
COCYCLES OVER ABELIAN TNS ACTIONS

V. NIŢICĂ, A. TÖRÖK

Abstract. We study extensions of higher-rank abelian TNS actions (i.e. hyperbolic and
with a special structure of the stable distributions) by compact connected Lie groups. We
show that up to a constant, there are only finitely many cohomology classes. We also show
the existence of cocycles over higher-rank abelian TNS actions that are not cohomologous
to constant cocycles. This is in contrast to earlier results, showing that real valued cocycles,
or small Lie group valued cocycles, over higher-rank abelian actions are cohomologous to
constants.

1. Introduction

The goal of this paper is to describe extensions of abelian totally non-symplectic (abbre-
viated as TNS; see Definition 2.5) actions by compact Lie groups. These results can be
used to classify compact group extensions of certain higher-rank lattice actions on compact
manifolds.

This study is motivated by the results obtained recently in the theory of smooth Zk-actions,
k ≥ 2, which show that such actions exhibit strong rigidity properties. In particular, compact
Lie group valued cocycles over such actions were expected to be cohomologous to constant
cocycles.

We show that this is not exactly the case, but cocycles over abelian TNS actions become
(cohomologous to) constant cocycles after possibly taking a finite cover and restricting to a
finite index subgroup. Therefore, the cohomology class of a cocycle is described essentially
by its values over finitely many points.

This is to be contrasted with the case of cocycles over Z or R Anosov actions, where the
cohomological classification depends on the values over all periodic orbits, i.e., there are
infinitely many independent obstructions. The fact that a cocycle is trivial if its iterates
over all periodic orbits are trivial is the content of the celebrated theorem of Livsic ([12],
[13]), which applies to R-valued cocycles, and to Lie group valued cocycles that are close
to the identity. In [17] one can find an extension of Livsic’s results to cocycles with values
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in diffeomorphism groups, as well as an extension of all above mentioned results to generic
Anosov group actions. The periodic data criterion of Livsic was extended in [19] and [22] to
cohomologous cocycles in Lie groups.

Rigidity phenomena appear for actions of larger groups. For lattices in higher-rank Lie
groups, this is related to Zimmer’s superrigidity theorem [28]. For actions of higher-rank
abelian groups (Zk and Rk, k ≥ 2) it was observed by A. Katok and R. Spatzier that cocycle
rigidity holds for hyperbolic actions. Using harmonic analysis, they showed in [11] that
real valued cocycles over certain Anosov Zk and Rk actions, k ≥ 2, are cohomologous to
a constant cocycle. A different approach was introduced in [10], based on the notion of a
totally non-symplectic Zk action. It provided a geometric proof of some of the results in
[11], and proved the rigidity of certain cocycles taking values in a Lie or diffeomorphism
group (see [10] and [18]). For example, it showed that Lie group valued cocycles that are
close to the identity are cohomologous to a constant cocycle. Thus, the cohomology class of
such cocycles is determined again by a finite amount of data. In [18], diffeomorphism-valued
cocycles over abelian TNS actions are used to derive a rigidity result for smooth actions of
lattices in higher-rank semisimple Lie groups.

In this paper we consider cocycles that are not necessarily small, and give a complete
classification of them. These cocycles take values in a compact connected Lie group. In
particular, we find examples of cocycles over TNS actions that are not cohomologous to
constant cocycles, in contrast to the above mentioned results. We also show that, up to a
constant, there are only finitely many Hölder or smooth cohomology classes for such cocycles.
However, it is more convenient to speak about extensions, which are lifts of the action to a
principal bundle. Extensions are slightly more general than cocycles, which correspond to
lifts to the trivial bundle.

The paper is organized as follows: in §2 we describe necessary preliminary notions. In §3
we state a special case of our main results, and give a sketch of the proofs. The general case
is presented in §7. In §§4 and 5 we describe how the TNS property implies the existence of
an invariant foliation. In §6 we discuss the holonomies that these foliations can have. The
proofs of the main results are given in §7. In the Appendix we present results about lifting
a group action to a principal bundle endowed with a horizontal foliation.

2. Definitions

The purpose of this paper is to classify lifts of actions from a manifold M to principal
bundles with base M .

We recall the definitions of principal bundles and their maps.
Let M be a compact manifold, and G a compact connected Lie group. A CK , 1 ≤ K ≤ ω,

principal G-bundle over M consists of a manifold P and an action of G on M satisfying the
following conditions:

(i) G acts freely on P on the right: (ξ, g) ∈ P ×G→ ξg.
(ii) M is the quotient space of P by the equivalence relation induced by G, π : P →M ;
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(iii) P is locally trivial, i.e. every point in M has a neighborhood U such that π−1(U) is
isomorphic to U × G in the sense that there is a CK-diffeomorphism φ : π−1(U) →
U ×G such that φ(ξ) = (π(ξ), ψ(ξ)), where ψ : π−1(U) → G satisfies ψ(ξg) = ψ(ξ)g
for all ξ ∈ π−1(U), g ∈ G.

A principal G-bundle will be denoted by P (M,G) or simply P .
The trivial principal G-bundle is M ×G, with G acting on itself from the right.
A G-map F : P1(M1, G) → P2(M2, G) between principal G-bundles is a continuous map-

ping that satisfies F (ξg) = F (ξ)g, for all ξ ∈ P1, g ∈ G. Since a G-map takes fibers of P1 into
fibers of P2, it induces a map f : M1 → M2. If G is compact, one can choose Riemannian
metrics on P1, P2 such that the restriction of F to any fiber becomes an isometry.

Note that if f : M1 → M2 is a homeomorphism, then any G-map F : P1 → P2 covering
f is a bundle isomorphism. Moreover, any principal G-bundle over a smooth manifold is
isomorphic to a smooth principal bundle. See [6, §4.3]. (Similar results are true in the
analytic category as well; see [6, §4.7, Exercise 3].) Therefore, from now on we will only
consider smooth principal bundles.

Definition 2.1. We say that a G-map F : P1 → P2 is θ-Hölder (with respect to a specified
metric on the bundles), respectively CK , if it is given by θ-Hölder, respectively CK , maps in
a family of local trivializations of the bundles.

Definition 2.2. Consider an action of a (discrete) group A on the manifold M , α : A×M →
M . A G-extension of α is a principal G-bundle p : P → M endowed with a lift of α to an
action α̃ : A× P → P through G-maps.

In the special case when P is the trivial bundle M ×G, an extension α̃ of α is described
by a cocycle β : A×M → G:

α̃a(x, g) = (α(x), β(a, x)g), x ∈M, g ∈ G, a ∈ A.

Recall that α̃ is an action if and only if β satisfies the cocycle equation

β(ab, x) = β(a, b(x))β(b, x), a, b ∈ A, x ∈M. (2.1)

A cocycle is constant if it does not depend on x ∈M . In that case, β(a, x) = ρ(a), where
ρ : A → G is a group homomorphism.

We now describe the natural equivalence relation between extensions, which corresponds
to the cohomology of cocycles.

Definition 2.3. Two G-extensions α̃i : A×Pi → Pi, i = 1, 2, of α are cohomologous if there
is a G-bundle isomorphism between α̃1 and α̃2, i.e., a G-bundle map F : P1 → P2 covering
Id : M →M such that

α̃2(a) = F ◦ α̃1(a) ◦ F−1 for each a ∈ A. (2.2)

We call F the transfer function.
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Note that if two G-extensions are cohomologous through a continuous transfer map, then
the corresponding principal bundles are isomorphic in the CK-category as well, 1 ≤ K ≤ ∞
[6, §4.3]. A similar conclusion in the analytic category follows from [6, §§4.3 and 4.7] and
[26]; the result of Tognoli [26] applies to infranilmanifolds (described below), which are
homogeneous spaces. Hence, in our case it is enough to consider the cohomology question
only for extensions on the same bundle.

For extensions on the trivial bundle M ×G, the cohomology equation (2.2) becomes

β2(a, x) = f(a(x))β1(a, x)f(x)−1, (2.3)

where F (x, g) = (x, f(x)g).
We will be interested only in extensions of TNS actions of A = Zk, k ≥ 2, which are a

particular case of hyperbolic actions. We first recall the definition of a partially hyperbolic
diffeomorphism, and then define TNS actions.

