfy , : U — GL(d, R) is
defined by: ifz € U, letu be the unique point imV{ .(x; a) N W{ .(z; @) and set

Fux(@) ==y, ‘@ W)

(this function should be denoted; , but no confusion will arise from the simplification).
Note thatFy . (x) = I andFy . is continuous.

Consider the foliation chart whose plaques (local leaves) are given by the graphs of the
functions Fy . (-)h whereh € GL(d,R). The local leaves can be extended to a global
foliation if the standard cocycle condition is satisfied by the foliation charts €. [In
our case this is equivalent to the following fact: &tc M be as abovey,y € U and
81, g2 € GL(d, R); if the graphs of the functionBy . - g1 andFy , - g have a common
point, then the two functions coincide @h
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In order to prove this, it is enough to consider the case whieg I and the common
point is the center of one of the plagues. Assume therefore that the common point is
(v, Fux(y)); thengz = Fy (y), and one has to show thA} . (z) = Fy,,(2) Fy x(y) for
zeU.

Letz € U. Denoteu := W (x;a) N Wg.(z; a), w1 := Wi.(y; a) N W (x; a) and
wy := Wi (y: a) N Wi (z; a) (see Figure 1). Using Lemma 4.2(jii),

Fux(@) = v, @y ) = v, @y, “(W2) v, vy (w1)

and
Fux(9) = Vo vy (w1),  Fuy(2) = ¥y, (Qyx (w2).

Hence the identityy . (z) = Fy,y(z) Fy x(y) is equivalent to

Vi (W2) Yy, ) = vy (W2) v, (). (4.5)

Remark.Our goal is to obtain a foliation by ‘integrating’ the foliations described by
Lemma 4.1 fora and —a (these can be seen, respectively, as the stable and unstable
foliations of@/(a)). The functionsFy , describe plaques obtained by stacking the unstable
leaves along one stable leaf. Equation (4.5) is the standard condition for two foliations to
commute, and hence to span together a new foliation.

We postpone the proof of (4.5), respective to the fact that the above construction yields
a foliation, to 85 (see Lemmas 5.4 and 5.6). This is where the TNS property is used. We
continue with the other results necessary for the proof of the main theorems.

For the rest of this sectiome assume that (4.5) holder diamy, (U) small enough. We
denote the obtained foliation 0.

Once we obtained the foliation, we want to deduce that the co@yideconstant. The
first observation is the following.
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LEMMA 4.3. Assume that (4.5) holds. Then the foliati#i is A invariant and has
5-Holder local leaves.

Proof. The invariance off4 is the consequence of the fact that it is obtained by integrating
two A-invariant foliations. Indeed, leb € A. Using Lemma 4.2(ii) for—a and b,
respectivelyu andb, we have:

ad(b)(z, Fux(@h) = (bz, B, D)y, “ @)y w)h)
= (bz, v, (b2)B(b, W)y, (u)h)
= (bz, V" (02) Y (bu) B (b, X))
= (bz, Fpu,px (b2)B(b, x)h)

wherez € U, u = Wi .(x; a) N Wg.(z; a) andh € GL(d, R). Therefore the local leaves
are carried byr (b) into local leaves, which shows th&j is A invariant.

The remaining statement follows from the fact ttfat , is §-Holder. To see this,
in view of (P0), it is enough to show thdfy , is Holder when restricted to either
Wite(z: @) or W (z;a), for anyz € U. For the restriction toWg (z; a) use the
definition of Fy , and the fact thaj, ¢ is Holder (see Lemma 4.1). For the restriction
to Wi .(z; @) use the commutation relation (4.5) to wrikg (z) = v,/ (z)y, “(v) where
v = W (x; a) N Wi .(z; a) and then apply the same argument. ]

The next step is to show th#s has closed leaves. Moreover, these leaves cover simply
M under the projectiond x GL(d,R) — M.

A leaf is a component oM x GL(d,R) in the leaf topology, i.e. the topology
induced by the topology of the local leaves. Pick a painte M which is fixed by
some hyperbolic element ofl. Due to the way the foliatior¥s was constructed, it
is clear that each leaf is a covering spaceMf Therefore one can define a group
homomorphism# : 71(M, x0) — MapsGL(d, R),,, GL(d, R)y,), where Gl(d, R),,
stands for the fiber overy. This map is obtained by associating to a lgog Q (M, xo)
andr € GL(d, R),, the endpoint of the lift ofy in Fg(h) starting ath. SinceFg is
invariant under right multiplication by Gl, R), the range of the above map is actually in
{¢ : GLA,R) - GLd,R) | ¢(h) = ¢(I)h} = GL(d, R). Hence there is a well defined
holonomy mapH : w1(M, xg) — GL(d, R). Our next goal is to show th&{ is the trivial
homomorphism, in view of the following lemma.