Let M be a compact manifold. A C1-diffeomorphism T : M → M is called partially
hyperbolic if there is a continuous invariant splitting of the tangent bundle TM = Es(T )⊕
E0(T ) ⊕ Eu(T ) such that the derivative Tf expands Eu(T ) much sharper than E0(T ),
and contracts Es(T ) much sharper than E0(T ). See [7] and [2] for the theory of partially
hyperbolic diffeomorphisms, as needed for this paper. The sub-bundles Es(T ) and Eu(T ) are
called the stable, respectively unstable, distributions. These distributions are integrable. We
denote by W s(x;T ) and W u(x;T ) the stable, respectively unstable manifolds of the point
x ∈M . The stable and unstable foliations are Hölder foliations. If the diffeomorphism T is
in CK(M), then the leaves of the stable and unstable foliations are CK too. Recall that the
center distribution E0(T ) is not always integrable.

If E0 = {0} then the diffeomorphism T is called Anosov. The only manifolds which are
known to admit Anosov diffeomorphisms are tori, nilmanifolds and infranilmanifolds. It is
an outstanding conjecture that these are the only ones supporting Anosov diffeomorphisms
(see [4]).

A nilmanifold is the quotient of a connected, simply connected nilpotent Lie group N by
a lattice Γ. All such lattices are cocompact, torsion free and finitely generated; see [21],
Theorems 2.1 and 2.18. An example of nilmanifold is Td, the d-dimensional torus. An
infranilmanifold is finitely covered by a nilmanifold. More precisely, let N be a connected,
simply connected nilpotent Lie group and C a compact group of automorphisms of N . Let
Γ be a torsion free cocompact discrete subgroup of the semi-direct product NC. Recall that
an element (x, c) of NC (where x ∈ N and c ∈ C) acts on N by first applying c and then left
translating by x. By a result of Auslander (see [1]), Γ∩N is a cocompact discrete subgroup
of N and Γ ∩ N has finite index in Γ. The quotient space N/Γ ∩ N is a compact manifold
called an infranilmanifold.

Anosov diffeomorphisms on nilmanifolds and infranilmanifolds were introduced in [24], [4]
and [23]. Let f : NC → NC be an automorphism for which f(Γ) = Γ, f(N) = N . Then f
induces a diffeomorphism f : N/Γ∩N → N/Γ∩N , called an infranilmanifold automorphism.
If the derivative Df |N at the identity is hyperbolic, i.e. has all eigenvalues of absolute value
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different from 1, then f is an Anosov diffeomorphism. Note that in this case the stable and
unstable distributions are smooth.

In this paper we consider Zk-actions only on infranilmanifolds.

Definition 2.4. We call an action linear if it is given by infranilmanifold automorphisms.

Recall the Franks–Manning classification of Anosov diffeomorphisms on infranilmanifolds
(see [3], [14] for the case of a Z-action and [8], proof of Proposition 2.18, for the case of
a Zk-action). Let M be an infranilmanifold and α : Zk ×M → M an abelian C1 action
containing an Anosov diffeomorphism. Assume that α has a fixed point x0. Then the action
α is Hölder conjugate to the linear Zk-action α : Zk ×M → M given by automorphisms
induced by the map in homotopy α∗ : Zk × π1(M,x0) → π1(M,x0). Note that the action α
always has a periodic point. In general the action α is Hölder conjugate to an affine action,
whose restriction to a subgroup of Zk of finite index is an action by linear automorphisms.

Let α : Zk ×M →M be an abelian CK action. View α as a homomorphism from Zk into
DiffK(M) and denote by A ⊂ DiffK(M) its image.

TNS actions were introduced in [10]:

Definition 2.5. We say that an action α is totally non-symplectic, or TNS, if there is a
family S of partially hyperbolic elements in A and a continuous splitting of the tangent
bundle TM = ⊕m

i=1Ei into A-invariant distributions such that:

(i) the stable and unstable distributions of any element in S are direct sums of a sub-
family of the Ei’s;

(ii) any two distributions Ei and Ej, 1 ≤ i, j ≤ m, are included in the stable distribution
of some element in S.

If, moreover, the action α is C∞ and each distribution Ei is smooth, we say that the action
is smoothly-TNS.

It is easy to see that we can assume that the set S consists only of Anosov elements, and
that the distributions Ei are integrable (see [10, §2 Remarks]).

If G is compact and the extension is at least C1, it follows from the discussion below that
the lift of any Anosov element in S is a partially hyperbolic diffeomorphism. For such a
map, the center distribution is integrable and the center leaves are given by the orbits of the
G-action. In addition, the local stable and unstable leaves of the lift are graphs of G-valued
functions defined over the local stable and unstable leaves in the base. For Hölder extensions
a similar result is true (see Proposition 4.1).

3. The main results (a special case)

Our results state that cohomology classes of cocycles over (respectively, extensions of)
TNS actions are essentially given by constant cocycles. Modulo the choice of the constant,
there are only finitely many possibilities. This is an extension of the results in [10] where it
was proven that small Lie group valued cocycles are cohomologous to a constant.
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To be precise, assume that M , the principal bundles and the action α are smooth (meaning
analytic, C∞, or a sufficiently large CL). The extensions, cocycles and transfer maps can be
measurable, θ-Hölder or CK , 1 ≤ K ≤ ω. The smoothness of the transfer map F determines
the type of cohomology: if F is continuous we speak about continuous cohomology classes,
if it is smooth of smooth cohomology classes, etc.

Note that by the results of [5] (see also [13]), if two θ-Hölder extensions on the same bundle
are cohomologous through a measurable transfer function F , then F coincides a.e. with a
θ-Hölder function. From [16], it follows that if two CK-extensions are cohomologous through
a continuous transfer function F , then F is CK−ε. Here K − ε = K for K ∈ {1,∞, ω}; for
K = ω one needs that the bundles be also Cω-isomorphic, which in many cases follows from
their continuous isomorphism (see [6, §§4.3 and 4.7] and [26]).

For brevity, we are going to discuss our results only for the case of the continuous coho-
mology. The smooth and measurable counterparts follow from the results mentioned above.

We state first our results for the case when the action on the base M has a fixed point.
The general case, i.e., when there are only periodic points (those having a finite A-orbit), is
considered in §7. Given a map a : M →M , we denote by a∗ its action on homotopy.

Theorem 3.1. Assume M is an infranilmanifold and the smoothly-TNS action α : A×M →
M has a fixed point x0.

(a) The continuous cohomology classes of Tκ-valued smooth cocycles are in one-to-one
correspondence with pairs of homomorphisms

H : V → Tκ, β : A → Tκ,

where

V := π1(M,x0)/span{a∗(ω)ω−1 | ω ∈ π1(M,x0), a ∈ A}
is a finite group (determined completely by the action).

In particular, there are TNS actions that admit smooth cocycles not cohomologous
to a constant. See Proposition 3.4.

(b) Let G be a compact connected Lie group. The continuous cohomology classes of
smooth G-extensions of α are in one-to-one correspondence with conjugacy classes of
pairs of homomorphisms (H, β), where

H : π1(M,x0) → G, β : A → G,

and H intertwines the actions α∗ : A → Aut(π1(M,x0)) and β∗ := Int ◦ β : A →
Aut(G). That is,

H(α∗(a)(ω)) = β∗(a)(H(ω))) = β(a)H(ω)β(a)−1, a ∈ A, ω ∈ π1(M,x0). (3.1)

Up to conjugacy, there are only finitely many homomorphisms H, and each has a
finite image. Therefore, each extension has a finite cover which is a trivial G-bundle
and on which the lifted A-action is cohomologous to a constant cocycle. This cover
can be chosen to be the same for all G-extensions of α.
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Remark. We say that two pairs of maps (H, β) and (H ′, β′) into G are conjugated if there
is an element g ∈ G such that H ′ = Intg ◦H and β′ = Intg ◦ β, where Intg(h) = ghg−1.

If the action is on a torus, we can classify Hölder extensions over arbitrary TNS actions:

Theorem 3.2. Assume M ∼= Td and the TNS action α : A×M →M has a fixed point x0.
Then the conclusions of Theorem 3.1 hold for continuous cohomology classes of θ-Hölder

Tκ-cocycles, respectively continuous cohomology classes of θ-Hölder G-extensions.
In particular, any Hölder cocycle (respectively extension) is Hölder cohomologous to a

smooth one.

The proofs of both theorems are given in § 7.

Remark. Since there are only finitely many bundles that admit extensions, one needs a
finite amount of information to determine on which bundle a given extension is defined. For
example, assume α is a TNS action on the infranilmanifold M and G is a connected compact
Lie group. Then there is a neighborhood U of the identity in G and finitely many images
of the holonomy map, which can be computed explicitly using trivializations of the bundle
over a fixed finite set of periodic points, such that a G-extension α̃ acts on a trivial bundle
and is cohomologous to a product action α × β if and only if the images of the holonomy
map are in U .

Next, we describe a family of TNS actions which we use to construct cocycles not coho-
mologous to a constant.

Example 3.3. Let SL(n,R) be the group of real-valued invertible matrices of determinant
one. Let T ⊂ SL(n,R) be a maximal torus such that T ∼= Rn−1. Let SL(n,Z) ⊂ SL(n,R) be
the subgroup with integer entries, and let Γ be a subgroup of finite index in SL(n,Z). Then
Γ is a lattice in SL(n,R), and it follows from a theorem of Prasad-Raghunathan (see [20],
Theorem 7.1), that there is g ∈ SL(n,R) such that A := gTg−1 ∩ Γ is a cocompact lattice
in T. In particular, it follows that:

(1) A− {I} consists of hyperbolic matrices;
(2) The elements of A are simultaneously diagonalizable over R;
(3) A is isomorphic to a free abelian group of rank n− 1;
(4) If v1, . . . , vn ∈ Rn is a basis of simultaneous eigenvectors for the group A, and λi :

A → Rn is the character of A defined via Av := λi(A)vi, A ∈ A, then for any strict
nonempty subset J of {1, . . . , n}, there exists A ∈ A, such that λj(A) < 1, for j ∈ J ,
and λi(A) > 1, for i /∈ J ;

Using property 4 above, it follows that the natural action of A on Tn is a TNS action of
Zn−1.

Proposition 3.4. Let n ≥ 3, κ ≥ 1. There are TNS actions α : A× Tn → Tn that have a
fixed point x0, and nontrivial homomorphisms H : V → Tκ, where

V := π1(Tn, x0)/span{a∗(ω)ω−1 | ω ∈ π1(Tn, x0), a ∈ A}
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In particular, any cocycle in a cohomology class corresponding to such a homomorphism is
not cohomologous to a constant.

Proof. Let k ≥ 2 be an integer. Let Γ ⊂ SL(n,Z) be the congruence subgroup of order
k, i.e. Γ = {A ∈ SL(n,Z) | A ∼= Id (mod k)}. Then Γ has finite index in SL(n,Z) and we
obtain a TNS action of an abelian group A ∼= Zn−1 by the method described in Example 3.3.
The subgroup span{a∗(ω)ω−1 | ω ∈ π1(Tn, x0), a ∈ A} is included in kπ1(Tn, x0) (note that
π1(Tn, x0) ∼= Zn is abelian). Hence V is a non-trivial finite abelian group. Any such group is
a direct product of cyclic finite groups. If Zp is a non-trivial factor of order p, one can map
the generator of Zp into an element of order p in Tκ and find a non-trivial homomorphism
H. �

An important ingredient of our proofs is the existence of an invariant foliation on a prin-
cipal bundle. Namely:

Definition 3.5. Let P be a principal G-bundle over M . A horizontal foliation F of P is a
continuous G-invariant foliation such that each leaf of F covers M and is transverse to the
fibers of P . That is, locally the leaves are G-translates of the images of continuous sections
γ̃x : Vx → P , where Vx is a neighborhood of x.

We call the foliation F Hölder or CK if its leaves are Hölder or CK (that is, the sections
γ̃x describing them are Hölder or CK).

Note that having a smooth horizontal foliation on the principal G-bundle P is identical
to specifying a G-invariant flat connection of P .

We outline now the method. As seen in §2, the lifted action α̃ on P is partially hyperbolic.
We show in §§4 and 5 that — due to the TNS property of α — the strong stable and
strong unstable foliations “commute” locally. Thus W u and W s can be integrated into an
α̃-invariant horizontal foliation F of P .

The mapH : π1(M,x0) → G is the holonomy of this foliation, andH is the homomorphism
it induces to V . The homomorphism β is the restriction of α̃ to the fiber over the fixed point
x0. [If there are no fixed points, one has to take into account the action of α̃ over the α-orbit
of a periodic point.]

The invariance properties of F are equivalent to the condition (3.1). As shown in [10], if
both H and β are close to eG on a set of generators, these equations admit only the trivial
solution H ≡ eG . We prove in §6 that H always has a finite image, and, up to conjugacy,
there are only finitely many choices.

Since a principal Tκ-bundle that admits a horizontal foliation is isomorphic to the trivial
bundle M × Tκ, all Tκ-extensions can be realized by cocycles. This is expressed in the first
part of the theorems.

4. Foliations in the Hölder case

Recall that we assumed that the principal bundles and the action on the base M are
smooth; the extensions to the principal bundles may be only Hölder.
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In this section we prove:

Proposition 4.1. Assume that A ⊂ Diff(Tn) is a TNS action, G is a compact connected Lie
group, and P →M is a principal G-bundle that admits a Hölder G-extension α̃ : A×P → P
of α.

Then there exists an α̃-invariant Hölder horizontal foliation W̃ of P . Moreover, this is
the unique continuous α̃-invariant horizontal foliation of P .

Remark. If the group G is not compact, one can prove similar results for extensions that,
in corresponding coordinate charts, are given by cocycles close to the identity. But since
this might force the bundle to be trivial, in which case the results of [10] apply, we will not
discuss this here.

The proof of Proposition 4.1 follows as in [10], once we extend some of the results to the
case of principal bundles. We explain this below.

The main consequence of the TNS property is the fact that the stable and unstable folia-
tions of the G-extensions commute. The existence of stable foliations for Hölder extensions
is proven in Lemma 4.2, and the property we need in Lemma 4.3.

These two Lemmas establish the basic facts on which [10, §§4 and 5] rely. Indeed,
Lemma 4.2 takes care of [10, Lemma 4.1]. The conclusions (i) and (ii) of [10, Lemma
4.2] are provided by Lemma 4.3, while (iii) is given by equation (4.3).

The construction of the invariant foliation is done locally, using the results proved so far
(in [10]: see the description of the foliation after Lemma 4.2, which relies on formula (4.5);
this formula is proven in Lemmas 5.1-5.4; invariance and regularity are proven in Lemma
4.3). Therefore, it does not matter whether the principal bundle is trivial (as in [10]) or not.

We first state the two Lemmas for principal bundles, and then give their proofs.

Lemma 4.2. Let f : M → M be an Anosov diffeomorphism, and p : P → M a principal
G-bundle. Let W = {W (x)}x∈M be an f -invariant foliation of M whose leaves are included
in the stable foliation of f . Assume that F is a θ-Hölder G-extension of f to P .

Then there exists an F - and G-invariant continuous foliation W̃ = {W̃ (ξ)}ξ∈P of P whose

leaves are lifts of the leaves of W (i.e., locally, the leaves of W̃ are obtained by G-translates
of graphs of continuous sections γ̃W

x : Wloc(x) → P , which properly normalized, vary in the
uniform metric continuously with respect to x). Moreover, this is the unique foliation with
these properties, and the sections γ̃W

x are actually uniformly θ-Hölder on Wloc(x).

If W and F are smooth, then γ̃W
x are uniformly smooth on Wloc(x) (i.e. W̃ has smooth

leaves).

Remark. If we apply the above Lemma to W = W s
f , the stable foliation of f , then the

foliation W̃ is the “stable foliation” of F :

η ∈ W s(ξ;F ) ⇐⇒ lim
n→∞

dist(F n(η), F n(ξ)) = 0. (4.1)

Denote the corresponding local sections γ̃
W s

f
x by γ̃F

x .
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If W ⊂ W s
f , then γ̃W

x are the restrictions of γ̃F
x to W . Hence, except for the uniqueness

part, it is enough to prove Lemma 4.2 for W = W s
f .