LEMMA 4.4. The cocycles is cohomologous to a constant cocycle vigldodlder transfer
map if and only if (4.5) holds and the holonomy of the foliatinis trivial.
If the foliation 75 has smooth leaves, then the transfer map is also smooth.

Proof. Assume first thag is cohomologous to a constant cocycle vié-dolder transfer
map. This gives an invariant ditfer foliation which, by the uniqueness result of
Lemma 4.1, has to coincide witRz. The statement about the holonomy follows.

For the converse implication, assume that the holon@mig trivial. Then one can
find a global horizontal sectioR : M — GL(d, R) of Fg, given by a Hlder function.
If the leaves of the foliation are smooth, théhwill be smooth too. Note that up to
right multiplication by appropriate elements of GL R), F|y coincides withFy , for
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anyx € U C M. This F will be the transfer mag. The desired conclusion follows from
the invariance ofFg under the actio@.

Indeed, lets € A andx, y € M. Since(x, F(x)) and(y, F(y)) are in the same leaf of
Fpg, so are their images undé(a); i.e. there is some € GL(d, R) such that

a(a)(x, F(x)) = (ax, B(a, x)F(x)) = (ax, F(ax)t)

and
a(a)(y, F(y)) = (ay, B(a, y)F(y)) = (ay, F(ay)t),

which shows that
F(ax)"B(a, x)F (x) = F(ay)*Ba, NF ().
Thereforer : A — GL(d, R) defined by
n(a) ;= F(ax) 1B(a, x)F(x)
does not depend onand satisfie@ (a, x) = F(ax)m(a)F (x) L. O

SinceFy is @ invariant, the holonomy map is equivariant in the sense that
H(a(a")sy) = (@, x H(y)B(@', x0) 7,

foranyy € m1(M, xo) anda’ € Ay, := {a € A | a(xg) = xo}.

Moreover, it is clear from the construction of the holonomy map and tbé&lét”
estimates on the foliatiogFg that by requiring the cocyclg to be close enough to the
identity one can obtain that a set of generators;gf/) be mapped byt into an arbitrarily
small neighborhood of the identity in Gi, R).

These last two properties of the holonomy map imply tHahas to be trivial forg
small. We prove this in three steps, first ffr a torus, then for a nilmanifold and finally
for any infranilmanifold. Note thatl,, does not have to be of rank higher than one.

Although we need the next lemma only for Gl R), we state it for a general finite-
dimensional Lie group. We apply this lemma fé&& : 71(M,xp) — GL(d, R) the
holonomy of 7, p the action induced by some Anosov element A,, onm1(M, xo)
andg = B(a, xo). We denote an inner automorphism of a group by it — ghg™ L.

LEMMA 4.5. Let M be an infranilmanifold and: € Diff (M) an Anosov diffeomorphism
which fixes a pointtg € M. Fix a setT of generators ofr1(M, xg). Consider the
automorphisnp € Aut(r1(M, xo)) induced bya (by the Franks—Manning classification,
p is ‘hyperbolic’).

Given a finite-dimensional Lie grou@, there is a neighborhoot! of the identity inG
with the following property: ifo := Int; € Aut(G) withg € U andH : m1(M, x0) — G
is a p—p equivariant homomorphism (i.éf o p = p o H) which mapsl into U, thenH
is the trivial homomorphism.

Proof. Case 1:M = T". Note that it is enough to prove the conclusion for the canonical
set of generators 68" = 1(T"). We denote it byT" = {f;}i1,...», and letA = (a;;); ;
be the hyperbolic matriy € Aut(1(T")) = GL(n, Z).