Lemma 4.3. Let α : A ×M → M be a group acting on M which has a Hölder extension
α̃ : A × P → P to the principal G-bundle P → M . Assume that a, b ∈ A commute and

α(a), α(b) are hyperbolic diffeomorphisms. Denote by ã and b̃ their extension to P .
Then ã preserves the stable foliation W s

b̃
and therefore, up to right translation by a group

element,

γ̃ã
x|W s

loc(x;α(a))∩W s
loc(x;α(b)) = γ̃ b̃

x|W s
loc(x;α(a))∩W s

loc(x;α(b)). (4.2)

Remark. Note that formula (4.2) is property (i) of [10, Lemma 4.2]. The fact that ã

preserves the stable foliation of b̃ is exactly property (ii). Property (iii) expresses the fact
that W s

F is indeed a foliation, which is an immediate consequence of equation (4.1):

η ∈ W s(ξ;F ), ξ ∈ W s(ζ;F ) =⇒ η ∈ W s(ζ;F ). (4.3)

Proof of Lemma 4.2.
Assuming that W , F , and the stable foliation of f are smooth, the last statement of the

Lemma follows from the general theory of stable foliations of partially hyperbolic diffeo-
morphisms. If the stable foliation of f is not smooth, we can use the same techniques, or
the formula of γ̃W

x obtained below for the Hölder case and the explicit computations of [16,
Appendix], to reach the desired conclusion. Thus, we only need to prove the Hölder case.

By the Remark following Lemma 4.2, it is enough to prove the existence and regularity of
γ̃ for W = W s

f , and check uniqueness for a general W .
We adapt the proof of Lemma 4.1 in [10] to the case of principal bundles. The estimates

are the same, except that we have to deal with a family of Hölder maps instead of a single
one.

Consider a family of G-bundle charts {φi : p−1(Ui) ⊂ P → Ui ×G}i∈I , where {Ui}i∈I is a
finite open cover of M . Hence φi(ξg) = φi(ξ)g for ξ ∈ p−1(Ui) and g ∈ G.

Let r′ > 0 be a Lebesgue constant of the covering {Ui}i∈I (for each x, the open ball Br′(x)
of diameter r′ is contained in one of the Ui’s).

Choose a “domain” function d : M → I such that Br′(x) ⊂ Ud(x).
We will sometimes use the notation φx for φd(x), respectively Ux for Ud(x).
For x ∈M let us denote xn := fn(x).
Since f is uniformly continuous, there is a constant r > 0 such that f(Br(x)) ⊂ Br′(f(x))

for each x ∈M .
Given x ∈ M , n ∈ Z, and i, j ∈ I such that x ∈ Ui, f

n(x) ∈ Uj, let us denote by
βj,i(n, x) ∈ G the “fiber component” of F n : p−1(x) → p−1(fn(x)) in the charts φi and φj,
that is

F n(φ−1
i (x, g)) = φ−1

j (fn(x), βj,i(n, x)g), g ∈ G. (4.4)

Therefore βk,j(n, f
m(x))βj,i(m,x) = βk,i(n+m,x).
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If i = d(x) and j = d(fn(x)) then we write β(n, x) for βj,i(n, x). We will also use βx,y for
βd(x),d(y).

With these notations, we claim that the stable manifolds of F are given by the images of

t ∈ W s(x; f) ⊂M 7→ γ̃F
x (t) := φ−1

t (t, γF
x (t)g) ∈ P (4.5)

where g ∈ G and

γF
x (t) = lim

n→∞
[βxn,t(n, t)]

−1 β(n, x). (4.6)

The expression in (4.6) is considered from the domain of the chart φx to the domain of the
chart φt. Note that for n large, fn(t) ∈ Ud(fn(x)).

Indeed, once the convergence in (4.6) is proven, one can check that if t ∈ W s(x; f), n is
large enough, ξ = φ−1

x (x, g) and η = φ−1
t (t, γx(t)g), then

φxn(F n(ξ)) = (xn, β(n, x)g),

φxn(F n(η)) = (tn, βxn,t(n, t)γx(t)g),

and, using the biinvariance of the metric on G,

lim
n→∞

distG(β(n, x)g, βxn,t(n, t)γx(t)g) = 0,

which shows that η ∈ W s(ξ;F ).
Next we prove that the limit in (4.6) exists, and that the functions γ̃F

x are Hölder and
describe a continuous F -invariant foliation.

Define, for t ∈ W s(x; f) and n so large that tn ∈ Uxn ,

γn,x(t) = βxn,t(n, t)
−1β(n, x)

(we ignore from now on the superscript F of γ). Then

γn,xk
(tk) = β(k, t)γn+k,x(t)β(k, x)−1,

which shows that it is enough to prove (4.6) for t close to x (i.e., k large), and that the limit
satisfies the desired F -invariance. But then tn ∈ Br(xn) for all n ≥ 0 and therefore one
can write both β(n, x) and βxn,x(t) as products of the cocycles βk := βxk+1,xk

(1, · ), k ≥ 0,
defined on Br(xk). Since there are only finitely many charts, these cocycles have a uniformly
bounded Hölder norm, independently of x.

Therefore, repeating the computations of [10, Lemma 4.1] for the products of βk (instead
of the same β) shows that

γ′x(t) := lim
n→∞

βxn,x(n, t)
−1β(n, x)

has the desired properties: the limit exists and is uniformly Hölder on W s
loc(x; f). Since for

t close to x,

γ̃F
x (t) = φ−1

x (t, γ′x(t)),

we obtain the desired result.
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We now prove the uniqueness part of the Lemma. Assume that ω̃x : Wloc(x) → P is a
family of continuous sections whose G-translates give an F -invariant continuous foliation.
We can “normalize” these sections by a translation, so that φx(ω̃x(x)) = (x, Id).

The F -invariance implies that

F n(ω̃x(t)) = ω̃fn(x)(f
n(t))cn,x (4.7)

where cn,x ∈ G does not depend on t ∈ W (x). Computing at t = x in the charts φx and
φfn(x), one finds that cn,x = β(n, x). Note that the same conclusion applies for γ̃x as well
(formulas (4.5) and (4.6) show that φx(γ̃x(x)) = (x, Id) too).

Since both ω̃x and γ̃x are sections defined on W (x), one can write

ω̃x(t) = γ̃x(t)gx(t), gx : Wloc(x) → G,

where the functions gx are continuous, vary continuously with x, and gx(x) = Id. Use this
in (4.7), together with the the same formula for γ̃x and the G-equivariance of F , to obtain

gx(t) = β(n, x)−1gxn(tn)β(n, x).

Since limn→∞ distM(tn, xn) = 0 and gx(t) is continuous in both x and t, we conclude from
the biinvariance of the distance on G that

lim
n→∞

distG(β(n, x)−1gxn(tn)β(n, x), Id) = lim
n→∞

distG(gxn(tn), Id) = 0,

hence gx ≡ Id on Wloc(x), which shows that γ̃x = ω̃x, as claimed. �

Proof of Lemma 4.3.
Notice first that since ã commutes with b̃, the stable foliation of b̃, defined by (4.1), is

preserved by ã. Therefore, the intersection W̃ := W s
ã ∩W s

b̃
is preserved by both ã and b̃. But

W̃ is a lift of the foliation W (x) := W s(x;α(a)) ∩W s(x;α(b)). By the uniqueness property

of Lemma 4.2, W̃ is described by the restriction of either γ̃ã or γ̃ b̃ to W , which is exactly
what condition (4.2) states (once the sections are adjusted by the proper element of G so
that they intersect). �

5. Foliations in the smooth case

We prove here the equivalent of Proposition 4.1 for the case of smoothly TNS actions.

Proposition 5.1. Assume that A ⊂ Diff(Tn) is a smoothly TNS action, G is a compact Lie
group, and P →M is a principal G-bundle that admits a smooth G-extension α̃ : A×P → P
of α.

Then there exists a α̃-invariant smooth horizontal foliation W̃ of P . Moreover, this is the
unique continuous α̃-invariant horizontal foliation of P .
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Proof. The proof is along the lines of the proof of Theorem 2.3 in [10]. By [10, Remark
(3), §2] we can assume that the smooth distributions Ei are integrable. Denote by Wi the

corresponding smooth foliations of M . By Lemma 4.2 there are foliations W̃i covering Wi

with smooth leaves which vary continuously in the C∞-topology. Let Ẽi be the distributions

they determine in P . We construct the foliation W̃ as the span of W̃ s(a) and W̃ u(a). Using

distributions, this translates into showing that the distribution D := Ẽs(a)+ Ẽu(a) =
∑

i Ẽi

is integrable. In order to prove this, by the theorem of Frobenius, we have to check that D
is smooth and involutive (i.e. if X and Y are two smooth enough vector fields in D, then
[X, Y ] ∈ D).