.....
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Denote byg the Lie algebra of5. By Ado’s theorem P, Lecture 10], we may assume
thatg is the Lie algebra of a matrix Lie group to whighis locally isomorphic. Choose
a neighborhoodly C g of O, the origin ing, such that the exponential map explp C
g — G is a diffeomorphism onto its image and its inverse, fegexp 1 : exp(tlo) — o,
admits a power series expansion on @k (see P]). Let 41 C %uo be a neighborhood
of O such that

Xijeliforalli=1,....n = aijX;i e Upforall j=1,...,n,
i=1

and setU := exptly) N {g € G | specAd,) N specd) = @, Ad,(U1) C o}, where
Ad, € Aut(g) denotes the differential of Ipt

Assume now thaH(T) C U andg € U. Letf; := log(H(f;)) € 41 and define a
linear mapy : Z" — g by $(f;) = fi. Since log is given by a power serig§,}; C gis a
commutative family, hence ex = H. Using the identity Inf(expX) = exp(Adg (X))
for g € G, X € g, the equivariance property @f yields

eXpN(AS))) = H(Af;) = Intg(Hf;) = Intz(exp(f;))
= exp(Adg (f,)) = exp(Ad; (5 1)),

for j = 1,...,n. By our choice ofU this implies that) o A = Adzo$ (note that
9(Afj) = Y I!_qaijfi). However, this is possible only i) = 0 because) intertwines
the linear mappingd and Ad; that have disjoint spectra.

Indeed, assume that the linear maps EndE), B € EndF), C : E — F satisfy
CA = BC. Consider the induced maps € End(E/KerC), B € EndImC) and
C : E/KerC — ImC. If C # 0 thenC is invertible, therefor&® A = BC implies
that spe(:A) = speqé), and clearly spe(ei) C specA), spe(cé) C specB).

Case 2: M is a nilmanifold. Assume that¥ = N/T, whereN is a connected, simply
connected nilpotent Lie group ardis a lattice inN.

Thenm1(M) = T andp € Aut(I') is the restriction td” of some automorphism a¥
whose differential at the identity has no eigenvalues of absolute value one. We denote this
automorphism by.

Via the exponential map we can identify with its Lie algebran; in this identification
the automorphism becomes a linear hyperbolic mapping.

Consider the upper central sequence of normal subgroups

N1 ={0} G NuG---GN1=N,

where Ny = [N, Ny—1]. These correspond to Lie subalgebrasiinA invariates the
subgroupsV; and induces hyperbolic automorphisms on hthand N /Ny

We proceed by induction on the depthof N, assuming only thal is a finitely-
generated subgroup of a connected, simply connected nilpotent Lie gvoapd is
invariant under a hyperbolic automorphismf In particular, such a group is torsion
free, becaus# is (see the proof of Theorem 2.18 iR4]).

If m = 1 thenN is abelian and we are done by Case 1. LCgt := ' N N,
which is normal inT". If T, = {0}, then we can reduce the problem to one about
'=T/Nm C N/Np.
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Assume therefore that > 1 andl',, # {0}. ThenTl,, is free abelian and finitely
generated (sedif@], Theorem 2.7: every subgroup of a finitely generated nilpotent group
is finitely generated) and we can invoke Case 1 to obtain tha trivial on I, for U
chosen correspondingly. However, then there is a well definedfap /T, — G and
the problem is reduced to one ab®ytl',, = I'/N,, C N/N,,.

Case 3: M is an infranilmanifold.Recall that an infranilmanifold is a quotient/ I,
where N is a connected, simply connected nilpotent Lie group, Bnid a lattice in

the semi-direct producNC of N by a compact group of automorphisrds Hence
m1(M) = T'. From the previous discussion it follows tHan N is included in the kernel

of H, providedU is chosen correspondingly. Consider thén I'/T N N — G, which

is a homomorphism of a finite group into a Lie group. Since a Lie group has no small
subgroups, we conclude thAtis trivial for the appropriate choice @f. a

5. Proofs for Lie-group valued cocycles

According to 84, what remains to be proven is the relation (4.5), i.e. the existence of the
foliation integrating the stable and unstable foliation& af) for somea € S Anosov (the
leaves of these foliations are given by the graphgffrespectivelyy ¢, x € M).

We will do this for Holder cocycles over a TNS linear action on a torus in Lemma 5.4,
thus proving Theorem 2.2. From this, the Franks—Manning classification and the results of
84 one can deduce Theorem 2.1. The reason we can prove Theorem 2.2 only for actions
on a torus is that for (infra-)nilmanifolds the foliations obtained by intersecting stable and
unstable foliations of commuting linear Anosov elements need not commute.

For smooth cocycles however, we can decide integrability on the level of distributions,
via the theorem of Frobenius. Thisis done in Lemma 5.6. Note that this parallels the proof
of Theorem 3.1: one can prove integrability of the corresponding distribution by showing
that theg-valued 1-formw on M satisfies the equatiafw + %a) ANw=0.

Proof of Theorem 2.2As mentioned in Remark (4) of 82, we may assume that the
distributionsE; are constant. Call the foliations &f corresponding to th&;’s minimal
foliations

Since M is a torus, any subset of minimal foliatior#s;, 7>, ..., Fx generates an
integrable foliation. If the integrable foliation i85, we write 7 = {F1, Fo, ..., Fi}.

The following lemma is immediate.

LEmMMA 5.1. Denote byN («) the number of minimal foliations of the actian
There are constant€1 > Kg > 1, &9 > 0, §1 > 0 and a sizeSg > O for the local

foliations, eg < 8o < 681/N(), such that given two disjoint familiegy, Fo, ..., F

and G, Go, ..., G; of minimal foliations andF := {F1,...,Ft}, G = {G1,..., G},

‘H := {F, G}, the following properties hold.

(Pl) Foranyx € M, y € F°(x), z € G"(x) such thatdisty(y,z) < eo,
there is a uniquav = F'°°(z) N Gl°¢(y), and max{disty (w, y), disty (w, z)} <
K1 disty (y, 2).

(P2) Foranyx,y € M such thatdisty (x, y) < g0 andy € H!°(x), there is a unique
w = F1°¢(x) N G'°¢(y), andmax{disty (w, x), disty (w, y)} < K1 disty(x, y).
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(P3) If x, y € M are such thaty € H(x), x andy can be joined irH(x) by a path of
length less thad; anddisty (x, y) < 8o, theny € H'°C(x).

In the rest of the proof the size of the local foliations will be Szagiven by the above
lemma.

LEMMA 5.2. There is a constant;, 0 < g1 < &g such that the following holds: given

any foliation 7 = {F1, Fo, ..., Fi}, where theF;’s are minimal foliations, and € M,
z € F(x) with disty (x, z) < e1, there existyy € FI°(x), y2 € FiP(y), ..., yi—1 €
FI°¢ (yk—2) such thatz € F1°(yx_1). Moreover,

max{disty (x, y;), distyr (z, yi)} < Ky disty(x, z). (5.1)

Proof. Leter < eo/(KZ + K1).

We construct the points; as follows. The families of foliationsFy, F», ..., F
and 11, Fit2, ..., Fr are both integrable; denotg := {F1, 7o, ..., Fi} andQNi =
{Fis1, Fis2, ... Fi). Then, by (P2) of Lemma 5.1, the local lea@®(x) andG1°°(z),
which are both included itF (x), intersect in a unique point;, which satisfies (5.1) as
well.

It remains to show that; € ]—"°°(yl 1). By our choice of; the distance between the
pointsz and yi—1 is smaller thareg. Apply property (P2) for the foliationg; and Gi,
which spanG;_1(z), andy;_1 € G° (z). It follows thatF/°%(y;_1) andG!°%(z) intersect

in a unique point. Moreover,
disty (¢, x) < disty (¢, yi—1) + disty (yi—1, x)
< Ky disty (yi—1, z) + K1 disty (x, z) < (K3 + K1) disty (x, 2)
< (K?+ K1)e1 < 0 < do.
Since¢ e Fl°%(y;_1) andyi_1 € G°(x), it follows that there is a path ig; (x)
betweent and¢ of length at most &, and then (P3) implies that € g'oc(x) However,

g'oc(x) mtersects@oc(z) in a unigue point,y;. Hence¢ has to coincide withy;, and
thereforey; € Fl'oc(y, 1. O

Before we prove the main lemma, let us notice that a commutation similar to (4.5)
automatically holds in some cases.

LEMMA 5.3. Leta, b, ¢ € S be partially hyperbolic diffeomorphisms. Assuffieand 7>
are minimal foliations such that; ¢ WS(a) N W¥(c) and F> C WS(b) N W¥(c). Then
foranyx € M,y € Fi°x), z € Fi°%(x) andw = FiX%(y) N Fi°(z) we have

vy (W) =y, Pw)yd(y) = yE W)yl ().
Proof. Apply first Lemma 4.2(iii) fory ¢ and the families of pointge, y, w} and{x, z, w},
and then use Lemma 4.2(i). a

LEMMA 5.4. There is a constantz, 0 < g2 < g1 with the following property: let
a € S be any Anosov diffeomorphism andu € M such thatdisty (v, u) < e2. If
w1 = W (v; @) N Wi (u; @) andwz = Wi (v; a) N Wi (u; a), then

Yt (W2) Yy, ) = vy (W2) v, ().
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¥Y=X3 X3z
W, =X34
gz(le)
X33
Xy Xn
X2
gl (1)
X3
.'7'1— (X”)
W =Xy X1 Fo(x)
2 ,7'-3(’(13) U =Xy,
X3
FIGURE 2.