Let m = dimM and l = dimG. Since G is parallelizable, one can choose a smooth frame
{Zk}k=1,l of TG. Let U ⊂ M be a small open set, and choose a smooth frame {Xj}j=1,m

of TM over U such that each field Xj is contained in some Ei. In view of the construction
of D, one can find a unique frame {Yj}j=1,m over U × G which spans D and has the form
Yj = Xj +

∑
k βj,kZk, with βj,k : U ×G→ R.

Clearly the functions βj,k are smooth in the G-variable. To show that βj,k is smooth along

Ei, choose an element c ∈ S for which Xj, Ei ⊂ Es(c). Since Yj ∈ Ẽs(c) ⊂ D, the conclusion

follows from the fact that W̃ s(c) has smooth leaves (by Lemma 4.2).
As in [10, Lemma 3.3], this implies that D is smooth. To complete the proof, let c ∈ S

be such that Xi, Xj ∈ Es(c)|U . Then Yi, Yj ∈ Ẽs(c), which is involutive (being tangent to a

foliation), hence [Yi, Yj] ∈ Ẽs(c) ⊂ D.

This proves that the foliation W̃ exists and has smooth leaves. �

6. The holonomies

Once we obtain the existence of the horizontal foliation of an extension, we can discuss
the classification of these extensions. Again, we parallel the results of [10]. The equivalent
of [10, Lemma 4.4] is discussed in §7, using the Appendix. Lemmas 6.3 and 6.4 replace [10,
Lemma 4.5] — we now classify the general case, instead of only small cocycles.

The main purpose of this section is to prove the following:

Theorem 6.1. Let G be a compact connected Lie group, M an infranilmanifold, and a ∈
Diff(M) an Anosov diffeomorphism. Then there are only finitely many pairs (P,F), of a
principal G-bundle P over M and a horizontal foliation F of P , for which there exists a lift
of a to a G-bundle map ã : P → P that preserves F .

Moreover, for each of these choices, the holonomy map of the foliation F , H : π1(M) → G,
has a finite image.

Remark. It is enough to prove the theorem for a power of a. Therefore, without loss of
generality, we will assume that a has a fixed point, say x0.
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We begin by describing the holonomy, and the constraints it has to satisfy if it corresponds
to a G-extension. Then we prove that under our hypothesis, these constraints admit only
finitely many solutions.

Let p : P → M be a principal G-bundle and F a continuous G-invariant horizontal
foliation of P . Equivalently, (P,F) describes a principal bundle with group Gdiscrete, G with
the discrete topology.

The pair (P,F) is described by the holonomy H : π1(M,x0) → G, which is defined as
follows. Choose a G-equivariant map ψ : Px0 → G, where Px0 := p−1(x0) (recall that G
acts on the right, hence ψ(ξg) = ψ(ξ)g). Given ω ∈ π1(M,x0), take a loop c : [0, 1] → M ,
c(0) = c(1) = x0, that represents ω. Let c̃ : [0, 1] → M be a horizontal lift of c (i.e., c̃ is
contained in a leaf of F). Then ψ(c̃(1)) = H(ω)ψ(c̃(0)). Note that by the G-invariance of
F , any lift of c gives the same value for H(ω), because they differ by a right translation by
an element of G.

It is easy to see that H is a homomorphism of groups: H(ωη) = H(ω)H(η), where we use
the convention that the paths corresponding to ωη is obtained by first covering η, and then
ω (hence, the end point of η is the starting point ω).

Recall that the conjugacy class of H determines the isomorphism class of (P,F) (see [25,
Theorem 13.9], which we reproduce as Theorem A.2).

For each bundle map ã : P → P that preserves the fiber Px0 , one can introduce βã ∈ G
describing the action of ã in this fiber by

ψ(ã(ξ)) = βãψ(ξ), ξ ∈ Px0 ,

where ψ : Px0 → G is the map used in defining the holonomy. Note that βã is independent
of ξ.

For a group action α̃ : A × P → P which preserves Px0 , this gives a homomorphism
β : A → G.

The following result is a special case of Theorem A.6:

Proposition 6.2. Let (P,F) be a principal bundle with a horizontal foliation, and α :
A×M →M an action on the base that has a fixed point x0.

Given a homomorphism β : A → G, there exists an extension α̃ : A × P → P of α that
preserves F and corresponds to β if and only if, for each a ∈ A,

H(a∗ω) = β(a)H(ω)β(a)−1, ω ∈ π1(M,x0), (6.1)

where a∗ ∈ Aut(π1(M,x0)) is the action induced on the homotopy group by α(a).

We begin now the proof of Theorem 6.1. It consists of two steps. First, we show that
under the assumptions of the theorem, the holonomy homomorphism H must have a finite
image:

Proposition 6.3. Let G be a compact connected Lie group, M an infranilmanifold, and
a ∈ Diff(M) an Anosov diffeomorphism which fixes a point x0 ∈ M . Pick g ∈ G. Consider
the automorphism a∗ ∈ Aut(π1(M,x0)) induced by a (by the Franks–Manning classification,
a∗ is “hyperbolic”).



COCYCLES OVER ABELIAN TNS ACTIONS 15

If H : π1(M,x0) → G satisfies

H(a∗ω) = gH(ω)g−1, ω ∈ π1(M), (6.2)

then H has finite image. Moreover, the number of elements in the image of H is bounded by
a quantity N#(a,G) depending only on a and G.

Therefore, the map H : π1(M,x0) → G is given by a composition of a quotient into a finite
group followed by an inclusion, π1(M,x0) � F ↪→ G, where the order of F is bounded by
N#(a,G). Since π1(M,x0) is finitely generated, there are only finitely many such quotient
maps. The next result states the same for the inclusion F ↪→ G:

Proposition 6.4. Let F be a finite group and G a compact connected Lie group. Then, up to
conjugacy by an element in G, there are at most finitely many homomorphisms ρ : F → G.

These prove Theorem 6.1. Indeed, let H be the holonomy of the principal bundle P . By
Proposition 6.2, relation (6.2) holds for some g ∈ G. But then Propositions 6.3 and 6.4
imply that up to conjugacy, there are only finitely many possibilities for H. Theorem A.2
concludes the proof.

We now prove the two Propositions stated above.

Proof of Proposition 6.3.
Since M is an infranilmanifold, π1(M) is the extension of a nilpotent group Λ by a finite

group F :

{1} → Λ → π1(M) → F → {1},
where Λ is a discrete subgroup in a connected, simply connected nilpotent Lie group N .
The homomorphism a∗ induced by a on the fundamental group of M is the restriction of
an automorphism a of N that preserves Λ. The hyperbolicity assumption means that the
differential at the origin of a has no eigenvalues on the unit circle (seen as a transformation
of the Lie algebra of N).

Note that it is enough to prove our claim for the restriction of both H and a∗ to Λ.
We will proceed by induction on the nilpotency order (i.e., depth) of N , using only the

properties of N , Λ and a described above.
Because N is nilpotent, one can identify N and its Lie algebra via the exponential map.

In particular, one concludes that all Lie subgroups of N are simply connected. Via this
identification, a corresponds to its differential at the origin. Recall that all discrete subgroups
in a connected nilpotent Lie group are finitely generated (see [21], Corollary 2 to Theorem
2.10).

The basic observation is the following:

if T ⊂ G is an abelian subgroup, then NG(T )/ZG(T ) is finite and its order is
bounded by a constant N#(G) depending only on G,

where NG(T ) := {g ∈ G | gTg−1 = T} and ZG(T ) := {g ∈ G | gtg−1 = t for all t ∈ T}
are the normalizer, respectively the centralizer, of T in G. Indeed, since G is compact, we
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may assume it is a subgroup of a unitary group and conclude that it is enough to check the
statement for G = U(q). But an abelian subgroup T ⊂ U(q) can be diagonalized:

V tV ∗ = diag(λi(t)) for each t ∈ T,

where λi : T → T, i = 1, . . . , q, are multiplicative characters of T . A direct computation
then shows that NU(q)(T )/ZU(q)(T ) is isomorphic to a subgroup of the permutations of the
diagonal that exchange the “blocks” of characters having the same multiplicity. In particular,
it can have at most q! elements.

Consider first the case when N is abelian, thus Λ ∼= Zr. Since g normalizes H(Λ), the
previous observation implies that some power of it, say gp, p ≤ N#(G), actually centralizes
this image. Thus, H(ap

∗ω) = H(ω), ω ∈ Λ, which shows that H is trivial on the image
(ap
∗ − Id)(Λ). Since ap

∗ − Id is invertible on Λ ⊗ Q, this image is of finite index in Λ. This
proves our claim for N abelian.

Assume now that the assertion was proven for groups N whose nilpotency order is at most
`. If N has nilpotency order ` + 1, let N1 := [N,N ] and Λ1 := N1 ∩ Λ, which is a normal
subgroup of Λ containing [Λ,Λ]. The induction hypothesis applied to Λ1 ⊂ N1 implies that
H(Λ1) ⊂ G is finite and of bounded order. Thus the normal subgroup K := ker(H) ∩ Λ1 of
Λ has finite index in Λ1, and therefore [Λ/K,Λ/K] ⊂ Λ1/K has bounded finite order.

Consider the short exact sequence of groups

{1} → [Λ/K,Λ/K] → Λ/K → A→ {1}

whose first term is finite of bounded order, the second is nilpotent of depth at most ` + 1,
and the third is abelian. We can invoke the following result of Dixmier (see [27], Corollary
2.3): if the center Z of a nilpotent group L has exponent m (i.e., zm = IdL for each z ∈ Z)
and the depth of L is κ, then L has exponent at most mκ. Thus A has finite exponent.
However, Λ is finitely generated, hence A, and therefore Λ/K, are actually finite. We thus
obtain a finite bound on the order of Λ/K, and therefore on the size of H(Λ) as well. �

Remarks. 1. If the group G is not compact, (6.1) admits solutions H that have infinite
image. For example, assume that the linear action α of A on Td is induced from the
homomorphism λ : A → SL(d,Z), and thus α∗ = λ after the identification π1(M,x0) ∼= Zd,
where x0 is the origin. Let G be SL(d+ 1,Z). Then

H(ω) =

(
1 0
ω Id

)
, β(a) =

(
1 0
0 λ(a)

)
, ω ∈ π1(M,x0), a ∈ A

satisfy (6.1).
2. If we do not fix the compact Lie group G, then the image of the holonomy homomor-

phism can be almost any finite quotient of π1(M,x0). E.g., for π1(M,x0) = Zk, one can take
Zk/pZk for any p ≥ 1. We describe this next.

Proposition 6.5. Assume that α is an action of a group A on the compact manifold M
having a fixed point x0, and H : π1(M,x0) → F is a finite quotient of π1(M,x0) whose
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kernel is invariant under the action α∗ induced by α on π1(M,x0). Then we can embed F
in a compact Lie group G and find β : A → G so that equation (6.1) holds.

Proof. The condition on the kernel of H implies that we can quotient α∗ to an action
α∗ : A → Aut(F ). Consider the wreath product F := F n Aut(F ) and let β := α∗ : A →
Aut(F ) ⊂ F . Then (6.1) holds. It only remains to embed the finite group F into a compact
group (e.g., view F as a subgroup of a permutation group and realize the latter by unitary
matrices) to conclude the proof. �

Proof of Proposition 6.4. Let Rep(F,G) be the space of homomorphisms from F into G,
endowed with the compact-open topology. Since Rep(F,G) is compact, the proposition will
follow if we show that any two nearby homomorphisms are conjugate.

Indeed, notice first that if two homomorphisms ρ, ρ′ : F → G are close to each other
than they have the same kernel, because there are no small subgroups in G. Therefore the
conclusion follows from the following theorem of Montgomery and Zippin (see [15]):

Theorem 6.6 (Montgomery and Zippin). Let G be a Lie group and G∗ a compact subgroup
of G (in particular G∗ can be finite). Then there exists in G an open set O containing G∗

with the property that for each subgroup G0 of G lying in O there is an element g of G such
that g−1G0g is in G∗.

�

7. The main result and its proof

Let α : A×M →M be a TNS action on the infranilmanifold M .
We will discuss the general case, when the action need not have fixed points. Such actions

exist, see [9].
Let us first explain why Tκ-extensions can always be realized on a trivial bundle, i.e., as

cocycles. Thus, the first part of Theorems 3.1 and 3.2 follows from the second (since the
group G is abelian, relation (3.1) gives elements that are in the kernel of H). Indeed, any
homomorphism H from the abelian group A = Zk into Tκ can be homotopically deformed to
the trivial one (deform the image of each generator of A separately). Therefore, the bundle
corresponding to H is (isomorphic to) the trivial principal bundle, M×Tκ. For other groups
G we were not able to find a result about the isomorphism class of a principal G-bundle
specified by a given holonomy H.

We describe now the general results. We give only the statement for extensions. As
explained above, if G = Tκ then we have to consider only cocycles, with the corresponding
simplifications.

Theorem 7.1. Let M be an infranilmanifold and α : A×M →M a smoothly-TNS action.
Since the action is abelian and contains hyperbolic elements, there is a point x1 ∈M which

has a finite A-orbit, {xk | k = 1, . . . , p}. For each xk ∈ Ax1, choose a path ωxk
from x1 to

xk; as ωx1 choose the constant path.
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Let G be a compact connected Lie group.
The continuous cohomology classes of smooth G-extensions of α are in one-to-one corre-

spondence with conjugacy classes of pairs of maps (H, β), where:

(1) H : π1(M,x1) → G is a homomorphism;
(2) β : A → G satisfies:

(a) For all γ ∈ π1(M,x1) and a ∈ A,

H(ω−1
a(x1)a(γ)ωa(x1)) = β(a)H(γ)β(a)−1. (7.1)

(b) For each a, b ∈ A,

H(ω−1
ab(x1)a(ωb(x1))ωa(x1))β(ab) = β(a)β(b). (7.2)

Up to conjugacy, there are only finitely many homomorphisms H, and each has a finite
image.

Therefore, each extension has a finite cover which is a trivial G-bundle and on which the
lifted action of the finite index subgroup A1 := {a ∈ A | a(x1) = x1} is cohomologous to a
constant cocycle. This cover can be chosen to be the same for all G-extensions of α.

Note that if x1 is a fixed point of α, then these conditions simplify to the requirements
that H and β be homomorphisms that satisfy relation (3.1). Otherwise, β is only a “twisted
homomorphism”.

The similar result for Hölder cocycles on a torus is:

Theorem 7.2. Assume that M ∼= Td, α : A×M →M is a TNS action, and x1 ∈M has a
finite A-orbit. Then the conclusions of Theorem 7.1 hold for continuous cohomology classes
of θ-Hölder G-extensions.

In particular, any Hölder extension is Hölder cohomologous to a smooth extension.

Remark. The properties (7.1) and (7.2) are the conditions of Theorem A.6, rewritten
in (A.8) and (A.9). They can be solved in part (see Theorem A.7). We describe this
below. As above, denote by A1 the isotropy group of x1, A1 := {a ∈ A | a(x1) = x1},
which has index p in A. Choose a set of representatives bi for A/A1, i = 1, . . . , p. Denote
A1 = A1 ∪ {bi | i = 1, . . . , p}.

Then the cohomology classes of G-extensions of α are in one-to-one correspondence with
conjugacy classes of maps (H, β), where:

(1) H : π(M,x1) → G is a homomorphism;
(2) β : A1 → G satisfies the conditions:

(a) β(eA) = eG;
(b) For each g ∈ A1 and γ ∈ π1(M,x1),

H(ω−1
g(x1)g(γ)ωg(x1)) = β(g)H(γ)β(g)−1;

(c) For any g1, g2, g3 ∈ A1, a ∈ A1 such that g1g2 = g3a,

β(g3)β(a)β(g2)
−1β(g1)

−1 = H(ω−1
g3(x1)g1(ωg2(x1))ωg(x1)).
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Proof of Theorems 7.1 and 7.2.
Let α̃ : A× P → P be a G-extension of α.
We begin by describing how the invariant (H, β) is associated to an extension. There are

two cases:

(1) M is a torus and the extension is Hölder;
(2) M is any infranilmanifold, the action is smoothly TNS, and the extension is smooth.