Proof. Let {F1, Fo, ..., Fr} and{G1, G, . .., G;} be the two disjoint families of minimal
foliations such tha* (a) = {F1, Fo, ..., Firy andW(a) = {G1, Go, ..., Gi}.

Use Lemma 5.2 to find11 = w1, x12, . .., X1.k+1 = u such that
X12 € flloc(wl), X13 € flzoc(mz), cos X141 € fll{oc(xlk)
andxzy, ..., x;+1,1 = y such that
x21 € GP%(x11), x31 € G¥°(x21), .- ., x141.1 € G (x10).

We define recurrently the pointg; forall1 <i </+4+1and 1< j < k+ 1 (Figure 2
illustrates the case= 2 andk = 3): given the points;;, xj4+1,; € gll»oc(xl‘j) andx; j41 €
f}oc(xl'j), we apply (P1) of Lemma 5.1 to defing;1 j 1 1= f}oc(X[+17j) NGI%(x; j+1).
Since there are only a finite number of minimal foliations, by takingmall enough we
can assume that all the poirits;} are in a neighborhood of diametgyof u andy.

We claim thaty; 11 x+1 = wp. Indeed, the family of local leaves

loc loc loc
F1 o ie11), Foo(i1,2), - Fr(gak)

is contained inW*(y; a), hence there is a path iIW*(y; a) of length less thamV («)dg
connectingy = x;4+1,1 andx;+1 x+1. Since dists (x;+1.4+1, ¥) < €0 < 8o, property (P3)
implies thatx; 1 k+1 € Wi (y; a). Similarly, the family of local leaves

loc loc loc
Gr (x1k41), G (x2,k41), - - G (X1 k1)

is contained inW"(u; a), hence (P3) and digt(x;j+1 441, 4) < €0 < & imply that
Xi+14+1 € Wioo(us a). But Wio (u; a) and Wi (y; a) havew; as the unique point of
intersection, which shows that, 1 x+1 coincides withwy, as claimed.



282 A. Katok et al

Since the action is TNS, for each pair of minimal foliatigfg, G; there is a partially
hyperbolic diffeomorphism whose stable manifold contains both of them. Therefore each
quadruple{x;;, x;+1,j, xi j+1, xi+1,j+1} satisfies the hypothesis of Lemma 5.3 and we
obtain that

Vi gar G L j+D Vi, (i) = ¥y (it 4DV (Kiga, ) (5.2)

But (5.2) implies

Vargs G140V ) (L) - Vi (2040
Vi CLa4+D Yy, (1) - - vy, (x12)
= Vigurr G+ LD Va1 (110 - Vi, (141,2)
Ve (141,07 (1) -y f (k21 (5.3)

To see this, define a total orderonthe &étj) |1 <i <I1+1, 1 < j < k+ 1} of
indices by:(i1, j1) < (i2, j2) <= eitherj1 > jo or j1 = jr» andiy < i2. Now transform
the left-hand side of (5.3) as follows: for indices ordered increasingly with respeet,to *
at each step substitute the left-hand side of (5.2) by its right-hand side.

Finally, Lemma 4.2(iii) shows that (5.3) is equivalent to (4.5). |

Proof of Theorem 2.1Let 8 be as-Holder cocycle.

Consider an arbitrary TNS actian on a torusM. By Remark (5) of 82, there is a
subgroud™ C Z such that the linear actian:= («|r), determined by the action induced
on the first homotopy group is TN&|r anda are conjugated by adider conjugacy::
a(a) = hoa(a)oh~1fora e I'. Assume that both andh—1 arew-Holder (0< o < 1).