In the first case we use Proposition 4.1, in the second Proposition 5.1. We conclude that
there is a horizontal foliation F preserved by α̃. For (P,F) we use the notations introduced
in the Appendix §A.

Fix a G-equivariant map φx1 : Px1 → G. Then there is a unique choice of trivializations
φxk

: Pxk
→ G such that the parallel transport along ωk induced by F takes φ−1

x1
(eG) to

φ−1
xk

(eG) (in the notation of §A, K(ωxk
) = eG).

Then H is the holonomy of F computed at x1 with respect to φx1 , whereas β is defined
by the map

a ∈ A 7→ β(a) :=
[
φa(x1)(ã(ξ))

]
[φx1(ξ)]

−1 ∈ G,
which is independent of ξ ∈ Px1 . Here ã stands for α̃(a).

Alternatively, β(a) is defined as follows: for ξ ∈ Px1 , let η ∈ Px1 be the parallel transport
of ã(ξ) along ω−1

a(x1). Then

β(a) := [φx1(η)] [φx1(ξ)]
−1 ∈ G. (7.3)

Theorem A.6 shows that the pair (H, β) satisfies the conditions (7.1) and (7.2) (see (A.8)
and (A.9); by our choice of the trivializations, K(ωxk

) = eG).
Note that a different choice of φx1 will yield a conjugate pair (H, β) for the invariant (see

part 4 of Lemma A.4).
Next, we show that conjugacy classes of (H, β) are in one-to-one correspondence with

cohomology classes of extensions.
First, we show that if two extensions α̃ : A × P → P and α̃′ : A × P ′ → P ′ are

cohomologous, then their invariants are conjugate. Let F : P → P ′ be the continuous
bundle map for which

α̃′(a) = F ◦ α̃(a) ◦ F−1 for each a ∈ A.
Denote by F and F ′ the invariant horizontal foliations of α̃ and α̃′. Then F (F) is a continuous
invariant horizontal foliation for α̃′, hence, by Propositions 4.1 and 5.1, it has to coincide
with F ′. Choose a trivialization φx1 of Px1 and let φ′x1

:= φx1 ◦ F−1 be the trivialization of
P ′x1

. Then, measured with respect to these trivializations, the invariants of α̃ and α̃′ coincide
(e.g., use the description (7.3) for β = β′).

Conversely, assume that the invariants of two extensions α̃ : A×P → P and α̃′ : A×P ′ →
P ′ are conjugate. Denote by F , respectively F ′, the invariant horizontal foliations of α̃ and
α̃′. Because the holonomy parts of the invariants are conjugate, Theorem A.2 implies that
there is a (smooth) bundle map F : P → P ′ such that F (F) = F ′. Then the action
α̃′′(a) := F−1 ◦ α̃′(a) ◦ F , a ∈ A, on P preserves F . Fix a trivialization of Px1 ; with respect
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to it, let the invariants of α̃, respectively α̃′′, be (H, β) and (H ′′, β′′). In view of the previous
arguments, (H, β) and (H ′′, β′′) are conjugate as well: there is an element g ∈ G such that
H ′′ = Intg ◦H and β′′ = Intg ◦ β. Since both α̃ and α̃′′ have the same invariant horizontal
foliation, it follows that H = H ′′, hence g commutes with the image of H in G. But then
the second part of Lemma A.5 implies that there is a bundle map F0 : P → P that covers
the identify, preserves F , and has βF0(IdM) = g. Therefore, the β-part of the invariants of
α̃′′ and F0 ◦ α̃ ◦ F0 coincide, which implies that the two actions on P are equal (since M is
connected). Hence

F−1 ◦ α̃′(a) ◦ F = F0 ◦ α̃(a) ◦ F−1
0 , a ∈ A,

which shows that α̃′ and α̃ are cohomologous, as desired.
This proves the one-to-one correspondence between cohomology classes of extension and

conjugacy classes of pairs (H, β).
It remains to check the final statements of the theorems. Apply the Theorem 6.1 to a

particular fixed Anosov element of A. We conclude that, up to conjugacy, there are only
finitely many possible holonomy maps H : π1(M,x1) → G, and each has finite image.
Denote by Γ0 ⊂ π1(M,x1) the intersection of their kernels. Then Γ0 has finite index in
π1(M,x1) (being the kernel of the direct sum of the possible holonomy maps). Since the
action of A1 has a fixed point, it is topologically conjugated to the abelian linear action on
M given by A1 acting on π(M,x1). But M ∼= N/Γ, with Γ ∼= π1(M,x0) (see the definition
of infranilmanifolds in §2). Hence M0 = N/Γ0 is a finite cover of M , to which α|A1 can be
lifted. If α̃ : A×P → P is an extension of α described by (H, β), then the pull-back (P0,F0)
of (P,F) to M0 has trivial holonomy, and the action α̃ lifts to the constant cocycle given by
β|A1 on P0 (note that β|A1 is a group homomorphism, and the relations (7.1) and (7.2) are
satisfied on (P0,F0)). �

Appendix A. Lifting group actions

Let X be a (smooth) connected manifold. Consider a principal G-bundle P → X over X.
Assume that P has a horizontal foliation F . In this section we describe the lifts of an action
α : A×X → X on the base to an action on P which preserves the foliation F .

We were not able to find in the literature these results, and therefore we give more details.
Although many of the results state equivalent conditions, in most cases we will discuss only
one of the implications, since the other one is obtained in a similar fashion.

Notations. Let P be a G-bundle over X, and F a horizontal foliation of P .
1. Denote by Ω the set of paths in X. There are two maps s, t : Ω → X which give the

source and target (i.e., initial and final point) of a path. For paths that start and end at
x ∈ X, we use the notation Ωx,x.

For a : X → X, denote by γ 7→ a(γ) its action on paths γ ∈ Ω.
2. We denote by Px the fiber of P above x ∈ X. For each x ∈ X, we choose a right

G-equivariant map φx : Px → G (i.e., φx(ξg) = φx(ξ)g).
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3. Each γ ∈ Ω determines a parallel transport γ : Ps(γ) → Pt(γ). Namely, γ(ξ) = η if η is
the end point of the horizontal lift of γ starting from ξ ∈ Ps(γ).

Definition A.1. For γ ∈ Ω, denote by K(γ) the holonomy of γ:

K(γ) =
[
φt(γ)(γ(ξ))

] [
φs(γ)(ξ)

]−1
,

which is independent of ξ ∈ Ps(γ).

Remark. Since F is a foliation, K(γ) depends only on the homotopy class with fixed
end points of γ. In particular, K : Ωx1,x1 → G is exactly the holonomy of the foliation,
H : π1(X, x1) → G.

We recall the basic classification theorem for principal bundles endowed with an invariant
horizontal foliation (equivalently, having a discrete structure group, or — in the smooth case
— a flat connection).

Theorem A.2 ([25, Theorem 13.9]). Fix x1 ∈ X. Two continuous principal G-bundles over
X with a continuous horizontal foliation, (P1,F1) and (P2,F2), are isomorphic (i.e., there
exists a bundle isomorphism F : P1 → P2 covering the identity map on M , and such that
F (F1) = F2) if and only if the holonomies

H1, H2 : π1(X, x1) → G

are conjugated in G: there exists an element g ∈ G such that H1(ω) = gH2(ω)g−1 for all
ω ∈ π1(X, x1).

Definition A.3. For a G-bundle map ã : P → P which covers the map a : X → X, define
β(a, · ) : X → G by

β(a, x) =
[
φa(x)(ã(ξ))

]
[φx(ξ)]

−1 ,

which is independent of ξ ∈ Px.

It would be more precise to write βã instead of β. We will do it only if there is the
possibility of confusion. Note that any such map determines uniquely a G-map ã (which
might not be continuous) that covers a.

We summarize a few simple properties.

Lemma A.4. (1) For γ, ω ∈ Ω,

K(ωγ) = K(ω)K(γ), provided t(γ) = s(ω) (A.1)

(we use the convention that ωγ is the path obtained by covering first γ, then ω).

(2) If ã, b̃ : P → P are lifts of a, b : X → X, then

βãb̃(ab, x) = βã(a, bx)βb̃(b, x). (A.2)

(3) If γ ∈ Ω starts at x and ends at a(x) 6= x, then

K(γ)−1βã(a, x) ∈ G
is independent of the choice of φa(x).
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(4) If φ′x(ξ) = gφx(ξ) is another trivialization of Px, then the value h = K(γ)−1βã(a, x)
considered in part 3 changes to ghg−1 when computed with respect to φ′x. The effect
is the same on K(γ), γ ∈ Ωx,x.

Proof. The first two properties are immediate. For the third one, note that if φ′a(x) is

another trivialization, then there is g ∈ G such that φ′a(x)(ξ) = gφa(x)(ξ). The conclusion
follows from the definitions of K and β. The last part also follows from the definitions. �

Lemma A.5. Let (P,F) be as above.

(1) The lift ã : P → P of a : X → X preserves F if and only if

K(a(γ))β(a, s(γ)) = β(a, t(γ))K(γ), for each γ ∈ Ω. (A.3)

(2) Given x1 ∈ X, there is lift ã : P → P of a : X → X that preserves F with a given
β(a, x1) ∈ G if and only if

K(a(γ))β(a, x1) = β(a, x1)K(γ), for each γ ∈ Ωx1,x1 . (A.4)

Note that if such a lift exists, it is unique, because X is connected.

Proof. We prove the “only if” implication of the first part. ã preserves F if and only if,
given ξ, η in the same leaf of F , ã(ξ) and ã(η) are also in the same leaf. Connect ξ to η by
a horizontal curve, denote by γ its projection to X. Then γ(ξ) = η, and a(γ)ã(ξ) = ã(η).
The definitions of K and β now give (A.3).

To prove the “if” implication of the second part, choose a family of curves {ωx}x∈X with
s(ωx) = x1 and t(ωx) = x. As ωx1 choose the constant curve. Define β(a, · ) by (A.3):

β(a, x) := K(a(ωx))β(a, x1)K(ωx)
−1. (A.5)

We have to show that it satisfies (A.3) for any curve γ ∈ Ω. Apply (A.4) for the curve
ω−1

y γωx ∈ Ωx1,x1 , where x = s(γ), y = t(γ). The desired relation follows using (A.5) and
(A.1). �

Theorem A.6. Let P → X be a G-bundle with a horizontal G-invariant foliation F whose
holonomy is H : π1(X, x1) → G (the trivialization of Px1 is chosen so that K(γ) = H([γ])
for each γ ∈ Ωx1,x1).

Let α : A × X → X be an action. Then α admits an F-preserving lift α̃ : P → P
corresponding to β( · , x1) : A → G (see Lemma A.5) if and only if relations (A.6) and
(A.7) are satisfied, where:

K(a(γ)) = β(a, x1)K(γ)β(a, x1)
−1 for all γ ∈ Ωx1,x1 , a ∈ A (A.6)

and

β(ab, x1) = β(a, bx1)β(b, x1) for each a, b ∈ A. (A.7)
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Remarks. 1. We assume that A has the discrete topology, hence we do not need to consider
continuity in the A-variable. The continuity in the X-variable follows from that of (P,F).

2. One can rewrite conditions (A.6) and (A.7) in a form that involves only curves in Ωx1,x1 ,
and quantities that are independent of the choice of trivializations φx, x 6= x1 (see part 3 of
Lemma A.4). Recall that φx1 was imposed by the identification of K with H.

For example, using (A.1), (A.6) is equivalent to

K(ω−1
a(x1)a(γ)ωa(x1)) =

[
K(ωa(x1))

−1β(a, x1)
]
K(γ)

[
K(ωa(x1))

−1β(a, x1)
]−1

for all γ ∈ Ωx1,x1 , a ∈ A (A.8)

and, using (A.5) and (A.1), (A.7) is equivalent to

K(ω−1
ab(x1)a(ωb(x1))ωa(x1))

[
K(ωab(x1))

−1β(ab, x1)
]

=

=
[
K(ωa(x1))

−1β(a, x1)
] [
K(ωb(x1))

−1β(b, x1)
]

for each a, b ∈ A. (A.9)

Proof. We prove only the “if” implication.
By Lemma A.5, (A.6) implies that each a ∈ A has a unique F -preserving lift ã to P

determined by β(a, x1).

Condition (A.7) means that ãb̃(ξ) = (̃ab)(ξ) for any ξ ∈ Px1 . Since X is connected, this

implies that ãb̃ = (̃ab) on P .
Alternatively, an algebraic proof is obtained as follows: by part 2 of Lemma A.4, we have

to show that β(ab, x) = β(a, bx)β(b, x) holds for each a, b ∈ A, x ∈ X. But, by (A.3),

β(a, bx1) = K(a(b(ωx)))β(a, bx1)K(b(ωx))
−1,

β(b, x1) = K(b(ωx))β(b, x1)K(ωx)
−1,

β(ab, x1) = K(ab(ωx))β(ab, x1)K(ωx)
−1,

which give the desired condition. �

We will now specialize Theorem A.6 to our set-up, in which the action has a point with
finite orbit (although, finiteness is not crucial for the next theorem).

Theorem A.7. Let α : A×X → X be an action that has a periodic point x1 ∈ X, i.e., the
A-orbit of x1 is finite, say Ax1 = {xk | k = 1, . . . , p}. For each xk ∈ Ax1 choose a path ωxk

from x1 to xk; as ωx1 choose the constant path.
The isotropy subgroup of x1, A1 := {a ∈ A | a(x1) = x1} has index p in A. Choose a set

of representatives bi for A/A1, i = 1, . . . , p. Denote A1 = A1 ∪ {bi | i = 1, . . . , p}.
Let P → X be a G-bundle having a G-invariant horizontal foliation F . Pick a trivialization

of Px1; this determines the holonomy H : π1(X, x1) → G which characterizes (P,F) (see
Theorem A.2).
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Then lifts of α to P are in one-to-one correspondence with functions β( · ) = β( · , x1) :
A1 → G satisfying the following properties (in order to simplify the notation, we see H
defined on Ωx1,x1):

(1) β(eA) = eG;
(2) For each g ∈ A1 and γ ∈ π1(X, x1),

H(ω−1
g(x1)g(γ)ωg(x1)) = β(g)H(γ)β(g)−1; (A.10)

(3) For any g1, g2, g3 ∈ A1, a ∈ A1 such that g1g2 = g3a,

β(g3)β(a)β(g2)
−1β(g1)

−1 = H(ω−1
g3(x1)g1(ωg2(x1))ωg(x1)). (A.11)

Remarks. 1. One could just as well use instead of A1 the normal subgroup A0 := {a ∈
A | a(y) = y for all y ∈ Ax1} of A, and state the above properties for A0 and a set of
representatives of A/A0. Then g1g2 = g3a implies that g3 = g2 if g1 ∈ A1.

2. For a ∈ A1, relation (A.10) becomes

H(g(γ)) = β(g)H(γ)β(x)−1. (A.12)

3. Relation (A.11), together with β(eA) = eG, imply that β : A1 → G is a homomorphism
(take g3 = eA, g1, g2 ∈ A1).

Proof. Choose trivializations of φxk
: Pxk

→ G such that K(ωxk
) = eG. Since H(γ) = K(γ)

for γ ∈ Ωx1,x1 , relation (A.10) is exactly (A.8), which is equivalent to (A.6) of Theorem A.6,
or (A.4) of Lemma A.5. Therefore, each element of g ∈ A1 admits a lift g̃ to (P,F)
corresponding to β(g).

For g1, g2, g3 ∈ A, a = eA, relation (A.11) is exactly (A.9). Therefore, by Theorem A.6, the
restriction of β to A1 determines a lift of α restricted to A1. We have to check that the lifts

b̃i of bi are inducing a lift of the whole group A. But A is generated by A1, and the relations
that elements of A1 satisfy are exactly of the form g1g2 = g3a, a ∈ A1. Relation (A.11) is
the necessary and sufficient condition for g̃1g̃2 = g̃3ã to hold. Indeed, by (A.2), the latter
identity is equivalent to β(g1, g2(x1))β(g2, x1) = β(g3, a(x1))β(a, x1); use (A.5) and (A.1),
together with the fact that a(x1) = x1, to transform it into (A.11). �
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