Defineg : I' x M — GL(d,R) by B(a, x) := B(a, h(x)). Thenp is asw-Holder
cocycle overa. By Theorem 2.2, for8 small enough there is avé)-Holder function
P : M — GL(d, R) and a representation: I' — GL(d, R) such that

Bla,x) = P(@(a)x)m(a)P(x)~*

fora € T. ThenP : M — GL(d, R) given by P(x) := P(h~1(x)) is a («?8)-Holder
transfer map, an@|r is cohomologous ter via P. This yields al'-invariant foliationF
of M x GL(d, R) which has trivial holonomy and whose leaves asés)-Holder.

We will show thatF has actuallys-Holder leaves and it is invariant for the fufl‘
action, provided is small enough. This implies the desired conclusion (see the proof of
Lemma 4.4).

Indeed, choose e T" such thatx(a) is an Anosov diffeomorphism. Assume thats
so small that

(@) < (B (Bra) L,
@ > (B.a) Ty (B a).

Then {yf}rem and {y “},em are uniquely determined by conditions (1) and (2) of
Lemma 4.1 in thew?8)-Holder class, although these functions are actudilyolder.
But the foliationF gives a family of(w?8)-Holder functions by restriction to the stable,

(5.4)
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respectively unstable, foliations of Hence these functions coincide wih™¢} <, and
thenZ hass-Holder leaves too: the fact tha}, = ares-Holder relies on the commutation
relation (4.5), which holds due to the fact that the functigijs, define a foliation. See
the proof of Lemma 4.3. The same proof showed that the foliation defined by the functions
Fy  is invariant under any element commuting withhenceZ is ZF invariant.

The statement about the regularity®follows from Theorem 2.4 inNIT3], which can
be applied if (5.4) holds. We reproduce here the part that is relevant:

THEOREMS5.5. [NT3] Let M be a compact manifolde < DiffX(M) an Anosov
diffeomorphism, ang@, B two CX cocycles over the inducefl action taking values in
GL(d,R), whereK = 1,2,...,w. Consider the expansion and contraction coefficients
At = hs(a), pa = p+(B, a) defined by (2.1) and (2.2). Assume that< u_ - u;*
wy - u—t < Ay, and set

(Sozmax{ln(m/u) ln(u/m)}.

InAy 7 Ina_

If 8 and B are cohomologous through a transfer m&p: M — GL(d, R) which is
s-Holder for somes > §o, then P is CX—¢ for any smalle > 0. (K —& = K for
K € {1, o0, w}.)

An important tool in the proof of the above result is the following theorem of JoLijn”
if a function isCX** along the leaves of two transverse foliations with uniformly smooth
leaves, then the function 85X+* (K = 1,2, ..., 00, 0 < a < 1). For the analytic case
one uses a theorem of de la Llavé1[] that relies on the cone method ¢1K]. a

Proof of Theorem 2.3By Remark (3) of 82, one can assume that the smooth distributions
E; are integrable. Denote b¥; the corresponding foliations dff. As mentioned at the
beginning of 84, we may assume tliat= GL(d, R). Let 8 be a smootli;-valued cocycle.

For anA-invariant foliationW of M contained in the stable foliation of some element
of 5, denote byW the foliation of M x G given by

W(x;g) ={(t, yS(g) |t e Wx)}, xeM,geg,

wherec € S is such thatt; ¢ W*(c¢) (by Lemma 4.2(i), it does not matter whichwe
pick).

By Lemma 4.1(ii), W; has smooth leaves which vary continuously in e topology,
Iet E be the distribution it determines IR(M x G). Slmllarly, forc € S, IetEY(c) and
E”(c) be the distributions determined By (¢), respecnvelwu (0),inT(M x G).

According to the discussion following Lemma 4.2, we attempt to construct the foliation
Fp as the span of?s\(a/) andm. Using distributions, this translates into showing that
the distributionD := % +E“a)=3; Ez is integrable. In order to prove this, by the
theorem of Frobenius, we have to check thais involutive: if X andY are two (smooth
enough) vector fields i, then[ X, Y] € D.

LEMMA 5.6. Under the hypotheses of Theorem 2.3, the distribufiorc 7(M x G)
defined above is smooth and involutive.
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Proof. Let m = dimM and! = dimG. SinceG is parallelizable, one can choose a
smooth frameg Z;}x=1,; of TG. LetU C M be a small open set, and choose a smooth
frame{X;};=1, of TM overU such that each field ; is contained in somé&;. In view
of the construction oD, one can find a unique fram&;} j—1 ,, overU x G which spans
D and has the fornir; = X; + >, BjxZi, With B : U x G — R.

Clearly the functiong; ; are smooth in th& variable. To show thag; ; is smooth
alongE;, choose an elemente S for which X;, E; C E*(c). SinceY; € E—S?c/) c D,

the conclusion follows from the fact thH/IS\(c/) has smooth leaves (by Lemma 4.2(ii)).
As in Lemma 3.3, this implies thd? is smooth. To complete the proof, lete S be
such thatX;, X; € E°(c)|y. ThenY;,Y; % which is involutive (being tangent to a

foliation), hencgY;, Y;] € E_‘\(_c/) c D. O

This proves that the foliatiotFs exists and has smooth leaves. The conclusion of
the theorem now follows from Lemmas 4.4 and 4.5. THecase follows from INT3,
Theorem 2.4], (see Theorem 5.5 above). a

6. The derivative cocycle of a TNS action
In this section we give an application of our results.

Leta, @ : ZF x T" — T" be two smooth abelian actions. Given a finite set of generators
{a;} of Z¥, we say thafr is C? close tow if the diffeomorphisms(a;) anda(a;) areCt
close for alli.

Let PT" be the principal bundle of-frames in the tangent bundlET”. Let ¢ :

T — PT" denote the standard framing®©f, corresponding to the natural identification
®: TT"S—>T" x R, Let Yo : ZF x T" — GL(n, R) denote the derivative cocycle of
the actionx with respect to the section i.e.

Da(a)t(x) = t(a(@)x)yu(a, x),
foralla € Z¥, x € T".

THEOREMG6.1. Leta : Z¥ x T" — T” be a faithful linear TNS action ari : Z* x T" —
T" an actionC? close tox. Then the derivative cocycle is cohomologous to a constant
cocycle. The transfer map isdttler.

Before starting the proof, we recall some facts from the theory of partially hyperbolic
diffeomorphisms, as presented BH].

Let M be a compact Riemannian manifold afich smooth diffeomorphism a¥/. We
consider the Banach spaE&(M) of continuous vector fields ol, on which f acts as an
invertible bounded linear operatgy. We complexifyl'%(M). The Mather spectrum( f)
of f is the spectrum of, on this complex Banach space. If the non-periodic pointg of
are dense i theno (f) is a union of circleg|z| = a}. See Mat].

Assume now that the spectrum ¢f consists ofp componentSSi}f:l, whereS; is
contained in an annulus with radij andu;,

O<M<pur< - <ip < lUp.
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Then there is a decomposition
rwm=rme---or,,

whereT; are f, invariant submodules ofFo(M) for which o (fi|r;) = S;. To each
submodulel’; there corresponds a distributiaty. The distributionsE; are n-Holder

for somen that can be bounded from below by a quantity depending continuously on
{ri, ui}le (see BP, Theorem 2.1 and relation (2.12)]). Denotedy the metric in the
space ofC! diffeomorphisms off induced by the Riemannian metric, anddthe metric

in the space of continuous distributionsdf

v1 v

d(E1, E2) = maxmax max
floall (o2l

xeM vieEq voeEr

Then for anye > 0 sufficiently small, there exists & > 0 such that for anyg
diffeomorphism withd-1(f, g) < 8, the spectrum 0§, is contained in a union of annuli
with radii &; — & andu; + ¢, andd(E/ , E¥) < e.

Proof of Theorem 6.1Leta € A := «(Z*) be a linear Anosov diffeomorphism. Then the
spectrum ofz, consists of a finite number of circles, and the distribution corresponding to
a given circle is invariant under the fuli* action. Moreover, considering intersections
of such invariant distributions for a finite number of elementsd4none can find an
A-invariant splitting of the tangent bundlél” = E1 @ E> @ - - - @ E, with the property
that for eactu € A — {I}, the spectrum o&.|g, is contained in a circle. We will denote
by A; () the radius of the circle. Note that : A — R is a homomorphism. Let c Z*

be the pre-image underof the set of elements introduced by the TNS condition.

Lete > 0 be given. Takin@ sufficientlyC? close tow, one can find aif (Z*)-invariant
splitting of the tangent bundIgT" = E1 & E» @ --- @ E, such that the spectrum of
a(“)*“?,- is pinched betweek; (x(a)) —¢ andi; (a(a))+eforanya € Z,i = 1,2,..., p.
Moreover, sinceEi is close toE; and Hoilder, one can choose aoldiér identification
betweenE; and E; (e.g. take the orthogonal projection in each fiber). Since the sub-
bundlest; c TT" are smoothly trivial, we conclude that there areldt€r bundle maps
v; @(Ei) — T" x V;, whereV; c R" are vector subspaces.

Consider the ldlder cocyclesy; : ZF x T" — GL(V;) obtained by restricting the
derivative cocycleyy to CI>(E,~) and conjugating by¥;. Note that the contraction and
expansion coefficients (2.2) of |, are exactly the radii of the annulus bounding the
spectrum ofi(a), on E;. (Indeed, conjugation by a continuous bundle map does not affect
the spectrum and the equality follows from the spectral mapping theorem.) Hence, by
taking@ closer tow, the cocycley; (a, x) := Aj(a(a)) 1y (a, x) can be made as small as
desired while keeping its ¢lder class away from zero. Then, by Theorem 2.1, there are
homomorphisms; : Z¥ — GL(V;) and Hlder transfer map#®; : T* — GL(V;) such
that

yi(x,a) = Pi(a(@)x)(hi(@(@)mi(a) Pi(x) "L,

Thereforeyy is cohomologous te; o « - ; via the Hilder transfer ma@\pglpi. O
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7. Examples of TNS actions and related questions

Example 1.Let SL(n, R) be the group of invertible matrices of determinant one. Let
T c SL(n,R) be a maximal torus such that = R”1. It follows from a theorem
of Prasad—Raghunathan (s&R] Theorem 7.1]), that there i € SL(n, R) such that
A= gTg 1N SL(n, Z) is a cocompact lattice ill. In particular, it follows that:

(1) A — {1} consists of hyperbolic matrices;

(2) the elements ofl are simultaneously diagonalizable oer

(3) Aisisomorphic to a free abelian group of rank- 1;

(4) ifvy,...,v, € R"is a basis of simultaneous eigenvectors for the grdij@nd
Ari o A — R"is the character ofl defined viadv := A(A)v;, A € A, then for any
strictly non-empty subsef of {1, ..., n}, there existsA € A, such that;(A) < 1,
for j € J,andx;(A) > 1,fori ¢ J.

Using property (4), it follows that the natural action.dfon T" is a TNSZ"~1 action.
This example was investigated by Katok and LewisKiL[. They proved that the
natural action ofA onT" is C*° rigid.

Example 2.Consider the following two matrices in $4, Z):

6 13 1 -4 1 0 1
4 10 1 -3 0 -1 0 1
A=lg 7 ¢ | ad B={ 1 4 , 4
2 5 1 -1 1 -2 2 3

One can check that andB are hyperbolicand B = BA. ThereforeA andB generate
an AnosoVZ? actiona on T,

There is an ordered bas®, eo, e3, e4} in R* in which bothA andB are diagonalizable.
The signs of the Lyapunov exponents &we, —, —, —) for A, (—, —, —, +) for B and
(+, —, —, +) for AB. DenoteV;, = sparfe1}, Vo = spariez, ez}, V3 = sparfes}. Then
V1, Va2, V3 induce a splitting of the tangent bundfél* which satisfies the definition of a
TNS action. The sef is {A, B, B~1A~1}.

Example 3.We describe now an example of a TS action on a nilmanifold. In our

search for this exampl€)] was useful. Let be the 2-step nilpotent Lie algebra generated

by {e;;1 < i < 10}, with the relationge1, e2] = es, [e1,e3] = e6, [e1,e4] = e7,

[e2, e3] = eg, [e2,ea]l] = eg, [e3,ea] = e1o0, and all the other brackets between the

generators are zero. L€t = spany{e;}. DenoteN = exp(n) andI' = exp(2C). ThenN

is a connected, simply connected nilpotent Lie group,2isla cocompact lattice itv.
Consider the standard representation of&Z) on spaffe;; 1 < i < 4}. Then, using

the relations between’s, we find a representation of 84, Z) on spaffe;; 5 < i < 10}. So

we have a representation of @l.Z) onn, and therefore an action avi, which invariates

I'. An abelian subgroup generated by three hyperbolic matrices can be foun®inzZ3sL

using the theorem of Prasad—Raghunathan. Using the property (4) exhibited in Example 1,

it is easy to verify that th&3 action on the nilmanifoldv/ T is a TNS action.

Finally, we would like to mention that so far we have not found an example of a linear
TNS action on an infranilmanifold that is not a nilmanifold. It would also be interesting to
find examples of linear TNS actions that are non-diagonalizable.
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